【精选】七年级一元一次方程专题练习(解析版)

合集下载

【精选】七年级上册一元一次方程单元测试卷(解析版)

【精选】七年级上册一元一次方程单元测试卷(解析版)

一、初一数学一元一次方程解答题压轴题精选(难)1.如图1,已知,在内,在内,.(1)从图1中的位置绕点逆时针旋转到与重合时,如图2,________ ;(2)若图1中的平分,则从图1中的位置绕点逆时针旋转到与重合时,旋转了多少度?(3)从图2中的位置绕点逆时针旋转,试问:在旋转过程中的度数是否改变?若不改变,请求出它的度数;若改变,请说明理由.【答案】(1)100(2)解:∵平分,∴,设,则,,由,得:,解得:,∴从图1中的位置绕点逆时针旋转到与重合时,旋转了12度;(3)解:不改变①当时,如图,,,∵,,∴;② 时,如图,此时,与重合,此时,;③当时,如图,,,;综上,在旋转过程中,的度数不改变,始终等于【解析】【解答】(1)解:由题意:∠EOF= ∠AOB+ ∠COD=80°+20°=100°【分析】(1)根据∠EOF=∠BOE+∠BOF计算即可;(2)设,得,,再根据列方程求解即可;(3)分三种情形分别计算即可;2.某县外出的农民工准备集体包车回家过春节,如果单独租用45座客车若干辆,刚好坐满;如果单独租用60座客车,可少租1辆,且余15个座位.(1)求准备包车回家过春节的农民工人数;(2)已知租用45座客车的租金为每辆车5000元,60座客车的租金为每辆车6000元,问租用哪种客车更合算?请说明理由.【答案】(1)解:设需单独租45座客车x辆,依题意得45x=60(x-1)-15解这个方程,得 x=5则45x=45×5=225答:准备回家过春节的农民工有225人(2)解:由(1)知,需租5辆45座客车或4辆60座客车;而租5辆45座客车的费用为 5×5000=25000(元),租4辆60座客车的费用为4×6000=24000(元).故,租4辆60座客车更合算【解析】【分析】(1)设需单独租45座客车x辆,根据单独租用45座客车若干辆,刚好坐满;如果单独租用60座客车,可少租1辆,且余15个座位列出方程解出答案即可;(2)根据(1)知,需租5辆45座客车或4辆60座客车和租用45座客车的租金为每辆车5000元,60座客车的租金为每辆车6000元,求出答案即可。

七年级数学(上)第4章《一元一次方程》单元练习(含解析)

七年级数学(上)第4章《一元一次方程》单元练习(含解析)

七年级数学(上)第4章《一元一次方程》单元练习一.选择题(共10小题)1.(2019•襄阳)《九章算术》是我国古代数学名著,卷七“盈不足”中有题译文如下:今有人合伙买羊,每人出5钱,会差45钱;每人出7钱,会差3钱.问合伙人数、羊价各是多少?设合伙人数为x人,所列方程正确的是()A.5x﹣45=7x﹣3 B.5x+45=7x+3 C.=D.=2.(2019•福建)《增删算法统宗》记载:“有个学生资性好,一部孟子三日了,每日增添一倍多,问君每日读多少?”其大意是:有个学生天资聪慧,三天读完一部《孟子》,每天阅读的字数是前一天的两倍,问他每天各读多少个字?已知《孟子》一书共有34685个字,设他第一天读x个字,则下面所列方程正确的是()A.x+2x+4x=34685 B.x+2x+3x=34685C.x+2x+2x=34685 D.x+x+x=346853.(2019•杭州)已知九年级某班30位学生种树72棵,男生每人种3棵树,女生每人种2棵树,设男生有x人,则()A.2x+3(72﹣x)=30 B.3x+2(72﹣x)=30C.2x+3(30﹣x)=72 D.3x+2(30﹣x)=724.(2019•南充)关于x的一元一次方程2xa﹣2+m=4的解为x=1,则a+m的值为()A.9 B.8 C.5 D.4 5.(2018•广元)已知关于x的一元一次方程2(x﹣1)+3a=3的解为4,则a的值是()A.﹣1 B.1 C.﹣2 D.﹣3 6.(2019•阜新)某种衬衫因换季打折出售,如果按原价的六折出售,那么每件赔本40元;按原价的九折出售,那么每件盈利20元,则这种衬衫的原价是()A.160元B.180元C.200元D.220元7.(2019•荆门)欣欣服装店某天用相同的价格a(a>0)卖出了两件服装,其中一件盈利20%,另一件亏损20%,那么该服装店卖出这两件服装的盈利情况是()A.盈利B.亏损C.不盈不亏D.与售价a有关8.(2018•无锡)蚊香长度y(厘米)与燃烧时间t(小时)之间的函数表达式为y=105﹣10t.则蚊香燃烧的速度是()A.10厘米/小时B.105厘米/小时C.10.5厘米/小时D.不能确定9.(2018•通辽)一商店以每件150元的价格卖出两件不同的商品,其中一件盈利25%,另一件亏损25%,则商店卖这两件商品总的盈亏情况是()A.亏损20元B.盈利30元C.亏损50元D.不盈不亏10.(2018•台州)甲、乙两运动员在长为100m的直道AB(A,B为直道两端点)上进行匀速往返跑训练,两人同时从A点起跑,到达B点后,立即转身跑向A点,到达A点后,又立即转身跑向B点…若甲跑步的速度为5m/s,乙跑步的速度为4m/s,则起跑后100s 内,两人相遇的次数为()A.5 B.4 C.3 D.2二.填空题(共8小题)11.(2019•呼和浩特)关于x的方程mx2m﹣1+(m﹣1)x﹣2=0如果是一元一次方程,则其解为.12.(2019•南通)《九章算术》是中国传统数学最重要的著作之一.书中记载:“今有人共买鸡,人出九,盈十一;人出六,不足十六.问人数几何?”意思是:“有若干人共同出钱买鸡,如果每人出九钱,那么多了十一钱;如果每人出六钱,那么少了十六钱.问:共有几个人?”设共有x个人共同出钱买鸡,根据题意,可列一元一次方程为.13.(2019•济南)代数式与代数式3﹣2x的和为4,则x=.14.(2019•湘西州)若关于x的方程3x﹣kx+2=0的解为2,则k的值为.15.(2019•成都)若m+1与﹣2互为相反数,则m的值为.16.(2019•毕节市)某品牌旗舰店平日将某商品按进价提高40%后标价,在某次电商购物节中,为促销该商品,按标价8折销售,售价为2240元,则这种商品的进价是元.17.(2019•株洲)《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有善行者行一百步,不善行者行六十步.今不善行者先行一百步,善行者追之,问几何步及之?“其意思为:速度快的人走100步,速度慢的人只走60步,现速度慢的人先走100步,速度快的人去追赶,则速度快的人要走步才能追到速度慢的人.18.一辆客车、一辆货车和一辆小轿车在一条笔直的公路上朝同一方向匀速行驶,在某一时刻,客车在前,小轿车在后,货车在客车与小轿车的正中间,过了12分钟,小轿车追上了货车,又过了8分钟,小轿车追上了客车,再过t分钟,货车追上了客车,则t=.三.解答题(共12小题)19.解方程:10﹣4(x﹣3)=2x﹣2.20.解一元一次方程:.21.(2018•镇江)小李读一本名著,星期六读了36页,第二天读了剩余部分的,这两天共读了整本书的,这本名著共有多少页?22.(2018•长春)学校准备添置一批课桌椅,原计划订购60套,每套100元,店方表示:如果多购,可以优惠.结果校方实际订购了72套,每套减价3元,但商店获得了同样多的利润.(1)求每套课桌椅的成本;(2)求商店获得的利润.23.(2019•安徽)为实施乡村振兴战略,解决某山区老百姓出行难的问题,当地政府决定修建一条高速公路.其中一段长为146米的山体隧道贯穿工程由甲乙两个工程队负责施工.甲工程队独立工作2天后,乙工程队加入,两工程队又联合工作了1天,这3天共掘进26米.已知甲工程队每天比乙工程队多掘进2米,按此速度完成这项隧道贯穿工程,甲乙两个工程队还需联合工作多少天?24.某服装厂要生产某种型号的学生校服,已知3m长的某种布料可做上衣2件或者裤子3条.一件上衣和一条裤子为一套,库存这种布料600m.如果用这批布料做上衣和裤子恰好配套,求制作上衣所用的布料的米数.甲同学所列方程为1.5x+x=600,乙同学所列方程为=600﹣y(1)甲同学所列方程中的x表示;乙同学所列方程中的y表示.(2)甲、乙两名同学选用未知数的方法分别是法、法;(3)任选甲、乙两同学的其中一个方法解答这个题目.25.一项工程,甲单独做要10天,乙单独做要15天,丙单独做要20天.三人合做期间,甲因故请假,工程6天完工,请问甲请了几天假?26.如图,在三个小桶中装有数量相同的小球(每个小桶中至少有三个小球),第一次变化:从左边小桶中拿出两个小球放入中间小桶中;第二次变化:从右边小桶中拿出一个小球放入中间小桶中;第三次变化:从中间小桶中拿出一些小球放入右边小桶中,使右边小桶中小球个数是最初的两倍.(1)若每个小桶中原有3个小球,则第一次变化后,中间小桶中小球个数是左边小桶中小球个数的倍;(2)若每个小桶中原有a个小球,则第二次变化后中间小桶中有个小球(用a 表示);(3)求第三次变化后中间小桶中有多少个小球?27.某农产品公司以64000元的成本收购了某种农产品80吨,目前可以1200元/吨的价格直接售出.而该公司对这批农产品有以下两种处理方式可供选择:方式一:公司可将部分农产品直接以1200元/吨的价格售出,剩下的全部加工成半成品出售(加工成本忽略不计),每吨该农产品可以加工得到0.8吨的半成品,每吨半成品的售价为2500元.方式二:公司将该批农产品全部储藏起来,这样每星期会损失2吨,且每星期需支付各种费用1600元,但同时每星期每吨的价格将上涨200元.(1)若该公司选取方式一处理该批农产品,最终获得了75%的利润率,求该公司直接销售了多少吨农产品?(2)若该公司选取方式二处理该批农产品,最终获利122000元,求该批农产品储藏了多少个星期才出售?28.甲、乙两家商场平时以同样价格出售相同的商品.“五一”节期间两家商场都让利酬宾,在甲商场按累计购物金额的85%收费;在乙商场累计购物金额超过400元后,超出400元的部分按75%收费,设小红在同一商场累计购物金额为x元,其中x>400.(Ⅰ)根据题意,填写如表(单位:元):累计购物实际花费500 700 (x)在甲商场425 …在乙商场625 …(Ⅱ)当x取何值时,小红在甲、乙两商场的实际花费相同?(Ⅲ)“五一”节期间,小红如何选择这两家商场去购物更省钱?29.某景点的门票价格如下边表格:某校七年级(1)、(2)两班共104人计划去游览该景点,其中(1)班人数少于50人.若两班都以班为单位单独购票,则一共支付1240元购票人数/人1~50 51~100 100以上每人门票价/元13 11 9 (1)两个班各有多少名学生?(2)如果两个班级联合起来,作为一个团体购票,可以省多少钱?(3)如果七年级一班单独组织去博物馆参观,你认为如何购票最省钱?30.某游泳馆每年夏季推出两种游泳付费方式:方式一:先购买会员证,每张会员证100元,只限本人当年使用,凭证游泳每次再付费4元:方式二:不购买会员证,每次游泳付费10元.设小明计划今年夏季游泳次数为x(x为正整数)(1)根据题意,填写如表:游泳次数10 15 20 (x)140 160 ……方式一的总费用(元)100 150 ……方式二的总费用(元)(2)若小明计划今年夏季游泳的总费用为260元,选择哪种付费方式,他游泳的次数比较多?(3)小明选择哪种付费方式更合算?并说明理由.答案与解析一.选择题(共10小题)1.(2019•襄阳)《九章算术》是我国古代数学名著,卷七“盈不足”中有题译文如下:今有人合伙买羊,每人出5钱,会差45钱;每人出7钱,会差3钱.问合伙人数、羊价各是多少?设合伙人数为x人,所列方程正确的是()A.5x﹣45=7x﹣3 B.5x+45=7x+3 C.=D.=【分析】设合伙人数为x人,根据羊的总价钱不变,即可得出关于x的一元一次方程,此题得解.【解答】解:设合伙人数为x人,依题意,得:5x+45=7x+3.故选:B.【点评】本题考查了由实际问题抽象出一元一次方程,找准等量关系,正确列出一元一次方程是解题的关键.2.(2019•福建)《增删算法统宗》记载:“有个学生资性好,一部孟子三日了,每日增添一倍多,问君每日读多少?”其大意是:有个学生天资聪慧,三天读完一部《孟子》,每天阅读的字数是前一天的两倍,问他每天各读多少个字?已知《孟子》一书共有34685个字,设他第一天读x个字,则下面所列方程正确的是()A.x+2x+4x=34685 B.x+2x+3x=34685C.x+2x+2x=34685 D.x+x+x=34685【分析】设他第一天读x个字,根据题意列出方程解答即可.【解答】解:设他第一天读x个字,根据题意可得:x+2x+4x=34685,故选:A.【点评】此题考查由实际问题抽象出一元一次方程,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程.3.(2019•杭州)已知九年级某班30位学生种树72棵,男生每人种3棵树,女生每人种2棵树,设男生有x人,则()A.2x+3(72﹣x)=30 B.3x+2(72﹣x)=30C.2x+3(30﹣x)=72 D.3x+2(30﹣x)=72【分析】直接根据题意表示出女生人数,进而利用30位学生种树72棵,得出等式求出答案.【解答】解:设男生有x人,则女生(30﹣x)人,根据题意可得:3x+2(30﹣x)=72.故选:D.【点评】此题主要考查了由实际问题抽象出一元一次方程,正确表示出男女生的植树棵数是解题关键.4.(2019•南充)关于x的一元一次方程2xa﹣2+m=4的解为x=1,则a+m的值为()A.9 B.8 C.5 D.4【分析】根据一元一次方程的概念和其解的概念解答即可.【解答】解:因为关于x的一元一次方程2xa﹣2+m=4的解为x=1,可得:a﹣2=1,2+m=4,解得:a=3,m=2,所以a+m=3+2=5,故选:C.【点评】此题考查一元一次方程的定义,关键是根据一元一次方程的概念和其解的概念解答.5.(2018•广元)已知关于x的一元一次方程2(x﹣1)+3a=3的解为4,则a的值是()A.﹣1 B.1 C.﹣2 D.﹣3【分析】将x=4代入方程中即可求出a的值.【解答】解:将x=4代入2(x﹣1)+3a=3,∴2×3+3a=3,∴a=﹣1,故选:A.【点评】本题考查一元一次方程的解,解题的关键是熟练运用一元一次方程的解的定义,本题属于基础题型.6.(2019•阜新)某种衬衫因换季打折出售,如果按原价的六折出售,那么每件赔本40元;按原价的九折出售,那么每件盈利20元,则这种衬衫的原价是()A.160元B.180元C.200元D.220元【分析】设这种衬衫的原价是x元,根据衬衫的成本不变,即可得出关于x的一元一次方程,解之即可得出结论.【解答】解:设这种衬衫的原价是x元,依题意,得:0.6x+40=0.9x﹣20,解得:x=200.故选:C.【点评】本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.7.(2019•荆门)欣欣服装店某天用相同的价格a(a>0)卖出了两件服装,其中一件盈利20%,另一件亏损20%,那么该服装店卖出这两件服装的盈利情况是()A.盈利B.亏损C.不盈不亏D.与售价a有关【分析】设第一件衣服的进价为x元,依题意得:x(1+20%)=a,设第二件衣服的进价为y元,依题意得:y(1﹣20%)=a,得出x(1+20%)=y(1﹣20%),整理得:3x=2y,则两件衣服总的盈亏就可求出.【解答】解:设第一件衣服的进价为x元,依题意得:x(1+20%)=a,设第二件衣服的进价为y元,依题意得:y(1﹣20%)=a,∴x(1+20%)=y(1﹣20%),整理得:3x=2y,该服装店卖出这两件服装的盈利情况为:0.2x﹣0.2y=0.2x﹣0.3x=﹣0.1x,即赔了0.1x元,故选:B.【点评】本题考查了一元一次方程的应用,解决本题的关键是根据题意,列方程求出两件衣服的进价故选,进而求出总盈亏.8.(2018•无锡)蚊香长度y(厘米)与燃烧时间t(小时)之间的函数表达式为y=105﹣10t.则蚊香燃烧的速度是()A.10厘米/小时B.105厘米/小时C.10.5厘米/小时D.不能确定【分析】函数中表达式由自变量和因变量两个因素组成,这个是一次函数,图象为一条直线,可以任选符合条件的两点求出蚊香燃烧的速度.【解答】解:设时间t1时蚊香长度为y1,时间t2时蚊香长度为y2∴y1=105﹣10t1,y2=105﹣10t2则:速度=(y1﹣y2)÷(t1﹣t2)=[(105﹣10t1)﹣(105﹣10t2)]÷(t1﹣t2)=﹣10∴蚊香燃烧的速度是10厘米/小时故选:A.【点评】本题考查了函数的解析式和图象的结合,另外图象是由点来组成.9.(2018•通辽)一商店以每件150元的价格卖出两件不同的商品,其中一件盈利25%,另一件亏损25%,则商店卖这两件商品总的盈亏情况是()A.亏损20元B.盈利30元C.亏损50元D.不盈不亏【分析】设盈利的商品的进价为x元,亏损的商品的进价为y元,根据销售收入﹣进价=利润,即可分别得出关于x、y的一元一次方程,解之即可得出x、y的值,再由两件商品的销售收入﹣成本=利润,即可得出商店卖这两件商品总的亏损20元.【解答】解:设盈利的商品的进价为x元,亏损的商品的进价为y元,根据题意得:150﹣x=25%x,150﹣y=﹣25%y,解得:x=120,y=200,∴150+150﹣120﹣200=﹣20(元).故选:A.【点评】本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.10.(2018•台州)甲、乙两运动员在长为100m的直道AB(A,B为直道两端点)上进行匀速往返跑训练,两人同时从A点起跑,到达B点后,立即转身跑向A点,到达A点后,又立即转身跑向B点…若甲跑步的速度为5m/s,乙跑步的速度为4m/s,则起跑后100s 内,两人相遇的次数为()A.5 B.4 C.3 D.2【分析】可设两人相遇的次数为x,根据每次相遇的时间,总共时间为100s,列出方程求解即可.【解答】解:设两人相遇的次数为x,依题意有x=100,解得x=4.5,∵x为整数,∴x取4.故选:B.【点评】考查了一元一次方程的应用,利用方程解决实际问题的基本思路如下:首先审题找出题中的未知量和所有的已知量,直接设要求的未知量或间接设一关键的未知量为x,然后用含x的式子表示相关的量,找出之间的相等关系列方程、求解、作答,即设、列、解、答.二.填空题(共8小题)11.(2019•呼和浩特)关于x的方程mx2m﹣1+(m﹣1)x﹣2=0如果是一元一次方程,则其解为x=2或x=﹣2或x=﹣3.【分析】利用一元一次方程的定义判断即可.【解答】解:∵关于x的方程mx2m﹣1+(m﹣1)x﹣2=0如果是一元一次方程,∴当m=1时,方程为x﹣2=0,解得:x=2;当m=0时,方程为﹣x﹣2=0,解得:x=﹣2;当2m﹣1=0,即m=时,方程为﹣x﹣2=0,解得:x=﹣3,故答案为:x=2或x=﹣2或x=﹣3.【点评】此题考查了一元一次方程的定义,熟练掌握一元一次方程的定义是解本题的关键.12.(2019•南通)《九章算术》是中国传统数学最重要的著作之一.书中记载:“今有人共买鸡,人出九,盈十一;人出六,不足十六.问人数几何?”意思是:“有若干人共同出钱买鸡,如果每人出九钱,那么多了十一钱;如果每人出六钱,那么少了十六钱.问:共有几个人?”设共有x个人共同出钱买鸡,根据题意,可列一元一次方程为9x﹣11=6x+16.【分析】设有x个人共同买鸡,根据买鸡需要的总钱数不变,即可得出关于x的一元一次方程,此题得解.【解答】解:设有x个人共同买鸡,根据题意得:9x﹣11=6x+16.故答案为:9x﹣11=6x+16.【点评】本题考查了由实际问题抽象出一元一次方程,找准等量关系,正确列出一元一次方程是解题的关键.13.(2019•济南)代数式与代数式3﹣2x的和为4,则x=﹣1.【分析】根据题意列出方程,求出方程的解即可得到x的值.【解答】解:根据题意得:+3﹣2x=4,去分母得:2x﹣1+9﹣6x=12,移项合并得:﹣4x=4,解得:x=﹣1,故答案为:﹣1【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.14.(2019•湘西州)若关于x的方程3x﹣kx+2=0的解为2,则k的值为4.【分析】直接把x=2代入进而得出答案.【解答】解:∵关于x的方程3x﹣kx+2=0的解为2,∴3×2﹣2k+2=0,解得:k=4.故答案为:4.【点评】此题主要考查了一元一次方程的解,正确把已知数据代入是解题关键.15.(2019•成都)若m+1与﹣2互为相反数,则m的值为1.【分析】根据“m+1与﹣2互为相反数”,得到关于m的一元一次方程,解之即可.【解答】解:根据题意得:m+1﹣2=0,解得:m=1,故答案为:1.【点评】本题考查了解一元一次方程和相反数,正确掌握相反数的定义和一元一次方程的解法是解题的关键.16.(2019•毕节市)某品牌旗舰店平日将某商品按进价提高40%后标价,在某次电商购物节中,为促销该商品,按标价8折销售,售价为2240元,则这种商品的进价是2000元.【分析】设这种商品的进价是x元,根据提价之后打八折,售价为2240元,列方程解答即可.【解答】解:设这种商品的进价是x元,由题意得,(1+40%)x×0.8=2240.解得:x=2000,故答案为2000【点评】本题考查了一元一次方程的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程解答.17.(2019•株洲)《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有善行者行一百步,不善行者行六十步.今不善行者先行一百步,善行者追之,问几何步及之?“其意思为:速度快的人走100步,速度慢的人只走60步,现速度慢的人先走100步,速度快的人去追赶,则速度快的人要走250步才能追到速度慢的人.【分析】设走路快的人追上走路慢的人所用时间为t,根据二者的速度差×时间=路程,即可求出t值,再将其代入路程=速度×时间,即可求出结论.【解答】解:设走路快的人追上走路慢的人所用时间为t,根据题意得:(100﹣60)t=100,解得:t=2.5,∴100t=100×2.5=250.答:走路快的人要走250步才能追上走路慢的人.故答案是:250.【点评】本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.18.一辆客车、一辆货车和一辆小轿车在一条笔直的公路上朝同一方向匀速行驶,在某一时刻,客车在前,小轿车在后,货车在客车与小轿车的正中间,过了12分钟,小轿车追上了货车,又过了8分钟,小轿车追上了客车,再过t分钟,货车追上了客车,则t=40.【分析】设在某一时刻,货车与客车、小轿车的距离均为s千米,小轿车、货车、客车的速度分别为a,b,c(千米/分),并设货车经x分钟追上客车,列出有关多元一次方程组求得x的值即可.【解答】解:设在某一时刻,货车与客车、小轿车的距离均为s千米,小轿车、货车、客车的速度分别为a,b,c(千米/分),并设货车经x分钟追上客车,由题意得,∴60(b﹣c)=s,∴x=60.故t=60﹣12﹣8=40(分).答:再过40分钟,货车追上了客车.故答案为40.【点评】此题主要考查了多元一次方程组的应用,解题的关键是正确理解题意,准确寻找等量关系,然后列出方程组解决问题.三.解答题(共12小题)19.解方程:10﹣4(x﹣3)=2x﹣2.【分析】方程去括号,移项合并,把x系数化为1,即可求出解.【解答】解:去括号得:10﹣4x+12=2x﹣2,移项合并得:﹣6x=﹣24,解得:x=4.【点评】此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,把未知数系数化为1,求出解.20.解一元一次方程:.【分析】依次去分母,去括号,移项,合并同类项,系数化为1,即可得到答案.【解答】解:方程两边同时乘以6得:3x﹣2(2x﹣1)=6,去括号得:3x﹣4x+2=6,移项得:3x﹣4x=6﹣2,合并同类项得:﹣x=4,系数化为1得:x=﹣4.【点评】本题考查了解一元一次方程,正确掌握解一元一次方程的方法是解题的关键.21.(2018•镇江)小李读一本名著,星期六读了36页,第二天读了剩余部分的,这两天共读了整本书的,这本名著共有多少页?【分析】设这本名著共有x页,根据头两天读的页数是整本书的,即可得出关于x的一元一次方程,解之即可得出结论.【解答】解:设这本名著共有x页,根据题意得:36+(x﹣36)=x,解得:x=216.答:这本名著共有216页.【点评】本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.22.(2018•长春)学校准备添置一批课桌椅,原计划订购60套,每套100元,店方表示:如果多购,可以优惠.结果校方实际订购了72套,每套减价3元,但商店获得了同样多的利润.(1)求每套课桌椅的成本;(2)求商店获得的利润.【分析】(1)设每套课桌椅的成本为x元,根据利润=销售收入﹣成本结合商店获得的利润不变,即可得出关于x的一元一次方程,解之即可得出结论;(2)根据总利润=单套利润×销售数量,即可求出结论.【解答】解:(1)设每套课桌椅的成本为x元,根据题意得:60×100﹣60x=72×(100﹣3)﹣72x,解得:x=82.答:每套课桌椅的成本为82元.(2)60×(100﹣82)=1080(元).答:商店获得的利润为1080元.【点评】本题考查了一元一次方程的应用,解题的关键是:(1)找准等量关系,正确列出一元一次方程;(2)根据数量关系,列式计算.23.(2019•安徽)为实施乡村振兴战略,解决某山区老百姓出行难的问题,当地政府决定修建一条高速公路.其中一段长为146米的山体隧道贯穿工程由甲乙两个工程队负责施工.甲工程队独立工作2天后,乙工程队加入,两工程队又联合工作了1天,这3天共掘进26米.已知甲工程队每天比乙工程队多掘进2米,按此速度完成这项隧道贯穿工程,甲乙两个工程队还需联合工作多少天?【分析】设甲工程队每天掘进x米,则乙工程队每天掘进(x﹣2)米.根据“甲工程队独立工作2天后,乙工程队加入,两工程队又联合工作了1天,这3天共掘进26米”列出方程,然后求工作时间.【解答】解:设甲工程队每天掘进x米,则乙工程队每天掘进(x﹣2)米,由题意,得2x+(x+x﹣2)=26,解得x=7,所以乙工程队每天掘进5米,(天)答:甲乙两个工程队还需联合工作10天.【点评】此题主要考查了一元一次方程的应用,根据题意得出两队的工效,进而得出等量关系是解题关键.24.某服装厂要生产某种型号的学生校服,已知3m长的某种布料可做上衣2件或者裤子3条.一件上衣和一条裤子为一套,库存这种布料600m.如果用这批布料做上衣和裤子恰好配套,求制作上衣所用的布料的米数.甲同学所列方程为1.5x+x=600,乙同学所列方程为=600﹣y(1)甲同学所列方程中的x表示制作上衣的件数或制作裤子的件数;乙同学所列方程中的y表示制作上衣所用布料的米数.(2)甲、乙两名同学选用未知数的方法分别是间接设元法、直接设元法;(3)任选甲、乙两同学的其中一个方法解答这个题目.【分析】(1)根据“3m长的某种布料可做上衣2件或者裤子3条”,得到分别制作1件上衣和1条裤子所需布料的米数,结合甲乙同学所列方程,即可得到答案,(2)根据间接设元法和直接设元法的定义,即可得到答案,(3)选乙同学的方法,根据一元一次方程的解题方法,解之即可.【解答】解:(1)根据题意得;制作1件上衣所需布料的米数为:3÷2=1.5m,制作1条裤子所需布料的米数为:3÷3=1m,设制作上衣的件数或制作裤子的件数为x,则1.5x+x=600,设制作上衣所用布料的米数为y,则=600﹣y,故答案为:制作上衣的件数或制作裤子的件数,制作上衣所用布料的米数,(2)甲同学选用未知数的方法是间接设元法,乙同学选用未知数的方法是直接设元法,故答案为:间接设元,直接设元,(3)选乙同学的方法:=600﹣y,解得:y=360,答:制作上衣所用的布料的米数为360m.【点评】本题考查了一元一次方程的应用,正确掌握间接设元法,直接设元法的定义,找出等量关系,列出一元一次方程是解题的关键.25.一项工程,甲单独做要10天,乙单独做要15天,丙单独做要20天.三人合做期间,甲因故请假,工程6天完工,请问甲请了几天假?【分析】设甲请了x天假,根据三人的总工作量是“1”列出方程并解答.【解答】解:设甲请了x天假,由题意知,6(+)+=1.解得x=3.答:甲请了3天假.【点评】此题主要考查工作时间、工作效率、工作总量三者之间的数量关系,搞清每一步所求的问题与条件之间的关系,选择正确的数量关系解答.26.如图,在三个小桶中装有数量相同的小球(每个小桶中至少有三个小球),第一次变化:从左边小桶中拿出两个小球放入中间小桶中;第二次变化:从右边小桶中拿出一个小球放入中间小桶中;第三次变化:从中间小桶中拿出一些小球放入右边小桶中,使右边小桶中小球个数是最初的两倍.(1)若每个小桶中原有3个小球,则第一次变化后,中间小桶中小球个数是左边小桶中小球个数的5倍;(2)若每个小桶中原有a个小球,则第二次变化后中间小桶中有(a+3)个小球(用a表示);。

