江苏省涟水县第一中学数学(苏教版)选修2-3理科教学案:排列组合与概率-随机变量及其概率分布(1)
苏教版数学高二数学苏教版选修2-3学案1.3组合

1.3 组合问题.1.组合的概念一般地,从n 个不同元素中取出m (m ≤n )个元素并成一组,叫做从n 个不同元素中取出m 个元素的一个组合.预习交流1 如何区分排列问题和组合问题?提示:区分某一问题是排列问题还是组合问题,关键看选出的元素与顺序是否有关,若交换某两个元素的位置对结果产生影响,则是排列问题;而交换任意两个元素的位置对结果没有影响,则是组合问题.2.组合数从n 个不同元素中取出m (m ≤n )个元素的所有组合的个数,叫做从n 个不同元素中取出m 个元素的组合数,用符号C m n 表示.C mn =A m n A m m =n (n -1)(n -2)…(n -m +1)m !=n !m !(n -m )!.预习交流2如何理解和记忆组合数公式?提示:同排列数公式相类比,在排列数公式的基础上,分母再乘以m !. 3.组合数的性质性质1:C m n =C n -m n ,性质2:C m n +1=C m n +C m -1n . 预习交流3如何理解和记忆组合数的性质?提示:从n 个元素中取m 个元素,就剩余(n -m )个元素,故C m n =C n -mn.从n +1个元素中取m 个元素记作C m n +1,可认为分作两类:第一类为含有某元素a 的取法为C m -1n;第二类不含有此元素a ,则为C m n ,由分类计数原理知:Cm n +1=C m n +C m -1n.一、组合问题判断下列问题是组合问题,还是排列问题.①设集合A ={a ,b ,c ,d },则集合A 的含3个元素的子集有多少个? ②一个班中有52人,任两个人握一次手,共握多少次手?③4人去干5种不同的工作,每人干一种,有多少种分工方法?思路分析:交换两个元素的顺序,看结果是否有影响,如无影响则是组合问题. 解:①因为集合中取出的元素具有“无序性”,故这是组合问题; ②因为两人握手是相互的,没有顺序之分,故这是组合问题; ③因为5种工作是不同的,一种分工方法就是从5种不同的工作中选出4种,按一定的顺序分配给4个人,它与顺序有关,故这是排列问题.下列问题中,是组合问题的有__________.①从a ,b ,c ,d 四名学生中选2名学生完成一件工作,有多少种不同的选法;②从a ,b ,c ,d 四名学生中选2名学生完成两件不同的工作,有多少种不同的选法; ③a ,b ,c ,d 四支足球队进行单循环赛,共需多少场比赛; ④a ,b ,c ,d 四支足球队争夺冠亚军,有多少种不同的结果. 答案:①③解析:①2名学生完成的是同一件工作,没有顺序,是组合问题; ②2名学生完成两件不同的工作,有顺序,是排列问题;③单循环比赛要求每两支球队之间只打一场比赛,没有顺序,是组合问题; ④冠亚军是有顺序的,是排列问题.组合问题与顺序无关,而排列问题与顺序有关.二、组合数公式及组合数的性质(1)计算C 98100+C 199200; (2)已知C 3n +618=C 4n -218,求n ; (3)化简C 45+C 46+C 47+C 48+1.思路分析:先把组合数利用性质化简或利用组合数性质直接求解.解:(1)C 98100+C 199200=C 2100+C 1200=100×992+200=5 150. (2)由C 3n +618=C 4n -218,知3n +6=4n -2或3n +6+(4n -2)=18,解得n =8或2. 而3n +6≤18且4n -2≤18,即n ≤4且n ∈N *,∴n =2.(3)C 45+C 46+C 47+C 48+1=1+C 45+C 46+C 47+C 48=C 55+C 45+C 46+C 47+C 48=C 56+C 46+C 47+C 48=C 57+C 47+C 48=C 58+C 48=C 59=C 49=9×8×7×64×3×2×1=126.(1)C 34+C 35+C 36+…+C 310=__________; (2)(C 98100+C 97100)÷A 3101=__________.答案:(1)329 (2)16解析:(1)原式=C 44+C 34+C 35+…+C 310-C 44=C 45+C 35+…+C 310-1=…=C 410+C 310-1=C 411-1=329. (2)原式=C 98101÷A 3101=C 3101÷A 3101=A 31013!÷A 3101=16.利用组合数的性质解题时,要抓住公式的结构特征,应用时,可结合题目的特点,灵活运用公式变形,达到解题的目的.三、组合知识的实际应用现有10名教师,其中男教师6名,女教师4名.(1)现要从中选2名去参加会议,有多少种不同的选法?(2)现要从中选出男、女教师各2名去参加会议,有多少种不同的选法?思路分析:由于选出的教师不需要考虑顺序,因此是组合问题.第(1)小题选2名教师不考虑男女,实质上是从10个不同的元素中取出2个的组合问题,可用直接法求解.第(2)小题必须选男、女教师各2名,才算完成所做的事,因此需要分两步进行,先从6名男教师中选2名,再从4名女教师中选2名.解:(1)从10名教师中选2名参加会议的选法数,就是从10个不同元素中取出2个元素的组合数,即C 210=10×92×1=45种. (2)从6名男教师中选2名的选法有C 26,从4名女教师中选2名的选法有C 24种,根据分步乘法计数原理,因此共有不同的选法C 26·C 24=6×52×1·4×32×1=90种.某小组共有10名学生,其中女生3名,现选举2名代表,至少有1名女生当选的不同选法有多少种?解:方法一:(直接法)至少1名女生当选可分为两类:第一类:1名女生1名男生当选代表,有C 13·C 17种方法,第二类:2名女生当选代表,有C 23种方法.由分类加法计数原理,至少有1名女生当选的不同选法有C 13·C 17+C 23=21+3=24种.方法二:(间接法)10名学生中选2名代表有C 210种选法,若2名代表全是男生有C 27种选法,所以至少有1名女生当选代表的选法有C 210-C 27=24种.利用组合知识解决实际问题要注意:①将已知条件中的元素的特征搞清,是用直接法还是间接法; ②要使用分类方法,要做到不重不漏;③当问题的反面比较简单时,常用间接法解决.1.给出下面几个问题,其中是组合问题的有__________. ①某班选10名学生参加拔河比赛;②由1,2,3,4选出两个数,构成平面向量a 的坐标;③由1,2,3,4选出两个数分别作为双曲线的实轴和虚轴,焦点在x 轴上的双曲线方程数; ④从正方体8个顶点中任取两个点构成的线段条数是多少? 答案:①④ 解析:由组合的概念知①④是组合问题,与顺序无关,而②③是排列问题,与顺序有关.2.C 9798+2C 9698+C 9598=__________. 答案:161 700解析:原式=C 9798+C 9698+C 9698+C 9598=C 9799+C 9699=C 97100=C 3100=161 700.3.平面上有12个点,其中没有3个点在一条直线上,也没有4个点共圆,过这几个点中的每三个点作圆,共可作__________个圆.答案:220解析:由题意知,可作C 312=12×11×103×2×1=220个不同的圆. 4.解方程:C x 17-C x 16=C 2x +216.解:∵C x 17=C x 16+C x -116,∴C x 17-C x 16=C x -116,∴C x -116=C 2x +216.由组合数的性质得x -1=2x +2或x -1+2x +2=16,解得x =-3(舍)或x =5.∴x =5. 5.平面内有10个点,其中任何3点不共线,以其中任意2点为端点,试求:(1)线段有多少条?(2)有向线段有多少条?解:(1)所求线段的条数,即为从10个元素中任取2个元素的组合,共有C 210=10×92×1=45条不同的线段.(2)所求有向线段的条数,即为从10个元素中任取2个元素的排列,共有A 210=10×9=90条不同的有向线段.。
苏教版高中数学选修2-3课件 1.3 组合 1课件

(2)从 50 个人中选 3 个人到三个学校参加毕业典礼,有多少种
本 课
选法?
时 栏
(3)从 1,2,3,…,9 九个数字中任取 3 个,组成一个三位数,这
目 开
样的三位数共有多少个?
