有理数及其运算复习课教案
《有理数的除法》教案 (公开课)2022年

2.9 有理数的除法教案教学目标(一)教学知识点(1)理解有理数除法的法那么,会进行有理数的除法运算.(2)会求有理数的倒数.(二)能力训练要求1.理解有理数除法的法那么,会进行有理数的除法运算.2.会求有理数的倒数.(三)情感与价值观要求通过师生相互交流、探讨,激发学生的求知欲望,进一步提高学生灵活解题的能力.教学重点有理数除法法那么的运用,求一个负数的倒数.教学难点除法法那么有两个,在运用时要合理选用法那么1和法那么2,当能整除时用法那么1,在确定符号后,往往采用直接相除;在不能整除的情况下,特别是除数是分数时,用法那么2,把除法转变为乘法比较简便.教学方法师生共同讨论法.与学生展开讨论,从而使学生自己发现规律、总结规律,然后运用规律.教具准备投影片六张第一张:练习(记作§2.8 A)第二张:想一想(记作§2.8 B)第三张:法那么(记作§2.8 C)第四张:例1(记作§2.8 D)第五张:练习(记作§2.8 E)第六张:做一做(记作§2.8 F)教学过程Ⅰ.复习回忆,引入课题[师]上节课我们学习了有理数的乘法,能运用乘法法那么进行计算,谁能表达有理数的乘法法那么呢?[生]两数相乘,同号得正,异号得负,绝对值相乘,任何数与0相乘,积仍为0. [师]好,根据法那么能口答以下各题吗?(出示投影片§2.8 A)(1)(-3)×4; (2)3×(-31); (3)(-9)×(-3);(4)8×(-9); (5)0×(-2); (6)(-8)×(-6);[生](1)-12;(2)-1;(3)27;(4)-72;(5)0;(6)48[师]从答复以下问题中,知道大家已经掌握了有理数乘法法那么,我为此很快乐. 假设:两个因数的积和其中一个因数,要求另一个因数.那么我们用什么运算来计算呢? [生]用除法.[师]对,那我们今天就来研究有理数的除法.Ⅱ.讲授新课[师]除法是两个因数的积及其中一个因数,求另一个因数的运算,那10÷5是什么意思,商为几?0÷5呢?[生]10÷5表示一个数与5的积是10,商为2;0÷5表示一个数与5的积是0,商为0. [师]很好.那(-12)÷(-3)是什么意思呢?商为多少?[生](-12)÷(-3)表示一个数与-3的乘积是-12,商为4,对吧?[师]对,你是怎样考虑的?[生甲](-12)÷(-3)表示一个数与-3的乘积是-12,那什么数与-3的乘积是-12呢?+4.即:4×(-3)=-12.由除法的意义知道,乘法与除法是互为逆运算,所以:(-12)÷(-3)=4.[生乙]老师,我们在小学学过:除以一个数等于乘以这个数的倒数,那么计算(-12)÷(-3)时,就可以转化为(-12)×(-31)即:(-12)÷(-3)=(-12)×(-31)=4.这样可以吗?[师]可以,两位同学的思路都很正确,分析得也很好.那大家现在想一想:(出示投影片§2.8 B)(学生分析、计算、讨论)[生](1)-3;(2)8;(3)0;(4)-8;(5)-3;(6)-25;(7)3;(8)9;(9)-2;(10)3.[师]很好,大家来观察一下算式,看看商的符号及其绝对值与被除数和除数有没有关系?有,总结出规律.[生甲]两个有理数相除.同号得正,异号得负,并把绝对值相除,0除以不为0的数得0.[生乙]两个有理数相除总结出的规律与有理数的乘法法那么类似.都是先确定结果的符号,然后再确定结果的绝对值.老师,是吧?[师]对,大家总结得很好.在两个有理数相除时,首先确定商的符号,假设两个数是同号两数,那么商的符号为“+〞,假设这两个数是异号两数,那么商的符号为“-〞;其次确定商的绝对值,即被除数的绝对值除以除数的绝对值;还有0除以任何非0的数都得0.