1流动、传热及传质的控制方程PPT

合集下载

第3章 微分方程

第3章 微分方程
dxdydz t
流出-流入 积累率
( u ) ( u ) ( u ) x y z dxdydz x y z
dxdydz t
( u x ) ( u y ) ( uz ) 0 x y z t
P38
柱坐标中的表达式:
1 1 rur u uz 0 t r r r z
式中: r 径向坐标;z 轴向坐标;θ方位角
(2-14)
d u r dt
表示线速度
直角坐标系与柱坐标系的关系
P38
图2-2b 示出球坐标系与直角坐标系的关系。
x 向质量净出率:
x 向增加量
( u x )dx dydz x
① 质量净出率
x 向质量净出率: y 向质量净出率:
z 向质量净出率:
三向六面净出率:
(kg/s)
( u x )dx dydz x
( u y )dy dxdz y
( uz )dz dxy z
本节内容:
1.能量方程( E.E. )的建立 2. 其他坐标系下的形式 3. E.E.的简化
4. E.E.的应用举例
1. 方程的建立 ( E.E. )
衡算根据:热力学第一定律,即某过程中体系从环境中所吸
收的热量减去对体系所作功之差,等于该体系在过程前后的能量 变化,其数学表达式为:
在传热、传质过程中往往伴随有流体流动,因
此均需要用到C.E.。
2.连续性方程的另一表达式
( u ) 0 t
引入随体导数的概念,上式可写为:
( u ) 0 u u t t

第一章-流体`流动

第一章-流体`流动

⊿ p~ R 一 一 对 应
U型测压管
•指示液与被测流体 物化学反应且不互溶; •密度大于流体密度
pA
A
h R
p1 p A gh p2 pa i gR
1
2
p A pa i gR gh A点的表压 p A pa i gR gh
第 二 节
流 体 静 力 解:(1) pA = p1 + ρH2O g(1.2 - R) 学 p1 = p2 = p3 = pa + ρHg g R 基 pA = pa + ρHg g R + ρH2O g(1.2 - R) 本 方 = pa + ( ρHg - ρH2O) g R + ρH2O g×1.2 程 = 1.279×105N/m2 式 (2) pA = [(1.279×105 ÷ 1.013×105) -1] ×1.033 = 0.271kgf/cm2
— 连续性假定
第 一 节 概 论
从微观上,流体是由大量的彼此之间有一定间隙 的单个分子所组成的,并且各单个分子作着随机的、混 乱的运动,如果以单个分子作为考察对象,那么流体将 是一种不连续的介质,所需处理的运动将是一种随机的 运动,问题将是非常复杂的。 但是,在研究流动规律时,人们感兴趣的不是单 个分子的微观运动,而是流体宏观的机械运动。
内能 流体所含的能量包括 动能
机械能
势能
位能 压能
○压能(静压能、压强能以及弹簧的势能等)
● 流体流动时存在着三种机械能(即动能、 位能和压能)之间的相互转换。
第 一 节 概 论
● 流体粘性所造成的剪力是一种内摩擦力, 它将消耗部分机械能使之转化为热能(即 内能)。输送机械提供能量补偿。 ● 气体在流动过程中因压强的变化而发生 体积变化时,存在着内能与机械能之间的 相互转换。

传热和传质基本原理 第四章 三传类比

传热和传质基本原理     第四章 三传类比

4.2.2 柯尔本类似律

雷诺类似律或忽略了层流底层的存在,普朗特正 对此进行改进,推导出普朗特类似律:

冯卡门认为紊流核心与层流底层之间还存在一个 过渡层,于是又推导出了卡门类似律:
契尔顿和柯尔本根据许多层流和紊流传质的实验结果, 在1933年和1934年,得出:
简明适用,引入了流体的 重要物性Sc数。
24
根据薄膜理论,通过静止气层扩散过程的传质系数可定义为:
25

在紧贴壁面处,湍动渐渐消失,分子扩散起主导 作用,在湍流核心区,湍流扩散起主导,传质系 数与扩散系数成下列关系
另外,δ的数值决定于流体的流动状态,即雷诺 数。
26
4.4.2