关 (4)从 1,2,3,…,9 九个数字中任取 3 个,然后把这三个数字相
加得到一个和,这样的和共有多少个?
解 (1)(2)都是选出 3 人,但参加同一劳动没有顺序,而到三个
开 关
小结 组合数公式意义的理解是应用的前提;应用组合数公式
求解应用问题要正确分类和分步.
研一研·问题探究、课堂更高效
§1.3(一)
跟踪训练 4 现有 10 名教师,其中男教师 6 名,女教师 4 名.
(1)现要从中选出 2 名去参加会议,有多少种不同的选法?
(2)现要从中选出男、女教师各 2 名去参加会议,有多少种不同
①从甲、乙、丙 3 名同学中选出 2 名去参加某两个乡镇的
社会调查,有多少种不同的选法?
本 课
②有 4 张电影票,要在 7 人中确定 4 人去观看,有多少种
时 栏
不同的选法?
目 开
③某人射击 8 枪,击中 4 枪,且命中的 4 枪均为 2 枪连中,
关 则不同的结果有多少种?
其中是组合问题的个数是_____2___.
的选法?
本 课 时 栏 目
解 (1)从 10 名教师中选 2 名去参加会议的选法数,就是从 10 个不同元素中取出 2 个元素的组合数,即 C210=120××19=45(种).
开 关
(2)从 6 名男教师中选 2 名的选法有 C62种,从 4 名女教师中选 2
名的选法有 C24种,根据分步计数原理,因此共有不同的选法
苏教版高中数学选修2-3《排列与排列数》课件

知识回顾
两个基本计数原理
分步计数原理:(乘法原理)
完成一件事,需要分成n个步骤,做第1步有m1 种不同的方法,做第2步有m2种不同的方法,…,做 第n步有mn种不同的方法.那么完成这件事共有N =
m1×m2×…×mn 种不同的方法.
例4. (1)解方程: A32x = 100A2x
(2) 解不等式: A9x > 6A9x-2
解(1) 2x(2x - 1)(2x - 2) = 100x(x - 1),
(2)(9-9x!)且 解! x得≥x62,=(x11319-!xN)*! ,且2≤x≤9,x N* (11 x)(10 x) > 6 解得x = 3,4,5,6,7.
Am
(5) n
15
14 13
6,
则m=_1_0__ ,n=_1_5___
数学运用
练习1.在A、B、C、D四位候选人中,选举正、副班长各
一人,共有几种不同的选法?写出所有可能的选举结果.
AB AC AD BA BC BD CA CB CD DA DB DC
练习2.写出从5个元素a,b,c,d,e中任取2个元素的所
▪ ▪ 2.
常用阶乘变形:
(1)2 1! 2!, 3 2! 3!
(2)1!+1 1!=2!,2!+2 2!=3!
(3) 2! 1!, 3! 2!
2
3
(4)2!-1!=1!,3!-2!=2 2!
(5) 1 - 1 = 1 , 1 - 1 = 2 , 1! 2! 2! 2! 3! 3!
(n+1) n!=(n+1)! n!+n n!=(n+1)!
高中数学(苏教版 选修2-3)文档第1章 1.3 第1课时 组合 组合数公式 Word版含答案

组合第课时组合组合数公式.理解组合的意义.(重点).掌握组合数的计算公式及其推导过程,并会用组合数公式求值.(重点、难点)[基础·初探]教材整理组合与组合数的概念阅读教材,完成下列问题..组合一般地,从个不同元素中取出(≤)个元素并成一组,叫做从个不同元素中取出个元素的一个组合..组合数从个不同元素中取出(≤)个元素的所有组合的个数,叫做从个不同元素中取出个元素的组合数,用符号表示.判断(正确的打“√”,错误的打“×”)()两个组合相同的充要条件是其中的元素完全相同.( )()从,,三个不同元素中任取两个元素组成一个组合,所有组合的个数为.( )()从甲、乙、丙名同学中选出名去参加某两个乡镇的社会调查,有多少种不同的选法是组合问题.( )()从甲、乙、丙名同学中选出名,有种不同的选法.( )()现有枚年抗战胜利周年纪念币送给人中的人留念,有多少种送法是排列问题.( )【解析】()√因为只要两个组合的元素相同,不论元素的顺序如何,都是相同的组合.()√由组合数的定义可知正确.()×因为选出名同学还要分到不同的两个乡镇,这是排列问题.()√因为从甲、乙、丙人中选两名有:甲乙,甲丙,乙丙,共个组合,即有种不同选法.()×因为将枚纪念币送与人并无顺序,故该问题是组合问题.【答案】()√()√()×()√()×教材整理组合数公式及性质阅读教材~,完成下列问题..组合数公式:===..组合数的性质:()=;()=+..甲、乙、丙三地之间有直达的火车,相互之间的距离均不相等,则车票票价的种数是种.【解析】甲、乙、丙三地之间的距离不等,故票价不同,同距离两地票价相同,故该问题为组合问题,不同票价的种数为==.【答案】.=,=.【解析】==,==.【答案】.方程=的解为. 【导学号:】【解析】由题意知(\\(=-,-≤,≤))或(\\(=-(-(,-≤,≤,))解得=或.【答案】或.从这四个数中任取两个相乘,可以得到不相等的积的个数为个.【解析】从四个数中任取两个数的取法为=.【答案】。
2019-2020学年高中数学(苏教版 选修2-3)文档:第1章 1.3 第1课时 组合 组合数公式 Word版含答案

1.3组合第1课时组合组合数公式1.理解组合的意义.(重点)2.掌握组合数的计算公式及其推导过程,并会用组合数公式求值.(重点、难点)[基础·初探]教材整理1组合与组合数的概念阅读教材P19,完成下列问题.1.组合一般地,从n个不同元素中取出m(m≤n)个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合.2.组合数从n个不同元素中取出m(m≤n)个元素的所有组合的个数,叫做从n个不同元素中取出m个元素的组合数,用符号Cm n表示.判断(正确的打“√”,错误的打“×”)(1)两个组合相同的充要条件是其中的元素完全相同.( )(2)从a1,a2,a3三个不同元素中任取两个元素组成一个组合,所有组合的个数为C23.( )(3)从甲、乙、丙3名同学中选出2名去参加某两个乡镇的社会调查,有多少种不同的选法是组合问题.( )(4)从甲、乙、丙3名同学中选出2名,有3种不同的选法.( )(5)现有4枚2015年抗战胜利70周年纪念币送给10人中的4人留念,有多少种送法是排列问题.( )【解析】(1)√因为只要两个组合的元素相同,不论元素的顺序如何,都是相同的组合.(2)√由组合数的定义可知正确.(3)×因为选出2名同学还要分到不同的两个乡镇,这是排列问题.(4)√因为从甲、乙、丙3人中选两名有:甲乙,甲丙,乙丙,共3个组合,即有3种不同选法.(5)× 因为将4枚纪念币送与4人并无顺序,故该问题是组合问题. 【答案】 (1)√ (2)√ (3)× (4)√ (5)× 教材整理2 组合数公式及性质 阅读教材P 20~P 22,完成下列问题. 1.组合数公式:Cm n =Am nAmm =错误!=错误!.2.组合数的性质:(1)Cm n =Cn -m n ;(2)Cm n +1=Cm n +Cm -1n .1.甲、乙、丙三地之间有直达的火车,相互之间的距离均不相等,则车票票价的种数是________种.