【精选】七年级上册一元一次方程专题练习(word版

【精选】七年级上册一元一次方程专题练习(word版

一、初一数学一元一次方程解答题压轴题精选(难)1.下列图表是2017 年某校从参加中考体育测试的九年级学生中随机调查的10 名男生跑1000 米和 10 名女生跑 800米的成绩.(1)按规定,女生跑 800 米的时间不超过 3'24"就可以得满分.该校九年级学生有 490 人,男生比女生少 70 人.请你根据上面成绩,估计该校女生中有多少人该项测试成绩得满分? (2)假如男生 1 号和男生 10 号被分在同组测试,请分析他俩在 400 米的环形跑道测试的过程中能否相遇。

若能,求出发多长时间才能相遇;若不能,说明理由.【答案】(1)解:设男生有x人,女生有(x+70)人,由题意得:x+x+70=490,解得:x=210,则女生x+70=210+70=280(人).故女生得满分人数: (人)(2)解:不能;假设经过x分钟后,1号与10号在1000米跑中能首次相遇,根据题意得:解得又∵∴考生1号与10号不能相遇。

【解析】【分析】(1)通过男生、女生的人数关系列出方程,得出女生的人数;(2)根据题意表达出1号跟10号的速度,两位若相遇,相减的路程为400米,得出的时间为4.8, 但是4.8分钟大于3分钟,所以两位在测试过程中不会相遇。

2.元旦假期,甲、乙两家超市以相同的价格出售同样的商品,为了吸引顾客,各自推出不同的优惠方案:在甲超市当日累计购物超出了300元以后,超出部分按原价8折优惠;在乙超市当日累计购物超出200元之后,超出部分按原价8.5折优惠.设某位顾客在元旦这天预计累计购物x元(其中x>300).(1)当x=400时,顾客到哪家超市购物优惠.(2)当x为何值时,顾客到这两家超市购物实际支付的钱数相同.【答案】(1)解:在甲超市购物所付的费用是:元,在乙超市购物所付的费用是:元;当时,在甲超市购物所付的费用是:,在乙超市购物所付的费用是:,所以到乙超市购物优惠(2)解:根据题意由得:,解得:,答:当时,两家超市所花实际钱数相同【解析】【分析】(1)甲超市费用:利用300元+超出300元部分×0.8即得;乙超市费用:利用200元+超出200元部分×0.85即得;然后将x=400分别代入甲乙超市费用的代数式中计算即可.(2)由甲超市费用=乙超市费用建立方程,求出x值即可.3.根据绝对值定义,若有,则或,若,则,我们可以根据这样的结论,解一些简单的绝对值方程,例如:解:方程可化为:或当时,则有:;所以 .当时,则有:;所以 .故,方程的解为或。

七年级一元一次方程专题练习(word版

七年级一元一次方程专题练习(word版

一、初一数学一元一次方程解答题压轴题精选(难)1.下列图表是2017 年某校从参加中考体育测试的九年级学生中随机调查的10 名男生跑1000 米和 10 名女生跑 800米的成绩.(1)按规定,女生跑 800 米的时间不超过 3'24"就可以得满分.该校九年级学生有 490 人,男生比女生少 70 人.请你根据上面成绩,估计该校女生中有多少人该项测试成绩得满分? (2)假如男生 1 号和男生 10 号被分在同组测试,请分析他俩在 400 米的环形跑道测试的过程中能否相遇。

若能,求出发多长时间才能相遇;若不能,说明理由.【答案】(1)解:设男生有x人,女生有(x+70)人,由题意得:x+x+70=490,解得:x=210,则女生x+70=210+70=280(人).故女生得满分人数: (人)(2)解:不能;假设经过x分钟后,1号与10号在1000米跑中能首次相遇,根据题意得:解得又∵∴考生1号与10号不能相遇。

【解析】【分析】(1)通过男生、女生的人数关系列出方程,得出女生的人数;(2)根据题意表达出1号跟10号的速度,两位若相遇,相减的路程为400米,得出的时间为4.8, 但是4.8分钟大于3分钟,所以两位在测试过程中不会相遇。

2.甲、乙两班学生到集市上购买苹果,苹果的价格如下:购苹果数不超过10千克超过10千克但不超过20千克超过20千克每千克价格10元9元8元苹果30千克.(1)乙班比甲班少付出多少元?(2)设甲班第一次购买苹果x千克.①则第二次购买的苹果为多少千克;②甲班第一次、第二次分别购买多少千克?【答案】(1)解:乙班购买苹果付出的钱数=8×30=240元,∴乙班比甲班少付出256-240=16元(2)解:①甲班第二次购买的苹果为(30-x)千克;②若x≤10,则10x+(30-x)×8=256,解得:x=8若10<x≤15,则9x+(30-x)×9=256无解.故甲班第一次购买8千克,第二次购买22千克【解析】【分析】(1)根据20kg以上每千克的价格为8元可求出乙班付出的钱数,从而可求出乙班比甲班少付出多少.(2)设甲班第一次购买x千克,第二次购买30-x千克,则需要讨论①x≤10,②10<x≤15,列出方程后求解即可得出答案.3.约定:上方相邻两数之和等于这两数下方箭头共同指向的数.示例:如图1,即4+3=7,观察图2,求:(1)用含x的式子分别表示m和n;(2)当y=-7时,求n的值。

人教版 七年级数学上册 一元一次方程培优专题-绝对值方程(解析版)

人教版 七年级数学上册  一元一次方程培优专题-绝对值方程(解析版)

