初中八年级上学期数学期中考试试题

合集下载

人教版八年级上册数学期中试卷(完整)

人教版八年级上册数学期中试卷(完整)

人教版八年级上册数学期中试卷(完整) 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.3-的倒数是( )A .3B .13C .13-D .3-2.下列各数中,313.14159 8 0.131131113 25 7π-⋅⋅⋅--,,,,,,无理数的个数有( )A .1个B .2个C .3个D .4个3.已知:20n 是整数,则满足条件的最小正整数n ( )A .2B .3C .4D .54.已知a b 3132==,,则a b 3+的值为( ) A .1 B .2 C .3 D .275.已知a 与b 互为相反数且都不为零,n 为正整数,则下列两数互为相反数的是( )A .a 2n -1与-b 2n -1B .a 2n -1与b 2n -1C .a 2n 与b 2nD .a n 与b n6.如图,直线y=ax+b 过点A (0,2)和点B (﹣3,0),则方程ax+b=0的解是( )A .x=2B .x=0C .x=﹣1D .x=﹣37.如图,下列各三角形中的三个数之间均具有相同的规律,根据此规律,最后一个三角形中y 与n 之间的关系是( )A.y=2n+1 B.y=2n+n C.y=2n+1+n D.y=2n+n+1 8.如图所示,点A、B分别是∠NOP、∠MOP平分线上的点,AB⊥OP于点E,BC⊥MN于点C,AD⊥MN于点D,下列结论错误的是()A.AD+BC=AB B.与∠CBO互余的角有两个C.∠AOB=90°D.点O是CD的中点9.如图,两个较大正方形的面积分别为225、289,且中间夹的三角形是直角三角形,则字母A所代表的正方形的面积为()A.4 B.8 C.16 D.6410.如图是由4个相同的小正方形组成的网格图,其中∠1+∠2等于()A.150°B.180°C.210°D.225°二、填空题(本大题共6小题,每小题3分,共18分)1.已知a、b满足(a﹣1)22b+,则a+b=________.2.将命题“同角的余角相等”,改写成“如果…,那么…”的形式_____.3.若关于x的分式方程2222x mmx x+=--有增根,则m的值为_______.4.如图,已知∠XOY=60°,点A在边OX上,OA=2.过点A作AC⊥OY于点C,以AC为一边在∠XOY内作等边三角形ABC,点P是△ABC围成的区域(包括各边)内的一点,过点P作PD∥OY交OX于点D,作PE∥OX交OY于点E.设OD=a ,OE=b ,则a+2b 的取值范围是________.5.如图,将△AOB 绕点O 按逆时针方向旋转45°后得到△COD ,若∠AOB=15°,则∠AOD=________度.6.如图,在平面直角坐标系中,矩形ABCO 的边CO 、OA 分别在x 轴、y 轴上,点E 在边BC 上,将该矩形沿AE 折叠,点B 恰好落在边OC 上的F 处.若OA =8,CF =4,则点E 的坐标是________.三、解答题(本大题共6小题,共72分)1.解分式方程:241244x x x x -=--+.2.化简求值:[4(xy-1)2-(xy+2)(2-xy)]÷14xy,其中x=-2, y=15.3.已知关于x 的一元二次方程2(4)240x m x m -+++=.(1)求证:该一元二次方程总有两个实数根;(2)若12,x x 为方程的两个根,且22124n x x =+-,判断动点(,)P m n 所形成的数图象是否经过点(5,9)A -,并说明理由.4.如图,△ABC中,AB=AC=1,∠BAC=45°,△AEF是由△ABC绕点A按顺时针方向旋转得到的,连接BE,CF相交于点D,(1)求证:BE=CF ;(2)当四边形ACDE为菱形时,求BD的长.5.如图,将两个全等的直角三角形△ABD、△ACE拼在一起(图1).△ABD不动,(1)若将△ACE绕点A逆时针旋转,连接DE,M是DE的中点,连接MB、MC (图2),证明:MB=MC.(2)若将图1中的CE向上平移,∠CAE不变,连接DE,M是DE的中点,连接MB、MC(图3),判断并直接写出MB、MC的数量关系.(3)在(2)中,若∠CAE的大小改变(图4),其他条件不变,则(2)中的MB、MC的数量关系还成立吗?说明理由.6.某青春党支部在精准扶贫活动中,给结对帮扶的贫困家庭赠送甲、乙两种树苗让其栽种.已知乙种树苗的价格比甲种树苗贵10元,用480元购买乙种树苗的棵数恰好与用360元购买甲种树苗的棵数相同.(1)求甲、乙两种树苗每棵的价格各是多少元?(2)在实际帮扶中,他们决定再次购买甲、乙两种树苗共50棵,此时,甲种树苗的售价比第一次购买时降低了10%,乙种树苗的售价不变,如果再次购买两种树苗的总费用不超过1500元,那么他们最多可购买多少棵乙种树苗?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、C2、B3、D4、B5、B6、D7、B8、B9、D10、B二、填空题(本大题共6小题,每小题3分,共18分)1、﹣12、如果两个角是同一个角的余角,那么这两个角相等3、14、2≤a+2b≤5.5、30°6、(-10,3)三、解答题(本大题共6小题,共72分)x1、42、20xy-32,-40.3、(1)见解析;(2)经过,理由见解析4、(1)略(2-15、(1)略;(2)MB=MC.理由略;(3)MB=MC还成立,略.6、(1)甲种树苗每棵的价格是30元,乙种树苗每棵的价格是40元;(2)他们最多可购买11棵乙种树苗.。

桂林全州县石塘镇朝南初中八年级数学上期中试题及答案

桂林全州县石塘镇朝南初中八年级数学上期中试题及答案
距离为多少。
第 24 题图
25.(本题 10 分)如图,点 B 在线段 AC 上,点 E 在线段 BD 上, ∠ABD=∠DBC,AB=DB,EB=CB,M,N 分别是 AE,CD 的中点。试探
索 BM 和 BN 的关系,并证明你的结
论。

E
M
A
C
26、(本题 12分)如图,已知:E 是∠AOB 的平分线 EC⊥OB,ED⊥OA,C、D 是垂足,连接 CD,且交 OE于 点 F. (1)求证:OE是 CD的垂直平分线.
B
C
③ 连结 BE.
M
N
(2)在完成(1)后不添加线段和字母的情况下,
请你写出除△ABD≌△ACD 外的两对全等三角形:
第 23 题图




并选择其中的一对全等三角形予以证明.
24、(本题 8 分) 如图,AD 为△ABC 的中线,BE 为△ ABD 的中线。
(1)∠ABE=15°, ∠BAD=40°,求∠BED 的度数; (3)若△ABC 的面积为 40,BD=5,则 E 到 BC 边的
23.解:(1)①②③每画对一条线给 1 分
……………………………………………(3
分)
(2)△ABE≌△ACE ;△BDE≌△CDE . ………………………………(5 分)
(3)选择△ABE≌△ACE 进行证明.
∵ AB=AC,AD⊥BC ∴∠BAE=∠CAE …………………………(6 分)
4. 等腰三角形的一个角是 80°,则它的底角是(
A. 50°
B. 0°
C. 50°或 80°
) D. 20°或 80°
5. 点 M(3,2)关于 y 轴对称的点的坐标为 ( )。

【人教版】数学八年级上册《期中考试题》附答案

【人教版】数学八年级上册《期中考试题》附答案
∵3+3=6<8,不能组成三角形,
∴不合题意,舍去;
若3cm为底边长,8cm为腰长,
则此三角形的周长为:3+8+8=19(cm).
故选A.
【点睛】此题考查了三角形的三边关系定理.比较简单,注意掌握分类讨论思想的应用.
5.如图所示,AD、AE分别是△ABC的高和角平分线,且∠B=76°,∠C=36°,则∠DAE等于( )
A.20°B.18°C.45°D.30°
6.如图,AD是△ABC的中线,E是AD的中点,S△AEC=3cm2,则S△ABC=()cm2
A. 10B. 11C. 12D. 13
7.如图,在 中, ,点 是两条角平分线的交点,则 的大小为()
A. B. C. D.
8.从n边形的一个顶点出发作对角线,可以把这个n边形分成9个三角形,则n等于()
11.在正方形网格中, 的位置如图所示,到 的两边距离相等的点应是( )
A.点MB.点QC.点PD.点N
12.如图,直线AC上取点B,在其同一侧作两个等边三角形△ABD和△BCE,连接AE,CD与GF,下列结论正确的有()
①AEDC;②AHC120;③△AGB≌△DFB;④BH平分AHC;⑤GF∥AC
即B点到AE和DC的距离相等,
∴BH平分∠AHC,所以④正确;
∵△AGB≌△DFB,
∴BG=BF,
∵∠GBF=60°,
∴△BGF 等边三角形,
∴∠BGF=60°,
∴∠ABG=∠BGF,
∴GF∥AC,所以⑤正确.
(2)组员小刘想,如果三个角不是直角,那结论是否会成立呢?如图②,将(1)中的条件改为:在△ABC中,AB=AC,D、A、E三点都在直线L上,并且有∠BDA=∠AEC=∠BAC=α,其中α为任意锐角或钝角.请问结论DE=BD+CE是否成立?如成立,请你给出证明;若不成立,请说明理由.