【解析】 甲、乙、丙三地之间的距离不等,故票价不同,同距离两地票价相同,故该问题为组合问题,不同票价的种数为C23=3×22=3.【答案】 32.C26=________,C1718=________. 【解析】 C26=6×52=15, C1718=C118=18. 【答案】 15 183.方程Cx 14=C2x -414的解为________. 【导学号:29440009】【解析】由题意知⎩⎨⎧x =2x -4,2x -4≤14,x≤14或错误!解得x =4或6. 【答案】 4或64.从3,5,7,11这四个数中任取两个相乘,可以得到不相等的积的个数为________个. 【解析】 从四个数中任取两个数的取法为C24=6. 【答案】 6[质疑·手记]预习完成后,请将你的疑问记录,并与“小伙伴们”探讨交流: 疑问1:解惑:疑问2:解惑:疑问3:解惑:[小组合作型](1)10支球队以单循环进行比赛(每两队比赛一次),这次比赛需要进行多少场次?(2)10支球队以单循环进行比赛,这次比赛冠、亚军获得者有多少种可能?(3)从10个人里选3个代表去开会,有多少种选法?(4)从10个人里选出3个不同学科的课代表,有多少种选法?【精彩点拨】要确定是组合还是排列问题,只需确定取出的元素是否与顺序有关.【自主解答】(1)是组合问题,因为每两个队比赛一次并不需要考虑谁先谁后,没有顺序的区别.(2)是排列问题,因为甲队得冠军、乙队得亚军与甲队得亚军、乙队得冠军是不一样的,是有顺序的区别.(3)是组合问题,因为3个代表之间没有顺序的区别.(4)是排列问题,因为3个人中,担任哪一科的课代表是有顺序的区别.1.根据排列与组合的定义进行判断,区分排列与组合问题,先确定完成的是什么事件,然后看问题是否与顺序有关,与顺序有关的是排列,与顺序无关的是组合.2.区分有无顺序的方法把问题的一个选择结果写出来,然后交换这个结果中任意两个元素的位置,看是否会产生新的变化,若有新变化,即说明有顺序,是排列问题;若无新变化,即说明无顺序,是组合问题.[再练一题]1.从5个不同的元素a,b,c,d,e中取出2个,写出所有不同的组合.【解】要想写出所有组合,就要先将元素按照一定顺序排好,然后按顺序用图示的方法将各个组合逐个标出来,如图所示:由此可得所有的组合为ab ,ac ,ad ,ae ,bc ,bd ,be ,cd ,ce ,de .(1)计算:(2)计算:C38-n 3n +C3n 21+n.【精彩点拨】 (1)直接运用组合数公式进行计算; (2)先求出n ,再按组合数公式进行运算.【自主解答】 (1)3C38-2C25=3×8×7×63×2×1-2×5×42×1=148. (2)由组合数的意义可得 ⎩⎨⎧0≤38-n≤3n ,0≤3n≤21+n , 即⎩⎪⎨⎪⎧192≤n≤38,0≤n≤212,∴192≤n ≤212. ∵n ∈N *,∴n =10,∴C38-n 3n +C3n 21+n =C2830+C3031=C230+C131 =30×292×1+31=466.关于组合数计算公式的选取1.涉及具体数字的可以直接用公式Cm n =Am nAmm =错误!计算. 2.涉及字母的可以用阶乘式Cm n =错误!计算.3.计算时应注意利用组合数的性质Cm n =Cn -m n 简化运算.[再练一题]2.求等式C5n -1+C3n -3C3n -3=195中的n 值. 【导学号:29440010】【解】 原方程可变形为C5n -1C3n -3+1=195,C5n -1=145C3n -3,即错误!=145·错误!,化简整理,得n 2-3n -54=0.解此二次方程,得n =9或n =-6(不合题意,舍去),所以n =9为所求.[探究共研型]探究1 5人中选出3人参加数学竞赛,2人参加英语竞赛,共有多少种选法?你有什么发现?你能得到一般结论吗?【提示】 法一:从5人中选出3人参加数学竞赛,剩余2人参加英语竞赛,共C35=5×4×33×2×1=10(种)选法.法二:从5人中选出2人参加英语竞赛,剩余3人参加数学竞赛,共C25=5×42=10(种)不同选法.经求解发现C35=C25.推广到一般结论有Cm n =Cn -m n .探究2 从含有队长的10名排球队员中选出6人参加比赛,共有多少种选法? 【提示】 共有C610=10×9×8×7×6×56×5×4×3×2×1=210(种)选法. 探究3在探究2中,若队长必须参加,有多少种选法?若队长不能参加有多少种选法?由探究2,3,你发现什么结论?你能推广到一般结论吗?【提示】 若队长必须参加,共C59=126(种)选法.若队长不能参加,共C69=84(种)选法. 由探究2,3发现从10名队员中选出6人可分为队长参赛与队长不参赛两类,由分类计数原理可得:C610=C59+C69.一般地:Cm n +1=Cm n +Cm -1n .(1)化简C34+C35+C36+…+C32 016的值为________. (2)解方程3Cx 7x -3=5A2x -4; (3)解不等式C4n >C6n .【精彩点拨】 恰当选择组合数的性质进行求值、解方程与解不等式. 【自主解答】 (1)C34+C35+C36+…+C32 016 =C44+C34+C35+…+C32 016-C44 =C45+C35+…+C32 016-1=… =C42 016+C32 016-1=C42 017-1.【答案】 C42 017-1(2)由排列数和组合数公式,原方程可化为 3·错误!=5·错误!,则错误!=错误!,即为(x -3)(x -6)=40. ∴x 2-9x -22=0, 解得x =11或x =-2.经检验知x =11是原方程的根,x =-2是原方程的增根. ∴方程的根为x =11. (3)由C4n >C6n ,得错误!⇒错误!⇒⎩⎨⎧-1<n <10,n≥6.又n ∈N *, ∴该不等式的解集为{6,7,8,9}.1.性质“Cm n =Cn -m n ”的意义及作用2.与排列组合有关的方程或不等式问题要用到排列数、组合数公式,以及组合数的性质,求解时,要注意由Cm n 中的m ∈N *,n ∈N *,且n ≥m 确定m ,n 的范围,因此求解后要验证所得结果是否适合题意.[再练一题]3.(1)化简:C9m -C9m +1+C8m =________; (2)已知C7n +1-C7n =C8n ,求n 的值.【解析】 (1)原式=(C9m +C8m )-C9m +1=C9m +1-C9m +1=0. 【答案】 0(2)根据题意,C7n +1-C7n =C8n ,变形可得C7n+1=C8n+C7n,由组合数的性质,可得C7n+1=C8n+1,故8+7=n+1,解得n=14.[构建·体系]1.给出下面几个问题,其中是组合问题的是________(填序号).(1)从1,2,3,4中选出2个构成的集合;(2)由1,2,3组成两位数的不同方法;(3)由1,2,3组成无重复数字的两位数.【解析】由题意知:(1)与顺序没有关系;(2)(3)与顺序有关,故是排列问题.【答案】(1)2.男女学生共有8人,从男生中选取2人,从女生中选取1人,共有30种不同的选法,其中女生有________人.【解析】设男生有n人,则女生有(8-n)人,由题意可得C2n C18-n=30,解得n=5或n =6,代入验证,可知女生有2人或3人.【答案】2或33.C58+C68的值为________.【解析】C58+C68=C69=9!6!×3!=9×8×73×2×1=84.【答案】844.6个朋友聚会,每两人握手1次,一共握手________次.【解析】每两人握手1次,无顺序之分,是组合问题,故一共握手C26=15次.【答案】155.已知C4n,C5n,C6n成等差数列,求C12n的值.【解】由已知得2C5n=C4n+C6n,所以2·错误!=错误!+错误!,整理得n2-21n+98=0,解得n=7或n=14,要求C12n的值,故n≥12,所以n=14,于是C1214=C214=14×132×1=91.我还有这些不足:(1)(2)我的课下提升方案:(1)(2)。