为什么要除以非0的数呢?[生]因为0不能作除数.[师]很好,这时,我们就总结出有理数的除法法那么:(出示投影片§2.8 C)(学生念一次,背一次)注意:(1)法那么中的“同号得正、异号得负〞是专指“两数相除〞的.(2)0不能作除数.[师]好,接下来我们通过例题来熟悉有理数除法法那么.(出示投影片§2.8 D)下面我们来做一练习.(出示投影片§2.8 E)[师]到现在为止,我们就学了有理数的乘法、除法法那么,在运用这两个法那么进行运算时,首先要确定结果的符号,然后再求结果的绝对值.下面我们做一做(出示投影片§2.8 F)[师]得出计算结果后,比较每一小题两式的结果,有规律吗?[生]结果一样,说明两式相等.即:1÷(-52)=1×(-125) 0.8÷(-103)=0.8×(-310) (-41)÷(-601)=(-41)×(-60) 由此得出:除以一个数等于乘以这个数的倒数.[师]对.通过计算总结,又得到有理数的除法的另一法那么,我们可把这个法那么称为法那么二,把前面的那个法那么称为法那么一.这两个运算法那么在本质上是一致的.在计算时,可根据具体的情况选用这两个法那么.一般来说,两数能整除时,应用法那么一较简单;两数不能整除或除数为分数时,应用法那么二.法那么二是除以一个数等于乘以这个数的倒数,那什么叫互为倒数呢? [生]乘积为1的两个有理数是互为倒数.[师]那我们现在回头看刚刚“做一做〞的(1)小题:1÷(-52);它的意思是-52与什么数相乘,积为1呢? [生]-25 [师]那-25与-52是什么数呢? [生]互为倒数. [师]对.因为互为倒数的乘积为1,所以1÷(-52)的商就是-52的倒数.大家再看: 1÷(-78)=1×(-87)=-87 可知:-78与-87是互为倒数,那谁能总结一下怎样求一个负数的倒数呢? [生]1除以这个负数,就等于这个负数的倒数.[师]很好,要求一个负数的倒数,只需要1除以这个负数得到的商就是这个负数的倒数.如果这个负数是分数,那么只需要把这个分数的分子、分母颠倒即可.想一想:正数的倒数是什么数,负数的倒数是什么数?0呢?[生]正数的倒数是正数,负数的倒数是负数,0没有倒数.[师]很好.大家要求一个数的倒数时,一定要注意:(1)0没有倒数.(2)互为倒数的两数为同号.Ⅲ.课堂练习课本P 51随堂练习1.计算: (1)215÷(-71); (2)(-1)÷(-1.5);(3)(-3)÷(-52)÷(-41); (4)(-3)÷[(-52)÷(-41)]. 解:(1)215÷(-71)=-(215×7)=-35 (2)(-1)÷(-1.5)=+(1÷1.5)=+(1×32)=32 (3)(-3)÷(-52)÷(-41)=+(3×25)÷(-41)=215÷(-41)=215×(-4)=-30 (4)(-3)÷[(-52)÷(-41)]=(-3)÷[(-52)×(-4)]=(-3)÷[+(52×4)] =(-3)÷58=(-3)×85=-815. 2.阅读课本P 50~52,然后小结.Ⅳ.课时小结本节课主要学习了有理数的除法运算.有理数除法运算的步骤与有理数加、减、乘一样,都是先确定符号,再确定绝对值,在进行有理数除法运算时,要根据题目的特点,恰当地选择有理数除法法那么进行计算,有理数除法转化为乘法后,可以利用乘法的运算律性质简化运算.Ⅴ.课后作业(一)课本P 52习题2.8 1、2、3、4、5.(二)1.预习内容:P 52~542.预习提纲(1)乘方的概念.(2)如何进行乘方运算.Ⅵ.活动与探究1.