2 - 1 =22 2 2 进而 ⎪⎨,解得 ⎪⎨ ⎩ ⎩一元一次方程培优专题——绝对值方程例题1. 解方程: 2 x + 3 = 5【解析】根据绝对值的意义,原方程可化为 2x + 3 = 5 或者 2x + 3 = -5 ,解得 x = 1 或 x = -4【答案】 x = 1 或 x = -4例题2. 解方程 x + 1 - 1 2 - x + 13【解析】原方程整理得: x + 1 = 13 ,即 x + 1 = 13 或者 x + 1 = - 13 ,所以原方程的解为 x = 8 或 x = - 1855 5 5 5【答案】 x = 8 或 x = - 1855例题3. 已知:当 m > n 时,代数式(m 2- n 2+ 3) 和 m 2+ n 2- 5 的值互为相反数,求关于x 的方程m 1 - x = n的解.【解析】因为代数式 (m 2 - n 2 + 3) 和 m 2 + n 2 - 5 的值互为相反数,所以 (m 2 - n 2 + 3) + m 2 + n 2 - 5 = 0 , 所以 (m 2 - n 2 + 3) = 0 , m 2 + n 2 - 5 = 0 ,⎧m 2 - n 2 = -3 ⎪m 2 + n 2 = 5⎧m 2 = 1 ⎪n 2 = 4,所以 m = ±1, n = ±2 ,因为 m > n ,当 m = 1时, n = -2 ;当 m = -1 时, n = -2 ;当 m = 1,n = -2 时,方程为 1 - x = -2 ,该方程无解;当 m = -1, n = -2 时,方程为 - 1 - x = -2 ,解得 x = -1 或 x = 3 .【答案】 x = -1 或 x = 3例题4.解方程4x+3=2x+9【解析】解法一:令4x+3=0得x=-3,将数分成两段进行讨论:4①当x≤-3时,原方程可化简为:-4x-3=2x+9,x=-2在x≤-3的范围内,是方程的解.44②当x>-3时,原方程可化简为:4x+3=2x+9,x=3在x>-3的范围内,是方程的解.44综上所述x=-2和x=3是方程的解.解法二:依据绝对值的非负性可知2x+9≥0,即x≥-9.原绝对值方程可以转化为①4x+3=2x+9,2解得x=3,经检验符合题意.②4x+3=-(2x+9),解得x=-2,经检验符合题意.综合①②可知x=-2和x=3是方程的解.【答案】x=-2或x=3例题5.解方程4x+3=2x+9【答案】x=3或x=-2例题6.a为有理数,a=2a-3,求a的值.【解析】解法一:要想求出a的值,我们必须先化简a=2a-3.采用零点分段讨论的方法.令a=0,2a-3=0得a=3.2①当a≥3时,由原式可得a=2a-3,求得a=3,在a≥3的范围内;22②当0≤a<3时,由原式可得a=3-2a,求得a=1,在0≤a<3的范围内;22③当a<0,由原式可得-a=-2a+3,求得a=3,不在a<0的范围内.综上可得a的值为3或1.x 解法二:依题意, a 的绝对值和 2a - 3 的绝对值相等,可以得出两者相等或互为相反数,即a = 2a - 3或a = -(2a - 3) 解得 a = 3 或 a = 1.【答案】 a = 3 或 a = 1例题7. 解方程 2 x - 1 = 3x + 1【解析】根据两数的绝对值相等,可以判断这两个数相等或者互为相反数,所以由原方程可以得到2x - 1 = 3x + 1 或 2x - 1 = -3x - 1 ,解得 x = -2, = 0 .【答案】 x = -2 或 x = 0例题8. 解方程 x - 1 + x - 3 = 4【解析】令 x - 1 = 0 , x - 3 = 0 得 x = 1 , x = 3 ,它们可以将数轴分成 3 段:①当 x < 1 时,原方程可化简为: -( x - 1) - ( x - 3) = 4 , x = 0 在 x < 1 的范围内是原方程的解;②当 1 ≤ x < 3 时,原方程可化简为: x - 1 - ( x - 3) = 4 ,此方程无解;③当 x ≥ 3 时,原方程可化简为: x - 1 + x - 3 = 4 , x = 4 在 x ≥ 3 的范围内是原方程的解;综上所述,原方程的解为: x = 0 或 x = 4 .【答案】 x = 0 或 x = 4例题9. 解方程 x - 1 + x - 5 = 4【解析】由绝对值的几何意义可知 1 ≤ x ≤ 5 .【答案】 1 ≤ x ≤ 5例题10. 解方程: 2 x + 1 - 2 - x = 3【解析】零点为: x = - 1 , x = 2 ,它们可将数轴分成三段:22 ①当 x < - 1 时,原方程变形为:-(2 x + 1) - (2 - x) =3 ,x = -6 在 x < - 1 的范围内,是方程的解;22②当 - 1 ≤ x < 2 时,原方程变形为: (2 x + 1) - (2 - x) = 3 , x = 4 在 - 1 ≤ x < 2 的范围内,是方程23 2的解;③当 x > 2 时,原方程变形为:(2 x - 1) - ( x - 2) = 3 ,x = 0 不在 x > 2 的范围内,不是方程的解.综上所述原方程的解为: x = -6 或 x = 4 .3【答案】 x = -6 或 x = 43例题11. 解方程:方程 x + 3 + 3 - x = 9 x + 52【解析】对 x 的值分 4 段讨论:①若 x < -3 ,则原方程化为 - x - 3 + 3 - x = - 9 x + 5 ,解得 x = 2 ,与 x < -3 矛盾;2②若 -3 ≤ x < 0 ,则原方程化为 x + 3 + 3 - x = - 9 x + 5 ,解得 x = - 2 ;29③若 0 ≤ x < 3 ,则原方程化为 x + 3 + 3 - x = 9 x + 5 ,解得 x = 2 ;29④若 x ≥ 3 ,则原方程化为 x + 3 + x - 3 = 9 x + 5 ,解得 x = -2 ,与 x ≥ 3 矛盾.2综上所述方程的解为 x = ± 2 .9【答案】 ± 29例题12. 解绝对值方程: x - 3x - 5- 1 = 62【解析】 x - 3x - 5 - 1 = 6 或 -6 ,即 3x - 5 = x - 7 或 3x - 5 = x + 522 2①当 x - 7 ≥ 0 时(即 x ≥ 7 ), 3x - 5 > 0 , 3x - 5 = x - 7 化为 3x - 5 = x - 7 ,解得 x = -9 ;22②当 x + 5≥ 0 时( x ≥ -5 ),若还有 3x - 5 > 0 (即 x ≥ 5 ), 3x - 5 = x + 5 ,解得 x = 15 ;23 2③当 x + 5≥ 0 时( x ≥ -5 ),若还有 3x - 5 < 0 (即 x < 5 ), 3x - 5 = - x - 5 ,解得 x = -1 .23 2再来检验这三个解 x = -9 (舍去)、 x = 15 、 x = -1 .【答案】 x = 15 或 x = -13x + 1 = 0,x = - ; x - 3x + 1 = 0 , x = - , - ,这 3 个零点将数轴分成 4 段,我们分段讨论 8例题13. 解方程: 3x - 5 + 4 = 8【解析】3x - 5 + 4 = 8 或 - (舍),即 3x - 5 = 4 ,所以 3x - 5 = 4 或 -4 ,即 3x = 9 或 3x = 1 ,故 x = 3 或 x = 1 .3【答案】 x = 3 或 x = 13例题14. 求方程 x - 3x + 1 = 4 的解.【解析】解法一:1 1 1 32 4研究可以得到结果为: x = 3 或 x = - 5 ,但其实这么做是没必要的.我们来看看解法二.24解法二:①当 x ≤ - 1 时,方程可化为: 4x + 1 = -4 , x = - 5 ,在 x ≤ - 1 范围内,是方程的解;34 3②当 x > - 1 时,方程可化为 -2 x - 1 = 4 :当 -2x - 1 = 4 时,得 x = - 5 , - 5 < - 1 , x = - 5 不是32 23 2解,舍去;当 -2x - 1 = -4 时,得 x = 3 ,∵ 3 > - 1 ,∴ x = 3 是方程的一个解.22 3 2综上可得,原方程的解为 x = 3 或 x = - 5 .24【答案】 x = 3 或 x = - 524例题15. 当 0 ≤ x ≤1 时,求方程 x - 1 - 1 - 1 = 0 的解【解析】根据 x 所在的范围,可得 x ≥ 0 , x - 1≤ 0 ,因此 x = x ,x - 1 = 1 - x ,按从内到外的顺序逐个去除方程中的绝对值符号,原方程可顺次化为: 1 - x - 1 - 1 = 0 ,即 1 - x = 0 ,所以 x = 1 .【答案】1。

初一七年级一元一次方程30题(含答案解析)教学内容

初一七年级一元一次方程30题(含答案解析)教学内容

初一七年级一元一次方程30题(含答案解析)一.解答题(共30小题)1.(2005•宁德)解方程:2x+1=72.3.(1)解方程:4﹣x=3(2﹣x);(2)解方程:.4.解方程:.5.解方程(1)4(x﹣1)﹣3(20﹣x)=5(x﹣2);(2)x ﹣=2﹣.6.(1)解方程:3(x﹣1)=2x+3;(2)解方程:=x ﹣.7.﹣(1﹣2x)=(3x+1)8.解方程:(1)5(x﹣1)﹣2(x+1)=3(x﹣1)+x+1;(2).9.解方程:.10.解方程:(1)4x﹣3(4﹣x)=2;(2)(x﹣1)=2﹣(x+2).11.计算:(1)计算:(2)解方程:12.解方程:13.解方程:(1)(2)14.解方程:(1)5(2x+1)﹣2(2x﹣3)=6 (2)+2(3)[3(x ﹣)+]=5x﹣115.(A类)解方程:5x﹣2=7x+8;(B 类)解方程:(x﹣1)﹣(x+5)=﹣;(C 类)解方程:.16.解方程(1)3(x+6)=9﹣5(1﹣2x)(2)(3)(4)17.解方程:(1)解方程:4x﹣3(5﹣x)=13 (2)解方程:x ﹣﹣3 18.(1)计算:﹣42×+|﹣2|3×(﹣)3(2)计算:﹣12﹣|0.5﹣|÷×[﹣2﹣(﹣3)2](3)解方程:4x﹣3(5﹣x)=2;(4)解方程:.19.(1)计算:(1﹣2﹣4)×;(2)计算:÷;(3)解方程:3x+3=2x+7;(4)解方程:.20.解方程(1)﹣0.2(x﹣5)=1;(2).21.解方程:(x+3)﹣2(x﹣1)=9﹣3x.22.8x﹣3=9+5x.5x+2(3x﹣7)=9﹣4(2+x)...23.解下列方程:(1)0.5x﹣0.7=5.2﹣1.3(x﹣1);(2)=﹣2.24.解方程:(1)﹣0.5+3x=10;(2)3x+8=2x+6;(3)2x+3(x+1)=5﹣4(x﹣1);(4).25.解方程:.26.解方程:(1)10x﹣12=5x+15;(2)27.解方程:(1)8y﹣3(3y+2)=7 (2).28.当k 为什么数时,式子比的值少3.29.解下列方程:(I)12y﹣2.5y=7.5y+5(II ).30.解方程:.6.2.4解一元一次方程(三)参考答案与试题解析一.解答题(共30小题)1.(2005•宁德)解方程:2x+1=7考点:解一元一次方程.专题:计算题;压轴题.分析:此题直接通过移项,合并同类项,系数化为1可求解.解答:解:原方程可化为:2x=7﹣1合并得:2x=6系数化为1得:x=3点评:解一元一次方程,一般要通过去分母,去括号,移项,合并同类项,未知数的系数化为1等步骤,把一个一元一次方程“转化”成x=a的形式.2.考点:解一元一次方程.专题:计算题.分析:这是一个带分母的方程,所以要先去分母,再去括号,最后移项,化系数为1,从而得到方程的解.解答:解:左右同乘12可得:3[2x﹣(x﹣1)]=8(x﹣1),化简可得:3x+3=8x﹣8,移项可得:5x=11,解可得x=.故原方程的解为x=.点评:若是分式方程,先同分母,转化为整式方程后,再移项化简,解方程可得答案.3.(1)解方程:4﹣x=3(2﹣x);(2)解方程:.考点:解一元一次方程.专题:计算题.分析:(1)先去括号,然后再移项、合并同类型,最后化系数为1,得出方程的解;(2)题的方程中含有分数系数,应先对各式进行化简、整理,然后再按(1)的步骤求解.解答:解:(1)去括号得:4﹣x=6﹣3x,移项得:﹣x+3x=6﹣4,合并得:2x=2,系数化为1得:x=1.(2)去分母得:5(x﹣1)﹣2(x+1)=2,去括号得:5x﹣5﹣2x﹣2=2,移项得:5x﹣2x=2+5+2,合并得:3x=9,系数化1得:x=3.点评:(1)本题易在去分母、去括号和移项中出现错误,还可能会在解题前产生害怕心理.因为看到小数、分数比较多,学生往往不知如何寻找公分母,怎样合并同类项,怎样化简,所以我们要教会学生分开进行,从而达到分解难点的效果.(2)本题的另外一个重点是教会学生对于分数的分子、分母同时扩大或缩小若干倍,值不变.这一性质在今后常会用到.4.解方程:.考点:解一元一次方程.专题:计算题.分析:此题两边都含有分数,分母不相同,如果直接通分,有一定的难度,但将方程左右同时乘以公分母6,难度就会降低.解答:解:去分母得:3(2﹣x)﹣18=2x﹣(2x+3),去括号得:6﹣3x﹣18=﹣3,移项合并得:﹣3x=9,∴x=﹣3.点评:本题易在去分母和移项中出现错误,学生往往不知如何寻找公分母,怎样合并同类项,怎样化简,所以我们要教会学生分开进行,从而达到分解难点的效果.5.解方程(1)4(x﹣1)﹣3(20﹣x)=5(x﹣2);(2)x﹣=2﹣.考点:解一元一次方程.专题:计算题.分析:(1)先去括号,再移项、合并同类项、化系数为1,从而得到方程的解;(2)先去分母,再去括号,最后移项,化系数为1,从而得到方程的解.解答:解:(1)去括号得:4x﹣4﹣60+3x=5x﹣10(2分)移项得:4x+3x﹣5x=4+60﹣10(3分)合并得:2x=54(5分)系数化为1得:x=27;(6分)(2)去分母得:6x﹣3(x﹣1)=12﹣2(x+2)(2分)去括号得:6x﹣3x+3=12﹣2x﹣4(3分)移项得:6x﹣3x+2x=12﹣4﹣3(4分)合并得:5x=5(5分)系数化为1得:x=1.(6分)点评:去分母时,方程两端同乘各分母的最小公倍数时,不要漏乘没有分母的项,同时要把分子(如果是一个多项式)作为一个整体加上括号.去括号时要注意符号的变化.6.(1)解方程:3(x﹣1)=2x+3;(2)解方程:=x﹣.考点:解一元一次方程.专题:计算题.分析:(1)是简单的一元一次方程,通过移项,系数化为1即可得到;(2)是较为复杂的去分母,本题方程两边都含有分数系数,如果直接通分,有一定的难度,但对每一个式子先进行化简、整理为整数形式,难度就会降低.解答:解:(1)3x﹣3=2x+33x﹣2x=3+3x=6;(2)方程两边都乘以6得:x+3=6x﹣3(x﹣1)x+3=6x﹣3x+3x﹣6x+3x=3﹣3﹣2x=0∴x=0.点评:本题易在去分母、去括号和移项中出现错误,还可能会在解题前不知如何寻找公分母,怎样合并同类项,怎样化简,所以要学会分开进行,从而达到分解难点的效果.去分母时,方程两端同乘各分母的最小公倍数时,不要漏乘没有分母的项,同时要把分子(如果是一个多项式)作为一个整体加上括号.7.﹣(1﹣2x)=(3x+1)考点:解一元一次方程.专题:计算题.分析:这是一个带分母的方程,所以要先去分母,再去括号,最后移项,化系数为1,从而得到方程的解.解答:解:﹣7(1﹣2x)=3×2(3x+1)﹣7+14x=18x+6﹣4x=13x=﹣.点评:解一元一次方程的一般步骤是去分母、去括号、移项、合并同类项和系数化为1.此题去分母时,方程两端同乘各分母的最小公倍数时,不要漏乘没有分母的项,同时要把分子(如果是一个多项式)作为一个整体加上括号.8.解方程:(1)5(x﹣1)﹣2(x+1)=3(x﹣1)+x+1;(2).考点:解一元一次方程.专题:计算题.分析:(1)可采用去括号,移项,合并同类项,系数化1的方式进行;(2)本题方程两边都含有分数系数,如果直接通分,有一定的难度,但对每一个式子先进行化简、整理为整数形式,难度就会降低.解答:解:(1)5(x﹣1)﹣2(x+1)=3(x﹣1)+x+13x﹣7=4x﹣2∴x=﹣5;(2)原方程可化为:去分母得:40x+60=5(18﹣18x)﹣3(15﹣30x),去括号得:40x+60=90﹣90x﹣45+90x,移项、合并得:40x=﹣15,系数化为1得:x=.点评:(1)本题易在去分母、去括号和移项中出现错误,还可能会在解题前产生害怕心理.因为看到小数、分数比较多,学生往往不知如何寻找公分母,怎样合并同类项,怎样化简,所以我们要教会学生分开进行,从而达到分解难点的效果;(2)本题的另外一个重点是教会学生对于分数的分子、分母同时扩大或缩小若干倍,值不变.这一性质在今后常会用到.9.解方程:.考点:解一元一次方程.专题:计算题.