人教版八年级上册数学期中考试试题含答案

人教版八年级上册数学期中考试试题含答案

人教版八年级上册数学期中考试试卷一、选择题。

(每小题只有一个正确答案)1.下列各组线段不能组成三角形的是()A.4cm、4cm、5cm B.4cm、6cm、11cmC.4cm、5cm、6cm D.5cm、12cm、13cm2.三角形一个外角小于与它相邻的内角,这个三角形()A.是钝角三角形B.是锐角三角形C.是直角三角形D.属于哪一类不能确定.3.若一个正多边形的每个内角度数都为135°,则这个正多边形的边数是()A.6 B.8 C.10 D.124.如图,在△AEC中,点D和点F分别是AC和AE上的两点,连接DF,交CE的延长线于点B,若∠A=25°,∠B=45°,∠C=36°,则∠DFE=()A.103°B.104°C.105°D.106°5.如图所示,有一个简易平分角的仪器(四边形ABCD),其中AB=AD,BC=DC,将点A放在角的顶点处,AB和AD沿着角的两边张开,并分别与AQ,AP重合,沿对角线AC画射线AE,AE就是∠P AQ的平分线这个平分角的仪器的制作原理是()A.角平分线性质B.AAS C.SSS D.SAS6.如图,△ABC的三边AB、BC、AC的长分别12,18,24,O是△ABC三条角平分线的交点,则S△OAB:S△OBC:S△OAC=()A.1:1:1 B.1:2:3 C.2:3:4 D.3:4:57.如下图,△MNP中,∠P=60°,MN=NP,MQ⊥PN,垂足为Q,延长MN至G,取NG=NQ,若△MNP的周长为12,MQ=a,则△MGQ周长是()A .8+2aB .8+aC .6+aD .6+2a8.如图,等边三角形ABC 的边长为4,AD 是BC 边上的中线,F 是AD 边上的动点,E 是AC 边上一点.若2AE =,当EF CF +取得最小值时,则ECF ∠的度数为( )A .15°B .225°C .30°D .45°9.下列四个图形中,不是轴对称图形的是( )A .B .C .D . 10.如下图所示,已知点O 是△ABC 内一点,且点O 到三边的距离相等,∠A=40゜,则∠BOC=( )A .130°B .140°C .110°D .120°二、填空题11.如图,六边形ABCDEF 中,AB ∥DC ,∠1、∠2、∠3、∠4分别是∠BAF 、∠AFE 、∠FED 、∠EDC 的外角,则∠1+∠2+∠3+∠4=_____.12.若点A(m+2,3)与点B(﹣4,n+5)关于x轴对称,则m+n=_____.13.如图,△ABC纸片中,AB=AC,∠BAC=90°,BC=8,沿过点C的直线折叠这个三角形,使点A落在BC边上的点F处,折痕为CD,BE⊥CD,垂足E在CD的延长线上,则结论①DF=DA;②∠ABE=22.5︒;③△BDF 的周长为8;④CD=2BE.正确的是________________(填上正确的结论序号).≅.(只需填写14.如图,已知AC DB=,再添加一个适当的条件________,使ABC DCB满足要求的一个条件即可).15.如图,AD⊥BC于点D,D为BC 的中点,连接AB,∠ABC的平分线交AD于点O,连结OC,若∠AOC=125°,则∠ABC=________________.16.已知△ABC中,AB=AC=4,∠A=60°,则△ABC的周长为______.三、解答题17.已知:如图,在△ABC中,点D是BC上一点,∠1=80°,AB=AD=DC.求:∠C的度数.18.(1)某多边形的内角和与外角和的总和为2 160°,求此多边形的边数;(2)某多边形的每一个内角都等于150°,求这个多边形的内角和.19.如图,线段AB和BC,交于B点:(1)请你用尺规作图的方法作出线段AB和BC的垂直平分线.(不写作法,保留作图痕迹)(2)如果线段AB和BC的垂直平分线交于点P,若AB=BC,求证:PB平分∠ABC.20.一个等腰三角形的周长为28cm.(1)如果底边长是腰长的1.5倍,求这个等腰三角形的三边长;(2)如果一边长为10cm,求这个等腰三角形的另两边长.21.如图,Rt△ABC的直角顶点C置于直线l上,AC=BC,现过A.B两点分别作直线l 的垂线,垂足分别为点D.E.(1)求证:△ACD≌△CBE.(2)若BE=3,DE=5,求AD的长.22.(1)如图,请在方格纸中画出△ABC 关于x 轴的对称图形△A ′B ′C ′.(2)写出对称点的坐标:A ′( , ),B ′( , ),C ′( , ). (3)△ABC 的面积是 .(4)请在图中找出一个格点D ,画出△ACD ,使△ACD 与△ABC 全等.23.如图,在△ABC 中,∠ABC =90°,AD ∥BC ,AB =BC ,E 是AB 的中点,CE ⊥BD . (1)求证:△ABD ≌△BCE .(2)求证:AC 是线段ED 的垂直平分线.24.如图,ABC ∆中,AB=AC ,36A ︒∠=,AC 的垂直平分线交AB 于E,D 为垂足,连结EC . (1)求ECD ∠的度数;(2)若CE=12,求BC 长.25.已知四边形ABCD 中,AB ⊥AD ,BC ⊥CD ,AB =BC ,∠ABC =120°,∠MBN =60°,∠MBN 绕B 点旋转,它的两边分别交AD ,DC (或它们的延长线)于E ,F .(1)当∠MBN 绕B 点旋转到AE =CF 时(如图1),求证:△ABE ≌△CBF .(2)当∠MBN 绕点B 旋转到AE ≠CF 时,如图2,猜想线段AE ,CF ,EF 有怎样的数量关系,并证明你的猜想.(3)当∠MBN 绕点B 旋转到图3这种情况下,猜想线段AE ,CF ,EF 有怎样的数量关系,并证明你的猜想.参考答案1.B【分析】根据三角形的任意两边之和大于第三边对各选项分析判断后利用排除法求解.【详解】A 、4485+=>,∴445cm cm cm 、、能组成三角形,故本选项错误;B 、461011+=<,∴4611cm cm cm 、、不能组成三角形,故本选项正确;C 、5496+=>,∴456cm cm cm 、、能组成三角形,故本选项错误;D 、5121713+=>,∴51213cm cm cm 、、能组成三角形,故本选项错误.故选:B .【点睛】本题考查了三角形的三边关系,是基础题,熟记三边关系是解题的关键.2.A【分析】由三角形的外角与它相邻的内角互为邻补角,且根据此外角小于与它相邻的内角,可得此外角为锐角,与它相邻的角为钝角,可得这个三角形为钝角三角形.【详解】∵三角形的外角与它相邻的内角互补,且此外角小于与它相邻的内角,∴此外角为锐角,与它相邻的角为钝角,则这个三角形为钝角三角形.故选:A.【点睛】此题考查了三角形的外角性质,其中得出三角形的外角与它相邻的内角互补是解本题的关键.3.B【分析】根据题意可先求出这个正多边形的每个外角度数,再根据多边形的外角和是360°即可求出答案.【详解】解:因为一个正多边形的每个内角度数都为135°,所以这个正多边形的每个外角度数都为45°,所以这个正多边形的边数是360°÷45°=8.故选:B.【点睛】本题考查了正多边形的有关概念和多边形的外角和,属于基本题目,熟练掌握多边形的基本知识是解题的关键.4.D【分析】由∠FEB是△AEC的一个外角,根据三角形外角的性质可得∠FEB=∠A+∠C=61°,再由∠DFE是△BFE的一个外角,根据三角形外角的性质即可求得∠DFE=∠B+∠FEB=106°,问题得解.【详解】∵∠FEB 是△AEC 的一个外角,∠A=25°,∠C=36°,∴∠FEB=∠A+∠C=61°,∵∠DFE 是△BFE 的一个外角,∠B=45°,∴∠DFE=∠B+∠FEB=106°,故选D .【点睛】本题考查了三角形外角的性质,熟知三角形的外角等于与它不相邻的两个内角的和是解题的关键.5.C【分析】根据题意,利用SSS 证明三角形全等,然后有对应角相等,即可得到答案.【详解】解:在△ABC 与△ADC 中,AB AD BC DC AC AC =⎧⎪=⎨⎪=⎩∴△ABC ≌△ADC (SSS ),∴∠BAC =∠DAC .即AE 平分∠BAD .∴不论∠DAB 是大还是小,始终有AE 平分∠BAD .故选C .【点睛】本题考查了角平分线的判定,解题的关键是熟练掌握全等三角形对应角相等.6.C【分析】直接根据角平分线的性质即可得出结论.【详解】∵O 是△ABC 三条角平分线的交点,AB 、BC 、AC 的长分别12,18,24,∴S △OAB :S △OBC :S △OAC =AB :OB :AC =12:18:24=2:3:4.故选C .【点睛】本题考查了角平分线的性质,熟知角的平分线上的点到角的两边的距离相等是解答此题的关键.7.D【解析】试题分析:由∠P=60°,MN=NP,可得△MNP是等边三角形,再根据等边三角形的“三线合一”的性质以及等腰三角形的判定,即可求得结果.∵∠P=60°,MN=NP∴△MNP是等边三角形.又∵MQ⊥PN,垂足为Q,∴PM=PN=MN=4,NQ=NG=2,MQ=a,∠QMN=30°,∠PNM=60°,∵NG=NQ,∴∠G=∠QMN,∴QG=MQ=a,∵△MNP的周长为12,∴MN=4,NG=2,∴△MGQ周长是6+2a.故选D.考点:本题考查的是等边三角形的判定和性质点评:认识到△MNP是等边三角形是解决本题的关键.同时熟练掌握等腰三角形的“三线合一”的性质:等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合.8.C【分析】可以取AB的中点G,连接CG交AD于点F,根据等边△ABC的边长为4,AE=2,可得点E是AC的中点,点G和点E关于AD对称,此时EF+FC=CG最小,根据等边三角形的性质即可得∠DCF的度数.【详解】解:如图,取AB的中点G,连接CG交AD于点F,∵等边△ABC的边长为4,AE=2,∴点E是AC的中点,所以点G和点E关于AD对称,此时EF+FC=CG最小,根据等边三角形的性质可知:∠ECF=1∠ACB=30°.2所以∠ECF的度数为30°.故选:C.【点睛】本题考查了轴对称-最短路线问题、等边三角形的性质,解决本题的关键是利用等边三角形的性质找对称点.9.D【解析】试题解析:根据轴对称的概念可知:选项A、B、C的图形均为轴对称图形,只有选项D的图形不是轴对称图形.故选D.10.C【分析】由已知,O到三角形三边距离相等,得O是内心,再利用三角形内角和定理即可求出∠BOC 的度数.【详解】由已知,O到三角形三边距离相等,所以O是内心,即三条角平分线交点,AO,BO,CO都是角平分线,所以有∠CBO=∠ABO=12∠ABC,∠BCO=∠ACO=12∠ACB,∠ABC+∠ACB=180゜-40゜=140゜∠OBC+∠OCB=70゜∠BOC=180゜-70゜=110°故选C.【点睛】此题主要考查学生对角平分线性质,三角形内角和定理,三角形的外角性质等知识点的理解和掌握,难度不大,是一道基础题.11.180°【分析】根据多边形的外角和减去∠B和∠C的外角的和即可确定四个外角的和.【详解】解:∵AB∥DC,∴∠B+∠C=180°,∴∠B的外角与∠C的外角的和为180°,∵六边形ABCDEF的外角和为360°,∴∠1+∠2+∠3+∠4=180°,故答案为:180°.【点睛】本题考查了多边形的外角和定理,解题的关键是发现∠B和∠C的外角的和为180°12.