假设1059、1417、2312分别被自然数x除时,所得的余数都是y,那么x-y的值等于( )A.15B.1C.164D.179(1999年竞赛)过程:对于除法运算中的整除性与非整除性,小学已初步探讨过.有以下公式:被除数=除数×商被除数=除数×商+余数可以让学生利用此公式进行变化、培养学生灵活解题的能力.设三数被自然数x除时,商分别为自然数a、b、c.那么:ax+y=1059 ①bx+y=1417 ②cx+y=2312 ③②-①得 (b-a)x=358③-①得 (c-a)x=1253③-②得 (c-b)x=895由于:a≠b b≠c c≠a所以,x是358、1253、895的公约数即x=179,由此可得y=164x-y=15结果:选A2.求除以8和9都是余1的所有三位数的和.过程:可以让学生借鉴(1)题来变化、运算.可设三位数为n,它是除以8、9的商分别为x、y余1的数.那么:n=8x+1;n=9y+1由此可知:三位数n减去1,就是8和9的公倍数,即为:144、216、288、360、432、504、576、648、720、792、864、936.所以满足条件的所有三位数的和为:144+216+288+360+432+504+576+648+720+792+864+936+1×12=72×(2+3+4+5+6+7+8+9+10+11+12+13)+1×12=72×(2+13)×6+12=6492答案:6492板书设计1.8 完全平方公式(一)●教学目标(一)教学知识点1.完全平方公式的推导及其应用.2.完全平方公式的几何背景.(二)能力训练要求1.经历探索完全平方公式的过程,进一步开展符号感和推理能力.2.重视学生对算理的理解,有意识地培养他们有条理的思考和表达能力.(三)情感与价值观要求1.了解数学的历史,激发学习数学兴趣.2.鼓励学生自己探索算法的多样化,有意识地培养学生的创新能力.●教学重点1.完全平方公式的推导过程、结构特点、语言表述、几何解释.2.完全平方公式的应用.●教学难点1.完全平方公式的推导及其几何解释.2.完全平方公式结构特点及其应用.●教学方法自主探索法学生在教师的引导下自主探索完全平方公式的几何解释、代数运算角度的推理,揭示其结构特点,然后到达合理、熟练地应用.●教具准备投影片四张第一张:试验田的改造,记作(§1.8.1 A)第二张:想一想,记作(§1.8.1 B)第三张:例题,记作(§1.8.1 C)第四张:补充练习,记作(§1.8.1 D)●教学过程Ⅰ.创设问题情景,引入新课[师]去年,一位老农在一次“科技下乡〞活动中得到启示,将一块边长为a 米的正方形农田改成试验田,种上了优质的杂交水稻,一年来,收益很大.今年,又一次“科技下乡〞活动,使老农铁了心,要走科技兴农的路子,于是他想把原来的试验田,边长增加b米,形成四块试验田,种植不同的新品种.同学们,谁来帮老农实现这个愿望呢?(同学们开始动手在练习本上画图,寻求解决的途径)[生]我能帮这位爷爷.[师]你能把你的结果展示给大家吗?[生]可以.如图1-25所示,这就是我改造后的试验田,可以种植四种不同的新品种.图1-25[师]你能用不同的方式表示试验田的面积吗?[生]改造后的试验田变成了边长为(a+b)的大正方形,因此,试验田的总面积应为(a+b)2.[生]也可以把试验田的总面积看成四局部的面积和即边长为a的正方形面积,边长为b的正方形的面积和两块长和宽分别为a和b的面积的和.所以试验田的总面积也可表示为a2+2ab+b2.[师]很好!同学们用不同的形式表示了这块试验田的总面积,进行比较,你发现了什么?[生]可以发现它们虽形式不同,但都表示同一块试验田的面积,因此它们应该相等.即(a+b)2=a2+2ab+b2[师]我们这节课就来研究上面这个公式——完全平方公式.