同一表面上传质过程对传热过程的影响
设有一股温度为t2 的流体流经温度为t1的壁面。传递过程 中,组分A、B从壁面向流体主流方向进行传递,传递速 率分别为NA、NB。可以认为在靠近壁面处有一层滞留薄 层,假设其厚度为y0 ,求壁面与流体之间的热交换量。
边界层厚度
1904年普朗特首先提出
39
4.5.1 边界层理论的基本概念
边界层的定义
流体在绕过固体壁面流动时,紧 靠固体壁面形成速度梯度较大的 流体薄层称为流动边界层 流速相当于主流区速度的0.99处到固 体壁面间的距离定义为边界层的厚度
边界层的形成与特点
Re x 2 10 5
vl Re
以此两式计算管内流动质交换系数结果很接近。
17
18
紊流
19
例题: 试计算空气沿水面流动时的对流质交换系数hm和每 小时从水面上蒸发的水量。已知空气的流速 u=3m/s,沿气流方向的水面长度l=0.3m,水面的温 度为15 ℃ ,空气的温度为20 ℃ , 空气的总压力 1.013*105Pa,其中水蒸汽分压力p2=701Pa,相当 于空气的相对湿度为30%。

燃烧学多组分反应流体守恒方程

燃烧学多组分反应流体守恒方程
料原料是碳和氢。
对于由一种燃料,一种氧化剂和一种反应物组成的三“组分 ”系统:
例5.1 有一非预混的乙烷-空气火焰,其下列各组分的 摩尔分数是利用不同的方法测量的:
假设其他组分可以忽略, 试根据所测量的上述各组分摩尔分数定义混合物分数f。
解:有混合物分数的原始定义,我们先用各组分的质量分 数来表示f:
解:要计算按化学恰当比混合的燃料和氧化剂的混合物分数,我们只 要计算反应物中燃料 的质量分数即可:
从 C,H,O原子守恒可得:
从而可求解出 因此
要确定局部混合物分数,必须考虑到火焰中的碳原子不都是来自
原料
因为氧化剂中含有 但是要注意到H原子只来源于燃料
因而局部混合物分数必定和局部H元素质量分数成正比:
二.组分的质量守恒方程 对于定长流,组分A的质量守恒方程可以写成
组分质量守恒方程更一般的一维形式为来自分 的质量守恒方程的一般矢量形式为


混合物质量平均速度
组分速度等于质量平均速度叠加上扩散(布朗运动 )速度
组分总的质量通量等于对流通量和扩散通量之和, 即
将(c)式代入式(a),得 代入分子输运的费克扩散定律,得
燃烧现象包含流体运动,传热,传质和化学反 应以及它们之间的相互作用。燃烧过程是一种综 合的物理化学过程。
本章介绍控制燃烧过程的基本方程组:
混合物质量守恒方程
组分质量守恒方程
动量守恒方程
能量守恒方程
多组分反应流体一维流动守恒方程 混合物质量守恒方程 组分守恒方程 动量守恒方程 能量守恒方程 守恒标量的概念 一维流动守恒方程的通用形式 Shvab-Zeldovich公式
可由火焰中各组分的质量分数加权求和而得到 :
虽然燃料中的C原子有可能转化成

传热与传质最全的计算

传热与传质最全的计算

φ
dx
T2
δ
x
dT
温度梯度,表示热流方向温度变化的强度,温度梯
dx
度越大,说明热流方向单位长度上的温差越大。
负号 表示热流方向与温度梯度方向相反,热量是沿温度 降低的方向传递.
傅立叶定律解决的问题 ▪ 傅里叶定理是研究传热过程的重要方程, ▪ 在工程上 主要解决三个问题: ①计算传热量或热量损失; ②确定面上的温度; ③确定保温层的壁厚。
φ放 = φ冷
qmhCph ( T1 – T2) = qmcCpc ( T2′– T1′)
其中qmh和qmc分别为热、冷流体的质量流量,kg/s或kg/h
二、传热速率方程
1、总传热速率微分方程
dA
通过换热器中任一微元面积dA的间壁 T
两侧流体的传热速率方程,可以仿照对

流传热速率方程写出:
dφ = K ( T – T′) dA = K △T dA
二、对流传热速率方程
热流体侧 冷流体侧
1
1 1
A1 (T
TW1)
1A1(T
TW1)
2
2 2
A2 (TW 2
T ) 2 A2 (TW 2
T )
对流传热速率方程(又称牛顿冷却定律)
三、传热膜系数的影响因素
AT
1、流体的流动状态 2、流体的对流状况 3、流体的物理性质 影响较大的物性有流体的比热、导热 系数、密度和粘度。 4、传热表面的形状,大小和位置 5、流体相变的影响
▪ 蒸发:碱液蒸发、PVC干燥
传热在生产中的应用
▪ 2、化工设备和管道的保温(保冷),以减少热量 (冷量)损失。
▪ 保温:如蒸汽管道、热水管道。 ▪ 保冷:-35℃盐水、7℃水管道 ▪ 3、生产中热能的合理利用,废热回收。 ▪ 废热利用:氯化氢合成热用于溴化锂及采暖、转