-14【分析】根据关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数可得m、n的值,再计算m+n即可.【详解】由题意,得m+2=﹣4,n+5=﹣3,解得m=﹣6,n=﹣8.m+n=﹣14,故答案为:﹣14.【点睛】本题考查平面直角坐标系中点坐标的特征,熟记基本结论准确求解参数是解题关键.13.①②③④【分析】由折叠的性质可得AC=CF,AD=DF,∠ACD=∠DCB=22.5°,由余角的性质可得∠EBC=67.5°,可求∠EBA=∠EBC-∠ABC=22.5°,由线段的和差关系可求△BDF的周长为8,延长CA,BE交于点H,通过证明△BCE≌△HCE和△ACD≌△ABH,可证CD=2BE.【详解】解:∵AB=AC,∠BAC=90°,∴∠ABC=∠ACB=45°,∵沿过点C的直线折叠这个三角形,使点A落在BC边上的点F处,∴△ACD≌△FCD,∴AC=CF,AD=DF,∠ACD=∠DCB=22.5°,故①正确;∵BE⊥CD,∴∠EBC=67.5°,∴∠EBA=∠EBC-∠ABC=22.5°,故②正确;∵△BDF的周长=BD+DF+BF=BD+AD+BF=AC+BF=CF+BF,∴△BDF的周长为8,故③正确,如图,延长CA,BE交于点H,∵∠ACD=∠BCD,CE=CE,∠BEC=∠CEH=90°,∴△BCE≌△HCE(ASA)∴BE=EH,∴BH=2BE,∵∠EBA=∠ACD=22.5°,∠BAH=∠CAD=90°,AC=AB,∴△ACD≌△ABH(ASA)∴CD=BH,∴CD=2BE,故④正确,故答案为:①②③④.【点睛】本题考查了翻折变换,全等三角形的判定和性质,等腰直角三角形的性质,添加恰当辅助线构造全等三角形是本题的关键.14.AB=DC或∠ACB=∠DBC【详解】若添加AB=DC,∵AC=DB,BC=BC,AB=DC∴△ABC≌△DCB∴加一个适当的条件是AB=DC.若添加∠ACB=∠DBC,∵AC=DB,∠ACB=∠DBC,BC=BC,∴△ABC≌△DCB∴加一个适当的条件是∠ACB=∠DBC.故答案为:AB=DC或∠ACB=∠DBC.15.70°【分析】略【详解】试题分析:根据题意可得:∠COD=55°,根据等腰三角形的三线合一定理可得:∠BOC=110°,根据等腰三角形的性质可得:∠OBC=∠C=35°,则根据角平分线的性质可得:∠ABC=35°×2=70°.【点睛】略16.12【详解】解:∵AB=AC=4,∠A=60°,∴△ABC是等边三角形,∴BC="AB=AC=4,"∴△ABC的周长为12.故答案为12.【点睛】本题考查等边三角形的判定与性质,难度不大.17.25°【分析】根据三角形的内角和定理和等腰三角形的性质求出∠ADB,根据等腰三角形的性质得出∠C =∠DAC,根据三角形的外角性质得出∠C+∠DAC=∠ADB,代入求出即可.【详解】解:∵∠1=80°,AB=AD,∴∠B=∠ADB=12⨯(180°﹣∠1)=50°,∴AD=CD,∴∠C=∠DAC,∵∠C+∠DAC=∠ADB=50°,∴∠C=∠DAC=12⨯50°=25°.【点睛】本题考查了等腰三角形的性质,三角形外角的性质,三角形的一个外角等于与它不相邻的两个内角的和.18.(1)12;(2)1800°.【分析】(1)任何多边形的外角和是360度,n边形的内角和是(n-2)•180°,根据多边形的内角和与外角和的总和为2160°列方程求解即可;(2)多边形的每一个内角都等于150°,根据内角与外角互为邻补角,因而就可以求出外角的度数.根据任何多边形的外角和都是360度,利用360除以外角的度数就可以求出,外角和中外角的个数,即多边形的边数,从而求出内角和.【详解】(1)设这个多边形的边数是n,(n-2)•180°+360°=2160°,解得n=12.(2)∵多边形的每一个内角都等于150°,∴多边形的每一个外角都等于180°-150°=30°,∴边数n=360°÷30°=12,∴这个多边形的内角和为=(12-2)×180°=1800°.故答案为1800°.【点睛】本题主要考查多边形的内角和定理及多边形的外角和定理,熟练掌握多边形内角和定理是解答本题的关键.n变形的内角和为:(n-2) ×180°,n变形的外角和为:360°;然后根据等量关系列出方程求解.19.(1)见解析;(2)见解析【分析】(1)依据几何语言进行作图即可得到线段AB和BC的垂直平分线;(2)依据全等三角形的对应角相等,即可得到PB平分∠ABC.【详解】解:(1)如图所示,DP为AB的垂直平分线,EP为BC的垂直平分线;(2)如图所示,∵AB=BC,DP为AB的垂直平分线,EP为BC的垂直平分线,∴DB=EB,∠BDP=∠BEP=90°,又∵BP=BP,∴Rt△BDP≌Rt△BEP(HL),∴∠PBD =∠PBE ,即BP 平分∠ABC .【点睛】本题主要考查了基本作图,解决问题的关键是掌握线段垂直平分线的定义以及全等三角形的性质.20.(1)8,8,12; (2)10,8或9,9【解析】试题分析:(1)、首先设腰长为xcm ,则底边长为1.5xcm ,然后根据三边长的和列出方程从而求出x 的值,得出三角形的三边长;(2)、本题需要分两种情况进行讨论,即10cm 为腰长或10cm 为底边时两种情况分别进行计算,得出答案.试题解析:(1)、设腰长为xcm ,则底边长为1.5xcm ,根据题意可得:2x+1.5x=28解得:x=8cm 则1.5x=1.5×8=12cm 即这个等腰三角形的三边长为8cm ,8cm ,12cm(2)、当10cm 为腰长时,则底边长为28-10×2=8cm ,则两边长为10cm ,8cm当10cm 为底边时,则腰边长为(28-10)÷2=9cm ,则两边长为9cm ,9cm 综上所述,这个等腰三角形的两边长为10cm ,8cm 或9cm ,9cm21.(1)详见解析;(2)AD=8【分析】(1)根据AAS 即可证明△ACD ≌△CBE ;(2)由(1)知△ACD ≌△CBE ,根据全等三角形的对应边相等,得出CD=BE=3,AD=CE ,由CE=CD+DE ,从而可求出AD 的长.【详解】(1)证明:∵AD ⊥CE ,BE ⊥CE ,∴∠ADC=∠CEB=90°,又∵∠ACB=90°,∴∠ACD=∠CBE=90°-∠ECB .在△ACD 与△CBE 中,ADC CEB ACD CBE AC BC ∠∠∠∠⎧⎪⎨⎪⎩===,∴△ACD≌△CBE(AAS);(2)解:∵△ACD≌△CBE,∴CD=BE=3,AD=CE,又∵CE=CD+DE=3+5=8,∴AD=8.【点睛】本题考查全等三角形的判定与性质,余角的性质,熟练掌握全等三角形的判定与性质是解题的关键.22.(1)见解析;(2)A′(﹣4,﹣5),B′(﹣6,﹣2),C′(﹣3,﹣1);(3)5.5;(4)见解析【分析】(1)利用关于x轴对称的点的坐标特征写出A、B、C关于x轴的对称点A′、B′、C′的坐标,然后描点即可;(2)根据作图即可确定A′,B′,C′三点坐标;(3)用一个矩形的面积分别减去三个直角三角形的面积去计算△ABC的面积;(4)以AC为对角线,作平行四边形ABCD即可.【详解】解:(1)如图,△A′B′C′为所作;(2)对称点的坐标:A′(﹣4,﹣5),B′(﹣6,﹣2),C′(﹣3,﹣1).(3)△ABC的面积=3×4﹣12×3×1﹣12×3×2﹣12×4×1=5.5;故答案为5.5.(4)如图,点D 为所作.【点睛】本题考查了作图-轴对称变换:几何图形都可看做是由点组成,我们在画一个图形的轴对称图形时,也是先从确定一些特殊的对称点开始的.也考查了三角形全等的判定. 23.(1)见解析 (2)见解析【分析】(1)根据等角的余角可知∠1=∠2,利用ASA 即可证得△BAD ≌△CBE ;(2)由△BAD ≌△CBE 可知AD=BE ,根据E 是AB 中点,故EB=EA ,进而可得AE=AD ,根据平行线的性质可得∠5=∠ACB=45°,再根据AD=AE ,即可知AF ⊥DE ,且EF=DF ,即可得证.【详解】如图(1)证明:∵∠ABC=90°,BD ⊥EC ,∴∠1+∠3=90°,∠2+∠3=90°,∴∠1=∠2,在△BAD 和△CBE 中,2190BA CB BAD CBE ∠=∠⎧⎪=⎨⎪∠=∠=︒⎩, ∴△BAD ≌△CBE (ASA ),(2)证明:∵△BAD ≌△CBE ,∴AD=BE∵E 是AB 中点,∴EB=EA ,∴AE=AD ,∵AD ∥BC ,∴∠5=∠ACB=45°,∵∠4=45°,∴∠4=∠5,又∵AD=AE ,∴AF ⊥DE ,且EF=DF ,即AC是线段ED的垂直平分线;【点睛】本题考查全等三角形的判定及性质以及等腰三角形的性质,还涉及了等角的余角相等、平行线性质等知识点,熟练掌握各个性质定理是解题关键.24.(1)36°;(2)12.【分析】(1)ED是AC的垂直平分线,可得AE=EC;∠A=∠C;已知∠A=36,即可求得;(2)△ABC中,AB=AC,∠A=36°,可得∠B=72°,又∠BEC=∠A+∠ECA=72°,所以,得BC=EC=12.【详解】(1)解:∵DE垂直平分AC,∴CE=AE,∴∠ECD=∠A=36°.(2)解:∵AB=AC,∠A=36°,∴∠B=∠ACB=72°,∵∠ECD=36°,∴∠BCE=∠ACB-∠ECD=36°,∠BEC=72°=∠B,∴BC=EC=12.25.(1)见解析;(2)AE+CF=EF,证明见解析;(3)AE﹣CF=EF,证明见解析【分析】(1)利用SAS定理证明△ABE≌△CBF;(2)延长DC至点K,使CK=AE,连接BK,分别证明△BAE≌△BCK、△KBF≌△EBF,根据全等三角形的性质、结合图形证明结论;(3)延长DC 至G ,使CG =AE ,仿照(2)的证明方法解答.【详解】(1)证明:在△ABE 和△CBF 中,=90?AB BCBAE BCF AE CF=⎧⎪=⎨⎪=⎩∠∠,∴△ABE ≌△CBF (SAS );(2)解:AE +CF =EF ,理由如下:延长DC 至点K ,使CK =AE ,连接BK , 在△BAE 与△BCK 中,=BA BCBAE BCK AE CK=⎧⎪=⎨⎪⎩∠∠,∴△BAE ≌△BCK (SAS ),∴BE =BK ,∠ABE =∠KBC ,∵∠FBE =60°,∠ABC =120°,∴∠FBC +∠ABE =60°,∴∠FBC +∠KBC =60°,∴∠KBF =∠FBE =60°,在△KBF 与△EBF 中,BK BEKBF EBF BF BF=⎧⎪=⎨⎪=⎩∠∠,∴△KBF ≌△EBF (SAS ),∴KF =EF ,∴AE +CF =KC +CF =KF =EF ;(3)解:AE ﹣CF =EF ,理由如下:延长DC 至G ,使CG =AE ,由(2)可知,△BAE ≌△BCG (SAS ),∴BE =BG ,∠ABE =∠GBC ,21 ∠GBF =∠GBC ﹣∠FBC =∠ABE ﹣∠FBC =120°+∠FBC ﹣60°﹣∠FBC =60°, ∴∠GBF =∠EBF ,∵BG =BE ,∠GBF =∠EBF ,BF =BF ,∴△GBF ≌△EBF ,∴EF =GF ,∴AE ﹣CF =CG ﹣CF =GF =EF .【点睛】本题考查的是全等三角形的判定和性质,正确作出辅助线、掌握全等三角形的判定定理和性质定理是解题的关键.。