分析:这是一个带分母的方程,所以要先去分母,再去括号,最后移项,化系数为1,从而得到方程的解.解答:解:,去分母得:2x﹣(3x+1)=6﹣3(x﹣1),去括号得:2x﹣3x﹣1=6﹣3x+3,移项、合并同类项得:2x=10,系数化为1得:x=5.点评:去分母时,方程两端同乘各分母的最小公倍数时,不要漏乘没有分母的项,同时要把分子(如果是一个多项式)作为一个整体加上括号.10.解方程:(1)4x﹣3(4﹣x)=2;(2)(x﹣1)=2﹣(x+2).考点:解一元一次方程.专题:计算题.分析:(1)先去括号,再移项,合并同类项,系数化1,即可求出方程的解;(2)先去分母,再去括号,移项,合并同类项,系数化1可求出方程的解.解答:解:(1)4x﹣3(4﹣x)=2去括号,得4x﹣12+3x=2移项,合并同类项7x=14系数化1,得x=2.(2)(x﹣1)=2﹣(x+2)去分母,得5(x﹣1)=20﹣2(x+2)去括号,得5x﹣5=20﹣2x﹣4移项、合并同类项,得7x=21系数化1,得x=3.点评:(1)此题主要是去括号,移项,合并同类项,系数化1.(2)方程两边每一项都要乘各分母的最小公倍数,方程两边每一项都要乘各分母的最小公倍数,切勿漏乘不含有分母的项,另外分数线有两层意义,一方面它是除号,另一方面它又代表着括号,所以在去分母时,应该将分子用括号括上.11.计算:(1)计算:(2)解方程:考点:解一元一次方程;有理数的混合运算.专题:计算题.分析:(1)根据有理数的混合运算法则计算:先算乘方、后算乘除、再算加减;(2)两边同时乘以最简公分母4,即可去掉分母.解答:解:(1)原式=,=,=.(2)去分母得:2(x﹣1)﹣(3x﹣1)=﹣4,解得:x=3.点评:解答此题要注意:(1)去分母时最好先去中括号、再去小括号,以减少去括号带来的符号变化次数;(2)去分母就是方程两边同时乘以分母的最简公分母.12.解方程:考点:解一元一次方程.专题:计算题.分析:(1)这是一个带分母的方程,所以要先去分母,再去括号,最后移项,化系数为1,从而得到方程的解.(2)解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项、化系数为1.解答:解:(1)去分母得:3(3x﹣1)+18=1﹣5x,去括号得:9x﹣3+18=1﹣5x,移项、合并得:14x=﹣14,系数化为1得:x=﹣1;(2)去括号得:x﹣x+1=x,移项、合并同类项得:x=﹣1,系数化为1得:x=﹣.点评:本题考查解一元一次方程,正确掌握解一元一次方程的一般步骤,注意移项要变号、去分母时“1”也要乘以最小公倍数.13.解方程:(1)(2)考点:解一元一次方程.专题:计算题.分析:(1)去分母、去括号、移项、合并同类项、化系数为1.(2)去分母、去括号、移项、合并同类项、化系数为1.解答:(1)解:去分母得:5(3x+1)﹣2×10=3x﹣2﹣2(2x+3),去括号得:15x+5﹣20=3x﹣2﹣4x﹣6,移项得:15x+x=﹣8+15,合并得:16x=7,解得:;(2)解:,4(x﹣1)﹣18(x+1)=﹣36,4x﹣4﹣18x﹣18=﹣36,﹣14x=﹣14,x=1.点评:本题考查解一元一次方程,正确掌握解一元一次方程的一般步骤,注意移项要变号、去分母时“1”也要乘以最小公倍数.14.解方程:(1)5(2x+1)﹣2(2x﹣3)=6 (2)+2(3)[3(x﹣)+]=5x﹣1考点:解一元一次方程.专题:计算题.分析:(2)通过去括号、移项、合并同类项、系数化为1,解得x的值;(3)乘最小公倍数去分母即可;(4)主要是去括号,也可以把分数转化成整数进行计算.解答:解:(1)去括号得:10x+5﹣4x+6=6移项、合并得:6x=﹣5,方程两边都除以6,得x=﹣;(2)去分母得:3(x﹣2)=2(4﹣3x)+24,去括号得:3x﹣6=8﹣6x+24,移项、合并得:9x=38,方程两边都除以9,得x=;(3)整理得:[3(x﹣)+]=5x﹣1,4x﹣2+1=5x﹣1,移项、合并得:x=0.点评:一元一次方程的解法:一般要通过去分母、去括号、移项、合并同类项、未知数的系数化为1等步骤,把一个一元一次方程“转化”成x=a的形式.解题时,要灵活运用这些步骤.15.(A类)解方程:5x﹣2=7x+8;(B类)解方程:(x﹣1)﹣(x+5)=﹣;(C类)解方程:.考点:解一元一次方程.专题:计算题.分析:通过去分母、去括号、移项、系数化为1等方法,求得各方程的解.解答:解:A类:5x﹣2=7x+8移项:5x﹣7x=8+2化简:﹣2x=10即:x=﹣5;B类:(x﹣1)﹣(x+5)=﹣去括号:x﹣﹣x﹣5=﹣化简:x=5即:x=﹣;C类:﹣=1去分母:3(4﹣x)﹣2(2x+1)=6去括号:12﹣3x﹣4x﹣2=6化简:﹣7x=﹣4即:x=.点评:本题主要考查一元一次方程的解法,比较简单,但要细心运算.16.解方程(1)3(x+6)=9﹣5(1﹣2x)(2)(3)(4)考点:解一元一次方程.专题:计算题.分析:(1)去括号以后,移项,合并同类项,系数化为1即可求解;(2)(3)首先去掉分母,再去括号以后,移项,合并同类项,系数化为1以后即可求解;(4)首先根据分数的基本性质,把第一项分母中的0.3化为整数,再去分母,求解.解答:解:(1)去括号得:3x+18=9﹣5+10x移项得:3x﹣10x=9﹣5﹣18合并同类项得:﹣7x=﹣14则x=2;(2)去分母得:2x+1=x+3﹣5移项,合并同类项得:x=﹣3;(3)去分母得:10y+2(y+2)=20﹣5(y﹣1)去括号得:10y+2y+4=20﹣5y+5移项,合并同类项得:17y=21系数化为1得:;(4)原方程可以变形为:﹣5x=﹣1去分母得:17+20x﹣15x=﹣3移项,合并同类项得:5x=﹣20系数化为1得:x=﹣4.点评:解方程的过程中要注意每步的依据,这几个题目都是基础的题目,需要熟练掌握.17.解方程:(1)解方程:4x﹣3(5﹣x)=13 (2)解方程:x﹣﹣3考点:解一元一次方程.专题:计算题.分析:(1)先去括号,再移项,化系数为1,从而得到方程的解.(2)这是一个带分母的方程,所以要先去分母,再去括号,最后移项,化系数为1,从而得到方程的解.解答:解:(1)去括号得:4x﹣15+3x=13,移项合并得:7x=28,系数化为1得:得x=4;(2)原式变形为x+3=,去分母得:5(2x﹣5)+3(x﹣2)=15(x+3),去括号得10x﹣25+3x﹣6=15x+45,移项合并得﹣2x=76,系数化为1得:x=﹣38.点评:本题考查解一元一次方程,解一元一次方程的一般步骤是:去分母、去括号、移项、合并同类项、化系数为1.注意移项要变号.18.(1)计算:﹣42×+|﹣2|3×(﹣)3(2)计算:﹣12﹣|0.5﹣|÷×[﹣2﹣(﹣3)2](3)解方程:4x﹣3(5﹣x)=2;(4)解方程:.考点:解一元一次方程;有理数的混合运算.分析:(1)利用平方和立方的定义进行计算.(2)按四则混合运算的顺序进行计算.(3)主要是去括号,移项合并.(4)两边同乘最小公倍数去分母,再求值.解答:解:(1)﹣42×+|﹣2|3×(﹣)3==﹣1﹣1=﹣2.(2)﹣12﹣|0.5﹣|÷×[﹣2﹣(﹣3)2]====.(3)解方程:4x﹣3(5﹣x)=2去括号,得4x﹣15+3x)=2移项,得4x+3x=2+15合并同类项,得7x=17系数化为1,得.(4)解方程:去分母,得15x﹣3(x﹣2)=5(2x﹣5)﹣3×15去括号,得15x﹣3x+6=10x﹣25﹣45移项,得15x﹣3x﹣10x=﹣25﹣45﹣6合并同类项,得2x=﹣76系数化为1,得x=﹣38.点评:前两道题考查了学生有理数的混合运算,后两道考查了学生解一元一次方程的能力.19.(1)计算:(1﹣2﹣4)×;(2)计算:÷;(3)解方程:3x+3=2x+7;(4)解方程:.考点:解一元一次方程;有理数的混合运算.专题:计算题.分析:(1)和(2)要熟练掌握有理数的混合运算;(3)和(4)首先熟悉解一元一次方程的步骤:去分母,去括号,移项,合并同类项,系数化为1.解答:解:(1)(1﹣2﹣4)×=﹣=﹣13;(2)原式=﹣1×(﹣4﹣2)×(﹣)=6×(﹣)=﹣9;(3)解方程:3x+3=2x+7移项,得3x﹣2x=7﹣3合并同类项,得x=4;(4)解方程:去分母,得6(x+15)=15﹣10(x﹣7)去括号,得6x+90=15﹣10x+70移项,得6x+10x=15+70﹣90合并同类项,得16x=﹣5系数化为1,得x=.点评:(1)和(2)要注意符号的处理;(4)要特别注意去分母的时候不要发生数字漏乘的现象,熟练掌握去括号法则以及合并同类项法则.20.解方程(1)﹣0.2(x﹣5)=1;(2).考点:解一元一次方程.分析:(1)通过去括号、移项、系数化为1等过程,求得x的值;(2)通过去分母以及去括号、移项、系数化为1等过程,求得x的值.解答:解:(1)﹣0.2(x﹣5)=1;去括号得:﹣0.2x+1=1,∴﹣0.2x=0,∴x=0;(2).去分母得:2(x﹣2)+6x=9(3x+5)﹣(1﹣2x),∴﹣21x=48,∴x=﹣.点评:此题主要考查了一元一次方程解法,解一元一次方程常见的过程有去括号、移项、系数化为1等.21.解方程:(x+3)﹣2(x﹣1)=9﹣3x.考点:解一元一次方程.专题:计算题.分析:先去括号得x+3﹣2x+2=9﹣3x,然后移项、合并同类得到2x=4,然后把x的系数化为1即可.解答:解:去括号得x+3﹣2x+2=9﹣3x,移项得x﹣2x+3x=9﹣3﹣2,合并得2x=4,系数化为1得x=2.点评:本题考查了解一元一次方程:先去分母,再去括号,接着移项,把含未知数的项移到方程左边,不含未知数的项移到方程右边,然后合并同类项,最后把未知数的系数化为1得到原方程的解.22.8x﹣3=9+5x.5x+2(3x﹣7)=9﹣4(2+x)...考点:解一元一次方程.专题:方程思想.分析:本题是解4个不同的一元一次方程,第一个通过移项、合并同类项及系数化1求解.第二个先去括号再通过移项、合并同类项及系数化1求解.第三个先去分母再同第二个.第四个先分子分母乘以10,再同第三个求解.解答:8x﹣3=9+5x,解:8x﹣5x=9+3,3x=12,∴x=4.∴x=4是原方程的解;5x+2(3x﹣7)=9﹣4(2+x),解:5x+6x﹣14=9﹣8﹣4x,5x+6x+4x=9﹣8+14,15x=15,∴x=1.∴x=1是原方程的解..解:3(x﹣1)﹣2(2x+1)=12,3x﹣3﹣4x﹣2=12,3x﹣4x=12+3+2,﹣x=17,∴x=﹣17.∴x=﹣17是原方程的解.,解:,5(10x﹣3)=4(10x+1)+40,50x﹣15=40x+4+40,50x﹣40x=4+40+15,10x=59,∴x=.∴x=是原方程的解.点评:此题考查的知识点是解一元一次方程,关键是注意解方程时的每一步都要认真仔细,如移项时要变符号.23.解下列方程:(1)0.5x﹣0.7=5.2﹣1.3(x﹣1);(2)=﹣2.考点:解一元一次方程.分析:(1)首先去括号,然后移项、合并同类项,系数化成1,即可求解;(2)首先去分母,然后去括号,移项、合并同类项,系数化成1,即可求解解答:解:(1)去括号,得:0.5x﹣0.7=5.2﹣1.3x+1.3移项,得:0.5x+1.3x=5.2+1.3+0.7合并同类项,得:1.8x=7.2,则x=4;(2)去分母得:7(1﹣2x)=3(3x+1)﹣42,去括号,得:7﹣14x=9x+3﹣42,移项,得:﹣14x ﹣9x=3﹣42﹣7,合并同类项,得:﹣23x=﹣46,则x=2.点评:本题考查解一元一次方程,解一元一次方程的一般步骤是:去分母、去括号、移项、合并同类项、化系数为1.注意移项要变号.24.解方程:(1)﹣0.5+3x=10;(2)3x+8=2x+6;(3)2x+3(x+1)=5﹣4(x﹣1);(4).考点:解一元一次方程.分析:(1)移项,合并同类项,然后系数化成1即可求解;(2)移项,合并同类项,然后系数化成1即可求解;(3)去括号、移项,合并同类项,然后系数化成1即可求解;(4)首先去分母,然后去括号、移项,合并同类项,然后系数化成1即可求解.解答:解:(1)3x=10.5,x=3.5;(2)3x﹣2x=6﹣8,x=﹣2;(3)2x+3x+3=5﹣4x+4,2x+3x+4x=5+4﹣3,9x=6,x=;(4)2(x+1)+6=3(3x﹣2),2x+2+6=9x﹣6,2x﹣9x=﹣6﹣2﹣6,﹣7x=﹣14,x=2.点评:本题考查解一元一次方程,解一元一次方程的一般步骤是:去分母、去括号、移项、合并同类项、化系数为1.注意移项要变号.25.解方程:.考点:解一元一次方程.专题:计算题.分析:方程两边乘以10去分母后,去括号,移项合并,将x系数化为1,即可求出解.解答:解:去分母得:5(3x﹣1)﹣2(5x﹣6)=2,去括号得:15x﹣5﹣10x+12=2,移项合并得:5x=﹣5,解得:x=﹣1.点评:此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,将未知数系数化为1,求出解.26.解方程:(1)10x﹣12=5x+15;(2)考点:解一元一次方程.专题:计算题.分析:(1)先移项,再合并同类项,最后化系数为1,从而得到方程的解;(2)先去括号,再移项、合并同类项,最后化系数为1,从而得到方程的解.解答:解:(1)移项,得10x﹣5x=12+15,合并同类项,得5x=27,方程的两边同时除以5,得x=;(2)去括号,得=,方程的两边同时乘以6,得x+1=4x﹣2,移项、合并同类项,得3x=3,方程的两边同时除以3,得x=1.点评:本题考查解一元一次方程,解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项、化系数为1.注意移项要变号.27.解方程:(1)8y﹣3(3y+2)=7(2).考点:解一元一次方程.专题:计算题.分析:(1)根据一元一次方程的解法,去括号,移项,合并同类项,系数化为1即可得解;(2)这是一个带分母的方程,所以要先去分母,再去括号,最后移项,合并同类项,系数化为1,从而得到方程的解.解答:解:(1)去括号得,8y﹣9y﹣6=7,移项、合并得,﹣y=13,系数化为1得,y=﹣13;(2)去分母得,3(3x﹣1)﹣12=2(5x﹣7),去括号得,9x﹣3﹣12=10x﹣14,移项得,9x﹣10x=﹣14+3+12,合并同类项得,﹣x=1,系数化为1得,x=﹣1.点评:本题主要考查了解一元一次方程,注意在去分母时,方程两端同乘各分母的最小公倍数时,不要漏乘没有分母的项,同时要把分子(如果是一个多项式)作为一个整体加上括号.28.当k为什么数时,式子比的值少3.考点:解一元一次方程.专题:计算题.分析:先根据题意列出方程,再根据一元一次方程的解法,去分母,去括号,移项,合并同类项,系数化为1即可得解.解答:解:依题意,得=+3,去分母得,5(2k+1)=3(17﹣k)+45,去括号得,10k+5=51﹣3k+45,移项得,10k+3k=51+45﹣5,合并同类项得,13k=91,系数化为1得,k=7,∴当k=7时,式子比的值少3.点评:本题主要考查了解一元一次方程,注意在去分母时,方程两端同乘各分母的最小公倍数时,不要漏乘没有分母的项,同时要把分子(如果是一个多项式)作为一个整体加上括号.29.解下列方程:(I)12y﹣2.5y=7.5y+5(II).考点:解一元一次方程.专题:计算题.分析:(Ⅰ)根据一元一次方程的解法,移项,合并同类项,系数化为1即可得解;(Ⅱ)是一个带分母的方程,所以要先去分母,再去括号,最后移项,合并同类项,系数化为1,从而得到方程的解.解答:解:(Ⅰ)移项得,12y﹣2.5y﹣7.5y=5,合并同类项得,2y=5,系数化为1得,y=2.5;(Ⅱ)去分母得,5(x+1)﹣10=(3x﹣2)﹣2(2x+3),去括号得,5x+5﹣10=3x﹣2﹣4x﹣6,移项得,5x﹣3x+4x=﹣2﹣6﹣5+10,合并同类项得,6x=﹣3,系数化为1得,x=﹣.点评:本题主要考查了解一元一次方程,注意在去分母时,方程两端同乘各分母的最小公倍数时,不要漏乘没有分母的项,同时要把分子(如果是一个多项式)作为一个整体加上括号.30.解方程:.考点:解一元一次方程.专题:计算题.分析:由于方程的分子、分母均有小数,利用分数的基本性质,分子、分母同时扩大相同的倍数,可将小数化成整数.解答:解:原方程变形为,(3分)去分母,得3×(30x﹣11)﹣4×(40x﹣2)=2×(16﹣70x),(4分)去括号,得90x﹣33﹣160x+8=32﹣140x,(5分)移项,得90x﹣160x+140x=32+33﹣8,(6分)合并同类项,得70x=57,(7分)系数化为1,得.(8分)点评:本题考查一元一次方程的解法.解一元一次方程的一般步骤:去分母,去括号,移项,合并同类项,系数化为1.本题的难点在于方程的分子、分母均有小数,将小数化成整数不同于去分母,不是方程两边同乘一个数,而是将分子、分母同乘一个数.。