高中数学 第2章 概率 2.1 随机变量及其概率分布讲义 苏教版选修2-3-苏教版高二选修2-3数学

2.1 随机变量及其概率分布学习目标核心素养1.了解取有限值的离散型随机变量及其分布列的概念,了解分布列刻画随机现象的重要性,会求某些简单离散型随机变量的分布列.(重点、难点)2.掌握离散型随机变量分布列的性质,掌握两点分布的特征.(重点)1.通过对离散型随机变量的学习,提升数学抽象素养.2.借助随机变量的分布列,提升逻辑推理素养.1.随机变量如果随机试验的结果可以用一个变量来表示,那么这样的变量叫做随机变量.通常用大写拉丁字母X,Y,Z(或小写希腊字母ξ,η,ζ)等表示.思考1:随机变量是自变量吗?[提示] 不是,它是随试验结果变化而变化的,不是主动变化的.思考2:离散型随机变量的取值必须是有限个吗?[提示] 不一定.离散型随机变量的取值可以一一列举出来,所取值可以是有限个,也可以是无限个.2.概率分布列假定随机变量X有n个不同的取值,它们分别是x1,x2,…,x n,且P(X=x i)=p i,i=1,2,…,n,①则称①为随机变量X的概率分布列,简称为X的分布列.称表X x1x2…x nP p1p2…p np i(i =1,2,…,n)满足条件:①p i≥0(i=1,2,…,n);②p1+p2+…+p n=1.思考3:在离散型随机变量分布列中,每一个可能值对应的概率可以为任意的实数吗?[提示] 错误.每一个可能值对应的概率为[0,1]中的实数.思考4:离散型随机变量的分布列中,各个概率之和可以小于1吗?[提示] 不可以.由离散型随机变量的含义与分布列的性质可知不可以.思考5:离散型随机变量的各个可能值表示的事件是彼此互斥的吗?[提示] 是.离散型随机变量的各个可能值表示的事件不会同时发生,是彼此互斥的.3.两点分布如果随机变量X的分布表为X 10P p q其中0<p<1,q=1-p,这一类分布称为01分布或两点分布,并记为X~01分布或X~两点分布.1.掷均匀硬币一次,随机变量为( )A.掷硬币的次数B.出现正面向上的次数C.出现正面向上的次数或反面向上的次数D.出现正面向上的次数与反面向上的次数之和B[掷一枚硬币,可能出现的结果是正面向上或反面向上,以一个标准如正面向上的次数来描述这一随机试验,那么正面向上的次数就是随机变量ξ,ξ的取值是0,1.A项中,掷硬币的次数就是1,不是随机变量;C项中的标准模糊不清;D项中,出现正面向上的次数和反面向上的次数的概率的和必是1,对应的是必然事件,所以不是随机变量.] 2.设离散型随机变量ξ的分布列如下:ξ-1012 3P 0.100.200.100.200.40 Pξ0.40 [P(ξ<1.5)=P(ξ=-1)+P(ξ=0)+P(ξ=1)=0.10+0.20+0.10=0.40.] 3.设某项试验的成功率是失败率的2倍,用随机变量X描述一次试验成功与否(记X=0为试验失败,记X=1为试验成功),则P(X=0)等于________.1 3[设试验失败的概率为p,则2p+p=1,∴p=13.]随机变量的概念【例1】(1)国际机场候机厅中2019年5月1日的旅客数量;(2)2019年1月1日至5月1日期间所查酒驾的人数;(3)2019年6月1日某某到的某次列车到站的时间;(4)体积为1 000 cm3的球的半径长.[思路探究] 利用随机变量的定义判断.[解] (1)旅客人数可能是0,1,2,…,出现哪一个结果是随机的,因此是随机变量.(2)所查酒驾的人数可能是0,1,2,…,出现哪一个结果是随机的,因此是随机变量.(3)列车到达的时间可在某一区间内任取一值,是随机的,因此是随机变量.(4)球的体积为1 000 cm3时,球的半径为定值,不是随机变量.随机变量的辨析方法(1)随机试验的结果具有可变性,即每次试验对应的结果不尽相同.(2)随机试验的结果具有确定性,即每次试验总是恰好出现这些结果中的一个,但在一次试验之前却不能肯定这次试验会出现哪一个结果.如果一个随机试验的结果对应的变量具有以上两点,则该变量即为随机变量.1.(1)下列变量中,是随机变量的是________.(填上所有正确的序号)①某人掷硬币1次,正面向上的次数;②某音乐歌曲《小苹果》每天被点播的次数;③标准大气压下冰水混合物的温度;④你每天早晨起床的时间.(2)一个口袋中装有10个红球,5个白球,从中任取4个球,其中所含红球的个数为X,则X的可能取值构成集合________.事件{X=k}表示取出________个红球,________个白球,k=0,1,2,3,4.(1)①②④(2){0,1,2,3,4} k4-k[(1)①②④中每个事件的发生是随机的,具有可变性,故①②④是随机变量;标准大气压下冰水混合物的温度为0 ℃,是必然的,不具有随机性.(2)由题意可知,X的可能取值为0,1,2,3,4.{X=k}表示取出的4个球中含k个红球,4-k个白球.]随机变量的分布列及应用【例2】ξ表示取出的3只球中的最大,写出随机变量ξ的概率分布.[思路探究] 由本例中的取球方式可知,随机变量ξ与球的顺序无关,其中球上的最大只有可能是3,4,5,可以利用组合的方法计算其概率.[解] 随机变量ξ的可能取值为3,4,5.当ξ=3时,即取出的三只球中最大为3,则其他两只球的编号只能是1,2,故有P(ξ=3)=C22C35=110;当ξ=4时,即取出的三只球中最大为4,则其他两只球只能在编号为1,2,3的3只球中取2只,故有P(ξ=4)=C23C35=310;当ξ=5时,即取出的三只球中最大为5,则其他两只球只能在编号为1,2,3,4的4只球中取2只,故有P(ξ=5)=C24C35=610=35.因此,ξ的分布列为ξ34 5P11031035利用分布列及其性质解题时要注意以下两个问题:(1)X的各个取值表示的事件是互斥的.(2)不仅要注意∑i=1np i=1,而且要注意p i≥0,i=1,2,…,n.2.设随机变量ξ的概率分布为P⎝⎛⎭⎪⎫ξ=k5=ak(k=1,2,3,4,5).求:(1)常数a的值;(2)P ⎝ ⎛⎭⎪⎫ξ≥35; (3)P ⎝ ⎛⎭⎪⎫110<ξ<710.[解] 题目所给的ξ的概率分布表为ξ 15 25 35 45 55 Pa2a3a4a5a(1)由a +2a +3a +4a +5a =1,得a =15.