沪科版八年级上册数学期中考试试卷带答案

沪科版八年级上册数学期中考试试卷带答案

沪科版八年级上册数学期中考试试题一、选择题。

(每小题只有一个正确答案)1.在平面直角坐标系中,点(5,4)A -所在的象限为()A .第一象限B .第二象限C .第三象限D .第四象限2.会议室“4排6号”记作()4,6,那么“3排2号”记作()A .()2,3B .()3,2C .()2,3--D .()3,2--3.下列各曲线中不能表示y 是x 的函数的是()A .B .C .D .4.若一个函数y kx b =+中,y 随x 的增大而增大,且0b <,则它的图象大致是()A .B .C .D .5.下列长度的3根小木棒不能搭成三角形的是()A .2cm ,3cm ,4cmB .1cm ,2cm ,3cmC .3cm ,4cm ,5cmD .4cm ,5cm ,6cm6.若一个三角形的三个内角度数的比为1:2:3,则这个三角形是()A .锐角三角形B .直角三角形C .钝角三角形D .等腰三角形7.直线y 3x b =+经过点()m,n ,且n 3m 8-=,则b 的值是()A .4-B .4C .8-D .88.将点A 先向下平移3个单位长度,再向右平移4个单位长度,得到点A '(−3,−6),则点A 的坐标为()A .(−7,3)B .(−7,−3)C .(6,−10)D .(−1,−10)9.已知一次函数的函数表达式为y kx b =+,若6,5k b kb +=-=,则这个一次函数的图象不经过()A .第一象限B .第二象限C .第三象限D .第四象限10.在平面直角坐标系中,对于点(),P x y ,我们把点()'1,1P y x -++叫做点P 伴随点已知点1A 的伴随点为2A ,点2A 的伴随点为3A ,点3A 的伴随点为4···A ,这样依次得到点123,,,A n A A A ,,若点1A 的坐标为()2,4,点2019A 的坐标为()A .()3,3-B .()2,2--C .()3,1-D .()2,4二、填空题11.若点() 5,2P a a -+在x 轴上,则a =__________.12.在函数4y x =+中,自变量x 的取值范围是___________.13.在ABC ∆中,已知点,D E 分别是边上BC AD 、的中点,若ABC ∆面积为212cm ,则BDE ∆的面积为__________2cm 14.已知2y +与x 成正比例关系,且当 3x =时,4y =,则6y =时,x =_______.15.将直线y 2x 1=+平移后经过点(5,1),则平移后的直线解析式为___________.16.小敏从A 地出发向B 地行走,同时小聪从B 地出发向A 地行走,如图,相交于点P 的两条线段12,l l 分别表示小敏、小聪离B 地的距离()y km 与已用时间()x h 之间的关系,则x =_______时,小敏、小聪两人相距8.4km .17.已知:如图:试写出坐标平面内各点的坐标.A(______,______);B(______,______);C(______,______);D(______,______);E(______,______);F(______,______).三、解答题18.已知函数()21 3.y m x m =++-()1若函数为正比例函数,求m 的值;()2若函数图象与y 轴的交点坐标为()0,2-,求m 的值;()3若这个函数是一次函数,且y 随着x 的增大而减小,求m 的取值范围.19.如图,已知单位长度为1的方格中有个ABC ∆.()1请画出ABC ∆向.上平移3格再向右平移2格所得'''A B C ∆()2请以点A 为坐标原点建立平面直角坐标系(在图中画出),然后写出点B 、点'B 的坐标:B(,);'B (,);20.如图,△ABC 中,CD 是∠ACB 的角平分线,CE 是AB 边上的高,若∠A =40°,∠B =72°.(1)求∠DCE 的度数;(2)试写出∠DCE 与∠A 、∠B 的之间的关系式.(不必证明)21.我国很多城市水资源缺乏,为了加强居民的节水意识,某市制定了每月用水4吨以内(包括4吨)和用水4吨以上收费标准(收费标准:每吨水的价格)某用户每月应交水费y (元)与用水量x (吨)之间关系的图象如图:(1)说出自来水公司在这两个用水范围内的收费标准;(2)当x >4时,求因变量y 与自变量x 之间的关系式;(3)若某用户该月交水费26元,求他用了多少吨水?22.4月23日是世界读书日,在世界读书日来临之际,某校为了营造读书好、好读书、读好书的氛围,决定采购《童年》《汤姆 索亚历险记》两种图书供学生阅读.通过了解,购买2本《童年》、3本《汤姆 索亚历险记》共需84元,购买3本《童年》、2本《汤姆 索亚历险记》共需81元.()1求每本《汤姆 索亚历险记》和《童年》的定价各是多少元?()2该校计划购买两种图书共60本,并且要求《汤姆 索亚历险记》的数量不少于《童年》数量的2倍,请你设计一种购买方案,使得购买两种图书所需的总费用最低.23.如图,已知在ABC 中,,C ABC BE AC ∠=∠⊥于点E ,点D 在边AB 上,BDE 为等边三角形,求EBC ∠的度数.24.如图,AD、AF分别是△ABC中∠BAC的平分线和BC边上的高,已知∠B=36°,∠C =76°,求∠DAF的大小.25.如图,已知AD是△ABC的角平分线,CE是△ABC的高,AD与CE相交于点P,∠BAC=66°,∠BCE=40°,求∠ADC和∠APC的度数.参考答案1.B【分析】由题意根据各象限内点的坐标特征对选项进行分析解答即可.【详解】解:点(5,4)A -在第二象限.故选:B .【点睛】本题考查各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).2.B 【分析】根据有序数对的第一个数表示排数,第二个数表示号数即可解答.【详解】解:会议室“4排6号”记作()4,6,那么“3排2号”记作()3,2,故选:B .【点睛】本题考查了坐标确定位置,理解有序数对的两个数的实际意义是解题的关键.3.D 【分析】依据函数的概念进行判断,对于自变量的每一个确定的值,函数值有且只有一个值与之对应,即单对应.【详解】解:A ,B ,C 的图象都满足对于x 的每一个取值,y 都有唯一确定的值与之对应关系,故A ,B ,C 选项能表示y 是x 函数,D 选项的图象,对于x 的一个取值,y 可能有两个确定的值与之对应关系,故D 选项不能表示y 是x 函数;故选:D .【点睛】本题主要考查了函数的定义:在一个变化过程中,有两个变量x ,y ,对于x 的每一个取值,y 都有唯一确定的值与之对应,则y 是x 的函数,x 叫自变量.理解函数的定义是解题的关键.4.B根据y随x的增大而增大,可以判断直线从左到右是上升的趋势,0b<说明一次函数与y轴的交点在y轴正半轴,综合可以得出一次函数的图像.【详解】根据y随x的增大而增大,可以判断直线从左到右是上升的趋势,0b<说明一次函数与y轴的交点在y轴正半轴,综合可以得出一次函数的图像为B故选B【点睛】本题主要考查了一次函数的图像,以及k和b对图像的影响,掌握一次函数的图像和性质是解题的关键.5.B【分析】看哪个选项中两条较小的边的和大于最大的边即可.【详解】A.234+>,能构成三角形,不合题意;B.123+=,不能构成三角形,符合题意;C.435+>,能构成三角形,不合题意;D.456+>,能构成三角形,不合题意.故选B.【点睛】此题考查了三角形三边关系,解题关键在于看较小的两个数的和能否大于第三个数.6.B【分析】根据三角形内角和定理求出最大的内角的度数,再判断选项即可.【详解】解:∵三角形三个内角的度数之比为1:2:3,∴此三角形的最大内角的度数是3123++×180°=90°,∴此三角形为直角三角形,故选:B.本题考查了三角形内角和定理的应用,能求出三角形最大内角的度数是解此题的关键.7.D【分析】利用一次函数图像上点的坐标特征得到n=3m+b,然后利用整体代入的方法即可求出b的值.【详解】由题意可得n=3m+b, b=n-3m=8故答案选D.【点睛】本题考查的知识点是一次函数的性质,解题的关键是熟练的掌握一次函数的性质.8.B【解析】【分析】根据点的平移规律,左右移,横坐标减加,纵坐标不变:上下移,纵坐标加减,【详解】由题意知点A的坐标为(-3-4,-6+3),即(-7,-3),故选:B【点睛】此题考查点的平移规律,正确掌握规律是解题的关键,9.A【分析】利用有理数的性质可判断k<0,b<0,然后根据一次函数图象与系数的关系可得一次函数y =kx+b的图象经过第二、三、四象限.【详解】解:∵k+b=−6<0,kb=5>0,∴k<0,b<0,∴一次函数y=kx+b的图象经过第二、三、四象限,即一次函数的图象不经过第一象限,故选:A.【点睛】本题考查了一次函数图象与系数的关系:对于一次函数y=kx+b,当k>0,b>0⇔y=kx+b的图象在一、二、三象限;k>0,b<0⇔y =kx +b 的图象在一、三、四象限;k<0,b>0⇔y =kx +b 的图象在一、二、四象限;k<0,b<0⇔y =kx +b 的图象在二、三、四象限.10.B 【分析】根据“伴随点”的定义依次求出各点,每4个点为一个循环组依次循环,用2019除以4,根据商和余数的情况确定点A 2019的坐标即可.【详解】解:观察发现:()()()()12342,4,3,3,2,2,3,1A A A A ----()()562,4,3,3,A A - ∴依此类推,每4个点为一个循环组依次循环,20194504÷= …3,∴点2019A 的坐标与3A 的坐标相同,为()2,2--,故选:B .【点睛】此题考查点的坐标规律,理解“伴随点”的定义并求出每4个点为一个循环组依次循环是解题的关键.11.2-【分析】根据x 轴上的坐标的特点是纵坐标为零即可解答.【详解】解:∵点() 5,2P a a -+在x 轴上,∴20a +=,解得2a =-故答案为:2-.【点睛】本题考查了x 轴上点的坐标的特点,解题的关键是熟知x 轴上的坐标的特点是纵坐标为零.12.4x ≥-【详解】根据题意得:x+4≥0;解之得:x ≥-4.13.3【分析】根据中线将三角形面积分为相等的两部分可知:△ABD 是△BDE 的面积的2倍,△ABC 的面积是△ABD 的面积的2倍,依此即可求解.【详解】解:∵点,D E 分别是边上BC AD 、的中点,∴12BDE ABD S S = ,12ABD ABC S S = ,∴1112344BDE ABC S S ==⨯= ,故答案为:3.【点睛】本题考查了三角形的面积和中线的性质:三角形的中线将三角形分为相等的两部分,知道中线将三角形面积分为相等的两部分是解题的关键.14.4【分析】设2y kx +=,将 3x =,4y =代入求出函数关系式,在将y=6代入求解即可.【详解】解:设2y kx +=,∵当 3x =时,4y =,∴423k +=,解得:2k =∴22y x =-∴当6y =时,622x =-,解得4x =,故答案为:4.【点睛】本题主要考查了待定系数法求函数关系式,解题的关键是根据函数类型设出函数关系式.15.y=2x-9【分析】根据平移不改变k 的值可设平移后直线的解析式为y=2x+b ,然后将点(5,1)代入即可得出直线的函数解析式.【详解】解:设平移后直线的解析式为y=2x+b .把(5,1)代入直线解析式得1=2×5+b ,解得b=-9.所以平移后直线的解析式为y=2x-9.故答案为y=2x-9.【点睛】本题考查一次函数图象与几何变换及待定系数法求函数的解析式,掌握直线y=kx+b (k≠0)平移时k 的值不变是解题的关键.16.0.4或2.8【分析】直线l 1的解析式为y 1=kx +b ,将点(1.6,4.8),(2.8,0)代入,运用待定系数法求出直线l 1的解析式为y 1=−4x +11.2,设直线l 2的解析式为y 2=nx ,将点(1.6,4.8)代入,运用待定系数法求出直线l 2的解析式为y 2=3x ,再根据小敏、小聪两人相距8.4km ,列出方程|y 1−y 2|=8.4,解方程即可.【详解】解:设直线1l 的解析式为1y kx b =+,将点()()1.6,4.8, 2.8,0代入16 4.82.80k b k b +=⎧⎨+=⎩解得411.2k b =-⎧⎨=⎩则直线1l 的解析式为1411.2y x =-+设直线2l 的解析式为2y nx =,将点()1.6,4.8代入得4.8 1.6n =,解得3n =,则直线2l 的解析式为23y x =.小敏、小聪两人相距8.4km ,128.4y y ∴-=411.238.4x x ∴-+-=11.278.4x ∴-=或11.278.4x -=-解得:0.4x =或 2.8x =【点睛】此题主要考查了一次函数的综合应用,利用待定系数法求函数的解析式是需要熟练掌握的方法,本题根据小敏、小聪两人相距8.4km ,列出方程|y 1−y 2|=8.4是解题的关键17.(1)-5(2)0(3)0(4)-3(5)5(6)-2(7)3(8)2(9)0(10)2(11)-3(11)3【分析】根据点的位置,可得点的坐标.【详解】坐标平面内各点的坐标A (﹣5,0),B (0,﹣3),C (5,﹣2),D (3,2),E (0,2),F (﹣3,3).故答案为﹣5,0;0,﹣3;5,﹣2;3,2;0,2;﹣3,3.【点睛】本题考查了点的坐标,利用点的坐标表示方法:(横前,纵后)是解题的关键.18.(1)3m =;(2)1m =;(3)12m <-【分析】(1)根据一次函数和正比例函数的定义,可得出m 的值;(2)直接把(0,−2)代入求出m 的值即可;(3)直线y =kx +b 中,y 随x 的增大而减小说明k <0.【详解】解:(1)()213y m x m =++- 是正比例函数,21030m m +≠⎧∴⎨-=⎩,解得3m =(2)当 0x =时,2y =-,即 32m -=-,解得1m =;(3)根据y 随x 的增大而减小说明k 0<.即210m +<.解得:12m <-【点睛】本题考查的是一次函数图象上点的坐标特点,熟知一次函数图象上各点一定适合此函数的解析式是解答此题的关键;还要熟悉在直线y =kx +b 中,当k >0时,y 随x 的增大而增大;当k <0时,y 随x 的增大而减小.19.(1)详见解析;(2)图详见解析,()()1,2;'3,5B B 【分析】(1)把3个顶点向上平移3个单位,再向右平移2个单位,顺次连接个顶点即可;(2)以点A 为坐标原点,建立平面直角坐标系,找到所求点的坐标即可.【详解】解:(1)如图可得'''A B C ∆(2)如上图,以点A 为坐标原点建立平面直角坐标系,则()()1,2;'3,5B B 【点睛】在平面直角坐标系中,图形的平移与图形上某点的平移相同,注意上下移动改变点的纵坐标,下减,上加.20.(1)∠DCE =16°;(2)∠DCE =12(∠B -∠A ).【分析】(1)由CD是∠ACB的角平分线,求出∠DCB的度数,再由CE是AB边上的高,求出∠ECB,相减即可求出∠DCE度数,(2)证明过程与上一问思路相同.【详解】解:(1)∵∠A=40°,∠B=72°,∴∠ACB=68°∵CD平分∠ACB∴∠DCB=12∠ACB=34°∵CE是AB边上的高∴∠ECB=90°-∠B=90°-72°=18°∴∠DCE=34°-18°=16°(2)∠DCE=12(∠B-∠A).【点睛】本题考查了角平分线和高线得应用,属于简单题,明确各角之间的关系是解题关键. 21.(1)4吨以内,每吨为2元,4吨以上,每吨为3元;(2)y=3x﹣4;(3)10【分析】(1)仔细观察图象,便可写出函数在不同范围内的函数解析式;(2)仔细观察图象,便可写出函数在不同范围内的函数解析式;(3)根据已知条件可知:该用户的交水费范围属于x>4的范围,代入解析式即可得到答案.【详解】解:(1)4吨以内,每吨为824=(元);4吨以上,每吨为148364-=-(元);故答案为:4吨以内,每吨为2元,4吨以上,每吨为3元;(2)当x>4时,y=8+3(x﹣4)=3x﹣4,即y=3x﹣4;故答案为:y=3x﹣4;(3)∵y=26,∴3x﹣4=26,解得x=10,则该月他用了10吨水,故答案为:10.【点睛】考查了一次函数的应用,能够从函数图象中获取有效信息是解题的关键,利用数形结合的方法找到变量之间的关系,注意自变量的取值范围.22.(1)每本《汤姆•索亚历险记》的定价为18元,每本《童年》的定价为15元;(2)购买《童年》20本,购买《汤姆•索亚历险记》40本时,所需总费用最低【分析】(1)设每本《汤姆•索亚历险记》的定价是x 元,每本《童年》的定价是y 元,根据题意,可以列出相应的方程组,从而可以解答本题;(2)根据题意可以列出相应的不等式,求出《童年》的取值范围,再根据题意得到费用与《童年》之间的函数关系,由一次函数的性质求出函数的最小值,本题得以解决.【详解】解:(1)设每本《汤姆•索亚历险记》的定价是x 元,每本《童年》的定价是y 元依题意得:32842381x y x y +=⎧⎨+=⎩,解得1815x y =⎧⎨=⎩答:每本《汤姆•索亚历险记》的定价为18元,每本《童年》的定价为15元.(2)设购买《童年》a 本,总费用为W 元,则购买《汤姆•索亚历险记》为()60a -本,602a a -≥ ,解得,20a ≤,()151********W a a a +-=-+ =,30k =-<W ∴随a 的增大而减小,∴当20a =时,W 的最小值,此时 1020,60602040W a =-=-=,答:购买《童年》20本,购买《汤姆•索亚历险记》40本时,所需总费用最低【点睛】本题考查一次函数的应用、二元一次方程组的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用一次函数的性质求函数的最值.23.15°【分析】先根据等边三角形的性质和垂线的性质求出∠AED ,再利用三角形内角和定理求出∠A,再利用等腰三角形的性质求出∠C 和∠ABC ,即可解答.【详解】∵BDE 为等边三角形,∴∠DEB=∠EDB=60°,∵BE AC ⊥,∴∠BEC=90°,∴∠AED=180°-∠DEB-∠BEC=30°,∴∠ADE=180°-∠EDB=120°,∴∠A=180°-∠ADE-∠AED=30°,∵,C ABC ∠=∠∴180-30=2C ABC ︒︒∠=∠=75°,在△BEC 中,∠BEC=90°,∠C=75°,∴∠EBC=180°-90°-75°=15°.【点睛】此题考查三角形内角和定理,等边三角形的性质,等腰三角形的性质,解题关键在于掌握各性质定义.24.20°【分析】由三角形的内角和是180°,可求∠BAC=68°,因为AD 为∠BAC 的平分线,得∠BAD=34°;又由三角形的一个外角等于与它不相邻的两个内角的和,得∠ADC=∠BAD+∠B=72°;又已知AF 为BC 边上的高,所以∠DAF=90°-∠ADC=20°.【详解】解:∵∠BAC +∠B +∠C =180°,∠B =36°,∠C =76°,∴∠BAC =68°.∵AD 为∠BAC 的平分线,∴∠BAD =34°,∴∠ADC =∠BAD +∠B =70°.又∵AF 为BC 边上的高,∴∠DAF =90°-∠ADC =20°.【点睛】本题考查三角形外角的性质及三角形的内角和定理,求角的度数常常要用到“三角形的内角和是180°这一隐含的条件;解答的关键是沟通外角和内角的关系.25.123°【分析】根据角平分线的定义可得∠BAD=∠CAD=12∠BAC=33°,再根据直角三角形两锐角互余求出∠B,然后根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可求出∠ADC,根据三角形的一个外角等于与它不相邻的两个内角的和可得∠APC=∠ADC+∠BCE.【详解】∵AD是△ABC的角平分线,∠BAC=66°,∴∠BAD=∠CAD=12∠BAC=33°,∵CE是△ABC的高,∴∠BEC=90°,∵∠BCE=40°,∴∠B=50°,∴∠ADC=∠BAD+∠B=33°+50°=83°;∠APC=∠ADC+∠BCE=83°+40°=123°.【点睛】本题考查了三角形的一个外角等于与它不相邻的两个内角的和的性质,直角三角形两锐角互余的性质,角平分线的定义,熟记性质并准确识图是解题的关键.。