七年级数学上册专题提分精练含绝对值的一元一次方程(解析版)

专题26 含绝对值的一元一次方程1.求解含绝对值的一元一次方程的方法我们没有学习过,但我们可以采用分类讨论思想先把绝对值去除,使得方程成为一元一次方程,这样我们就能轻松求解了,比如求解:|3|2x -=.解:当30x -时,原方程可化为32x -=,解得5x =;当30x -<时,原方程可化为32x -=-,解得1x =.所以原方程的解是5x =或1x =.请你依据上面的方法求解方程:|37|80x --=,则得到的解为 5x =或13x =- . 【解答】解:|37|80x --=,378x ∴-=或378x -=-,解得5x =或13x =-, 故答案为:5x =或13x =-. 2.我们已经知道“非负数的绝对值等于它本身,负数的绝对值等于它的相反数”,利用这个知识可以解含有绝对值的方程,如:解方程|3|2x -=.解:当30x -时,3x ,方程化为32x -=,解得5x =(符合题意);当30x -<时,3x <,方程化为(3)2x --=,解得1x =(符合题意).∴方程|3|2x -=的解为5x =或1x =.(1)方程|4|3x x -=的解为 1x = ;(2)方程|3||2|3x x x --+=的解为 .【解答】解:(1)当40x -时,即4x 时,方程化为43x x -=,解得2x =-,因为4x ,所以2x =-不合题意;当40x -<时,即4x <时,方程化为(4)3x x --=,解得1x =,因为4x <,所以1x =符合题意;所以方程的解为1x =.(2)当2x -时,原方程化为:323x x x -++=,解得53x =, 因为2x -, 所以53x =不符合题意; 当23x -<时,原方程化为:3(2)3x x x --+=, 解得15x =, 因为23x -<, 所以15x =符合题意; 当3x >时,原方程化为:3(2)3x x x --+=, 解得53x =-, 因为3x >, 所以53x =-不符合题意; 故方程的解为15x =. 3.某班数学兴趣小组探索绝对值方程的解法.例如解绝对值方程:|2|1x =.解:分类讨论:当0x 时,原方程可化为21x =,它的解是12x =. 当0x <时,原方程可化为21x -=,它的标是12x =-. ∴原方程的解为12x =或12x =-. (1)依例题的解法,方程1||32x =的解是 6x =或6x =- . (2)在尝试解绝对值方程|2|3x -=时,小明提出想法可以继续依例题的方法用分类讨论的思想把绝对值方程转化为不含绝对值方程,试按小明的思路完成解方程过程;(3)在尝试解绝对值方程|3|5x -=时,小丽提出想法,也可以利用数形结合的思想解绝对值方程,在前面的学习中我们知道,||a b -表示数a ,b 在数轴上对应的两点A 、B 之间的距离,则|3|5x -=表示数x 与3在数轴上对应的两点之间的距离为5个单位长度,结合数轴可得方程的解是 ;(4)在理解上述解法的基础上,自选方法解关于x 的方程|2||1|(0)x x m m -+-=>;(如果用数形结合的思想,简要画出数轴,并加以必要说明).【解答】解:(1)当0x 时,原方程可化为132x =,它的解是6x =, 当0x <时,原方程可化为132x -=,它的解是6x =-, ∴原方程的解为6x =或6x =-,故答案为:6x =或6x =-;(2)当2x 时,原方程可化为23x -=,它的解是5x =,当2x <时,原方程可化为23x -+=,它的解是1x =-,∴原方程的解为5x =或1x =-,故答案为:5x =或1x =-;(3)数轴上与3的点距离是5的点分别是8或2-,∴方程的解是8x =或2x =-,故答案为:8x =或2x =-;(4)当2x 时,21x x m -+-=,解得32m x +=; 当12x <<时,21x x m -+-=,可得1m =;当1x 时,21x x m -+-=,解得32m x -=; ∴当1m =时,方程有无数解;当01m <<时,方程无解;当1m >时,32m x +=或32m x -=. 4.【我阅读】解方程:|5|2x +=.解:当50x +时,原方程可化为:52x +=,解得3x =-;当50x +<时,原方程可化为:52x +=-,解得7x =-.所以原方程的解是3x =-或7x =-.【我会解】解方程:|32|50x --=.【解答】解:当320x -时,原方程可化为:3250x --=, 解得73x =; 当320x -<时,原方程可化为:3250x -+-=,解得1x =-. 所以原方程的解是73x =或1x =.5.[现场学习]定义:我们把绝对值符号内含有未知数的方程叫做“含有绝对值的方程”.如:||2x =,|21|3x -=,1||22x x --=,⋯都是含有绝对值的方程. 怎样求含有绝对值的方程的解呢?基本思路是:含有绝对值的方程→不含有绝对值的方程. 我们知道,根据绝对值的意义,由||2x =,可得2x =或2x =-.[例]解方程:|21|3x -=.我们只要把21x -看成一个整体就可以根据绝对值的意义进一步解决问题.解:根据绝对值的意义,得213x -=或21x -= 3- .解这两个一元一次方程,得2x =或1x =-;经检验可知,原方程的解是2x =或1x =-.[解决问题] 解方程:1||22x x --=. 解:根据绝对值的意义,得12x -= 或12x -= , 解这两个一元一次方程,得x = 或x = ,经检验可知,原方程的解是 .[学以致用]解方程:|21||56|x x +=-.【解答】解:[解决问题]1||22x x --=, 根据绝对值的意义,得122x x --=或122x x ---=, ∴122x x -=+或122x x -=--, 解这两个一元一次方程,得5x =-或1x =-,经检验可知,原方程的解是1x =-;故答案为:2x +,2x --,5-,1-,1x =-;[学以致用]|21||56|x x +=-,根据绝对值的意义,得2156x x +=-或2156x x +=-+,解这两个一元一次方程,得73x =或57x =, 经检验可知,原方程的解是73x =或57x =. 6.有些含绝对值的方程,可以通过分类讨论去掉绝对值,转化成一元一次方程求解. 例如:解方程2||3x x +=.解:当0x 时,方程可化为:23331x x x x +===,符合题意.当0x <时,方程可化为:2333x x x x -=-==-,符合题意.所以原方程的解为:1x =或3x =-.仿照上面解法,解方程:3|1|7x x +-=.【解答】解:当1x 时,3(1)7x x +-=, 解得52x =; 当1x <时,3(1)7x x --=,解得2x =-;∴原方程的解为:52x =或2x =-. 7.阅读下题和解题过程:化简|2|12(2)x x -+--,使结果不含绝对值.解:①当20x -时,即2x 时,原式21243x x x =-+-+=-+;②当20x -<,即2x <时,原式(2)124x x =--+-+37x =-+这种解题的方法叫“分类讨论法”.请你用“分类讨论法”解下列方程:(1)|3|5x -=;(2)2(|2|1)3x x +-=+.【解答】解:(1)①当30x -时,即3x ,35x -=,解得:8x =;②当30x -<,即3x <,35x -+=,解得:2x =-;∴方程|3|5x -=的解为8x =或2-;(2)①当20x +时,即2x -,2(21)3x x +-=+,解得:1x =;②当20x +<,即2x <-,2(21)3x x ---=+,解得:3x =-;∴方程2(|2|1)3x x +-=+的解为1x =或3-.8.阅读下列问题:例.解方程|2|5x =.解:当20x ,即0x 时,25x =,52x ∴=; 当20x <,即0x <时,25x -=,52x ∴=-. ∴方程|2|5x =的解为52x =或52x =. 请你参照例题的解法,求方程21||13x -=的解. 【解答】解:当210x -时,即12x, 2113x -=, 2x ∴=;当210x -<时,即12x <, 2113x -=-, 1x ∴=-;∴方程21||13x -=的解为1x =-或2x =. 9.阅读下列材料,回答问题:“数形结合”的思想是数学中一种重要的思想.例如:在我们学习数轴的时候,数轴上任意两点A 表示的数为a ,B 表示的数为b ,则A 、B 两点的距离可用式子||a b -表示.例如:5和2-的距离可用|5(2)|--或|25|--来表示.【知识应用】我们解方程|5|2x -=时,可用把|5|x -看作一个点x 到5的距离,则该方程可看作在数轴上找一点(P P 表示的数为)x 与5的距离为2,所以该方程的解为7x =或3x =.所以,方程|5|2x +=的解为 3x =-或7x =- .(直接写答案,不需过程)【知识拓展】我们在解方程|5||2|7x x -++=时,可以设A 表示数5,B 表示数2-,P 表示数x ,该方程可以看作在数轴上找一点P 使得7PA PB +=,因为7AB =,所以由图可知,P 在线段AB 上都可,所以该方程有无数解,x 的取值范围是25x -.类似的,方程|4||6|10x x ++-=的解 (填“唯一”或“不唯一” ),x 的取值是 .( “唯一”填x 的值,“不唯一”填x 的取值范围);【拓展应用】解方程|4||6|14x x ++-=.【解答】解:【知识应用】|5||(5)|x x +=--,|5|x ∴+可以看成是数轴上点A 所表示的数x 与5-的距离, 52x ∴+=或52x +=-,解得:3x =-或7x =-,故答案为:3x =-或7x =-;【知识拓展】设A 表示数4-,B 表示数6,P 表示数x , ∴方程|4||6|10x x ++-=可以看作在数轴上找一点P 使得10PA PB +=, ∴点P 必在线段AB 上,∴该方程的解不唯一,x 的取值范围是46x -,故答案为:不唯一,46x -,【拓展应用】|4||6|14x x ++-=,设A 表示数4-,B 表示数6,P 表示数x ,①当点P 位于线段AB 上时,|4||6|4610x x x x ++-=++-=(不合题意,舍去), ②当点P 位于A 点左侧时,|4||6|462214x x x x x ++-=---+=-+=,解得:6x =-,③当点P 位于B 点右侧时,|4||6|462214x x x x x ++-=++-=-=,解得:8x =,综上,6x =-或8x =.10.先阅读下列解题过程,然后回答问题.解方程:|4|3x +=.解:当40x +时,原方程可化为43x +=,解得1x =-; 当40x +<时,原方程可化为43x +=-,解得7x =-. ∴原方程的解是1x -或7x =-.根据上面的解题过程,解方程:|33|60x --=.【解答】解:当330x -时,原方程可化为3360x --=,解得3x =; 当330x -<时,原方程可化为(33)60x ---=,解得1x =-. 所以原方程的解是3x =或1x =-.11.阅读下面的解题过程:解方程:|5|2x =.解:(1)当50x 时,原方程可化为一元一次方程52x =,解得25x =; (2)当50x <时,原方程可化为一元一次方程52x -=,解得25x =-. 请同学们仿照上面例题的解法,解方程3|1|210x --=.【解答】解:(1)当10x -时,原方程可化为一元一次方程3(1)210x --=,解得5x =;(2)当10x -<时,原方程可化为一元一次方程3(1)210x ---=,解得3x =-.12.(1)阅读下列材料并填空.例:解方程|2||3|5x x +++=解:①当3x <-时,20x +<,30x +<,所以|2|2x x +=--,|3|3x x +=--所以原方程可化为 (1) 5=解得x =②当32x -<-时,20x +<,30x +,所以|2|2x x +=--,|3|3x x +=+所以原方程可化为235x x --++=15=所以此时原方程无解③当2x -时,20x +,30x +>,所以|2|x += ,|3|x +=所以原方程可化为 5=解得x =(2)用上面的解题方法解方程:|1||2|6x x x +--=-.【解答】解:(1)①当3x <-时,20x +<,30x +<, 所以|2|2x x +=--,|3|3x x +=--所以原方程可化为:235x x ----=解得:5x =-②当32x -<-时,20x +<,30x +,所以|2|2x x +=--,|3|3x x +=+所以原方程可化为235x x --++=15=所以此时原方程无解③当2x -时,20x +,30x +>,所以|2|2x x +=+,|3|3x x +=+所以原方程可化为235x x +++=解得0x =故答案为:23x x ----,5-,2x +,3x +,23x x +++,0(2)令10x +=,20x -=时,1x ∴=-或2x =.当1x <-时,10x ∴+<,20x -<,|1|1x x ∴+=--,|2|2x x -=-+,1(2)6x x x ∴----+=-3x ∴=(不符合题意,所以无解)当12x -<时,|1|1x x ∴+=+,|2|2x x -=-+,126x x x ∴++-=-5x ∴=-(不符合题意,所以无解)当2x 时,|1|1x x ∴+=+,|2|2x x -=-,126x x x ∴+-+=-9x ∴=.综上所述,x 的解为:9x =.13.先阅读下列解题过程,然后解答问题(1)、(2)解方程:|3|1x = 解:①当30x 时,原方程可化为一元一次方程为31x =,它的解是13x =②当30x <时,原方程可化为一元一次方程为31x -=,它的解是13x =-. (1)请你模仿上面例题的解法,解方程:2|3|513x -+=(2)探究:当b 为何值时,方程|2|1x b -=+①无解;②只有一个解;③有两个解.【解答】(1)解:当30x -时,原方程可化为一元一次方程为2(3)513x -+=,方程的解是7x =;②当30x -<时,原方程可化为一元一次方程为2(3)513x -+=,方程的解是1x =-;所以方程的解是7x =或1x =-;(2)解:|2|0x -,∴当10b +<,即1b <-时,方程无解;当10b +=,即1b =-时,方程只有一个解;当10b +>,即1b >-时,方程有两个解.14.先阅读,后解题:符号|2|-表示2-的绝对值为2,|2|+表示2+的绝对值为2,如果||2x =那么2x =或2x =-. 若解方程|1|2x -=,可将绝对值符号内的1x -看成一个整体,则可得12x -=或12x -=-,分别解方程可得3x =或1x =-,利用上面的知识,解方程:|21|70x --=.【解答】解:移项得,|21|7x -=,根据绝对值的意义,得217x -=或217x -=-,解得4x =或3x =-.15.定义:我们把绝对值符号内含有未知数的方程叫做含有绝对值的方程.如||2x =,|21|3x -=,1||12x x --=,⋯,都是含有绝对值的方程.含有绝对值的方程的解题思路是将含有绝对值的方程转化为不含有绝对值的方程.我们知道,根据绝对值的意义,由||2x =,可得2x =或2x =-.[例]解方程:|21|3x -=.解析:我们只要把21x -看成一个整体就可以根据绝对值的意义进一步解决问题. 解:根据绝对值的意义,得213x -=或21x -= 3- .解这两个一元一次方程,得2x =或1x =-.检验:(1)当2x =时,原方程的左边|21||221|3x =-=⨯-=,右边3=,因为左边=右边,所以2x =是原方程的解.(2)当1x =-时,原方程的左边|21||2(1)1|3x =-=⨯--=.右边3=,因为左边=右边,所以1x =-是原方程的解.综合(1)(2)可知,原方程的解是2x =或1x =-. 【解决问题】解方程:1||12x x --=. 【解答】解:1||12x x --=, 1||12x x -∴=+, ∴112x x -=+或112x x -=--, 解得3x =-或13x =-, 检验:当3x =-时,原方程的左边131||||3522x x ---=-=+=,右边≠右边,因为左边=右边,所以3x =-不是原方程的解, (2)当13x =-时,原方程的左边11113||||1223x x ---=-=+=.右边1=,因为左边=右边,所以13x =-是原方程的解, ∴原方程的解是13x =-.16.阅读所给材料,解决问题:分类讨论思想是求解带绝对值的方程的常用方法,例如,解方程|2|3x -=时,我们需要讨论2x -的正负性,当20x -时,原方程可化为23x -=,解得5x =;当20x -<时,原方程可化为(2)3x --=,即23x -=,解得1x -,所以原绝对值方程的解为5x =,或1x =-.(1)求解方程|1|52x x +-=; (2)若关于x 的方程|3|123x m +-=-+只有1个解,求方程的解及m 的值.【解答】解:(1)|1|52x x +-=, 当1x 时 原方程可化为152x x +-=; 解得4x =, 当1x <时,原方程可化为程152x x +-=; 解得8x =-, ∴原方程的解为8x =-或4x =;(2)|3|123x m +-=-+,当3x -时,原方程可化为3123x m +-=-+,解得12x m =-,当3x <-时,原方程可化为3123x m ---=-+,解得27x m =-,方程只有一个解,当123m -<-时,2m >,则273m ->-,此时方程无解;当273m --时,2m ,则123m --,此时方程有一个解,2m ∴=,方程的解为3x =-.17.阅读理解:在解形如3|2||2|4x x -=-+这一类含有绝对值的方程时,可以根据绝对值的意义分2x <和2x 两种情况讨论:当2x <时,原方程可化为3(2)(2)4x x --=--+,解得:0x =,符合2x <. 当2x 时,原方程可化为3(2)(2)4x x -=-+,解得:4x =,符合2x . ∴原方程的解为:0x =或4x =.解题回顾:本题中,2为(2)x -的零点,它把数轴上的点所对应的数分成了2x <和2x 两部分,所以分2x <和2x 两种情况讨论.尝试应用:(1)仿照上面方法解方程:|3|83|3|x x -+=-.迁移拓展:(2)运用分类讨论先去绝对值符号的方法解方程:|3|3|2|9x x x --+=-. (提示:本题中有两个零点,它们把数轴上的点所对应的数分成了几部分呢?)【解答】解:(1)分两种情况:当3x <时,原方程可化为:383(3)x x -+=-,解得:1x =-,符合3x <, 当3x 时,原方程可化为:383(3)x x -+=-,解得:7x =,符合3x , ∴原方程的解为:1x =-或7x =;(2)分三种情况讨论:当2x <-时,原方程可化为:33(2)9x x x -++=-,解得:18x =-,符合2x <-, 当23x -<时,原方程可化为:33(2)9x x x --+=-,解得:65x =,符合23x -<, 当3x 时,原方程可化为:33(2)9x x x --+=-,解得:0x =,不符合3x , ∴原方程的解为:18x =-或65x =.。

专题04一元一次方程的应用(专题测试)(解析版)

专题04 一元一次方程的应用(专题测试)一、单选题1.商店将某种商品按进货价提高100%后,又以八折售出,售价为80元,则这种商品的进价是()A. 100元B. 80元C. 60元D. 50元【答案】D【考点】一元一次方程的实际应用-销售问题【解答】设进货价为x元,由题意得:80% (1+100%)x=80,解得:x=50,故答案为:D.【分析】由题意可得相等关系:(1+提高的百分数)×折数=实际的售价,根据相等关系列方程即可求解。

2.小明爷爷今年的年龄是小明的5倍,4年后,爷爷的年龄是小明的4倍,求小明今年的年龄?设小明今年的年龄为岁,根据题意,列出方程正确的是()A. B. C. D.【答案】B【考点】一元一次方程的其他应用【解答】设小明今年x岁,根据题意得:5x+4=4(x+4)故答案为:B.【分析】由题意可得,4年后,爷爷的年龄为(5x+4),小明的年龄为(x+4),其中相等关系是:4年后,爷爷的年龄=4×小明的年龄,由相等关系即可列出方程。

3.某班分两组志愿者去社区服务,第一组20人,第二组26人.现第一组发现人手不够,需第二组支援.问从第二组调多少人去第一组才能使第一组的人数是第二组的2倍?设抽调x人,则可列方程()A. 20=2(26﹣x)B. 20+x=2×26C. 2(20+x)=26﹣xD. 20+x=2(26﹣x)【答案】D【考点】一元一次方程的其他应用【解答】解:设抽调x人,由题意得:20+x=2(26-x),故答案为:D【分析】根据调去后“第一组才能使第一组的人数是第二组的2倍”进行列方程.4.下图是“沃尔玛”超市中“飘柔”洗发水的价格标签,一服务员不小心将墨水滴在标签上,使得原价看不清楚,请你帮忙算一算,该洗发水的原价为( )A. 22元B. 23元C. 24元D. 26元【答案】C【考点】一元一次方程的实际应用-销售问题【解答】设洗发水的原价为x元,根据题意,得0.8x=19.2,解得x=24故答案为:C.【分析】设原价为x元,根据原价×折扣数=实际售价列出方程,解得x的值即可。