传热与传质学第十四章 对流传质

传热与传质学第十四章 对流传质

τ=τl-τt
(14-7)
式中τl——层流切应力,即μdu/dy;
τt ——紊流切应力。
引入普朗特混合长度假说可以证明:
t

u'yu'x


l
2

du dy

2

E M
du dy
EM

l2
du dy
紊流动量扩散系数


(

EM
) du dy
q


c
p
(a

EH
当Pr=1(cp=λ /μ )
qs Ts T s u
对于Pr=1的流体来说,层流底层与紊流核心
中的qs/τs是相等的。雷诺类比就可以应用了。
qs
s

c
p
Ts
T u
qs Ts T s u
紊流
qs scp
Ts T u
层流
类比可以得到:
jD
StD=kc/ u∞ = cf/2=jM
(14-13)
jD称为质量传递的j因子 jD = StD=kc/ u∞
在Pr=1和Sc=1的情况下有:
St=StD =jM = cf/2
jH
jD
(二)普朗特类比
普朗特假设紊流流动是由层流底层和紊 流核心组成。
ShL


cf 2
Re Sc
StD=Sh/(Re·Sc)=kc/u
14-4质量、动量和热量传递的类比
一、紊流质扩散系数 紊流流动的特点:脉动和由脉动带来的横向掺混。 紊流中任一点的流动方向和速度均是不规则的, 涡流运动引起整个紊流核心的混和,这一过程称 为“涡流扩散”。 时均值:虽然变动,但是始终围绕一个值上下波

化工原理第四版课件(第五章吸收)

第五章:吸收 概述气液相平衡吸收过程的传质速率吸收塔的计算填料塔第一节:概述一、吸收吸收的定义:吸收是利用气态均相混合物中各组分在吸收剂中溶解度的差异来实现分离的单元操作。

吸收的目的:I.回收或捕获气体混合物中的有用物质,以制取产品II.除去工艺气体中的有害成分,使气体净化,以便进一步加工处理III.除去工业放空尾气中的有害气体,以免环境污染。

二、工业吸收了解工业生产中吸收及解吸过程、所需条件和典型设备例子工业上从合成氨原料混合气体中回收CO2乙醇胺脱硫法•需要解决的问题1.选择合适的溶剂2.提供适当的传质设备3.溶剂的再生三、溶剂的选择1.对溶质较大的溶解度;2.良好的选择性;3.温度变化的敏感性;4.蒸汽压要低;5.良好的化学稳定性;6.较低的黏度且不易生泡;7.廉价、无毒、易得、不易燃烧等经济和安全条件。

四、吸收的分类按有无化学反应:物理吸收和化学吸收按溶质气体的浓度:低浓度和高浓度吸收按溶质气体组分的数目:单组分和多组分吸收按有无热效应:等温和非等温吸收本章只讨论低浓度、单组分、等温的物理吸收过程。

五、吸收操作的经济性(费用)气液两相流经设备的能量损耗;溶剂的挥发及变质损失;溶剂的再生费用。

√六、吸收设备第二节:气液相平衡一、平衡溶解度恒温、恒压下,相互接触的气液两相的浓度不变时,气液两相之间的浓度关系。

气液两相组成的浓度分别用物质的摩尔分数来表示,即y= n i /Σn y 、x= n i /Σn x:气液两相中惰性组分的量不变,溶质与惰性组分摩尔比。

yy Y −=1xx X −=11.气体的溶解度气体在溶液中的溶解平衡是一个动态平衡,该平衡的存在是有条件的;平衡时气相中溶质的分压——平衡分压(或饱和分压),液相中溶质的浓度——平衡浓度(或饱和浓度),也即是气体在溶液中的溶解度;气体的溶解度是一定条件下吸收进行的极限程度;温度和压力对吸收操作有重要的影响;加压和降温对吸收有利;升温和降压对解吸有利。

对流扩散与相间传质 ppt课件


11.04.2020
NA
kG( pA
pAi)
pA pAi 1/ kG
NA
kL(cAi
cA)
cAi cA 1/ kL
气相对流传质k系 G 数R: D TGG pptBm 液相对流传质k系L 数DL: cLBctm
11.04.2020
对流扩散与相间传质
4
引入了有效膜模型后,使问题的描述形式得以简化,但问题并未最
终解决,G 或L 是一虚拟量,与 DE 一样,很难确定,这使得传质
第二十六讲 对流扩散与相间传质
一、对流扩散
(一)对流扩散过程 (二)对流扩散的有效膜模型
二、相间传质
(一)相间传质模型 1. 双膜模型 2. 溶质渗透模型 3. 表面更新模型
(二)相间传质速率方程 1. 双膜模型的数学描述 2. 相间传质速率方程 3. 传质速率方程的讨论
三、三种传递的类比
(一)普朗特的混合长理论 (二)三种传递的相似性 (三)三种传递的类比式
(一)对流传质过程
运动着的流体与壁面之间或两个有无限互溶的运动流体之间发生的传质,习惯称 之为对流传质。对流传质中既有分子传质,又有涡流传质。根据流体流动发生的 原因可分为自然对流传质和强制对流传质两类;根据流体的作用方式由可分为流 体与固体壁面间的传质及流体与流体之间的传质两类。工程上均采用强制湍流的 方式传质。
11.04.2020
对流扩散与相间传质
5
(一)相间传质模型
相际间的三种典型对流传质模型 双膜模型:稳定的气膜和液膜-在膜内为定态传质-Whitman-1923 溶质渗透模型:液相内为非定态-表面暴露时间相等-Higbie-1935 表面更新模型:液相内为非稳态-年龄分布函数-Danckwerts-1951 1. 双膜模型