八年级上册数学期中考试题

八年级上册数学期中考试题

八年级上册数学期中考试题八年级数学期中考试的日子日益临近,感觉复习得不错的你,一定要再接再厉,发挥自己最大的潜力,下面是小编为大家精心整理的八年级上册数学期中考试题,仅供参考。

八年级上册数学期中考试题目一.选择题:(每题2分)1.已知三角形两边的长分别是4和10,则此三角形第三边的长可能是( )A.5B.6C.11D.162.在△ABC中,∠A=55°,∠B比∠C大25°,则∠B等于( )A.50°B.75°C.100°D.125°3.一个多边形的每个内角均为150°,则这个多边形是( )A.九边形B.十边形C.十二边形D.十五边形4.如图1,将三角形的一个角折叠,三角形的顶点落在折叠后的四边形内部,则∠γ与∠α、∠β之间的关系是( )A.∠γ=∠α+∠βB.2∠γ=∠α+∠βC.3∠γ=2∠α+∠βD.3∠γ=2(∠α+∠β)5.如图2,已知AB∥CD,AD∥CB,则△ABC≌△CDA的依据是( )A.SASB.ASAC.AASD.SSS6.如图3,∠B=∠D=90°,∠A=∠E,点B,F,C,D在同一条直线上,再增加一个条件,不能判定△ABC≌△EDF的是( )A.AB=EDB.AC=EFC.AC∥EFD.BF=DC7.如图4,点P在∠AOB的平分线上,PC⊥OA于点C,PC=1,点Q是射线OB上的一个动点,线段PQ长度的最小值为a,下列说法正确的是( )A.a>1B.a=1C.a<1D.以上都有可能8.观察下列图形,是轴对称图形的是( )9.下列条件中,不能判定直线MN是线段AB(M,N不在AB上)的垂直平分线的是( )A.MA=MB,NA=NBB.MA=MB,MN⊥ABC.MA=NA,MB=NBD.MA=MB,MN平分AB10.如图5,等腰△ABC中,AB=AC,∠A=50°,CD⊥AB于D,则∠DCB等于( )A.30°B.25°C.15°D.20°11.如图6,在△ACD和△BCE中,AC=BC,AD=BE,CD=CE,∠ACE=55°,∠BCD=155°,AD与BE相交于点P,则∠BPD的度数为( )A.110°B.125°C.130°D.155°12.△ABC中,①若AB=BC=CA,则△ABC是等边三角形;②属于轴对称图形,且有一个角为60°的三角形是等边三角形;③有三条对称轴的三角形是等边三角形;④有两个角是60°的三角形是等边三角形.上述结论中正确的有( )A.1个B.2个C.3个D.4个得分阅卷人二、细心填一填:(每小题2分,共20分)13.一等腰三角形的周长为20,其中一边长为5,则它的腰长等于 .14.△ABC≌△DEF,AB=2,BC=4,若△DEF的周长为偶数,则DF= .15.在平面直角坐标系中,点A的坐标是(-2,3),作点A关于x 轴的对称点,得到点A′,再作点A′关于y轴的对称点,得到点A″,则点A″的坐标是 .16.已知,在△ABC中,AD是BC边上的高线,且∠ABC=25°,∠ACD=55°,则∠BAC= .17.如图7,带箭头的两条直线互相平行,其中一条直线经过正五边形的一个顶点,若∠1=45°,则∠2=.18.如图8,在平面直角坐标系中,以点O为圆心,适当的长为半径画弧,交x轴于点A,交y轴于点B,再分别以点A,B为圆心,大于12AB的长为半径画弧,两弧在第四象限交于点P.若点P的坐标为(2a,a-9),则a的值为 .19.点O在△ABC内,且OA=OB=OC,若∠BAC=60°,则∠BOC 的度数是 .20.在△ABC中,AC=BC=m,AB=n,∠ ACB=120°,则△ABC的面积是(用含m,n的式子表示).21.如图9,Rt△ABC中,∠ACB=90°,BC=3cm,CD⊥AB于D,在AC上取一点E,使EC=BC,过点E作EF⊥AC交CD的延长线于点F,若EF=5 cm,则AE=_______cm.22.如图10,在平面直角坐标系中,∠AOB=90°,OA=OB,若点A的坐标为(-1,4),则点B的坐标为.得分阅卷人三、认真解一解:(共56分)23.(本题5分)如图11,在△ABC中,∠C=∠ABC= ∠A,BD是边AC上的高.求∠DBC的度数.24.(本题6分)如图12,点B,E,C,F在同一条直线上,∠A=∠D,∠B=∠DEF,BE=CF.求证:AC=DF.25.(本题6分)如图13,在∠ABC的内部有一点P,点P到M,N 两点的距离相等且到∠ABC两边的距离也相等.请用尺规作图作出点P,不写作法,保留痕迹.26.(本题6分)如图14,在平面直角坐标系中,△ABC的顶点坐标分别为A(-5,1),B(-1,1),C(-4,3).(1)若△A1B1C1与△ABC关于y轴对称,点A,B,C的对应点分别为A1,B1,C1,请画出△A1B1C1并写出A1,B1,C1的坐标;(2)若点P为平面内不与C重合的一点,△PAB与△ABC全等,请写出点P的坐标.27.(本题6分)如图15,在△ABC中, AB=AC,D为BC上一点,且AB=BD,AD=DC,求∠C的度数.28.(本题6分)如图16,锐角三角形ABC的两条高BE、CD相交于点O,且OB=OC求证:点O在∠BAC的平分线上.29.(本题6分)如图17,△ABC是等边三角形,BD是中线,过点D 作DE⊥AB于E交BC边延长线于F,AE=1.求BF的长.30.(本题7分)如图18,∠A=∠B,CE∥DA,CE交AB于E.(1)求证:△CEB是等腰三角形;(2)若AB∥CD,求证:AD=BC.31.(本题8分)如图19,在△ABC中,∠ACB=90°,AC=BC,△ABC的高CD与角平分线AE相交点F,过点C作CH⊥AE于G,交AB于H.(1)求∠BCH的度数;(2)求证:CE=BH.八年级上册数学期中考试题参考答案一.选择题:(每题2分)题号 1 2 3 4 5 6 7 8 9 10 11 12答案 C B C B B C B A C B C D二.填空题:(每题2分)13、7.5;14、4;15、(2,-3);16、30°或100°;17、27°;18、3;19、120°;20、 ;21、2;22、(-4,-1)三.解答题:23、解:设∠A=x,则∠C=∠ABC= x,∵BD是边AC上的高∴∠ADB=∠CDB=90°………………………………1分∴∠ABD=90°-∠A=90°-x∠CBD=90°-∠C=90°- x………………………2分∴90°-x+90°- x= x……………………………3分解得x=45°………………………………………………4分∴∠CB D=90°-∠C=90°- x=22.5°………………5分24、证明:∵BE=CF∴BE+EC=CF+EC即BC=EF……………………………………………2分在△ABC和△DEF中∴△ABC≌△DEF………………………………………4分∴AC=DF………………………………………………6分25、连接MN作中垂线3分,作角平分线2分,结论1分.26、解:(1)图2分,坐标1分A1(4,1),B1(1,1),C1(4,3);(2)3分,坐标为(-2,3),(-2,-1),(-4,-1)27、解:设∠C=x∵AB=AC∴∠B=∠C=x………………………………………………1分∵AD=DC∴∠DAC=∠C=x……………………………………………2分∴∠BDA=∠DAC+∠C=2x…………………………………3分∵AB=BD∴∠BAD=∠BDA=2x………………………………………4分在△ABD中,∠B∠BAD+∠BDA=x+2x+2x=180°解得x=36°∴∠C=36°……………………………………………………6分28、证明:∵BE、CD是△ABC的两条高∴OD⊥AB,OE⊥AC,∠BDO=∠CEO=90°……………1分在△BDO和△CEO中∴△BDO≌△CEO…………………………………………4分∴OD=OE……………………………………………………5分又∵OD⊥A B,OE⊥AC∴点O在∠BAC的平分线上………………………………6分29、解:∵△ABC是等边三角形,BD是中线∴∠A=∠ACB=60°,AC=BC,AD=CD= AC…………1分∵ DE⊥AB于E∴∠ADE=90°-∠A=30°……………………………………2分∴CD=AD=2AE=2……………………………………………3分∴∠CDF=∠ADE=30°∴∠F=∠ACB-∠CDF=30°…………………………………4分∴∠CDF=∠F∴DC=CF………………………………………………………5分∴BF=BCCF=2AD+AD=6…………………………………6分30、证明:(1)∵CE∥DA∴∠A=∠CEB…………………………………………………1分∵∠A=∠B∴∠CEB=∠B…………………………………………………2分∴CE=CB∴△CEB是等腰三角形…………………………………………3分(2)连接DE∵CE∥DA,AB∥CD∴∠ADE=∠CED,∠AED=∠CDE…………………………4分在△ADE和△CED中∴△ADE≌△CED…………………………………………5分∴AD=CE…………………………………………………6分∵CE=CB∴AD=CB…………………………………………………7分31、解:(1)∵∠ACB=90°,AC=BC∴∠CAB=∠B=45°………………………………………1分∵AE是△ABC的角平分线∴∠CAE= ∠CAB=22.5°∴∠AEC=90°-∠CAE=67.5°………………………………2分∵CH⊥AE于G∴∠CGE=90°∴∠GCE=90°-∠AEC=22.5°……………………………3分(2)证明:∵∠ACB=90°,AC=BC,CD是△ABC的高∴∠ACD= ∠ACB=45°∴∠CFE=∠AEC+∠ACD=67.5°………………………4分∴∠CFE=∠AEC∴CF=CE……………………………………………………5分在△ACF和△CBH中∴△ACF≌△CBH…………………………………………6分∴CF=BH…………………………………………………7分∴CE=BH…………………………………………………6分八年级上数学期中试卷。