(完整版)华师大版七年级下册一元一次方程练习及答案解析

华师大版七年级下册一元一次方程练习题一.选择题(共10小题)1.(2012•铜仁地区)铜仁市对城区主干道进行绿化,计划把某一段公路的一侧全部栽上桂花树,要求路的两端各栽一棵,并且每两棵树的间隔相等.如果每隔5米栽1棵,则树苗缺21棵;如果每隔6米栽1棵,则树苗正好用完.设原有树苗x棵,则根据题意列出方程正确的是()A.5(x+21﹣1)=6(x﹣1)B.5(x+21)=6(x﹣1)C.5(x+21﹣1)=6x D.5(x+21)=6x 2.(2012•台湾)如图为制作果冻的食谱,傅妈妈想依此食谱内容制作六人份的果冻.若她加入50克砂糖后,不足砂糖可依比例换成糖浆,则她需再加几小匙糖浆?()A.15 B.18 C.21 D.243.某商品每件的标价是330元,按标价的八折销售时,仍可获利10%,则这种商品每件的进价为()A.240元B.250元C.280元D.300元4.(2011•铜仁地区)小明从家里骑自行车到学校,每小时骑15km,可早到10分钟,每小时骑12km就会迟到5分钟.问他家到学校的路程是多少km?设他家到学校的路程是xkm,则据题意列出的方程是()A.B.C.D.5.(2011•日照)某道路一侧原有路灯106盏,相邻两盏灯的距离为36米,现计划全部更换为新型的节能灯,且相邻两盏灯的距离变为70米,则需更换的新型节能灯有()A.54盏B.55盏C.56盏D.57盏6.(2010•枣庄)如图(1),把一个长为m,宽为n的长方形(m>n)沿虚线剪开,拼接成图(2),成为在一角去掉一个小正方形后的一个大正方形,则去掉的小正方形的边长为()A.B.m﹣n C.D.7.(2010•内江)某品牌服装折扣店将某件衣服按进价提高50%后标价,再打8折(标价的80%)销售,售价为240元.设这件衣服的进价为x元,根据题意,下面所列的方程正确的是()A.x•50%×80%=240 B.x•(1+50%)×80%=240 C.240×50%×80%=x D.x•(1+50%)=240×80% 8.元旦那天,6位朋友均匀地围坐在圆桌旁共度佳节.圆桌半径为60cm,每人离圆桌的距离均为10cm,现又来了两名客人,每人向后挪动了相同的距离,再左右调整位置,使8人都坐下,并且8人之间的距离与原来6人之间的距离(即在圆周上两人之间的圆弧的长)相等.设每人向后挪动的距离为x,根据题意,可列方程()A.B.C.2π(60+10)×6=2π(60+π)×8 D.2π(60﹣x)×8=2π(60+x)×69.(2007•陕西)中国人民银行宣布,从2007年6月5日起,上调人民币存款利率,一年定期存款利率上调到3.06%,某人于2007年6月5日存入定期为1年的人民币5000元(到期后银行将扣除20%的利息锐),设到期后银行应向储户支付现金x元,则所列方程正确的是()A.x﹣5000=5000×3.06% B.x+5000×20%=5000×(1+3.06%)C.x+5000×3.06%×20%=5000×3.06% D.x+5000×3.06%×20%=5000×(1+3.06%)10.(2006•武汉)越来越多的商品房空置是目前比较突出的问题,据国家有关部门统计:2006年第一季度全国商品房空置面积为1.23亿m2,比2005年第一季度增长23.8%,下列说法:①2005年第一季度全国商品房空置面积为亿m2;②2005年第一季度全国商品房空置面积为亿m2;③若按相同增长率计算,2007年第一季度全国商品房空置面积将达到1.23×(1+23.8%)亿m2;④如果2007年第一季度全国商品房空置面积比2006年第一季度减少23.8%,那么2007年第一季度全国商品空置面积与2005年第一季度相同.其中正确的是()A.①,④B.②,④C.②,③D.①,③二.填空题(共6小题)11.(2012•山西)图1是边长为30cm的正方形纸板,裁掉阴影部分后将其折叠成如图2所示的长方体盒子,已知该长方体的宽是高的2倍,则它的体积是_________cm3.12.(2012•眉山)某学校有80名学生,参加音乐、美术、体育三个课外小组(每人只参加一项),这80人中若有40%的人参加体育小组,35%的人参加美术小组,则参加音乐小组的有_________人.13.(2012•鄂尔多斯)某超市在“五一”活动期间,推出如下购物优惠方案:①一次性购物在100元(不含100元)以内,不享受优惠;②一次性购物在100元(含100元)以上,350元(不含350元)以内,一律享受九折优惠;③一次性购物在350元(含350元)以上,一律享受八折优惠.小敏在该超市两次购物分别付款60元和288元.如果小敏把这两次购物改为一次性购物,则应付款____元.14.(2011•昆明)某公司只生产普通汽车和新能源汽车,该公司在去年的汽车产量中,新能源汽车占总产量的10%,今年由于国家能源政策的导向和油价上涨的影响,计划将普通汽车的产量减少10%,为保持总产量与去年相等,那么今年新能源汽车的产量应增加的百分数为_________.15.(2011•德州)长为1,宽为a的矩形纸片(),如图那样折一下,剪下一个边长等于矩形宽度的正方形(称为第一次操作);再把剩下的矩形如图那样折一下,剪下一个边长等于此时矩形宽度的正方形(称为第二次操作);如此反复操作下去.若在第n此操作后,剩下的矩形为正方形,则操作终止.当n=3时,a的值为_________.16.(2007•桂林)如图是2004年6月份的日历,如图那样,用一个圈竖着圈住3个数,如果被圈的三个数的和为39,则这三个数中最大的一个为_________.三.解答题(共9小题)17.(2012•梧州)今年5月,在中国武汉举办了汤姆斯杯羽毛球团体赛.在27日的决赛中,中国队占胜韩国队夺得了冠军.某羽毛球协会组织一些会员到现场观看了该场比赛.已知该协会购买了每张300元和每张400元的两种门票共8张,总费用为2700元.请问该协会购买了这两种门票各多少张?18.(2012•无锡)某开发商进行商铺促销,广告上写着如下条款:投资者购买商铺后,必须由开发商代为租赁5年,5年期满后由开发商以比原商铺标价高20%的价格进行回购,投资者可在以下两种购铺方案中做出选择:方案一:投资者按商铺标价一次性付清铺款,每年可以获得的租金为商铺标价的10%.方案二:投资者按商铺标价的八五折一次性付清铺款,2年后每年可以获得的租金为商铺标价的10%,但要缴纳租金的10%作为管理费用.(1)请问:投资者选择哪种购铺方案,5年后所获得的投资收益率更高?为什么?(注:投资收益率=×100%)(2)对同一标价的商铺,甲选择了购铺方案一,乙选择了购铺方案二,那么5年后两人获得的收益将相差5万元.问:甲、乙两人各投资了多少万元?19.(2012•天津)某通讯公司推出了移动电话的两种计费方式(详情见下表).月使用费/元主叫限定时间/分主叫超时费/(元/分)被叫方式一58 150 0.25 免费方式二88 350 0.19 免费设一个月内使用移动电话主叫的时间为t分(t为正整数),请根据表中提供的信息回答下列问题:(Ⅰ)用含有t的式子填写下表:t≤150 150<t<350 t=350 t>350方式一计费/元 58 _________ 108 _________方式二计费/元 88 88 88 _________(Ⅱ)当t 为何值时,两种计费方式的费用相等?(Ⅲ)当330<t <360时,你认为选用哪种计费方式省钱(直接写出结果即可).20.(2011•连云港)根据我省“十二五”铁路规划,连云港至徐州客运专线项目建成后,连云港至徐州的最短客运时间将由现在的2小时18分缩短为36分钟,其速度每小时将提高260km .求提速后的火车速度.(精确到1km/h )21.(2012•淮安)某省公布的居民用电阶梯电价听证方案如下:第一档电量 第二档电量 第三档电量月用电量210度以下,每度价格0.52元 月用电量210度至350度,每度比第一档提价0.05元 月用电量350度以上,每度比第一档提价0.30元例:若某户月用电量400度,则需交电费为210×0.52+(350﹣210)×(0.52+0.05)+(400﹣350)×(0.52+0.30)=230(元)(1)如果按此方案计算,小华家5月份的电费为138.84元,请你求出小华家5月份的用电量;(2)以此方案请你回答:若小华家某月的电费为a 元,则小华家该月用电量属于第几档?22.(2008•郴州)我国政府从2007年起对职业中专在校学生给予生活补贴.每生每年补贴1500元.某市预计2008年职业中专在校生人数是2007年的1.2倍,且要在2007年的基础上增加投入600万元.2008年该市职业中专在校生有多少万人,补贴多少万元?23.(2007•宿迁)某公司在中国意杨之乡﹣﹣宿迁,收购了1600 m 3杨树,计划用20天完成这项任务,已知该公司每天能够精加工杨树50 m 3或者粗加工杨树100 m 3.则:(1)该公司应如何安排精加工、粗加工的天数,才能按期完成任务?(2)若每立方米杨树精加工、粗加工后的利润分别是500元、300元,则该公司加工后的木材可获利多少元?(结果保留两个有效数字)24.(2007•湖州)自选题:如图,正方形ABCD的周长为40米,甲、乙两人分别从A、B同时出发,沿正方形的边行走,甲按逆时针方向每分钟行55米,乙按顺时针方向每分钟行30米.(1)出发后_________分钟时,甲乙两人第一次在正方形的顶点处相遇;(2)如果用记号(a,b)表示两人行了a分钟,并相遇过b次,那么当两人出发后第一次处在正方形的两个相对顶点位置时,对应的记号应是_________.25.(2006•郴州)售货员:“快来买啦,特价鸡蛋,原价每箱14元,现价每箱12元,每箱有鸡蛋30个.”顾客甲:“我店里买了一些这种特价鸡蛋,花的钱比按原价买同样多鸡蛋花的钱的2倍少96元.”乙顾客:“我家买了相同箱数的特价的鸡蛋,结果18天后,剩下的20个鸡蛋全坏了.”请你根据上面的对话,解答下面的问题:(1)顾客乙买的两箱鸡蛋合算吗?说明理由.(2)请你求出顾客甲店里买了多少箱这种特价鸡蛋,假设这批特价鸡蛋的保质期还有18天,那么甲店里平均每天要消费多少个鸡蛋才不会浪费?华师大版七年级下册一元一次方程练习题参考答案与试题解析一.选择题(共10小题)1.(2012•铜仁地区)铜仁市对城区主干道进行绿化,计划把某一段公路的一侧全部栽上桂花树,要求路的两端各栽一棵,并且每两棵树的间隔相等.如果每隔5米栽1棵,则树苗缺21棵;如果每隔6米栽1棵,则树苗正好用完.设原有树苗x棵,则根据题意列出方程正确的是()A.5(x+21﹣1)=6(x﹣1)B.5(x+21)=6(x﹣1)C.5(x+21﹣1)=6x D.5(x+21)=6x考点:由实际问题抽象出一元一次方程.分析:设原有树苗x棵,根据首、尾两端均栽上树,每间隔5米栽一棵,则缺少21棵,可知这一段公路长为5(x+21﹣1);若每隔6米栽1棵,则树苗正好用完,可知这一段公路长又可以表示为6(x﹣1),根据公路的长度不变列出方程即可.解答:解:设原有树苗x棵,由题意得5(x+21﹣1)=6(x﹣1).故选A.点评:考查了由实际问题抽象出一元一次方程,本题是根据公路的长度不变列出的方程.“表示同一个量的不同式子相等”是列方程解应用题中的一个基本相等关系,也是列方程的一种基本方法.2.(2012•台湾)如图为制作果冻的食谱,傅妈妈想依此食谱内容制作六人份的果冻.若她加入50克砂糖后,不足砂糖可依比例换成糖浆,则她需再加几小匙糖浆?()A.15 B.18 C.21 D.24考点:一元一次方程的应用.分析:根据六人份需20×6=120克砂糖,尚需120﹣50=70克砂糖,再利用20克砂糖=6小匙糖浆,即可得出答案.解答:解:六人份需20×6=120克砂糖,尚需120﹣50=70克砂糖,又20克砂糖=6小匙糖浆,所求=70÷20×6=21(小匙).故选:C.点评:此题主要考查了实际生活问题的应用,根据标签上所标示的20克砂糖=6小匙糖浆得出答案是解题关键.3.(2012•牡丹江)某商品每件的标价是330元,按标价的八折销售时,仍可获利10%,则这种商品每件的进价为()A.240元B.250元C.280元D.300元考点:一元一次方程的应用.专题:应用题.分析:设这种商品每件的进价为x元,则根据按标价的八折销售时,仍可获利l0%,可得出方程,解出即可.解答:解:设这种商品每件的进价为x元,由题意得:330×0.8﹣x=10%x,解得:x=240,即这种商品每件的进价为240元.故选A.点评:此题考查了一元一次方程的应用,属于基础题,解答本题的关键是根据题意列出方程,难度一般.4.(2011•铜仁地区)小明从家里骑自行车到学校,每小时骑15km,可早到10分钟,每小时骑12km就会迟到5分钟.问他家到学校的路程是多少km?设他家到学校的路程是xkm,则据题意列出的方程是()A.B.C.D.考点:由实际问题抽象出一元一次方程.专题:探究型.分析:先设他家到学校的路程是xkm,再把10分钟、5分钟化为小时的形式,根据题意列出方程,选出符合条件的正确选项即可.解答:解:设他家到学校的路程是xkm,∵10分钟=小时,5分钟=小时,∴+=﹣.故选A.点评:本题考查的是由实际问题抽象出一元一次方程,解答此题的关键是把10分钟、5分钟化为小时的形式,这是此题的易错点.5.(2011•日照)某道路一侧原有路灯106盏,相邻两盏灯的距离为36米,现计划全部更换为新型的节能灯,且相邻两盏灯的距离变为70米,则需更换的新型节能灯有()A.54盏B.55盏C.56盏D.57盏考点:一元一次方程的应用.专题:优选方案问题.分析:可设需更换的新型节能灯有x盏,根据等量关系:两种安装路灯方式的道路总长相等,列出方程求解即可.解答:解:设需更换的新型节能灯有x盏,则70(x﹣1)=36×(106﹣1),70x=3850,x=55,则需更换的新型节能灯有55盏.故选B.点评:本题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.注意根据实际问题采取进1的近似数.6.(2010•枣庄)如图(1),把一个长为m,宽为n的长方形(m>n)沿虚线剪开,拼接成图(2),成为在一角去掉一个小正方形后的一个大正方形,则去掉的小正方形的边长为()A.B.m﹣n C.D.考点:一元一次方程的应用.专题:几何图形问题.分析:此题的等量关系:大正方形的面积=原长方形的面积+小正方形的面积.特别注意剪拼前后的图形面积相等.解答:解:设去掉的小正方形的边长为x,则:(n+x)2=mn+x2,解得:x=.故选A.点评:本题考查同学们拼接剪切的动手能力,解决此类问题一定要联系方程来解决.7.(2010•内江)某品牌服装折扣店将某件衣服按进价提高50%后标价,再打8折(标价的80%)销售,售价为240元.设这件衣服的进价为x元,根据题意,下面所列的方程正确的是()A.x•50%×80%=240 B.x•(1+50%)×80%=240 C.240×50%×80%=x D.x•(1+50%)=240×80%考点:由实际问题抽象出一元一次方程.专题:销售问题.分析:等量关系为:标价×8折=240,把相关数值代入即可求得所求的方程.解答:解:这件衣服的标价为x•(1+50%),打8折后售价为x•(1+50%)×80%,可列方程为x•(1+50%)×80%=240,故选B.点评:根据实际售价找到相应的等量关系是解决问题的关键,注意应先算出这件衣服的标价.8.(2008•新疆)元旦那天,6位朋友均匀地围坐在圆桌旁共度佳节.圆桌半径为60cm,每人离圆桌的距离均为10cm,现又来了两名客人,每人向后挪动了相同的距离,再左右调整位置,使8人都坐下,并且8人之间的距离与原来6人之间的距离(即在圆周上两人之间的圆弧的长)相等.设每人向后挪动的距离为x,根据题意,可列方程()A.B.C.2π(60+10)×6=2π(60+π)×8 D.2π(60﹣x)×8=2π(60+x)×6考点:由实际问题抽象出一元一次方程.专题:几何图形问题.分析:首先理解题意找出题中存在的等量关系:8人之间的距离=原来6人之间的距离,根据等量关系列方程即可.解答:解:设每人向后挪动的距离为x,则这8个人之间的距离是:,6人之间的距离是:,根据等量关系列方程得:=.故选A.点评:列方程解应用题的关键是找出题目中的相等关系.9.(2007•陕西)中国人民银行宣布,从2007年6月5日起,上调人民币存款利率,一年定期存款利率上调到3.06%,某人于2007年6月5日存入定期为1年的人民币5000元(到期后银行将扣除20%的利息锐),设到期后银行应向储户支付现金x元,则所列方程正确的是()A.x﹣5000=5000×3.06% B.x+5000×20%=5000×(1+3.06%)C.x+5000×3.06%×20%=5000×3.06% D.x+5000×3.06%×20%=5000×(1+3.06%)考点:由实际问题抽象出一元一次方程.专题:应用题.分析:首先理解题意找出题中存在的等量关系:不扣除利息税的一年本息和=本金+利息=本金×(1+利率),根据此等式列方程即可.解答:解:设到期后银行应向储户支付现金x元,根据等式:不扣除利息税的一年本息和=本金+利息=本金×(1+利率),列方程得x+5000×3.06%×20%=5000×(1+3.06%).故选D.点评:注意本金、利息、利息税、利率之间的关系.10.(2006•武汉)越来越多的商品房空置是目前比较突出的问题,据国家有关部门统计:2006年第一季度全国商品房空置面积为1.23亿m2,比2005年第一季度增长23.8%,下列说法:①2005年第一季度全国商品房空置面积为亿m2;②2005年第一季度全国商品房空置面积为亿m2;③若按相同增长率计算,2007年第一季度全国商品房空置面积将达到1.23×(1+23.8%)亿m2;④如果2007年第一季度全国商品房空置面积比2006年第一季度减少23.8%,那么2007年第一季度全国商品空置面积与2005年第一季度相同.其中正确的是()A.①,④B.②,④C.②,③D.①,③考点:一元一次方程的应用.专题:增长率问题.分析:此题主要是套用有关增长率的公式:基数×(1+增长率)=增长后的面积,理解清题意,分析即可.解答:解:①若设2005年第一季度全国商品房空置面积是x亿m2.根据增长率的意义,得:x(1+23.8%)=1.23,则x=亿m2,正确;②由①知,错误;③根据增长率的意义,正确;④由于增长和降低的基数不相同,故2007年第一季度全国商品空置面积与2005年第一季度不相同,错误.故选D.点评:注意增长和降低的基数,能够根据增长率和降低率正确表示两个量之间的关系.二.填空题(共6小题)11.(2012•山西)图1是边长为30cm的正方形纸板,裁掉阴影部分后将其折叠成如图2所示的长方体盒子,已知该长方体的宽是高的2倍,则它的体积是1000cm3.考点:一元一次方程的应用.分析:设长方体的高为xcm,然后表示出其宽为30﹣4x,利用宽是高的2倍列出方程求得小长方体的高后计算其体积即可.解答:解:长方体的高为xcm,然后表示出其宽为30﹣4x,根据题意得:30﹣4x=2x解得:x=5故长方体的宽为10,长为20cm则长方体的体积为5×10×20=1000cm3.故答案为1000.点评:本题考查了一元一次方程的应用,解题的关键是找到等量关系并列出方程.12.(2012•眉山)某学校有80名学生,参加音乐、美术、体育三个课外小组(每人只参加一项),这80人中若有40%的人参加体育小组,35%的人参加美术小组,则参加音乐小组的有20人.考点:一元一次方程的应用.分析:设参加音乐小组的人数为x,则根据总数为80可得出方程,解出即可得出答案.解答:解:设参加音乐小组的人数为x,则由题意得:80×40%+80×35%+x=80,解得:x=20,即参加音乐小组的有20人.故答案为:20.点评:此题考查了一元一次方程的应用,解答本题可以利用方程求解,也可以运用代数式的知识求解,例如:先求出参加音乐小组的人数所占的比例,然后乘以80即可.13.(2012•鄂尔多斯)某超市在“五一”活动期间,推出如下购物优惠方案:①一次性购物在100元(不含100元)以内,不享受优惠;②一次性购物在100元(含100元)以上,350元(不含350元)以内,一律享受九折优惠;③一次性购物在350元(含350元)以上,一律享受八折优惠.小敏在该超市两次购物分别付款60元和288元.如果小敏把这两次购物改为一次性购物,则应付款304或336元.考点:一元一次方程的应用.分析:要求他一次性购买以上两次相同的商品,应付款多少元,就要先求出两次一共实际买了多少元,第一次购物显然没有超过100元,即是60元.第二次就有两种情况,一种是超过100元但不超过350元一律9折;一种是购物不低于350元一律8折,依这两种计算出它购买的实际款数,再按第三种方案计算即是他应付款数.解答:解:第一次购物显然没有超过100元,即在第二次消费60元的情况下,他的实质购物价值只能是60元.第二次购物消费288元,则可能有两种情况,这两种情况下付款方式不同(折扣率不同):第一种情况:他消费超过100元但不足350元,这时候他是按照9折付款的.设第二次实质购物价值为x元,那么依题意有x×0.9=288,解得:x=320.第二种情况:他消费不低于350元,这时候他是按照8折付款的.设第二次实质购物价值为a元,那么依题意有a×0.8=288,解得:a=360.即在第二次消费288元的情况下,他的实际购物价值可能是320元或360元.综上所述,他两次购物的实质价值为60+320=380或60+360=420,均超过了350元.因此均可以按照8折付款:380×0.8=304(元),420×0.8=336(元),故答案为:304元或336元.点评:此题主要考查了一元一次方程的应用,解题关键是第二次购物的288元可能有两种情况,需要讨论清楚.本题要注意不同情况的不同算法,要考虑到各种情况,不要丢掉任何一种.14.(2011•昆明)某公司只生产普通汽车和新能源汽车,该公司在去年的汽车产量中,新能源汽车占总产量的10%,今年由于国家能源政策的导向和油价上涨的影响,计划将普通汽车的产量减少10%,为保持总产量与去年相等,那么今年新能源汽车的产量应增加的百分数为90%.考点:一元一次方程的应用.分析:这是一道关于和差倍分问题的应用题,设今年新能源汽车的产量应增加的百分数为x%,解这道的关键是根据“为保持总产量与去年相等”,而去年的总量未知,可以设为参数a,就可以表示出去年普通汽车和新能源汽车的产量分别为90%a和10%a,而几年的普通汽车和新能源汽车的产量分别为90%a(1﹣10%)和10%a (1+x%).就可以根据等量关系列出方程.解答:解:设今年新能源汽车的产量应增加的百分数为x%,去年的总产量为a,由题意,得90%a(1﹣10%)+10%a(1+x%)=a,解得:x=90.故答案为:90%.点评:本题考查了一元一次方程的运用.要求学生能熟练地掌握例一元一次方程解应用题的步骤.解一元一次方程的关键是找到等量关系.15.(2011•德州)长为1,宽为a的矩形纸片(),如图那样折一下,剪下一个边长等于矩形宽度的正方形(称为第一次操作);再把剩下的矩形如图那样折一下,剪下一个边长等于此时矩形宽度的正方形(称为第二次操作);如此反复操作下去.若在第n此操作后,剩下的矩形为正方形,则操作终止.当n=3时,a的值为或.考点:一元一次方程的应用.专题:操作型.分析:根据操作步骤,可知每一次操作时所得正方形的边长都等于原矩形的宽.所以首先需要判断矩形相邻的两边中,哪一条边是矩形的宽.当<a<1时,矩形的长为1,宽为a,所以第一次操作时所得正方形的边长为a,剩下的矩形相邻的两边分别为1﹣a,a.由1﹣a<a可知,第二次操作时所得正方形的边长为1﹣a,剩下的矩形相邻的两边分别为1﹣a,a﹣(1﹣a)=2a﹣1.由于(1﹣a)﹣(2a﹣1)=2﹣3a,所以(1﹣a)与(2a﹣1)的大小关系不能确定,需要分情况进行讨论.又因为可以进行三次操作,故分两种情况:①1﹣a>2a﹣1;②1﹣a<2a﹣1.对于每一种情况,分别求出操作后剩下的矩形的两边,根据剩下的矩形为正方形,列出方程,求出a的值.解答:解:由题意,可知当<a<1时,第一次操作后剩下的矩形的长为a,宽为1﹣a,所以第二次操作时正方形的边长为1﹣a,第二次操作以后剩下的矩形的两边分别为1﹣a,2a﹣1.此时,分两种情况:①如果1﹣a>2a﹣1,即a<,那么第三次操作时正方形的边长为2a﹣1.∵经过第三次操作后所得的矩形是正方形,∴矩形的宽等于1﹣a,即2a﹣1=(1﹣a)﹣(2a﹣1),解得a=;②如果1﹣a<2a﹣1,即a>,那么第三次操作时正方形的边长为1﹣a.则1﹣a=(2a﹣1)﹣(1﹣a),解得a=.故答案为或.点评:本题考查了一元一次方程的应用,解题的关键是分两种情况:①1﹣a>2a﹣1;②1﹣a<2a﹣1.分别求出操作后剩下的矩形的两边.16.(2007•桂林)如图是2004年6月份的日历,如图那样,用一个圈竖着圈住3个数,如果被圈的三个数的和为39,则这三个数中最大的一个为20.考点:一元一次方程的应用.专题:数字问题.分析:设最大的一个数为x,则最小的数是(x﹣14),中间的数是(x﹣7),相等关系是:三个数的和为39,则可列出方程求解.解答:解:设最大的一个数为x,根据题意列方程得:(x﹣14)+(x﹣7)+x=39,解得x=20.点评:解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.需注意日历上竖列相邻的两个数相隔7.三.解答题(共9小题)17.(2012•梧州)今年5月,在中国武汉举办了汤姆斯杯羽毛球团体赛.在27日的决赛中,中国队占胜韩国队夺得了冠军.某羽毛球协会组织一些会员到现场观看了该场比赛.已知该协会购买了每张300元和每张400元的两种门票共8张,总费用为2700元.请问该协会购买了这两种门票各多少张?考点:一元一次方程的应用.分析:设每张300元的门票买了x张,则每张400元的门票买了(8﹣x)张,根据题意建立方程,求出方程的解就可以得出结论.解答:解:设每张300元的门票买了x张,则每张400元的门票买了(8﹣x)张,由题意,得300x+400(8﹣x)=2700,。