(2)P ⎝ ⎛⎭⎪⎫ξ≥35=P ⎝ ⎛⎭⎪⎫ξ=35+P ⎝ ⎛⎭⎪⎫ξ=45+P ⎝ ⎛⎭⎪⎫ξ=55=315+415+515=45或P ⎝⎛⎭⎪⎫ξ≥35=1-P ⎝⎛⎭⎪⎫ξ≤25=1-⎝ ⎛⎭⎪⎫115+215=45.(3)因为110<ξ<710,所以ξ=15,25,35.故P ⎝ ⎛⎭⎪⎫110<ξ<710=P ⎝ ⎛⎭⎪⎫ξ=15+P ⎝ ⎛⎭⎪⎫ξ=25+P ⎝ ⎛⎭⎪⎫ξ=35=a +2a +3a =6a =6×115=25.随机变量的可能取值及试验结果[1.抛掷一枚质地均匀的硬币,可能出现正面向上、反面向上两种结果.这种试验结果能用数字表示吗?[提示] 可以.用数字1和0分别表示正面向上和反面向上.2.在一块地里种10棵树苗,设成活的树苗数为X ,则X 可取哪些数字? [提示] X =0,1,2,3,4,5,6,7,8,9,10.3.抛掷一枚质地均匀的骰子,出现向上的点数为ξ,则“ξ≥4”表示的随机事件是什么?[提示] “ξ≥4”表示出现的点数为4点,5点,6点.【例3】 写出下列随机变量可能取的值,并说明随机变量所取的值和所表示的随机试验的结果.(1)袋中有大小相同的红球10个,白球5个,从袋中每次任取1个球,直到取出的球是白球为止,所需要的取球次数;(2)从标有1,2,3,4,5,6的6X卡片中任取2X,所取卡片上的数字之和.[思路探究] 分析题意→写出X可能取的值→分别写出取值所表示的结果[解] (1)设所需的取球次数为X,则X=1,2,3,4,…,10,11,X=i表示前i-1次取到红球,第i次取到白球,这里i=1,2, (11)(2)设所取卡片上的数字和为X,则X=3,4,5, (11)X=3,表示“取出标有1,2的两X卡片”;X=4,表示“取出标有1,3的两X卡片”;X=5,表示“取出标有2,3或标有1,4的两X卡片”;X=6,表示“取出标有2,4或1,5的两X卡片”;X=7,表示“取出标有3,4或2,5或1,6的两X卡片”;X=8,表示“取出标有2,6或3,5的两X卡片”;X=9,表示“取出标有3,6或4,5的两X卡片”;X=10,表示“取出标有4,6的两X卡片”;X=11,表示“取出标有5,6的两X卡片”.用随机变量表示随机试验的结果问题的关键点和注意点(1)关键点:解决此类问题的关键是明确随机变量的所有可能取值,以及取每一个值时对应的意义,即一个随机变量的取值可能对应一个或多个随机试验的结果.(2)注意点:解答过程中不要漏掉某些试验结果.3.写出下列各随机变量可能取的值,并说明随机变量所取的值表示的随机试验的结果.(1)在2018年大学的自主招生中,参与面试的5名考生中,通过面试的考生人数X;(2)射手对目标进行射击,击中目标得1分,未击中目标得0分,该射手在一次射击中的得分用ξ表示.[解] (1)X可能取值0,1,2,3,4,5,X=i表示面试通过的有i人,其中i=0,1,2,3,4,5.(2)ξ可能取值为0,1,当ξ=0时,表明该射手在本次射击中没有击中目标;当ξ=1时,表明该射手在本次射击中击中目标.1.本节课重点是随机变量的概念及随机变量的分布列及其性质,以及两点分布,难点是随机变量的取值及概率.2.判断一个试验是否为随机试验,依据是这个试验是否满足以下三个条件:(1)试验在相同条件下是否可以重复;(2)试验的所有可能结果是否是明确的,并且试验的结果不止一个;(3)每次试验的结果恰好是一个,而且在一次试验前无法预知出现哪个结果.3.本节课的易错点:在利用分布列的性质解题时要注意:①X=xi的各个取值所表示的事件是互斥的;②不仅要注意i=1np i=1,而且要注意0≤p i≤1,i=1,2,…,n.1.判断(正确的打“√”,错误的打“×”)(1)随机变量的取值可以是有限个,也可以是无限个.( )(2)在概率分布列中,每一个可能值对应的概率可以为任意的实数.( )(3)概率分布列中每个随机变量的取值对应的概率都相等.( )(4)在概率分布列中,所有概率之和为1.( )[解析] (1)√因为随机变量的每一个取值,均代表一个试验结果,试验结果有限个,随机变量的取值就有有限个,试验结果有无限个,随机变量的取值就有无限个.(2)×因为在概率分布列中每一个可能值对应随机事件的概率均在[0,1]X围内.(3)×因为分布列中的每个随机变量能代表的随机事件,并非都是等可能发生的事件.(4)√由分布列的性质可知,该说法正确.[答案] (1)√(2)×(3)×(4)√2.下列叙述中,是随机变量的为( )A.某人早晨在车站等出租车的时间B.把一杯开水置于空气中,让它自然冷却,每一时刻它的温度C.射击十次,命中目标的次数D .袋中有2个黑球,6个红球,任取2个,取得1个红球的可能性 C [根据随机变量的含义可知,选C.] 3.随机变量η的分布列如下:则x 0 0.55 [由分布列的性质得 0.2+x +0.35+0.1+0.15+0.2=1,解得x =0.故P (η≤3)=P (η=1)+P (η=2)+P (η=3)=0.2+0.35=0.55.] 4.袋中有相同的5个球,其中3个红球,2个黄球,现从中随机且不放回地摸球,每次摸1个,当两种颜色的球都被摸到时,即停止摸球,记随机变量X 为此时已摸球的次数,求随机变量X 的概率分布列.[解] 随机变量X 可取的值为2,3,4, P (X =2)=C 12C 13C 12C 15C 14=35;P (X =3)=A 22C 13+A 23C 12C 15C 14C 13=310;P (X =4)=A 33C 12C 15C 14C 13C 12=110;所以随机变量X 的概率分布列为:。
高中数学新苏教版精品教案《苏教版高中数学选修2-3 1.3 组合》4
教学设计
教学目标:
1理解组合及组合数的概念;
2能利用计数原理推导组合数公式,并会应用公式解决简单的组合问题.3初步探讨组合数的性质,会运用性质进行简单的化简求值。
教学重点:组合数公式的推导及应用
教学难点:利用组合数公式进行简单的证明
教学方法与教学手段:设疑、讨论、总结、提升、多媒体辅助
教学过程:
一、问题情境,导入新课
思考:
①从1,2,3,4中任取出两个数求积;
②从1,2,3,4中任取出两个数求差或商;
③从全班50人中选出5人组成班委会;
④从全班50人中选出5人分别担任班长、副班长、团支部书记、学习委员、生活委员
以上问题有什么区别与联系?
二、典例分析
例1判断以下问题是组合问题还是排列问题?
1某铁路线上有4个车站,那么这条铁路线上需准备多少种车票?
2从7本不同的书中取出5本给某同学
33人去做5种不同的工作,每人做一种,有多少种分工方法?
4把3本相同的书分给5个学生,每人最多得一本,有多少种分配方法?
小试牛刀给出以下问题〔用数字作答〕:
1从六名学生中选2名学生完成一件工作,有多少种不同的选法?2从六名学生中选4名学生完成一件工作,有多少种不同的选法?3八支足球队之间进行单循环比赛,共需赛多少场?
4八支足球队争夺冠亚军,有多少种不同的结果?
例2 在歌手大奖赛的文化素质测试中,选手需从5个试题中任意选答3题,问:
〔1〕一共有几种不同的选题方法?