Ⅱ.讲授新课1.推导完全平方公式[师]我们通过比照试验田的总面积得出了完全平方公式(a+b)2=a2+2ab+b2.其实,据有关资料说明,古埃及、古巴比伦、古印度和古代中国人也是通过类似的图形认识了这个公式.我们姑且把这种方法看作对完全平方公式的一个几何解释.能不能从代表运算的角度也能推导出这样的公式呢?(出示投影片§1.8.1 A)想一想:(1)(a+b)2等于什么?你能用多项式乘法法那么说明理由吗?(2)(a-b)2等于什么?你是怎样想的.(同学们可先在自己的练习本上推导,教师巡视推导的情况,对较困难的学生以启示)[生]用多项式乘法法那么可得(a+b)2=(a+b)(a+b)=a(a+b)+b(a+b)=a2+ab+ab+b2=a2+2ab+b2所以(a+b)2=a2+2ab+b2 (1)[师]上面的几何解释和代数推导各有什么利弊?[生]几何解释完全平方公式给我们以非常直观的认识,但几何解释(a+b)2=a2+2ab+b2,受到了条件限制:a>0且b>0;代数推导完全平方公式虽然不直观,但在推导的过程中,a,b可以是正数,可以是负数,零,也可以是单项式,多项式.[师]同学们分析得很有道理.接下来,我们来完成第(2)问.[生]也可利用多项式乘法法那么,那么(a-b)2=(a-b)(a-b)=a2-ab-ba+b2=a2-2ab+b2.[生]我是这样想的,因(a+b)2=a2+2ab+b2中的a、b可以是任意数或单项式、多项式.我们用“-b〞代替公式中的“b〞,利用上面的公式就可以得到(a-b)2=[a+(-b)]2.[师]这位同学的想法很好.因为他很留心我们表述的每一句话的含义,你能继续沿着这个思路做下去吗?我们一块试一下.[师生共析](a-b)2=[a+(-b)]2=a2+2·a·(-b)+(-b)2↓↓↓↓ ↓ ↓(a +b)2=a2+2·a ·b + b2=a2-2ab+b2.于是,我们得到又一个公式:(a-b)2=a2-2ab+b2(2)[师]你能用语言描述上述公式(1)、(2)吗?[生]公式(1)用语言描述为:两个数的和的平方等于这两个数的平方和与它们积的2倍的和;公式(2)用语言描述为:两个数的差的平方等于这两个数的平方和与它们积的2倍的差.这两个公式为完全平方公式.它们和平方差公式一样可以使整式的运算简便.2.应用、升华出示投影片(§1.8.1 B)[例1]利用完全平方公式计算:(1)(2x-3)2;(2)(4x+5y)2;(3)(mn-a)2.分析:利用完全平方公式计算,第一步先选择公式;第二步,准确代入公式;第三步化简.解:(1)方法一:[例2]利用完全平方公式计算(1)(-x+2y)2;(2)(-x-y)2;(3)(x+y-z)2;(4)(x+y)2-(x-y)2;(5)(2x-3y)2(2x+3y)2.分析:此题需灵活运用完全平方公式,(1)题可转化为(2y-x)2或(x-2y)2,再运用平方差公式;(2)题需转化为(x+y)2,利用和的完全平方公式;(3)题利用加法结合律变形为[(x+y)-z]2(或[x+(y-z)]2、[(x-z)+y]2),再用完全平方公式计算;(4)题可利用完全平方公式,再合并同类项,也可逆用平方差公式进行计算.(5)题可先逆用幂的运算性质变形,再用平方差公式和完全平方公式.解:(1)方法一:(-x+2y)2=(2y-x)2=4y 2-4xy+x 2;方法二:(-x+2y)2=[-(x -2y)]2=(x -2y)2=x 2-4xy+4y 2.(2)(-x -y)2=[-(x+y)]2=(x+y)2=x 2+2xy+y 2.