广东省广州市黄埔区2023-2024学年八年级上学期期中考试数学试卷(11月)(含解析)

2023年11月-黄埔期中考-八年级数学卷一.选择题(共10小题,每题3分,共30分)1.下面各图形不是轴对称图形的是( )A.圆B.长方形C.等腰梯形D.平行四边形2.如图,有A、B、C三个居民小区,现决定在三个小区之间修建一个购物超市,使超市到三个小区的距离相等,则超市应建在( )A.∠A、∠B两内角的平分线的交点处B.AC、AB两边高线的交点处C.AC、AB两边中线的交点处D.AC、AB两边垂直平分线的交点处3.如图,要测量池塘两岸相对的两点A、B的距离,可以在池塘外取AB的垂线BF上的两点C、D,使得BC=CD,再画出BF的垂线DE,使点E与点A、C在一条直线上,这是测得线段DE 的长就是线段AB的长,其原理运用到三角形全等的判定是( )A.ASA B.SSS C.HL D.SAS4.如图,在△ABC中,AC的垂直平分线交AB于点D,CD平分∠ACB,若∠A=50°,则∠B的度数为( )A.25°B.30°C.35°D.40°5.设等腰三角形的一边长为5,另一边长为10,则其周长为( )A.15B.20C.25D.20或256.如图,△ABC≌△DEC,点E在线段AB上,∠B=75°,则∠ACD的度数为( )A.20°B.25°C.30°D.40°7.如图,在△ABC中,分别以点A和点C为圆心,以大于AC的长为半径作弧,两弧相交于M、N 两点;作直线MN分别交BC、AC于点D、E.若AE=6cm,△ABD的周长为26cm,则△ABC 的周长为( )A.32cm B.38cm C.44cm D.50cm8.小明把一副含45°,30°的直角三角板如图摆放,其中∠C=∠F=90°,∠A=45°,∠D=30°,则∠α+∠β等于( )A.280°B.285°C.290°D.295°9.如图,等边△ABC中,AD为BC边上的高,点M、N分别在AD、AC上,且AM=CN,连BM、BN,当BM+BN最小时,∠MBN的度数为( )A.15°B.22.5°C.30°D.47.5°10.如图,在△ABC中,∠ABC和∠ACB的平分线相交于点O,过O点作EF∥BC交AB于点E,交AC于点F,过点O作OD⊥AC于D,下列四个结论:①EF=BE+CF;②∠BOC=90°+∠A;③点O到△ABC各边的距离相等;④设OD=m,AE+AF=n,则S△AEF=mn,正确的结论有( )个.A.1B.2C.3D.4二.填空题(共6小题,每题3分,共18分)11.已知点P(﹣a+3b,3)与点Q(﹣5,a﹣2b)关于x轴对称,则a= b = .12.正n边形的每个内角都是120°,这个正n边形的对角线条数为 条.13.如图,在平面直角坐标系中,已知点A(0,3),点B(9,0),且∠ACB=90°,CA=CB,则点C的坐标为 .14.如图,△ABC中,∠A=60°,将△ABC沿DE翻折后,点A落在BC边上的A′处,如果∠A′EC=70°,那么∠ADE= 度.15.如图所示,∠BOC=10°,点A在OB上,且OA=1,按下列要求画图:以点A为圆心、1为半径向右画弧交OC于点A1得到第1条线段AA1;再以点A1为圆心、1为半径向右画弧交OB于点A2,得到第2条线段A1A2;再以点A2为圆心、1为半径向右画弧交OC于点A3,得到第3条线段A2A3…这样画下去,则∠A6A7C的度数为 .16.如图,△ABC中,∠C=90°,AD平分∠BAC,E为AC边上的点,连接DE,DE=DB,下列结论:①∠DEA+∠B=180°;②AB﹣AC=CE;③AC=(AB+CD);④S△ADC=S四边形ABDE,其中一定正确的结论有 (填写序号即可).三.解答题(共8小题,共72分)17.(本题6分)如图,在△ABC中,D是BC的中点,DE⊥AB,DF⊥AC,垂足分别是E、F,且BE=CF.求证:AB=AC.18.(本题6分)如图,BP是△ABC中∠ABC的平分线,CP是∠ACB的外角的平分线,求证:∠A =2∠P.19.(本题8分)如图,在正方形网格上的一个△ABC,且每个小正方形的边长为1(其中点A,B,C 均在网格上).(1)画出△ABC关于直线MN对称的△A1B1C1;(2)直接写出△ABC的面积为 ;(3)在直线MN上画出点P,使得PA+PC最小(保留作图痕迹).20.(本题8分)使用直尺与圆规完成下面作图,(不写作法,保留作图痕迹)(1)在AB上找一点P使得P到AC和BC的距离相等;(2)在射线CP上找一点Q,使得QB=QC;(3)若BC=16,则点Q到边AC的距离为 .21.(本题10分)如图,在四边形ABDE中,C是BD边的中点.若AC平分∠BAE,∠ACE=90°,猜想线段AE、AB、DE的长度满足的数量关系为并证明.22.(本题10分)如图,在△ABC中,AC=BC,∠ACB=120°,CD是BC边上的中线,BD的垂直平分线EF交BC于点E,交AB于点F,∠CDG=15°.(1)求证:AG=BD;(2)判断△CDE的形状,并加以证明;(3)若EF=1,求AC边的长.23.(本题12分)对于平面直角坐标系xOy中的线段MN及点Q,给出如下定义:若点Q满足QM=QN,则称点Q为线段MN的“中垂点”;当QM=QN=MN时,称点Q为线段MN的“完美中垂点”.(1)如图1,A(4,0),下列各点中,线段OA的中垂点是 .Q1(1,4),Q2(4,),Q3(2,﹣2)(2)如图2,点A为x轴上一点,若Q(1,)为线段OA的“完美中垂点”,∠QOA=60°写出线段OQ的两个“完美中垂点”是 和 .(3)如图3,若点A为x轴正半轴上一点,点Q为线段OA的“完美中垂点”,点P(0,m)在y轴负半轴上,在线段PA上方画出线段AP的“完美中垂点”M,直接写出MQ= .(用含m的式子表示).并求出∠MQA.24.(本题12分)0在平面直角坐标系中,已知A(a,0),B(0,b),AB=AC,且AB⊥AC,AC 交y轴于点E.(1)如图1,若点C的横坐标为﹣a,求证:AE=CE;(2)如图2,若BE平分∠ABC,点E的坐标为(0,b﹣6),求点C的横坐标;(3)如图3,若a=1,以BC为边在BC的左侧作等边△BCM,当∠BOM=60°时,求OC的长.2023年11月-黄埔期中考-八年级数学卷参考答案与试题解析一.选择题(共10小题)1.下面各图形不是轴对称图形的是( )A.圆B.长方形C.等腰梯形D.平行四边形【解答】解:圆、长方形和等腰三角形都能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以是轴对称图形,平行四边形不能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以不是轴对称图形,故选:D.2.如图,有A、B、C三个居民小区,现决定在三个小区之间修建一个购物超市,使超市到三个小区的距离相等,则超市应建在( )A.∠A、∠B两内角的平分线的交点处B.AC、AB两边高线的交点处C.AC、AB两边中线的交点处D.AC、AB两边垂直平分线的交点处【解答】解:根据线段垂直平分线上的点到线段两个端点的距离相等,超市应建在AC、AB两边垂直平分线的交点处,故选:D.3.如图,要测量池塘两岸相对的两点A、B的距离,可以在池塘外取AB的垂线BF上的两点C、D,使得BC=CD,再画出BF的垂线DE,使点E与点A、C在一条直线上,这是测得线段DE 的长就是线段AB的长,其原理运用到三角形全等的判定是( )A.ASA B.SSS C.HL D.SAS【解答】解:因为证明在△ABC≌△EDC用到的条件是:CD=BC,∠ABC=∠EDC,∠ACB=∠ECD,所以用到的是两角及这两角的夹边对应相等即ASA这一方法.故选:A.4.如图,在△ABC中,AC的垂直平分线交AB于点D,CD平分∠ACB,若∠A=50°,则∠B的度数为( )A.25°B.30°C.35°D.40°【解答】解:∵DE垂直平分AC,∴AD=CD,∴∠A=∠ACD又∵CD平分∠ACB,∴∠ACB=2∠ACD=100°,∴∠B=180°﹣∠A﹣∠ACB=180°﹣50°﹣100°=30°,故选:B.5.设等腰三角形的一边长为5,另一边长为10,则其周长为( )A.15B.20C.25D.20或25【解答】解:分两种情况:当腰为5时,5+5=10,所以不能构成三角形;当腰为10时,5+10>10,所以能构成三角形,周长是:10+10+5=25.故选:C.6.如图,△ABC≌△DEC,点E在线段AB上,∠B=75°,则∠ACD的度数为( )A.20°B.25°C.30°D.40°【解答】解:∵△ABC≌△DEC,∴∠ACB=∠DCE,BC=EC,∴∠ACB﹣∠ACE=∠DCE﹣∠ACE,即∠BCE=∠ACD,∠BEC=∠B=75°,∴∠BCE=180°﹣∠B﹣∠BEC=30°,∴∠ACD=30°.故选:C.7.如图,在△ABC中,分别以点A和点C为圆心,以大于AC的长为半径作弧,两弧相交于M、N 两点;作直线MN分别交BC、AC于点D、E.若AE=6cm,△ABD的周长为26cm,则△ABC 的周长为( )A.32cm B.38cm C.44cm D.50cm【解答】解:∵DE垂直平分线段AC,∴DA=DC,AE+EC=12(cm),∵AB+AD+BD=26(cm),∴AB+BD+DC=26(cm,∴△ABC的周长=AB+BD+BC+AC=26+12=38(cm),故选:B.8.小明把一副含45°,30°的直角三角板如图摆放,其中∠C=∠F=90°,∠A=45°,∠D=30°,则∠α+∠β等于( )A.280°B.285°C.290°D.295°【解答】解:∵∠C=∠F=90°,∠A=45°,∠D=30°,∴∠2+∠3=180°﹣∠D=150°,∵∠α=∠1+∠A,∠β=∠4+∠C,∵∠1=∠2,∠3=∠4,∴∠α+∠β=∠A+∠1+∠4+∠C=∠A+∠C+∠2+∠3=45°+90°+150°=285°,故选:B.9.如图,等边△ABC中,AD为BC边上的高,点M、N分别在AD、AC上,且AM=CN,连BM、BN,当BM+BN最小时,∠MBN的度数为( )A.15°B.22.5°C.30°D.47.5°【解答】解:如图1中,作CH⊥BC,使得CH=BC,连接NH,BH.∵△ABC是等边三角形,AD⊥BC,CH⊥BC,∴∠DAC=∠DAB=30°,AD∥CH,∴∠HCN=∠CAD=∠BAM=30°,∵AM=CN,AB=BC=CH,∴△ABM≌△CHN(SAS),∴BM=HN,∵BN+HN≥BH,∴B,N,H共线时,BM+BN=NH+BN的值最小,如图2中,当B,N,H共线时,∵△ABM≌△CHN,∴∠ABM=∠CHB=∠CBH=45°,∵∠ABD=60°,∴∠DBM=15°,∴∠MBN=45°﹣15°=30°,∴当BM+BN的值最小时,∠MBN=30°,故选:C.10.如图,在△ABC中,∠ABC和∠ACB的平分线相交于点O,过O点作EF∥BC交AB于点E,交AC于点F,过点O作OD⊥AC于D,下列四个结论:①EF=BE+CF;②∠BOC=90°+∠A;③点O到△ABC各边的距离相等;④设OD=m,AE+AF=n,则S△AEF=mn,正确的结论有( )个.A.1B.2C.3D.4【解答】解:∵在△ABC中,∠ABC和∠ACB的平分线相交于点O,∴∠OBC=∠ABC,∠OCB=∠ACB,∠A+∠ABC+∠ACB=180°,∴∠OBC+∠OCB=90°﹣∠A,∴∠BOC=180°﹣(∠OBC+∠OCB)=90°+∠A;故②正确;∵在△ABC中,∠ABC和∠ACB的平分线相交于点O,∴∠OBC=∠OBE,∠OCB=∠OCF,∵EF∥BC,∴∠OBC=∠EOB,∠OCB=∠FOC,∴∠EOB=∠OBE,∠FOC=∠OCF,∴BE=OE,CF=OF,∴EF=OE+OF=BE+CF,故①正确;过点O作OM⊥AB于M,作ON⊥BC于N,连接OA,∵在△ABC中,∠ABC和∠ACB的平分线相交于点O,∴ON=OD=OM=m,∴S△AEF=S△AOE+S△AOF=AE•OM+AF•OD=OD•(AE+AF)=mn;故④正确;∵在△ABC中,∠ABC和∠ACB的平分线相交于点O,∴点O到△ABC各边的距离相等,故③正确.