初一七年级一元一次方程30题(含答案解析)

初一七年级一元一次方程30题(含答案解析)一.解答题(共30小题)1. (2005宁德)解方程:2x+仁77 .-丄(1 —2x)二(3x+1)373. (1)解方程:4 —x=3 (2—x);(2)解方程:「:;、'8.解方程:(1) 5 (x—1)—2 (x+1) =3 (x—1) +x+1;4 .解方程:5.解方程(1) 4 (x—1)—3 (20 —x) =5 ( x—2);/ c、M 1 1 c(2)x—=2—20 02x _ 0. 18K+0. 18 1. 5 ------ +1= ----------- --------0.03 0, 12 26. (1)解方程:3 (x—1) =2x+3;X ■31 »X 13629 .解方程:(2 )解方=x —210 .解方程:(1) 4x - 3 (4 - x ) =2;(2) 丄(x - 1) =2-16. 解方程(1) 3 (x+6) =9 - 5 (1 - 2x )13.解方程:丄(x+2).311 .计算:(1) 计算:-弓[-32X (-舟)2- 2]J! 」(2) 解方程::・】宀-2 4 14 .解方程:(1) 5 (2x+1)- 2 (2x - 3) =6 (2) (3)H - 2 4 _3芷丄— +24 ~ 6[3 x-=5x 112 .解方程:(1)邑分丄+3丄尹 ⑵2[討停诗)舜15. (A 类)解方程:5x - 2=7x+8;(B 类)解方程:g (x - 1)-( x+5) =-2;33(C 类)解方程:.£ J9 0 518. (1 )计算:-42X 丄一+| - 2|3X(-二)3C-4) 2 2(2)计算:-12- | -Z| J X- 2 -( - 3) 2]3 3(3 )解方程:4x- 3 ( 5 - x) =2;K 7少耳=弓(4)解方程:::-".」…':.5 3一亠一[0. 5 0, 219. (1)计算:(1 - 2 - 4) X (輕);517.解方程:(1)解方程:4x- 3 (5- x) =13(2)计算:m x - 2 _5 (2)解万程:x- - 一 - 3535x+2 (3x - 7) =9 - 4 (2+x).(3)解方程:3x+3=2x+7;(4)解方程: | 015〕二g-27)20 .解方程(1)-( x- 5) =1; x- 0. 3 10~4 ~ 0.5+2(2)x _ 2 3( 3x+5) 1 _ 2x--- +x=--------- _ -----3 s 2 623.解下列方程:(1) - =-( x- 1);21.解方程:(x+3)- 2 ( x- 1) =9- 3x.22. 8x- 3=9+5x. 24.解方程:(1)- +3x=10;29.解下列方程:(I ) 12y - =+5(2) 3x+8=2x+6; (3) 2x+3 (x+1) =5 - 4 (x - 1); 28 •当k 为什么数时,式子器畔的值少3.3z-1.1 4K -0.2 0,16 - 0.4 0-3 -0.0630.解方程:(2) 27.解方程:(1) 8y - 3 (3y+2) =7少、计 3x _ 1 5K _625 •解万程:——x+1 .2x432 10 526 .解方程:(1) 10x - 12=5x+15;(II解一元一次方程(三)参考答案与试题解析一.解答题(共30小题)1. (2005宁德)解方程:2x+仁7考点:解一元一次方程.专题:计算题;压轴题.分析:此题直接通过移项,合并同类项,系数化为1可求解.解答:解:原方程可化为:2x=7 - 1合并得:2x=6系数化为1得:x=3点评:解一元一次方程,一般要通过去分母,去括号,移项,合并同类项,未知数的系数化为1等步骤, 一元一次方程转化”成x=a的形式.考点:解一元一次方程.专题:计算题.分析:这是一个带分母的方程,所以要先去分母,再去括号,最后移项,化系数为解答:解:左右同乘12可得:3[2x -( x- 1) ]=8 (x- 1),化简可得:3x+3=8x - 8 ,移项可得:5x=11 , 解可得XJ L .51故原方程的解为x==.国点评:若是分式方程,先同分母,转化为整式方程后,再移项化简,解方程可得答案.3. (1)解方程:4 - x=3 ( 2 - x)(2)解方程:考点:解一元一次方程. 专题:计算题.分析:(1)先去括号,然后再移项、合并同类型,最后化系数为1,得出方程的解;(2)题的方程中含有分数系数,应先对各式进行化简、整理,然后再按( 1)的步骤求解.解答:解:(1)去括号得:4-x=6-3x,移项得:-x+3x=6 - 4,合并得:2x=2,系数化为1得:x=1.(2)去分母得:5 (x- 1)- 2 (x+1) =2,去括号得:5x- 5 -2x- 2=2,移项得:5x- 2x=2+5+2,把一个1,从而得到方程的解.合并得:3x=9,系数化1得:x=3.点评:(1)本题易在去分母、去括号和移项中出现错误,还可能会在解题前产生害怕心理.因为看到小数、分数比较多,学生往往不知如何寻找公分母,怎样合并同类项,怎样化简,所以我们要教会学生分开进行,从 而达到分解难点的效果. (2)本题的另外一个重点是教会学生对于分数的分子、分母同时扩大或缩小若干倍,值不变.这一性质在 今后常会用到.4 .解方程:考点:解一元一次方程. 专题:计算题.分析:此题两边都含有分数,分母不相同,如果直接通分,有一定的难度,但将方程左右同时乘以公分母6,难度就会降低.解答:解:去分母得:3 ( 2 - x )- 18=2x -( 2x+3),去括号得:6 - 3x - 18= - 3, 移项合并得:-3x=9,••• x= - 3.点评:本题易在去分母和移项中出现错误,学生往往不知如何寻找公分母,怎样合并同类项,怎样化简,所以我们 要教会学生分开进行,从而达到分解难点的效果.5.解方程(1) 4 (x - 1)- 3 (20 - x ) =5 ( x - 2);考点:解一元一次方程. 专题:计算题.分析: (1)先去括号,再移项、合并同类项、化系数为1,从而得到方程的解; (2)先去分母,再去括号,最后移项,化系数为1,从而得到方程的解.解答: 解:(1)去括号得:4x - 4 - 60+3x=5x - 10 (2 分)移项得:4x+3x - 5x=4+60 - 10 ( 3 分) 合并得:2x=54 ( 5分) 系数化为1得:x=27; ( 6分)(2)去分母得:6x - 3 (x - 1) =12- 2 (x+2) ( 2 分) 去括号得:6x - 3x+3=12 - 2x - 4 (3 分) 移项得:6x - 3x+2x=12 - 4 - 3 ( 4 分) 合并得:5x=5 ( 5分) 系数化为1得:x=1. (6分)点评: 去分母时,方程两端同乘各分母的最小公倍数时,不要漏乘没有分母的项,同时要把分子(如果是一个多项式)作为一个整体加上括号.去括号时要注意符号的变化.6. (1)解方程:3 (x - 1) =2x+3;考点:解一元一次方程. 专题:计算题.分析:(1)是简单的一元一次方程,通过移项,系数化为1即可得到;(2) xK ~ 1=2- x+2(2)解方程:(2)是较为复杂的去分母,本题方程两边都含有分数系数,如果直接通分,有一定的难度,但对每一个式子先进行化简、整理为整数形式,难度就会降低.解答:解:(1)3x - 3=2x+33x —2x=3+3x=6;(2)方程两边都乘以6得:x+3=6x —3 (x—1)x+3=6x —3x+3x —6x+3x=3—3—2x=0••• x=0.点评:本题易在去分母、去括号和移项中出现错误,还可能会在解题前不知如何寻找公分母,怎样合并同类项,怎样化简,所以要学会分开进行,从而达到分解难点的效果. 去分母时,方程两端同乘各分母的最小公倍数时,不要漏乘没有分母的项,同时要把分子(如果是一个多项式)作为一个整体加上括号.7 .—丄(1 —2x)=二(3x+1)考点:解一元一次方程.专题:计算题.分析:这是一个带分母的方程,所以要先去分母,再去括号,最后移项,化系数为1,从而得到方程的解.解答:解:-7 (1 — 2x) =3X2( 3x+1)—7+14x=18x+6—4x=1313x=—W点评:解一兀一次方程的一般步骤是去分母、去括号、移项、合并冋类项和系数化为 1 .此题去分母时,方程两端冋乘各分母的最小公倍数时,不要漏乘没有分母的项,冋时要把分子(如果是一个多项式)作为一个整体加上括号.8.解方程:(1) 5 (x—1)—2 (x+1) =3 (x—1) +x+1;/小0. - 0- 18JC+0. 18 1. 5 _3s0.03 0.12 2考点:解一元一次方程. 专题:计算题.分析:(1)可米用去括号,移项,合并冋类项,系数化1的方式进行;(2 )本题方程两边都含有分数系数,如果直接通分,有一定的难度,但对每一个式子先进行化简、整理为整数形式,难度就会降低.解答:解:(1) 5 (x—1)—2 ( x+1) =3 ( x—1) +x+13x —7=4x —2• x= —5;_ 15 - 30x(2 )原方程可化为:=~~12~~2CT-去分母得:40x+60=5 (18 —18x)—3 (15 —30x),去括号得:40x+60=90 —90x —45+90X,移项、合并得:40x=- 15 ,系数化为1得:x=-:.点评:(1 )本题易在去分母、去括号和移项中出现错误,还可能会在解题前产生害怕心理•因为看到小数、分数比较多,学生往往不知如何寻找公分母,怎样合并同类项,怎样化简,所以我们要教会学生分开进行,从而达到分解难点的效果;(2)本题的另外一个重点是教会学生对于分数的分子、分母冋时扩大或缩小若干倍,值不变•这一性质在今后常会用到.9 •解方程:「迸G弓考点:解一兀一次方程.专题:计算题.分析:这是一个带分母的方程,所以要先去分母,再去括号,最后移项,化系数为1 , 从而得到方程的解.解答:解:K_ 3i+l _ x - 13 6 2去分母得:2x -(3x+1) =6 - 3(x- 1),去括号得:2x-3x- 1=6 -3x+3,移项、合并同类项得:2x=10,系数化为1得:点评:去分母时,方程两端同乘各分母的最小公倍数时,不要漏乘没有分母的项,同时要把分子 (如果是一个多项式)作为一个整体加上括号.10 .解方程:(1)4x - 3 (4 - x) =2;(2)£ (x- 1) =2-g (x+2).考点:解一兀一次方程.专题:计算题.分析:(1)先去括号,再移项,合并同类项,系数化1,即可求出方程的解;(2)先去分母,再去括号,移项,合并同类项,系数化1可求出方程的解.解答:解:(1) 4x-3(4 - x) =2去括号,得4x-12+3x=2移项,合并同类项7x=14 系数化1,得x=2.(2)丄(x- 1)2=2-琴(x+2)去分母,得5 ( x-1) =20 - 2(x+2)去括号,得5x-5=20 - 2x - 4移项、合并同类项,得7x=21 系数化1,得x=3.点评:(1 )此题主要是去括号,移项,合并同类项,系数化1 .(2 )方程两边每一项都要乘各分母的最小公倍数,方程两边每一项都要乘各分母的最小公倍数,切勿漏乘不含有分母的项,另外分数线有两层意义,一方面它是除号,另一方面它又代表着括号,所以在去分母时,应该将分子用括号括上.解一元一次方程;有理数的混合运算. 计算题.(1 )根据有理数的混合运算法则计算:先算乘方、后算乘除、再算加减;(2 )两边同时乘以最简公分母4,即可去掉分母.解:(1)原式( _ gx呂 _ 2)49J!一2.(2)去分母得:2 (x- 1) - (3x-1) =- 4, 解得:x=3. 解答此题要注意:(1)去分母时最好先去中括号、再去小括号,以减少去括号带来的符号变化次数;(2) 去分母就是方程两边同时乘11 .计算:(1)计算: —三[—3“ < -£)2-2]x - 1 _ 3x - 1_-12 4(2)解方程:考点:专题:分析:解答:点评:以分母的最简公分母.12 .解方程:广八3x _ 1 1 - 5蛊⑴⑵ 2[4X-(刍-〕仝3 3 2 4考点:解一元一次方程.专题:计算题.分析:(1 )这是一个带分母的方程,所以要先去分母,再去括号,最后移项,化系数为1,从而得到方程的解.(2 )解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项、化系数为1 .解答:解:(1)去分母得:3 (3x - 1)+18=1 - 5x,去括号得:9x-3+18=1 - 5x,移项、合并得:14x=- 14,系数化为1得:x=- 1 ;(2)去括号得:艮¥x+1居孑骨+1才移项、合并同类项得:丄x= - 1 ,12T系数化为1得:12X=-〒点评:本题考查解一兀一次方程,正确掌握解一元一次方程的一般步骤,注意移项要变号、去分母时“ 1也要乘以最小公倍数.13 .解方程:(1)3兀+1■2-3x _ 2102z+35(2)4 ( K_D_K+1.0.5=-4解一元一次方程.计算题.(1 )去分母、去括号、移项、合并同类项、化系数为1 .(2 )去分母、去括号、移项、合并同类项、化系数为1 .(1 )解:去分母得:5 (3x+1)-2X 10=3x- 2-2 (2x+3),去括号得:15x+5 - 20=3x-2 - 4x- 6,移项得:15x+x= -8+15,合并得:16x=7,(2)解:4 (x- 1)- 18 (x+1) =-36, 4x-4 - 18x - 18=- 36,-14x= - 14,x=1.本题考查解一元一次方程,正确掌握解一元一次方程的一般步骤,注意移项要变号、去分母时“ 1也要乘以最小公倍数.考点:专题:分析:解答:点评:14 .解方程:(1) 5 (2x+1)- 2 ( 2x- 3) =6(2) x - 2 4 - 3^+2 4 -6(3) 卫[3 (x- 丄)+^]=5x - 1323考点:解一元一次方程.专题:计算题.分析:(2 )通过去括解答: 号、移项、合并同类项、系数化为1,解得x的值;(3 )乘最小公倍数去分母即可;(4 )主要是去括号,也可以把分数转化成整数进行计算.解:(1)去括号得:10x+5 -4x+6=6移项、合并得:6x= - 5, 方程两边都除5;6;以6,得x=-(2)去分母得:3 (x- 2) =2 (4 -3x) +24,去括号得:3x-6=8 - 6x+24,移项、合并得:9x=38,方程两边都除x= 19 (3 )整理得:以9,得(込)4+=]=5x - 1,4x—2+1=5x-1,移项、合并得:x=0.15点评: 一元一次方程的解法:一般要 通过去分母、去 括号、移项、合 并同类项、未知 数的系数化为1 等步骤,把一个 一元一次方程转化”成x=a 的 形式•解题时, 要灵活运用这 些步骤.15 . (A 类)解方程:5x - 2=7x+8;丄(x - 1) -( x+5)= 3 括号、移项、系 数化为1等方 法,求得各方程 的解.解:A 类:5x -2=7x+8移项:5x -7x=8+2化简:-2x=10 即:x= - 5;B 类:〒(x - 1)-(x+5)=--x - 5=-—3化简:」x=5即:x=C 类:(C 类)解方程: 4-葢-2x+l23 考点:解一元一次方 程.专题:计算题.分析: 通过去分母、 去2x+l =1解答: 去括号:—x- 3(B 类)解方程:=!•去分母:3 (4 -x)- 2 (2x+1) =6去括号:12 - 3x-4x - 2=6化简:-7x= - 4即:x=7本题主要考查一元一次方程的解法,比较简单,但要细心运算.考点:解一元一次方程.专题:计算题.分析:(1)去括号以后,移项,合并同类项,系数化为1即可求解;(2) (3)首先去掉分母,再去括号以后,移项,合并同类项,系数化为1以后即可求解;(4)首先根据分数的基本性质,把第一项分母中的化为整数,再去分母,求解.解答:解:(1)去括号得:3x+18=9 - 5+10x移项得:3x- 10x=9 - 5 - 18合并同类项得:-7x= - 14则x=2;(2)去分母得:2x+仁x+3 - 5移项,合并同类项得:x=- 3;(3)去分母得:10y+2 (y+2) =20 - 5 (y- 1)去括号得:10y+2y+4=20 - 5y+5移项,合并同类项得:17y=21系数化为1得:尸爼;y17(4)原方程可以变形为:型型-5x=- 13去分母得:17+20X - 15x=- 3移项,合并同类项得:5x=- 20系数化为1得:x=- 4.点评:解方程的过程中要注意每步的依据,这几个题目都是基础的题目,需要熟练掌握.17.解方程:(1)解方程:4x- 3 (5- x) =13点评:(2)解方程:v x - 2oX—■—考点:解一元一次方程.专题:计算题.分析:(1)先去括号,再移项,化系数为1,从而得到方程的解.(2 )这是一个带分母的方程,所以要先去分母,再去括号,最后移项,化系数为1,从而得到方程的解.解答:解:(1)去括号得:4x -15+3x=13,移项合并得:7x=28,系数化为1得:得x=4;(2 )原式变形为x+3=2K_ 5 23斗5,去分母得:5( 2x-5) +3 (x - 2)=15 (x+3),去括号得10x -25+3x-6=15x+45,移项合并得-2x=76,系数化为1得:x=- 38.点评:本题考查解一元一次方程,解一兀一次方程的一般步骤是:去分母、去括号、移项、合并同类项、化系数为1 •注意移项要变号.程;有理数的混 合运算.(1 )利用平方 和立方的定义 进行计算.(2 )按四则混 合运算的顺序 进行计算.(3 )主要是去 括号,移项合 并.(4 )两边同乘 最小公倍数去 分母,再求值. 解:(1)-I - 2| 3X(-丄)沖存X (讨)=-1 - 1=-2 •(2)- 12- | -—|- 2 -31 3(-3) 2]3*(-2-9) -i+|x3X ( -口) 1 n|=_ —218 • (1)计算:42X- 1 - I - 2|3 X(-二) (2)计算:-12- | -21 -J L X- 2-\3 [3 (3)解方程:4x - 3 (5 - x ) =2; (4)解方程: x _ 2 2K _ 5 k 5 " 3 考点: 解一元一次方(-3) 2] 3-分析: 解答:=_2•(3 )解方程:4x - 3 (5 - x)=2去括号,得4x-15+3x) =2移项,得4x+3x=2+15合并同类项,得7x=17系数化为1,得(4 )解方程:- 2 _ 5 °去分母,得15x-3 (x- 2) =5(2x- 5)-3X 15去括号,得15x-3x+6=10x -25 - 45移项,得15x -3x- 10x= - 25-45 - 6合并同类项,得2x= - 76系数化为1,得x=- 38.点评:前两道题考查了学生有理数的混合运算,后两道考查了学生解一元一次方程的能力.19 . (1)计算:(1 - 2 -4) X (弟);52(2)计算:(-1)c-|) n-舟);(3)解方程:3x+3=2x+7;(4)解方程:g (計15〕二d).□Z J解一元一次方程;有理数的混合运算.考点:计算题.(1 )和(2 )要熟练掌握有理数的混合运算;(3 )和(4 )首先熟悉解一元一次方程的步骤:去分母,去括号,移项,合并同类项,系数化为1.解: (1) (1 - 2-4) > 〈(举5=-5氷=-13;(2)原式=-1 X (-4- 2)(-3x+3=2x+7移项,得3x -2x=7 - 3合并同类项,得x=4;(4 )解方程:去分母,得6(x+15) =15- 10 (x-7)去括号,得6x+90=15 -10X+70移项,得6x+10x=15+70-90合并同类项,得16x=- 5系数化为1,得5(1 )和(2 )要注意符号的处理;(4)要特别(3 )解方程:专题:分析:解答:点评:注意去分母的时候不要发生数字漏乘的现象,熟练掌握去括号法则以及合并同类项法则.20 .解方程(1)-( X- 5) =1;解一元一次方程.(1 )通过去括号、移项、系数化为1等过程,求得x的值;(2 )通过去分母以及去括号、移项、系数化为1等过程,求得x的值.解:(1)-(X-5) =1;去括号得: -+1=1, 二―=0,••• x=0;去分母得:2 (x- 2) +6x=9(3x+5)-( 1-2x),• - 21x=48,16•・x= --x '.此题主要考查了一元一次方程解法,解一元一次方程常见的过程有去括号、移项、系数化为1等.21.解方程:(x+3)- 2 ( x- 1) =9- 3x.(2) x - 2 3 (3乂+5) 1 _ 2x 考点:分析:解答:K-2 3 (3工+5)1-276 点评:考点:解一兀一次方程.专题:计算题.分析:先去括号得x+3—2x+2=9 —3x,然后移项、合并同类得到2x=4, 然后把x的系数化为1即可.解答:解:去括号得x+3—2x+2=9—3x,移项得x —2x+3x=9—3 —2,合并得2x=4,系数化为1得x=2点评:本题考查了解一元一次方程:先去分母,再去括号,接着移项,把含未知数的项移到方程左边,不含未知数的项移到方程右边,然后合并同类项,最后把未知数的系数化为1得到原方程的解. 22. 8x—3=9+5x.5x+2 (3x—7) =9 X - 1 2x+l ’4 6 1 X —4 (2+x)._ 0. 3 x+0.10.4 0.5 J-考点:解一兀一次方程.专题:方程思想.分析:本题是解4个不同的一元一次方程,第一个通过移项、合并同类项及系数化1 求解.第二个先K ~ Q. 3 _x+Q, 1~ 0.5解:IO K H R :—=― +2解答:去括号再通过 移项、合并同类 项及系数化1求 解.第三个先去 分母再同第二 个.第四个先分 子分母乘以10, 再同第三个求 解.8x - 3=9+5x , 解:8x - 5x=9+3,3x=12, /• x=4. ••• x=4是原方程的解;5x+2 ( 3x - 7) =9 - 4 (2+x ),解: 5x+6x -14=9 - 8 - 4x , 5x+6x+4x=9- 8+14, 15x=15,• x=1 . • x=1是原方程 的解.解:3 (x - 1) -2 (2x+1) =12,3x - 3 - 4x - 2=12, 3x -4x=12+3+2,-x=17, • x=- 17. • x= - 17是原 方程的解.5 (10x - 3) =4 (10x+1) +40,50x -15=40x+4+40, 50x -40x=4+40+15, 10x=59,••• x= _」是原方10程的解.点评:此题考查的知识点是解一兀 一次方程,关键 是注意解方程 时的每一步都 要认真仔细,如 移项时要变符 号.考点: 解一元一次方 程.分析:(1 )首先去括号,然后移项、 合并同类项,系 数化成1,即可 求解;(2 )首先去分 母,然后去括 号,移项、合并 同类项,系数化 成1,即可求解 解答: 解:(1)去括号,得:-=-+ 移项,得:+=++ 合并同类项, 得:=, 则 x=4;(2)去分母得:7 (1 - 2x ) =3(3x+1)- 42, 去括号,得:7101-乃^+1 3=7(2)-2.23 .解下列方程:(1)- =-( x - 1 );-14x=9x+3 -42,移项,得:-14x -9x=3 - 42 -7,合并同类项, 得:-23x=-46, 则 x=2.点评:本题考查解一 元一次方程,解一元一次方程的一般步骤是:去分母、去括号、移项、合并同类项、化系数为1注意移项(4) 2 ( x+1) +6=3(3x - 2),2x+2+6=9x- 6, 2x -9x= - 6 - 2-6,要变号.-7x= - 14, x=2. 24. 解方程:点评:本题考查解一(1) -+3x=10; 兀一次方程,解(2) 3x+8=2x+6; 一兀一次方程(3) 2x+3 (x+1) =5 - 4 (x - 1); 的一般步骤是:x+1 3x - 2去分母、去括(4) Hr U- 2 .号、移项、合并同类项、化系数考点: 解一兀一次方为1 •注意移项程. 要变号.分析(1)移项,合并同类项,然后_ 1 ~|5x - 625.解方程:---- _------- 0 2系数化成1即可| 2 | 5求解;(2)移项,合考点:解一兀一次方并同类项,然后程.系数化成1即可专题:计算题.求解;分析:方程两边乘以(3 )去括号、10去分母后,去移项,合并同类括号,移项合项,然后系数化并,将x系数化成1即可求解;为1,即可求出(4 )首先去分解.母,然后去括解答:解:去分母得:号、移项,合并 5 (3x- 1)- 2同类项,然后系(5x- 6) =2,数化成1即可求去括号得:15x解. -5 -解答解:(1) 3x=, 10x+12=2,x=;移项合并得:5x= - 5,(2) 3x- 2x=6 解得:x= - 1.-8, 点评:此题考查了解x=- 2 ;一兀一次方程,其步骤为:去分(3) 2x+3x+3=5 母,去括号,移-4x+4, 项合并,将未知2x+3x+4x=5+4—数系数化为1,3, 求出解.9x=6,2X七;26 .解方程:(1) 10x- 12=5x+15; ⑵变号. 吉丘-C-l) ]=-| 2)32 3 227.解万程:考点:(1) 8y—3 (3y+2) =7解一兀一次方_ 1 - 7程.(2) ----- - 1=--------r 6专题:计算题.分析:(1 )先移项,考点解兀次方再合并同类项,程.最后化系数为专题计算题.1,从而得到方分析: (1 )根据一兀程的解;一次方程的解(2)先去括号,法,去括号,移再移项、合并同项,合并同类类项,最后化系项,系数化为1数为1,从而得即可得解;到方程的解. (2 )这是一个解答:解:(1)移项,带分母的方程,得所以要先去分10x- 母,再去括号,5x=12+15, 最后移项,合并合并同类项,得同类项,系数化5x=27, 为1,从而得到方程的两边同方程的解.时除以5,得解答: 解:(1)去括号27得,8y —9y —x= ・X翔;6=7,移项、合并得,(2 )去括号,—y=13,得系数化为1得,垃+1=2拭-1y=—13;£ = 3 ,方程的两边同(2)去分母得,时乘以6,得 3 (3x—1)—x+1= 4x—2, 12=2 (5x—7),移项、合并同类去括号得,9x —项,得3—12=10x —3x=3, 14,方程的两边同移项得,9x —时除以3,得10x=—x=1. 14+3+12,点评:本题考查解一合并同类项得,兀一次方程,解—x=1,系数化为1得,兀次方程的一般步骤:去x= —1 .分母、去括号、移项、合并同类点评: 本题主要考查-Z 屈??、怜了解兀次项、化系数为万程,注意在去1.注意移项要分母时,方程两端同乘各分母端同乘各分母的最小公倍数的最小公倍数时,不要漏乘没时,不要漏乘没有分母的项,同有分母的项,同时要把分子(如时要把分子(如果是一个多项果是一个多项式)作为一个整式)作为一个整体加上括号. 体加上括号."1 *7 | 28•当k为什么数时,式子「比丄1的值少3- 29.(I)解下列方程:12y - =+5(II)x+1 3x - 2 _ 2x43考点:A77 VAr-rr 210 5解兀次万程.专题:计算题. 考点: 解兀次方分析:先根据题意列程.出方程,再根据专题:计算题.分析: (I)根据一兀兀次方程的解法,去分一次方程的解母,去括号,移法,移项,合并项,合并同类同类项,系数化项,系数化为1 为1即可得解;即可得解. (n)是一个带解答:解:依题意,得分母的方程,所2k+l^-k|, 以要先去分母,3 5再去括号,最后3, 移项,合并同类去分母得,5 项,系数化为1,(2k+1) =3 (17 从而得到方程-k) +45, 的解.去括号得,解答: 解:(I )移项10k+5=51 - 得,12y -- =5,3k+45, 合并同类项得,移项得,2y=5,10k+3k=51+45 系数化为1得,-5,合并同类项得,y=;13k=91, (n )去分母系数化为1得,得,5 (x+1)-k=7, 10= (3x- 2)-•••当k=7时,式 2 (2x+3),子—比子去括号得,5x+5 -10=3x- 2 -QL-+1的值少3. 4x- 6,移项得,5x-点评:本题主要考查-Z 、怜3x+4x= - 2 - 6 -5+10,了解兀次合并同类项得,方程,注意在去分母时,方程两6x= - 3,点评: 系数化为1得,x=-2.2本题主要考查点评:了解一元一次方程,注意在去分母时,方程两端同乘各分母的最小公倍数时,不要漏乘没有分母的项,同时要把分子(如果是一个多项系数化为1,得(8分)本题考查一元次方程的解法.解一元一次30 .解方程: 考点:专题:分析:式)作为.个整体加上括号.3x- 1.1 4K -0. 2 _0・ 16 -0.46.3 - 0- 06解答: 解一元一次方程.计算题.由于方程的分子、分母均有小数,利用分数的基本性质,分子、分母同时扩大相同的倍数,可将小数化成整数.解:原方程变形为30K-11 40^-2 L6 - 70x4~=&,(3 分)去分母,得3X(30x - 11)-4X(40x - 2) =2 X(16 - 70x) , (4分)去括号,得90x-33 -160x+8=32-140x, (5 分)移项,得90x -160x+140x=32+33 - 8, (6 分)合并同类项,得70x=57, (7 分)方程的一般步骤:去分母,去括号,移项,合并同类项,系数化为1•本题的难点在于方程的分子、分母均有小数,将小数化成整数不同于去分母,不是方程两边同乘一个数,而是将分子、分母同乘一个数.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、初一数学一元一次方程解答题压轴题精选(难) 1.如图1,O为直线AB上一点,过点O作射线OC,∠AOC=30°,将一直角三角板(∠M=30°)的直角顶点放在点O处,一边ON在射线OA上,另一边OM与OC都在直线AB的上方.