〔2〕假设选中题目A,有几种不同的解题方法?。
苏教版高中数学选修2-3§1.2 排 列.docx
§1.2 排列课时目标1.了解排列与排列数的意义,能根据具体问题,写出符合要求的排列.2.能利用树形图写出简单问题中的所有排列.3.掌握排列数公式,并能利用它计算排列数.4.掌握解决排列应用题的基本思路和常用方法.1.排列(1)定义:一般地,从n个不同的元素中取出m(m≤n)个元素,按照____________排成一列,叫做从n个不同元素中取出m个元素的一个排列.(2)相同排列:若两个排列相同,则两个排列的________完全相同,且元素的____________也相同.2.排列数(1)定义:一般地,从n个不同元素中取出m(m≤n)个元素的________________,叫做从n个不同元素中取出m个元素的排列数,用符号________表示.(2)排列数公式:A m n=________________=n!(n-m)!;特别地,A n n=n·(n-1)·…·3·2·1=n!(m,n ∈N*,且m≤n),0!=1.一、填空题1.下列问题属于排列问题的是________.(填序号)①从10个人中选2人分别去种树和扫地;②从10个人中选2人去扫地;③从班上30名男生中选出5人参加某一项活动;④从数字5,6,7,8中任取两个不同的数作幂运算.2.若从6名志愿者中选出4人分别从事翻译、导游、导购、保洁四种不同工作,则选派方案共有______种.3.A、B、C三地之间有直达的火车,则需要准备的车票种数是________.4.5名同学排成一排照相,不同排法的种数是________.5.某班上午要上语文、数学、体育和外语4门课,又体育老师因故不能上第一节和第四节,则不同排课方案的种数是________.6.5个人站成一排,其中甲、乙两人不相邻的排法有__________种.7.从1~9的9个数字中任取5个数组成没有重复数字的五位数,且个位、百位、万位上必须是奇数的五位数的个数为________.8.记者要为5名志愿者和他们帮助的2位老人拍照,要求排成一排,2位老人相邻但不排在两端,则不同的排法共有________种.二、解答题9.用0、1、2、3、4五个数字:(1)可组成多少个五位数;(2)可组成多少个无重复数字的五位数;(3)可组成多少个无重复数字的且是3的倍数的三位数;(4)可组成多少个无重复数字的五位奇数.10.7名师生站成一排照相留念,其中老师1人,男学生4人,女学生2人,在下列情况下,各有多少种不同站法?(1)两名女生必须相邻而站;(2)4名男生互不相邻;(3)若4名男生身高都不等,按从高到低的顺序站;(4)老师不站中间,女生不站两端.能力提升11.由1、2、3、4、5组成没有重复数字且1、2都不与5相邻的五位数的个数是________.12.从数字0,1,3,5,7中取出不同的三个数作系数,可以组成多少个不同的一元二次方程ax2+bx+c=0?其中有实数根的方程又有多少个?1.排列问题的本质是“元素”占“位置”问题,有限制条件的排列问题的限制条件主要表现在某元素不排在某个位置上或某个位置不排某些元素,解决该类排列问题的方法主要是按“优先”原则,即优先排特殊元素或优先满足特殊位置.2.处理元素“相邻”“不相邻”或“元素定序”问题应遵循“先整体,后局部”的原则.元素相邻问题,一般用“捆绑法”,先把相邻的若干个元素“捆绑”为一个大元素与其余元素全排列,然后再“松绑”,将这若干个元素内部全排列.元素不相邻问题,一般用“插空法”,先将不相邻元素以外的“普通”元素全排列,然后在“普通”元素之间及两端插入不相邻元素.1.2 排列答案知识梳理1.(1)一定的顺序(2)元素排列顺序2.(1)所有排列的个数A m n(2)n(n-1)(n-2)…(n-m+1)作业设计1.①④2.360解析 选派方案种数为6选4的排列数,即A 46=360.3.64.1205.12解析 分两步排课:体育有两种排法;其他科目有A 33种排法,∴共有2×A 33=12(种)排课方案.6.72解析 先排另外3人,有A 33种排法,甲、乙插空,有A 24种排法.∴不同的排法共有A 33·A 24=6×12=72(种).7.1 800解析 先排个位、百位、万位数字有A 35种,另两位有A 26种排法,∴共有A 35·A 26=1 800(个).8.960解析 排5名志愿者有A 55种不同排法,由于2位老人相邻但不排在两端,所以在这5名志愿者的4个空档中插入2位老人(捆绑为1个元素)有A 14·A 22种排法.所以共有A 55·A 14·A 22=960(种)不同的排法.9.解 (1)各个数位上的数字允许重复,故由分步计数原理知,共有4×5×5×5×5=2 500(个).(2)方法一 先排万位,从1,2,3,4中任取一个有A 14种填法,其余四个位置四个数字共有A 44种,故共有A 14·A 44=96(个).方法二 先排0,从个、十、百、千位中任选一个位置将0填入有A 14种方法,其余四个数字全排有A 44种方法,故共有A 14·A 44=96(个).(3)构成3的倍数的三位数,各个位上数字之和是3的倍数,按取0和不取0分类:①取0,从1和4中取一个数,再取2进行排列,先填百位有A 12种方法,其余全排有A 22种方法,故有2A 12·A 22=8(种)方法.②不取0,则只能取3,从1或4中任取一个,再取2,然后进行全排列为2A 33=12(种)方法,所以共有8+12=20(个).(4)考虑特殊位置个位和万位,先填个位,从1、3中选一个填入个位有A 12种填法,然后从剩余3个非0数中选一个填入万位,有A 13种填法,包含0在内还有3个数在中间三位置上全排列,排列数为A 33,故共有A 12·A 13·A 33=36(个).10.解 (1)2名女生站在一起有站法A 22种,视为一个元素与其余5人全排列,有A 66种排法,所以有不同站法A 22·A 66=1 440(种).(2)先站老师和女生,有站法A 33种,再在老师和女生站位的间隔(含两端)处插入男生,每空一人,则插入方法有A 44种,所以共有不同站法A 33·A 44=144(种).(3)7人全排列中,4名男生不考虑身高顺序的站法有A 44种,而由高到低有从左到右和从右到左的不同,所以共有不同站法2·A 77A 44=420(种). (4)中间和两端是特殊位置,可分类求解如下:①老师站在两端之一,另一端由男生站,有A 12·A 14·A 55种站法;②两端全由男生站,老师站除两端和正中的另外4个位置之一,有A 24·A 14·A 44种站法,所以共有不同站法A 12·A 14·A 55+A 24·A 14·A 44=960+1 152=2 112(种).11.36解析 如果5在两端,则1、2有三个位置可选,排法为2×A 23A 22=24(种);如果5不在两端,则1、2只有两个位置可选,排法有3×A 22A 22=12(种),故可组成符合要求的五位数的个数为24+12=36.12.解 要确定一元二次方程ax 2+bx +c =0,分2步完成:第1步:确定a ,只能从1,3,5,7中取一个,有A 14种取法;第2步:确定b ,c ,可从剩下的4个数字中任取2个,有A 24种取法.由分步计数原理,知可组成A 14·A 24=48(个)不同的一元二次方程.一元二次方程ax 2+bx +c =0(a ≠0)要有实数根必须满足b 2-4ac ≥0,分2类:第1类:当c=0时,a,b可以从1,3,5,7中任取2个数字,有A24种取法;第2类:当c≠0时,由b2-4ac≥0知,b只能取5或7,当b取5时,a,c只能取1,3这两个数,有A22种取法;当b取7时,a,c可取1,3这两个数或1,5这两个数,有2A22种取法.因此c≠0时,有A22+2A22(种)取法.由分类计数原理,有实数根的一元二次方程有A24+A22+2A22=18(个).。
苏教版高中数学选修2-3《排列(第1课时)》参考课件
课 常用于求解.
时 栏 目 开 关
研一研·问题探究、课堂更高效
§1.2(一)
跟踪训练 3 (1)某年全国足球甲级(A 组)联赛共有 10 个队参
加,每队要与其余各队在主、客场分别比赛一次,共进行多少
场比赛?
(2)解不等式:Ax9>6Ax9-2.
本 解 (1)任意两队间进行 1 次主场比赛与 1 次客场比赛,对应于
课 时
排第一,B 不排第四,共有多少种不同的排列方法?
栏 目
解
(1)列出每一个起点和终点情况,如图所示,共有 12 种
开 机票.
关
研一研·问题探究、课堂更高效
§1.2(一)
故符合题意的机票种类有:
北京广州,北京南京,北京天津,广州南京,广州天津,广州
北京,南京天津,南京北京,南京广州,天津北京,天津广州,
1.排列:一般地,从 n 个不同的元素中取出 m(m≤n)个元素,按
本
照 一定的顺序 排成一列,叫做从 n 个不同元素中取出 m 个
课 时 栏
元素的一个排列(arrangement).
2.排列数:从 n 个不同元素中取出 m(m≤n)个元素的所有排列
目 开
的个数 ,叫做从 n 个不同元素中取出 m 个元素的排列数,
天津南京,共 12 种.
本 课
(2)因为 A 不排第一,排第一位的情况有 3 类(可从 B、C、D 中
时 栏
任选一人排),而此时兼顾分析 B 的排法,列树图如图.
目
开
关
所以符合题意的所有排列是: BADC,BACD,BCAD,BCDA,BDAC,BDCA,CABD,CBAD, CBDA,CDBA,DABC,DBAC,DBCA,DCBA 共 14 种.