化工基础 第三章 传质过程-I


如果没有实验数据,物质的分子扩散系数值 D可以由 经验或半经验公式进行估算。 (1)扩散组分A在气体B中的扩散系 T 1 1 2 D [ m / h] 1/ 3 1/ 3 2 P(v A vB ) M A M B 式中:D - 扩散系数 [m2/h];
首先建立虚拟膜的概念。 浓度的变化也逐渐减慢,至 湍流流体经过固体壁面时, 外流区后几乎不存在浓度梯 在壁面附近有一个层流底层, 度了,如图3-I-1所示。 或称流体膜。若有扩散物质 从固体表面扩散出来(例如 食糖溶于水中,或萘升华到 空气中),则扩散物质只能 靠分子扩散通过层流底层, 分子扩散速度小,所以层流 底层中浓度差很大,即浓度 梯度大。在层流底层外,从 过渡区到外流区(湍流主 体),逐步依靠流体质点的 图3-I-1 位移和混和进行传质,
作用。
§2 传质设备
经验公式( 3-I-2 )虽然误差较大,但能说明影
响扩散的诸因素中,既有物质本身的性质如分子量
和摩尔体积,又有外部条件如温度和压力,而且使
用也比较方便,可用于估算D值。
从式( 3-I-2 )也可以看出,扩散系数与气体浓 度无关,但随温度升高和压力下降而加大。 如果已经知道在热力学温度T0和压力P0下的扩散 系数D0,则可按下式计算出它在热力学温度T和压力 P时的扩散系数D的数值:
有人认为在这种情况下这个膜层已经不复存在。
( 2 )在上述情况下,物质传递主要靠漩涡来进行,
即传质方式主要是对流扩散,而分子扩散很少。此时的 传质速率主要取决于流体力学条件,而与流体性质的关 系极小。
继双膜理论之后又陆续提出了一些理论,如溶质渗透
理论,表面更新理论,界面动力状态理论,无规漩涡模
型等。这些理论在说明自由界面的非稳态漩涡扩散和流 体力学影响因素等方面又大大向前发展了。它们所提出 的传质机理和实际情况更为接近。但是由于这些理论所 依据的主要参数(如表面单元暴露时间,新表面的形成 速率等)还难于直接测出,因此直接根据它们进行计算 来解决实际问题尚有困难,而只是在指导研究上有较大

第八章 传质过程导论


几点说明:
A、与导热不同,分子扩散的特点是:当一个 分子沿扩散方向移去后,留下的空位由其他分 子填空。 B、对JA的定义是通过“分子对称”的截面: 既有一个净A分子通过这截面,也有相等的净 B分子反方向通过同一截面,填补A的净空位。
C、分子对称面在空间上既可以是固定,也可 以是移动的。
费克定律同傅利叶定律及牛顿粘性定律
热量传递(热量扩散)
dQ dA t
n
(热量通量)= -(热量扩散系数)×(热量浓度梯度)
(通量)= -(扩散系数)×(浓度梯度)
分子传递基本定律,在固体中、静止或层流流动的流体内才会产生这种传 递过程。
质量传递(扩散)?

(质量通量)= -(质量扩散系数)×(质量浓度梯度)
简单回顾3:
总体 N A J A J B Nb Nb
1 PA1
AB
1’
JA
Nb
JB
F
F’
NA,b NB,b
PA2 2
AB 2’
总体流动通量Nb与A穿过界面2-2’的
Z
传质通量NA相等
NA
由组分B的恒算式
Nb
c cB
JB
c cB
JA
代入组分A恒算式得
NA
JA
cA c
c
cB
JA
1
cA cB
J A
液相 A+B
相界面
气相 A+B
A 精馏
B
分离依据
利用液相各组分 的挥发度差异
传质推动力
ΔP、ΔC Δy 、Δx
吸附和干燥过程
相界面
气液相
固相
A+B
C
A 吸附
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档