(1)将图1中的三角板绕点O以每秒3°的速度沿顺时针方向旋转一周.如图2,经过t秒后,OM恰好平分∠BOC.①求t的值;②此时ON是否平分∠AOC?请说明理由;

(2)在(1)问的基础上,若三角板在转动的同时,射线OC也绕O点以每秒6°的速度沿顺时针方向旋转一周,如图3,那么经过多长时间OC平分∠MON?请说明理由; (3)在(2)问的基础上,经过多长时间OC平分∠MOB?请画图并说明理由. 【答案】 (1)解:①∵∠AON+∠BOM=90°,∠COM=∠MOB, ∵∠AOC=30°, ∴∠BOC=2∠COM=150°, ∴∠COM=75°, ∴∠CON=15°, ∴∠AON=∠AOC﹣∠CON=30°﹣15°=15°, 解得:t=15°÷3°=5秒; ②是,理由如下: ∵∠CON=15°,∠AON=15°, ∴ON平分∠AOC

(2)解:15秒时OC平分∠MON,理由如下: ∵∠AON+∠BOM=90°,∠CON=∠COM, ∵∠MON=90°, ∴∠CON=∠COM=45°, ∵三角板绕点O以每秒3°的速度,射线OC也绕O点以每秒6°的速度旋转, 设∠AON为3t,∠AOC为30°+6t, ∵∠AOC﹣∠AON=45°,

可得:6t﹣3t=15°, 解得:t=5秒 (3)解:OC平分∠MOB ∵∠AON+∠BOM=90°,∠BOC=∠COM, ∵三角板绕点O以每秒3°的速度,射线OC也绕O点以每秒6°的速度旋转, 设∠AON为3t,∠AOC为30°+6t,

∴∠COM为 (90°﹣3t), ∵∠BOM+∠AON=90°,

可得:180°﹣(30°+6t)= (90°﹣3t), 解得:t=23.3秒; 如图:

【解析】【分析】(1)①根据∠AON+∠BOM=90°,∠COM=∠MOB,及平角的定义∠BOC=2∠COM=150° ,故∠COM=75° ,根据角的和差得出∠CON=15°从而得到AON=∠AOC

﹣∠CON=30°﹣15°=15° ,根据旋转的速度,就可以算出t的值了;②根据∠CON=15°,∠AON=15°,即可得出ON平分∠AOC ;

(2)15秒时OC平分∠MON,理由如下:∠AON+∠BOM=90°,∠CON=∠COM,从而得出∠CON=∠COM=45°,又三角板绕点O以每秒3°的速度,射线OC也绕O点以每秒6°的速度

旋转,设∠AON为3t,∠AOC为30°+6t,根据∠AOC﹣∠AON=45°得出含t的方程,求解得出t的值 ; ( 3)根据∠AON+∠BOM=90°,∠BOC=∠COM,及三角板绕点O以每秒3°的速度,射线OC也绕O点以每秒6°的速度旋转,故设∠AON为3t,∠AOC为30°+6t,从而得到∠COM

为 (90°﹣3t),又∠BOM+∠AON=90°,从而得出含t的方程,就能解出t的值 。

2.定义:若一个关于x的方程 的解为 ,则称此方程为“中点方程”.如: 的解为 ,而 ; 的解为 ,而 . (1)若 ,有符合要求的“中点方程”吗?若有,请求出该方程的解;若没有请说明理由; (2)若关于x的方程 是“中点方程”,求代数式 的 值. 【答案】 (1)解:没有符合要求的“奇异方程”,理由如下:

把 代入原方程解得:x= , 若为“中点方程”,则x= ,

∵ ≠ , ∴不符合“中点方程”定义,故不存在

(2)解:∵ , ∴(2a-b)x+b=0. ∵关于x的方程 是“中点方程”,

∴x= =a.

把x=a代入原方程得: , ∴ =

【解析】【分析】(1)把 代入原方程解得:x= ,若为“中点方程”,则x= ,由于b≠b-2,根据“中点方程”定义即可求解;(2)根据“中点方程”定义得到

, = ,整体代入即可.

3.阅读理解:一部分同学围在一起做“传数”游戏, 我们把某同学传给后面的同学的数称为该同学的“传数”. 游戏规则是: 同学1心里先想好一个数, 将这个数乘以2再加1后传给同学

2,同学2把同学1告诉他的数除以2再减 后传给同学3,同学3把同学2传给他的数乘以2再加1后传给同学4,同学4把同学3告诉他的数除以2再减 后传给同学5,同学5把同学4传给他的数乘以2再加1后传给同学6,……,按照上述规律,序号排在前面的同学继续依次传数给后面的同学,直到传数给同学1为止.

(1)若只有同学1,同学2,同学3做“传数”游戏. ①同学1心里想好的数是2, 则同学3的“传数”是________; ②这三个同学的“传数”之和为17,则同学1心里先想好的数是________. (2)若有 个同学(n为大于1的偶数)做“传数”游戏,这 个同学的“传数”之和为 ,求同学1心里先想好的数是多少. 【答案】 (1)5;3 (2)解:设同学1心里先想好的数为x,由题意得: 同学1的“传数”是2x+1

同学2的“传数”是 同学3的“传数”是2x+1 同学4的“传数”是x …… 同学n(n为大于1的偶数)的“传数”是x

于是

∵n为大于1的偶数 ∴n≠0 ∴ 解得: 故同学1心里先想好的数是13. 【解析】【解答】解:(1)①由题意得:

故同学3的“传数”是5;②设同学1想好的数是a,则

解得: 故答案为:3 【分析】(1)根据题意分别计算出同学1和同学2、同学3的传数即可;(2)设同学1想好的数是a,由题意列出方程,再解方程求得a的值即可;(3)设同学1心里先想好的数为x,根据题意分别表示同学2、同学3、同学4的传数,找出规律,即可知同学n(n

为大于1的偶数)的“传数”是x,得 ,化简得 ,根据n为大于1的偶数,即可得出答案. 4.一般情况下 不成立,但有些数可以使得它成立,例如: .我们称使得 成立的一对数 , 为“相伴数对”,记为 . (1)若 是“相伴数对”,求 的值; (2)若 是一个“相伴数对”,请将 所满足的等式化为 ,其中 均为整数的形式(如 );

(3)若 是“相伴数对”,求代数式 的值.

【答案】 (1)解:根据题意得: , 解得b= ;

(2)解:根据题意得: ,即 , ∴ , ∴ ;

(3)解:∵ 是“相伴数对”, ∴ ,

∴ ,

∴原式

. 【解析】【分析】(1)根据“相伴数对”的定义列出方程求解即可;(2)根据“相伴数对”的定义列出等式,然后去分母,化简即可;(3)由(2)可得 ,变形得

,然后对所求式子进行化简,代入计算即可. 5.点A、B在数轴上分别表示有理数a、b,A、B两点之间的距离表示为AB,在数轴上A、B两点之间的距离AB=|a-b|.

利用数形结合思想回答下列问题: (1)数轴上表示1和3两点之间的距离是________ (2)数轴上表示 和-1的两点之间的距离表示为________

(3)若 表示一个有理数,且 ,则 =________ (4)若 表示一个有理数,且 =8,则有理数 的值是________ 【答案】 (1)2 (2) 或

(3)6 (4)-5,3 【解析】【解答】解: (1)由题意得1和3两点之间的距离为 ;

(2) 和-1的两点之间的距离表示为 ,或; (3)∵-40, ∴ =-(x-2)+(x+4) =-x+2+x+4 =6; (4)当x<-4时,则x-2<0,x+4<0,

=-(x-2)-(x+4) =2-x-x-4 =-2x-2=8, 解得x=-5; 当4≤x<2, 则x-2<0, x+4≥0,

=-(x-2)+(x+4) =-x+2+x+4 =6≠8,无解; 当x≥2时,则x-2≥0, x+4>0,

∴ =x-2+x+4 =2x+2=8 解得x=3.

【分析】(1)(2)由题意可知数轴两点间的距离即是两点所表示的数相减所得的数的绝对值,据此计算即可; (3)先根据x的范围确定绝对值里面的代数式的正负,再根据绝对值的非负性去绝对值,然后再化简计算即得结果; (4)分三种情况讨论,即把整个数轴分三部分,即x<-4, -4≤x<2, x≥2,然后分别根据绝对值的非负性去绝对值,化简计算,再根据所得的结果等于8解方程求出x即可.

6.已知关于m的方程 (m-16)=-5的解也是关于x的方程2 (x-3)-n=3的解. (1)求m、n的值;

(2)已知线段AB=m,在射线AB上取一点P,恰好使 =n,点Q为线段PB的中点,求AQ的长.

【答案】 (1)解: , , , 关于m的方程 的解也是关于x的方程 的解.

, 将 ,代入方程 得: , 解得: , 故

(2)解:由 知: , 当点P在线段AB上时,如图所示:

相关文档
最新文档