高中数学 第1章 计数原理 1.3 组合讲义 苏教版选修2-3-苏教版高二选修2-3数学教案
1.3 组合学 习 目 标核 心 素 养1.理解组合与组合数的概念,正确认识组合与排列的区别与联系.(易混点)2.会推导组合数公式,并会应用公式进行计算.(重点)1.通过对组合学习,发展数学抽象素养.2.借助组合数公式的推导及应用,提升逻辑推理、数学运算素养.1.组合与组合数的概念 (1)组合一般地,从n 个不同元素中取出m (m ≤n )个元素并成一组,叫做从n 个不同元素中取出m 个元素的一个组合.(2)组合数从n 个不同元素中取出m (m ≤n )个元素的所有组合的个数,叫做从n 个不同元素中取出m 个元素的组合数,用符号C mn 表示.思考1:组合与组合数有何区别?[提示] 从n 个不同元素中任意取出m (m ≤n )个元素并成一组即为一个组合,一个组合就是完成事情的一种方法,而组合数是指所有组合的个数;组合可以是由任何元素组成的,而组合数是一个数字,是所有组合的个数.2.组合数公式及性质(1)组合数公式:C m n=A m n A m m =n !m !(n -m )!=n (n -1)(n -2)…(n -m +1)m !.(2)组合数的性质:①C mn =C n -mn ;②C mn +1=C mn +C m -1n .思考2:区分一个问题是排列问题还是组合问题的关键是什么?[提示] 关键是看它有无顺序,有顺序的是排列问题,无顺序的是组合问题.1.下列问题是组合问题的有( )①从5名同学中选4名组成代表团参加对外交流;②一个小组有7名学生,现抽调5人参加劳动;③从5名同学中选4名组成代表团去4个单位参加对外交流.A .①②B .①③C .②③D .①②③ A [①②与顺序无关是组合问题,③与顺序有关是排列问题.]2.甲、乙、丙三地之间有直达的火车,相互之间的距离均不相等,则车票票价的种数是________种.3 [甲、乙、丙三地之间的距离不等,故票价不同,同距离两地票价相同,故该问题为组合问题,不同票价的种数为C 23=3×22=3.]3.C 26=________,C 1718=________. 15 18 [C 26=6×52=15,C 1718=C 118=18.]4.方程C x14=C 2x -414的解为________.4或6 [由题意知⎩⎪⎨⎪⎧x =2x -4,2x -4≤14,x ≤14或⎩⎪⎨⎪⎧x =14-(2x -4),2x -4≤14,x ≤14,解得x =4或6.]组合的概念【例1】 (1)10支球队以单循环进行比赛(每两队比赛一次),这次比赛需要进行多少场次? (2)10支球队以单循环进行比赛,这次比赛冠、亚军获得者有多少种可能? (3)从10个人里选3个代表去开会,有多少种选法? (4)从10个人里选出3个不同学科的课代表,有多少种选法?[思路探究] 要确定是组合还是排列问题,只需确定取出的元素是否与顺序有关. [解] (1)是组合问题,因为每两个队比赛一次并不需要考虑谁先谁后,没有顺序的区别. (2)是排列问题,因为甲队得冠军、乙队得亚军与甲队得亚军、乙队得冠军是不一样的,是有顺序的区别.(3)是组合问题,因为3个代表之间没有顺序的区别.(4)是排列问题,因为3个人中,担任哪一科的课代表是有顺序的区别.1.根据排列与组合的定义进行判断,区分排列与组合问题,先确定完成的是什么事件,然后看问题是否与顺序有关,与顺序有关的是排列,与顺序无关的是组合.2.区分有无顺序的方法把问题的一个选择结果写出来,然后交换这个结果中任意两个元素的位置,看是否会产生新的变化,若有新变化,即说明有顺序,是排列问题;若无新变化,即说明无顺序,是组合问题.1.从5个不同的元素a ,b ,c ,d ,e 中取出2个,写出所有不同的组合.[解] 要想写出所有组合,就要先将元素按照一定顺序排好,然后按顺序用图示的方法将各个组合逐个标出来,如图所示:由此可得所有的组合为ab ,ac ,ad ,ae ,bc ,bd ,be ,cd ,ce ,de .组合数的计算与证明【例2】 85(2)计算:C 38-n3n +C 3n21+n .[思路探究] (1)直接运用组合数公式进行计算; (2)先求出n ,再按组合数公式进行运算. [解] (1)3C 38-2C 25=3×8×7×63×2×1-2×5×42×1=148.(2)由组合数的意义可得⎩⎪⎨⎪⎧0≤38-n ≤3n ,0≤3n ≤21+n ,即⎩⎪⎨⎪⎧192≤n ≤38,0≤n ≤212,∴192≤n ≤212. ∵n ∈N *,∴n =10,∴C 38-n 3n +C 3n 21+n =C 2830+C 3031=C 230+C 131=30×292×1+31=466.关于组合数计算公式的选取(1)涉及具体数字的可以直接用公式C m n=A mn A m m =n (n -1)(n -2)…(n -m +1)m !计算.(2)涉及字母的可以用阶乘式C mn =n !m !(n -m )!计算.(3)计算时应注意利用组合数的性质C mn =C n -mn 简化运算.2.求等式C 5n -1+C 3n -3C 3n -3=195中的n 值. [解] 原方程可变形为C 5n -1C 3n -3+1=195,C 5n -1=145C 3n -3,即(n -1)(n -2)(n -3)(n -4)(n -5)5!=145·(n -3)(n -4)(n -5)3!,化简整理,得n 2-3n -54=0.解此二次方程,得n =9或n =-6(不合题意,舍去),所以n =9为所求.组合数性质及应用[探究问题]1.试用两种方法求:从a ,b ,c ,d ,e 5人中选出3人参加数学竞赛,2人参加英语竞赛,共有多少种选法?你有什么发现?你能得到一般结论吗?[提示] 法一:从5人中选出3人参加数学竞赛,剩余2人参加英语竞赛,共C 35=5×4×33×2×1=10(种)选法.法二:从5人中选出2人参加英语竞赛,剩余3人参加数学竞赛,共C 25=5×42=10(种)不同选法.经求解发现C 35=C 25.推广到一般结论有C m n =C n -mn .2.从含有队长的10名排球队员中选出6人参加比赛,共有多少种选法? [提示] 共有C 610=10×9×8×7×6×56×5×4×3×2×1=210(种)选法.3.在探究2中,若队长必须参加,有多少种选法?若队长不能参加有多少种选法?由探究2,3,你发现什么结论?你能推广到一般结论吗?[提示] 若队长必须参加,共C 59=126(种)选法.若队长不能参加,共C 69=84(种)选法. 由探究2,3发现从10名队员中选出6人可分为队长参赛与队长不参赛两类,由分类计数原理可得:C 610=C 59+C 69.一般地:C m n +1=C m n +C m -1n .【例3】 (1)化简C 34+C 35+C 36+…+C 32 019的值为________. (2)解方程3C x -7x -3=5A 2x -4; (3)解不等式C 4n >C 6n .[思路探究] 恰当选择组合数的性质进行求值、解方程与解不等式. (1)C 42 020-1 [C 34+C 35+C 36+…+C 32 019 =C 44+C 34+C 35+…+C 32 019-C 44 =C 45+C 35+…+C 32 019-1=… =C 42 019+C 32 019-1=C 42 020-1.](2)[解] 由排列数和组合数公式,原方程可化为 3·(x -3)!(x -7)!4!=5·(x -4)!(x -6)!, 则3(x -3)4!=5x -6,即为(x -3)(x -6)=40. ∴x 2-9x -22=0,解得x =11或x =-2.经检验知x =11是原方程的根,x =-2是原方程的增根. ∴方程的根为x =11. (3)由C 4n >C 6n ,得⎩⎪⎨⎪⎧n !4!(n -4)!>n !6!(n -6)!n ≥6⇒⎩⎪⎨⎪⎧n 2-9n -10<0,n ≥6,⇒⎩⎪⎨⎪⎧-1<n <10,n ≥6.又n ∈N *,∴该不等式的解集为{6,7,8,9}.1.性质“C mn =C n -mn ”的意义及作用意义反映的是组合数的对称性,即从n 个不同的元素中取m 个元素的一个组合与剩下的(n -m )个元素的组合相对应作用当m >n2时,计算C m n 通常转化为计算C n -mn2.