故选:D.二.填空题(共6小题)11.已知点P(﹣a+3b,3)与点Q(﹣5,a﹣2b)关于x轴对称,则a= ﹣19 b= ﹣8 .【解答】解:∵点P(﹣a+3b,3)与点Q(﹣5,a﹣2b)关于x轴对称,∴,解得.故答案为:﹣19,﹣8.12.正n边形的每个内角都是120°,这个正n边形的对角线条数为 9 条.【解答】解:由多边形内角和公式列方程,180°(n﹣2)=120°n解得,n=6.∴该正多边形为正六边形.所以该六边形对角线条数==9(条).故答案为9.13.如图,在平面直角坐标系中,已知点A(0,3),点B(9,0),且∠ACB=90°,CA=CB,则点C的坐标为 (6,6)或(3,﹣3) .【解答】解:如图,当点C在第一象限时,过点C作CE⊥OA,CF⊥OB,∵∠AOB=90°,∴四边形OECF是矩形,∴∠ECF=90°,∵∠ACB=90°,∴∠ACE=∠BCF,在△ACE和△BCF中,,∴△ACE≌△BCF(AAS),∴CE=CF,∵四边形OECF是矩形,∴矩形OECF是正方形,∴OE=OF,∵AE=OE﹣OA=OE﹣3,BF=OB﹣OF=9﹣OF,∴OE=OF=6,∴C(6,6),当点C在第四象限时,过点C'作C'H⊥OA,CG⊥OB,同理得,C'(3,﹣3)故答案为:(6,6)或(3,﹣3).14.如图,△ABC中,∠A=60°,将△ABC沿DE翻折后,点A落在BC边上的A′处,如果∠A′EC=70°,那么∠ADE= 65 度.【解答】解:∵∠A′EC=70°,∴∠AEA′=180°﹣∠A′EC=180°﹣70°=110°,由折叠性质可得:∠A′ED=∠AED=∠AEA′=55°,∵∠A=60°,∴∠ADE=180°﹣∠AED﹣∠A=180°﹣55°﹣60°=65°.故答案为:65.15.如图所示,∠BOC=10°,点A在OB上,且OA=1,按下列要求画图:以点A为圆心、1为半径向右画弧交OC于点A1得到第1条线段AA1;再以点A1为圆心、1为半径向右画弧交OB于点A2,得到第2条线段A1A2;再以点A2为圆心、1为半径向右画弧交OC于点A3,得到第3条线段A2A3…这样画下去,则∠A6A7C的度数为 110° .【解答】解:∵AO=A1A,A1A=A2A1,…;则∠AOA1=∠OA1A,∠A1AA2=∠A1A2A,…;∵∠BOC=10°,∴∠A1AB=2∠BOC=20°同理可得∠A2A1C=30°,∠A3A2B=40°,∠A4A3C=50°,∠A5A4B=60°,∠A6A5C=70°,∠A7A6B=80°,∴∠A6A7O=∠A7A6B﹣∠BOC=70°∴∠A6A7C=180°﹣∠A6A7O=110°,故答案为:110°.16.如图,△ABC中,∠C=90°,AD平分∠BAC,E为AC边上的点,连接DE,DE=DB,下列结论:①∠DEA+∠B=180°;②AB﹣AC=CE;③AC=(AB+CD);④S△ADC=S四边形ABDE,其中一定正确的结论有 ①②④ (填写序号即可).【解答】解:如图,过D作DF⊥AB于F,∵∠C=90°,AD是角平分线,∴DC=DF,∠C=∠DFB,又∵DE=DB,∴Rt△CDE≌Rt△FDB(HL),∴∠B=∠CED,∠CDE=∠FDB,CE=BF,又∵∠DEA+∠DEC=180°,∴∠DEA+∠B=180°,故①正确;∵AD=AD,DC=DF,∴Rt△CDA≌Rt△FDA(HL),∴AC=AF,∴AB﹣AC=AB﹣AF=BF=CE,故②正确;∵AC=AF,∴AB+AE=(AF+FB)+(AC﹣CE)=AF+AC=2AC,∴AC=(AB+AE),∵CD≠AE,∴AC≠(AB+CD),故③错误;∵Rt△CDE≌Rt△FDB,∴S△CDE=S△FDB,∴S四边形ABDE=S四边形ACDF,又∵△ACD≌△AFD,∴S△ACD=S△ADF,∴S△ADC=S四边形ACDF=S四边形ABDE,故④正确;∴一定正确的结论有①②④.故答案为:①②④.三.解答题(共8小题)17.如图,在△ABC中,D是BC的中点,DE⊥AB,DF⊥AC,垂足分别是E、F,且BE=CF.求证:AB=AC.【解答】证明:∵D是BC的中点,∴BD=CD,∵DE⊥AB,DF⊥AC,∴△BED和△CFD都是直角三角形,在△BED和△CFD中,,∴△BED≌△CFD(HL),∴∠B=∠C,∴AB=AC(等角对等边).18.如图,BP是△ABC中∠ABC的平分线,CP是∠ACB的外角的平分线,求证:∠A=2∠P.【解答】证明:∵BP是△ABC中∠ABC的平分线,CP是∠ACB的外角的平分线,∴∠PBC=∠ABC,∠PCM=∠ACM,∵∠ACM是△ABC的外角,∠PCM是△PBC的外角,∴∠PCM=∠P+∠PBC,∠ACM=∠A+∠ABC,∴∠ACM=∠P+∠ABC,∴(∠A+∠ABC)=∠P+∠ABC,∠A+∠ABC=∠P+∠ABC,∠A=∠P,∴∠A=2∠P.19.如图,在正方形网格上的一个△ABC,且每个小正方形的边长为1(其中点A,B,C均在网格上).(1)画出△ABC关于直线MN对称的△A1B1C1;(2)直接写出△ABC的面积为 5.5 ;(3)在直线MN上画出点P,使得PA+PC最小(保留作图痕迹).【解答】解:(1)如图,△A1B1C1即为所求;故答案为:5.5;(3)如图,点P即为所求.20.使用直尺与圆规完成下面作图,(不写作法,保留作图痕迹)(1)在AB上找一点P使得P到AC和BC的距离相等;(2)在射线CP上找一点Q,使得QB=QC;(3)若BC=16,则点Q到边AC的距离为 8 .【解答】解:(1)如图所示,点P即为所求;(2)如图所示,点Q即为所求;(3)如图所示,设线段BC的垂直平分线交BC于点D,∴∠QDB=90°=∠ACB,,∴AC∥QD,∴点Q到AC的距离为CD的长,即为8(平行线间间距相等),故答案为:8.21.如图,在四边形ABDE中,C是BD边的中点.若AC平分∠BAE,∠ACE=90°,猜想线段AE、AB、DE的长度满足的数量关系为并证明.【解答】解:AE=AB+DE;理由:在AE上取一点F,使AF=AB.∵AC平分∠BAE,∴∠BAC=∠FAC.在△ACB和△ACF中,,∴△ACB≌△ACF(SAS),∴BC=FC,∠ACB=∠ACF.∵C是BD边的中点.∴BC=CD,∴CF=CD.∵∠ACE=90°,∴∠ACB+∠DCE=90°,∠ACF+∠ECF=90°∴∠ECF=∠ECD.在△CEF和△CED中,,∴△CEF≌△CED(SAS),∴EF=ED.∵AE=AF+EF,∴AE=AB+DE.22.如图,在△ABC中,AC=BC,∠ACB=120°,CD是BC边上的中线,BD的垂直平分线EF 交BC于点E,交AB于点F,∠CDG=15°.(1)求证:AG=BD;(2)判断△CDE的形状,并加以证明;(3)若EF=1,求AC边的长.【解答】证明:∵AC=BC,∠ACB=120°,CD是BC边上的中线,∴CD⊥AB,∠A=∠B=(180°﹣∠ACB)=30°,AD=BD,∴∠ADC=∠CDB=90°,∵∠CDG=15°,∴∠ADG=90°﹣∠CDG=75°,∴∠AGD=180°﹣∠A﹣∠ADG=75°,∴∠AGD=∠ADG,∴AG=AD,∴AG=BD;(2)结论:△CDE是等边三角形.∵EF垂直平分线段BD,∴DE=EB,∵∠B=30°,∴∠EDB=∠B=30°,∴∠CDE=90°﹣∠EDB=60°,又∵AC=BC,∠ACB=120°,CD是BC边上的中线,∴∠DCB=∠ACB=60°,∴∠DCE=∠CDE=60°,∴△CDE是等边三角形;(3)∵EF⊥DB,∠B=30°,EF=1,∴BE=2EF=2,∴DE=2,∵△CDE是等边三角形,∴CE=DE=2,∴BC=4,∴AC=BC=4.23.对于平面直角坐标系xOy中的线段MN及点Q,给出如下定义:若点Q满足QM=QN,则称点Q为线段MN的“中垂点”;当QM=QN=MN时,称点Q为线段MN的“完美中垂点”.(1)如图1,A(4,0),下列各点中,线段OA的中垂点是 Q3(2,﹣2) .Q1(1,4),Q2(4,),Q3(2,﹣2)(2)如图2,点A为x轴上一点,若Q(1,)为线段OA的“完美中垂点”,∠QOA=60°写出线段OQ的两个“完美中垂点”是 (2,0) 和 (﹣1,) .(3)如图3,若点A为x轴正半轴上一点,点Q为线段OA的“完美中垂点”,点P(0,m)在y轴负半轴上,在线段PA上方画出线段AP的“完美中垂点”M,直接写出MQ= ﹣m .(用含m的式子表示).并求出∠MQA.【解答】解:(1)∵A(4,0),∴线段OA的垂直平分线为直线x=2,∵Q是线段OA的中垂点,∴点Q在线段OA的垂直平分线上,即点Q在直线x=2上,∴点Q的横坐标为2,∴只有Q2(2,﹣2)是线段OA的中垂点,故答案为:Q3(2,﹣2);(2)∵,∴,∵Q为线段OA的“完美中垂点”,∴OA=QA=OQ=2,即A(2,0)为线段OQ的一个“完美中垂点”,设线段OQ的另外一个“完美中垂点”为L,如图所示,∴OL=QL=OA=QA=OQ=2,∴△LOQ和AOQ都是等边三角形,∴∠LQO=∠AOQ=60°,∴LQ∥OA,∴.故答案为:(2,0),(﹣1,);(3)如图,分别以A、P为圆心,以AP的长为半径画弧,二者的交点在线段PA上方即为M;∵M是AP的“完美中垂点”,点Q为线段OA的“完美中垂点”∴PA=PM=AM,OQ=QA=OA,∴△OQA和△AMP都为等边三角形,∴∠OAQ=∠PAM,AQ=AO,PA=MA,∴∠OAP=∠QAM,∴△OAP≌△QAM(SAS),∵P(O,m).∴MQ=0P=﹣m,∠MQA=∠POA=90°.24.在平面直角坐标系中,已知A(a,0),B(0,b),AB=AC,且AB⊥AC,AC交y轴于点E.(1)如图1,若点C的横坐标为﹣a,求证:AE=CE;(2)如图2,若BE平分∠ABC,点E的坐标为(0,b﹣6),求点C的横坐标;(3)如图3,若a=1,以BC为边在BC的左侧作等边△BCM,当∠BOM=60°时,求OC的长.【解答】(1)证明:如图1中,过点C作CH⊥x轴于点H,连接HE.∵∠AHC=∠BOA=∠BAC=90°,∴∠CAH+∠BAO=90°,∠BAO+∠ABO=90°,∴∠CAH=∠∠ABO,在△AHC和△BOA中,,∴△AHC≌△BOA(AAS),∴CH=OA,∵A(a,0),点C的横坐标为﹣a,∴OA=OH,∵OE⊥AH,∴EH=EA,∴∠EAH=∠EHA,∵∠EAH+∠ACH=90°,∠AHE+∠CHE=90°,∴∠ECH=∠EHC,∴EH=EC,∴AE=EC;(2)解:如图2中,过点C作CH⊥x轴于点H,设BC交AH于点J.∵BE平分∠ABC,∴∠ABO=∠JBO,∵∠ABO+∠BAO=90°,∠JBO+∠BJO=90°,∴∠BAO=∠BJO,∴BJ=BA,∵OB⊥AJ,∴OJ=OA=a,∵CH∥OB,∴∠HCJ=∠JBO,∵∠CAH=∠ABO,∴∠HCJ=∠OAE,∵△AHC≌△BOA,∴CH=AO,在△CHJ和△AOE中,,∴△CHJ≌△AOE(ASA),∴OE=JH,AH=OB=b.∵E(0,b﹣6),∴HJ=OE=6﹣b,∵OA=OJ=a,∴OH=a+6﹣b,∴AH=a+6﹣b+a=b,∴a﹣b=3,OH=3∴点C的横坐标为﹣3;(3)解:如图3中,过点C作CJ⊥x轴于点J,在OM上取一点H,使得OH=OB.∵A(1,0),∴OA=1,∵OH=OB,∠BOH=60°,∴△OBH是等边三角形,∴BO=BH,∠OHB=60°,∴∠BHM=120°,∵△BCM是等边三角形,∴BC=BM,∠CBM=∠OBH=60°,∴∠MBH=∠CBO,在△MBH和△CBO中,,∴△MBH≌△CBO(SAS),∴∠BHM=∠BOC=120°,∴∠COJ=120°﹣90°=30°,∵CJ⊥AJ,同法可证△AJC≌△BOA,∴CJ=OA=1,∴OC=2CJ=2.。