与排列组合有关的方程或不等式问题要用到排列数、组合数公式,以及组合数的性质,求解时,要注意由C m n 中的m ∈N *,n ∈N *,且n ≥m 确定m ,n 的X 围,因此求解后要验证所得结果是否适合题意.3.(1)化简:C 9m -C 9m +1+C 8m =________; (2)已知C 7n +1-C 7n =C 8n ,求n 的值.(1)0 [原式=(C 9m +C 8m )-C 9m +1=C 9m +1-C 9m +1=0.] (2)[解] 根据题意,C 7n +1-C 7n =C 8n , 变形可得C 7n +1=C 8n +C 7n , 由组合数的性质,可得 C 7n +1=C 8n +1,故8+7=n +1, 解得n =14.1.本节课的重点是组合的概念、组合数公式及其性质、简单的组合应用问题,难点是组合数的性质及应用.2.正确区分排列与组合的关键是看问题所涉及的这件事与顺序是否有关,与顺序有关则是排列,无关是组合.3.本节课的易错点是利用组合数性质C xn =C yn 解题时,易误认为一定有x =y ,从而导致解题错误.事实上,C x n =C yn ⇔⎩⎪⎨⎪⎧x =y 或x +y =n ,x ≤n ,y ≤n ,x ,y ∈N *.1.判断(正确的打“√”,错误的打“×”)(1)两个组合相同的充要条件是其中的元素完全相同.( )(2)从a1,a2,a3三个不同元素中任取两个元素组成一个组合,所有组合的个数为C23.( )(3)从甲、乙、丙3名同学中选出2名去参加某两个乡镇的社会调查,有多少种不同的选法是组合问题.( )(4)从甲、乙、丙3名同学中选出2名,有3种不同的选法.( )(5)现有4枚抗战胜利纪念币送给10人中的4人留念,有多少种送法是排列问题.( )[解析] (1)√因为只要两个组合的元素相同,不论元素的顺序如何,都是相同的组合.(2)√由组合数的定义可知正确.(3)×因为选出2名同学还要分到不同的两个乡镇,这是排列问题.(4)√因为从甲、乙、丙3人中选两名有:甲乙,甲丙,乙丙,共3个组合,即有3种不同选法.(5)×因为将4枚纪念币送与4人并无顺序,故该问题是组合问题.[答案] (1)√(2)√(3)×(4)√(5)×2.从5名志愿者中选派4人在星期六和星期日参加公益活动,每人一天,每天两人,则不同的选派方法共有( )A.60种B.48种C.30种D.10种C[从5名志愿者中选派2人参加星期六的公益活动有C25种方法,再从剩下的3人中选派2人参加周日的公益活动有C23种方法,故共有C25·C23=30种.]3.男女学生共有8人,从男生中选取2人,从女生中选取1人,共有30种不同的选法,其中女生有________人.2或3 [设男生有n人,则女生有(8-n)人,由题意可得C2n C18-n=30,解得n=5或n=6,代入验证,可知女生有2人或3人.]4.C58+C68的值为________.84 [C58+C68=C69=9!6!×3!=9×8×73×2×1=84.]5.平面上有9个点,其中4个点在同一条直线上(4个点之间的距离各不相等),此外任何三点不共线.(1)过每两点连线,可得几条直线?(2)以每三点为顶点画三角形可画几个?[解] (1)从9个点任取2个点,除去共线的情况即C29-C24+1=31(条).(2)从9个点任取3个点,除去共线的情况即C39-C34=80(个).。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.1 随机变量及其概率分布(1)(理科)
教学目标:
1.在对具体问题的分析中,了解随机变量、离散型随机变量的意义,理解
取有限值的离散型随机变量及其概率分布的概念;
2.会求出某些简单的离散型随机变量的概率分布,认识概率分布对于刻画
随机现象的重要性;
3.感受社会生活中大量随机现象都存在着数量规律,培养辩证唯物主义世
界观.
教学重点:
1.理解取有限值的随机变量及其分布列的概念;
2.初步掌握求解简单随机变量的概率分布.
教学难点:
1.理解取有限值的随机变量及其分布列的概念;
2.初步掌握求解简单随机变量的概率分布.
教学过程:
一、问题情境
问题1 在一块地里种下10棵树苗,成活的树苗棵数X是 0,1,…,10中
的某个数;
问题2 抛掷一颗骰子,向上的点数Y是1,2,3,4,5,6中的某一个数;
问题3 新生婴儿的性别,抽查的结果可能是男,也可能是女.如果将男婴
用0表示,女婴用1表示,那么抽查的结果Z是0和1中的某个数;
……
上述现象有哪些共同特点?
二、学生活动
上述现象中的X,Y,Z,实际上是把每个随机试验的基本事件都对应一个确
定的实数,即在试验结果(样本点)与实数之间建立了一个映射.
例如,上面的植树问题中成活的树苗棵数X:X=0,表示成活0棵;X=1,
表示成活1棵……
三、建构数学
1.随机变量.
一般地,如果随机试验的结果,可以用一个变量来表示,那么这样的变量叫
做随机变量.通常用大写拉丁字母X,Y,Z(或小写希腊字母,,)等表
示,而用小写拉丁字母x,y,z(加上适当下标)等表示随机变量取的可能值.
如,上面新生婴儿的性别Z是一个随机变量,Z=0,表示新生婴儿是男婴;Z=1,
表示新生婴儿是女婴.
例1 (1)掷一枚质地均匀的硬币一次,用X表示掷得正面的次数,则随机变
量X的可能取值有哪些?
(2)一实验箱中装有标号为1,2,3,4,5的五只白鼠,从中任取一只,
记
取到的白鼠的标号为Y,则随机变量Y的可能取值有哪些?
2.随机变量的概率分布.
一般地,假定随机变量X有n个不同的取值,它们分别是x1,x2,…,xn,
且P(X=xi)=pi,i=1,2,…n ①
则称①为随机变量X的概率分布列,简称为X的分布列.也可以将①用下表的
形式来表示.
X x1 x2 … x
n
P p1 p2 … p
n
我们将上表称为随机变量X的概率分布表.它和①都叫做随机变量X的概
率分布.
3.随机变量分布列的性质:
(1)pi≥0; (2)p1+p2+…+pn=1.
四、数学应用
1.求随机变量X的分布列的步骤:
(1)确定X的可能取值xi(i=1,2,…);
(2)求出相应的概率P(X=xi)=pi;
(3)列成表格的形式.
2.例题.
例2 从装有6只白球和4只红球的口袋中任取一只球,用X表示“取到的白球
个数”,即1 0 X当取到白球时,=当取到红球时,,, 求随机变量X的概率分布.
例3 若随机变量X的分布列如下表:试求出常数c.
变式 设随机变量的分布列为1()3kPka==(k=1,2,3,4),求实数
a
的值.
例4 某班有学生45人,其中O型血的有10人,A型血的有12人, B型血的
有8人,AB型血的有15人,现抽1人,其血型为随机变量X,求X的分布列.
2.练习:课本第52页练习第1,2题.
五、要点归纳与方法小结
本节课学习了以下内容:
1.随机变量的概念及0-1分布,随机变量性质的应用;
2.求随机变量X的分布列的步骤.
2.1 随机变量及其概率分布(1)(理科)作业
1、一般地,如果随机试验的结果,可以用一个变量来表示,那么这样的变量叫
做
2、已知2为离散型随机变量,的取值为1,2,,10,则的取值
为 。
X
0 1
P
9c2-c 3-8c
3、写出下列随机变量的可能取值,并说明随机变量所取的值表示的随机试验的
结果:
(1)一袋中装有5只同样大小的白球,编号分别为1,2,3,4,5。现从袋中
随机取出3只球,被取出的球的最大号码数;
(2)某单位的某部电话在单位时间内收到的呼叫次数。
4、盒中有9个正品和3个次品零件,每次从中取一个零件,如果取出的次品不
再放回,且取正品前已取出的次品数为,
(1)写出可能取的值;
(2)写出=1所表示的事件
5、抛掷两枚骰子各一次,记第一枚骰子掷出的点数与第二枚骰子掷出的点数的
差为,试问“4”表示的试验结果是什么?
6、写出下列随机变量的可能的取值,并说明随机变量所取的值表示的随机试验
的结果:
(1)从甲地到乙地有汽车、火车和飞机三种直达交通工具,旅费分别为100元、
80元和400元,某人从甲地去乙地旅游,他的旅费为X;
(2)盒内装着标有14号的大小相同的4个小球,设随机抽取2个,所得的号
码之和为Y;