八年级上册数学期中复习试题大全

八年级上册数学期中复习试题大全数学是人类对事物的抽象结构与模式进行严格描述的一种通用手段,可以应用于现实世界的任何问题,所有的数学对象本质上都是人为定义的。

下面是为大家整理的关于八年级上册数学期中复习试题,希望对您有所帮助!八年级数学期中复习试卷一.选择题1.如图所示,图中不是轴对称图形的是( )2、下列图形:①三角形,②线段,③正方形,④直角.其中是轴对称图形的个数是( )A.4个B.3个C.2个D.1个3、下列图形是轴对称图形的有( )A:1个 B:2个 C:3个 D:4个4.如图,△ABC中,AB=AC,∠A=36°,AB的垂直平分线DE交AC于D,交AB于E,则∠BDC的度数为( )A.72°B.36°C.60°D.82°5.已知A,B两点的坐标分别是(-2,3)和(2,3),则下面四个结论:①A,B关于x轴对称;②A,B关于y轴对称;③A,B关于原点对称;④A,B之间的距离为4,其中正确的有( )A.1个B.2个C.3个D.4个5.如图,在△ABC中,AB=AC,∠A=40°,CD⊥AB于D,则∠DCB等于( )A.70°B.50°C.40°D.20°6.AD是△ABC的角平分线且交BC于D,过点D作DE⊥AB于E,DF⊥AC于F•,则下列结论不一定正确的是( ) A.DE=DF B.BD=CD C.AE=AF D.∠ADE=∠ADF7.三角形中,到三边距离相等的点是( )A.三条高线的交点B.三条中线的交点C.三条角平分线的交点D.三边垂直平分线的交点。

8.如图,∠E=∠F=90°,∠B=∠C,AE=AF,则下列结论:①∠1=∠2;②BE=CF; ③CD=DN;④△ACN≌△ABM,其中正确的有( )A.1个B.2个C.3个D.4个9.等腰三角形ABC在直角坐标系中,底边的两端点坐标是(-2,0),(6,0),则其顶点的坐标能确定的是( )A.横坐标B.纵坐标C.横坐标及纵坐标D.横坐标或纵坐标10.如图,已知MB=ND,∠MBA=∠NDC,下列条件中不能判定△ABM≌△CDN的是( )A.∠M=∠N B. AM‖CN C.AB=CD D. AM=CN11.若△ABC≌△DEF,∠A=80°,∠B=40°,那么∠F的度数是( )A.80° B:40° C:60° D:120°12.如图:OC平分∠AOB,CD⊥OA于D,CE⊥OB于E,CD=3㎝,则CE的长度为( )A.2㎝ B.3㎝ C.4㎝ D.5㎝13.点M(—1,2)关于y轴对称的点的坐标为( )A.(-1,-2)B.(1,2)C.(1,-2)D.(2,-1)14.等腰三角形的一边长是6,另一边长是12,则周长为( )A.24B.30C.24或30D.1815.如图:DE是 ABC中AC边的垂直平分线,若BC=8厘米,AB=10厘米,则 EBC的周长为( )厘米 A.16 B.18 C.26 D.2816.下列关于等边三角形的说法正确的有( )①等边三角形的三个角相等,并且每一个角都是60°;②三边相等的三角形是等边三角形;③三角相等的三角形是等边三角形;④有一个角是60°的等腰三角形是等边三角形。

人教版八年级数学上学期期中考试复习测试题(含答案)

人教版八年级数学上学期期中考试复习测试题(含答案)一、选择题(本大题共 8 小题,每小题 3 分,共 24 分)1.在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是()A. B. C. D.2.下列四组线段中,可以构成直角三角形的是()A.4,5,6 B.2,3,4 C.5,12,13 D.6,7,83.到△ABC的三边距离相等的点是△ABC的()A.三边中线的交点 B.三条角平分线的交点 C.三边上高的交点 D.三边垂直平分线的交点4.如图,一棵大树在一次强台风中于离地面10m处折断倒下,倒下部分的树梢到树的距离为24m,则这棵大树折断处到树顶的长度是()A.10m B.15m C.26m D.30m5.如图,△ABC中,EF是AB的垂直平分线,与AB交于点D,BF=6,CF=2,则AC的长度为()A.6 B.7 C.8 D.9(第4题)(第5题)(第6题)(第7题)6.如图,已知∠ABC=∠DCB,AC、BD交于点E,添加以下条件,不能判定△ABC≌△DCB的是()A.AB=DC B.BE=CE C.AC=DB D.∠A=∠D7.如图,在△ABC中,∠ACB=90°,∠B=30°,AD平分∠BAC,E是AD中点,若BD=9,则CE的长为()A.3 B.3.5 C.4 D.4.58.在如图所示的3×3网格中,△ABC是格点三角形(即顶点恰好是网格线的交点),则与△ABC有一条公共边且全等(不含△ABC)的所有格点三角形的个数是()A.4个B.3个C.2个D.1个二、填空题(本大题共 10 小题,每小题 3 分,共 30 分)9.已知图中的两个三角形全等,则∠α的度数是°.10.如图,已知△ABC≌△ADE,若AB=7,AC=3,则BE的值为.(第9题)(第10题)(第13题)(第14题)11.已知一个等腰三角形的两边分别为5和10,则它的周长为.12.若一直角三角形两直角边长分别为6和8,则斜边长为.13.如图,在△ABC中,AB=AC,D为BC中点,∠BAD=35°,则∠B的度数为°. 14.如图,直线m∥n,以直线m上的点A为圆心,适当长为半径画弧,分别交直线m、n于点B,C,连接AB,BC.若∠1=40°,则∠ABC=°.15.如图,以直角△ABC的三边向外作正方形,其面积分别为S1,S2,S3,且S1=4,S2=8,则S3= .(第15题)(第16题)(第17题)(第18题)16.如图,在△ABC中,ED∥BC,∠ABC和∠ACB的平分线分别交ED于点G、F,若BE=3,CD=4,ED=5,则FG的长为.17.如图,AD是△ABC的角平分线,DE⊥AB,垂足为E,S△ABC=7,DE=2,AB=4,则AC长是.18.如图,在△ABC中,OA=4,OB=3,C点与A点关于直线OB对称,动点P、Q分别在线段AC、AB上(点P不与点A、C重合),满足∠BPQ=∠BAO.当△PQB为等腰三角形时,OP的长度是.三、解答题(本大题共 10 小题,共 96 分)19.(8分)如图,已知点B、E、C、F在一条直线上,且AB=DF,BE=CF,∠B=∠F.求证:△ABC≌△DFE.20.(8分)如图,△ABC中,DE,FG分别为AB、AC的垂直平分线,E、G分别为垂足,若△DAF的周长为16,求BC的长.21. (8分)如图,在8×8的正方形网格中,每个小正方形的边长都是1,已知△ABC的三个顶点均在格点上.(1)画出△ABC关于直线l对称的△A1B1C1;(2)在直线l上找一点P,使PA+PB的长最短;(3)△A1B1C1的面积为________.22.(8分)如图,在△ABC中,AB=AC,D是BC的中点,DE⊥AB于点E,DF⊥AC于点F.(1)求证:DE=DF;(2)如果S△A BC=14,AC=7,求DE的长.23.(10分)如图,在笔直的公路AB旁有一座山,为方便运输货物现要从公路AB上的D处开凿隧道修通一条公路到C处,已知点C与公路上的停靠站A的距离为15km,与公路上另一停靠站B的距离为20km,停靠站A、B之间的距离为25km,且CD⊥AB.(1)求修建的公路CD的长;(2)若公路CD修通后,一辆货车从C处经过D点到B处的路程是多少?24.(10分)如图,△ABC中,D是BC延长线上一点,满足CD=AB,过点C作CE∥AB且CE=BC,连接DE并延长,分别交AC、AB于点F、G.(1)求证:△ABC≌△DCE;(2)若∠B=50°,∠D=22°,求∠AFG的度数.25. (10分)如图,在四边形ABCD中,∠BAD=∠BCD=90°,点E、F分别是BD和AC的中点,连接EF.(1)求证:EF⊥AC;(2)若BD=26,EF=5,求AC的长.26.(10分)如图,在等腰△ABC中,AB=AC,BC=5.点D为AC上一点,且BD=4,CD=3.(1)求证:BD⊥AC;(2)求AB的长.27. (12分)在△ABC中,∠ACB=90°,AC=BC,D是直线AB上一点(点D不与点A、B重合),连接DC并延长到E,使得CE=CD,过点E作EF⊥直线BC,交直线BC 于点F.(1)如图1,当点D为线段AB的上任意一点时,用等式表示线段EF、CF、AC的数量关系,并说明理由;(2)如图2,当点D为线段BA的延长线上一点时,依题意补全图2;(3)在(2)的条件下猜想线段EF、CF、AC的数量关系是否发生改变,若不变,请说明理由;若改变,写出它们的数量关系,并加以证明.28. (12分)如图,在等边△ABC中,AB=9cm,点P从点C出发沿CB边向点B点以2cm/s的速度移动,点Q从B点出发沿BA边向A点以5cm/s速度移动.P、Q两点同时出发,它们移动的时间为t秒钟.(1)请用t的代数式表示BP和BQ的长度:BP=,BQ=.(2)若点Q在到达点A后继续沿三角形的边长向点C移动,同时点P也在继续移动,请问在点Q从点A到点C的运动过程中,t为何值时,直线PQ把△ABC的周长分成4:5两部分?(3)若P、Q两点都按顺时针方向沿△ABC三边运动,请问在它们第一次相遇前,t为何值时,点P、Q能与△ABC的一个顶点构成等边三角形?直接写出答案。

【人教版】数学八年级上学期《期中检测试卷》带答案

A. 38°B. 48°C. 62°D. 70°
【答案】D
【解析】
【分析】
运用△ABC≌△ECD求出∠ACB=∠D=62°,再运用三角形内角和定理求出∠B即可.
【详解】∵△ABC≌△ECD,∠A=48°,∠D=62°,∴∠ACB=∠D=62°,∴∠B=180°-∠ACB-∠A=180°-62°-48°=70°.
10.若△ABC≌△A1B1C1,且∠A=100°,∠B=50°,则∠C1=_______.
【答案】30°
【解析】
【分析】
根据三角形的内角和等于180°求出∠C,再根据全等三角形对应角相等解答即可.
【详解】∵∠A=100°,∠B=50°,∴∠C=180°﹣∠A﹣∠B=180°﹣100°﹣50°=30°.
14.Rt△ABC两直角边的长分别为6cm和8cm,则斜边上的中线长为______
15.在△ABC中,若三条边的长度分别为3、4、5,则这个三角形的面积是______
16.如图,将一根长24厘米的筷子,置于底面直径为6厘米,高为8厘米的圆柱形水杯中,则筷子露在杯子外面的长度至少为_____厘米.
17.在等腰三角形中,马虎同学做了如下探究:已知一个角是60°,则另两个角是唯一确定的(60°,60°);已知一个角是90°,则另两个角也是唯一确定的(45°,45°);已知一个角是120°则另两个角也是唯一确定的(30°,30°).由此马虎同学得出结论:在等腰三角形中,已知一个角的度数,则另两个角的度数是唯一确定的,马虎同学的结论是_______的.(填”正确”或”错误”)
A.38°B.48°C.62°D.70°
5.下列轴对称图形中,对称轴条数最多的是()
A.线段B.角C.等腰三角形D.等边三角形
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档