(3)(x+y -z)2=[(x+y)-z ]2=(x+y)2-2(x+y)·z+z 2=x 2+y 2+z 2+2xy -2zx -2yz.(4)方法一:(x+y)2-(x -y)2=(x 2+2xy+y 2)-(x 2-2xy+y 2)=4xy.方法二:(x+y)2-(x -y)2=[(x+y)+(x -y)][(x+y)-(x -y)]=4xy.(5)(2x -3y)2(2x+3y)2=[(2x -3y)(2x+3y)]2=[4x 2-9y 2]2=16x 4-72x 2y 2+81y 4.Ⅲ.随堂练习课本1.计算: (1)(21x -2y)2;(2)(2xy+51x)2; (3)(n+1)2-n 2.解:(1)(21x -2y)2=(21x)2-2·21x·2y+(2y)2=41x 2-2xy+4y 2 (2)(2xy+51x)2=(2xy)2+2·2xy·51x+(51x)2=4x 2y 2+54x 2y+251x 2(3)方法一:(n+1)2-n 2=n 2+2n+1-n 2=2n+1.方法二:(n+1)2-n 2=[(n+1)+n ][(n+1)-n ]=2n+1.Ⅳ.课后作业1.课本习题1.13的第1、2、3题.2.阅读“读一读〞,并答复文章中提出的问题.Ⅴ.活动与探究甲、乙两人合养了n 头牛,而每头牛的卖价恰为n 元.全部卖完后两人分钱方法如下:先由甲拿10元,再由乙拿10元,如此轮流,拿到最后剩下缺乏十元,轮到乙拿去,为了平均分配,甲应该补给乙多少元钱?[过程]因牛n头,每头卖n元,故共卖得n2元.令a表示n的十位以前的数字,b表示n的个位数字.即n=10a+b,于是n2=(10a+b)2=100a2+20ab+b2=10×2a(5a+b)+b2.因甲先取10元,而乙最后一次取钱时缺乏10元,所以n2中含有奇数个10元,以及最后剩下缺乏10元.但10×2a(5a+b)中含有偶数个10元,因此b2中必含有奇数个10元,且b<10,所以b2只可能是1、4、9、16、25、36、49、64、81,而这九个数中,只有16和36含有奇数个10,因此b2只可能是16或36,但这两个数的个位数都是6,这就是说,乙最后所拿的是6元(即剩下缺乏10元).[结果]甲比乙多拿了4元,为了平均分配甲必须补给乙2元.●板书设计1.8. 完全平方公式(一)一、几何背景试验田的总面积有两种表示形式:①a2+2ab+b2②(a+b)2比照得:(a+b)2=a2+2ab+b2二、代数推导(a+b)2=(a+b)(a+b)=a2+2ab+b2(a-b)2=[a+(-b)]2=a2-2ab+b2三、例题讲例例1.利用完全平方公式计算:(1)(2x-3)2(2)(4x+5y)2(3)(mn-a)2四、随堂练习(略)●备课资料一、杨辉杨辉,中国南宋时期杰出的数学家和数学教育家.在13世纪中叶活动于苏杭一带,其著作甚多.他著名的数学书共五种二十一卷.著有?详解九章算法?十二卷(1261年)、?日用算法?二卷(1262年)、?乘除通变本末?三卷(1274年)、?田亩比类乘除算法?二卷(1275年)、?续古摘奇算法?二卷(1275年).杨辉的数学研究与教育工作的重点是在计算技术方面,他对筹算乘除捷算法进行总结和开展,有的还编成了歌诀,如九归口诀。
七年级数学上册 第二章 有理数及其运算 (知识归纳+考点攻略+方法技巧)复习课件(新版)北师大版

2最0新19北/11师/8大版初中数学精品
数学8·课标版(BS)
第二章复习
方法技巧 用正数和负数表示具有相反意义的量,关键是看规定 哪种意义的量为正,则与之相反意义的量为负.
2最0新19北/11师/8大版初中数学精品
数学1·6 课标版(BS)
第二章复习 ►考点五 有理数的大小比较
用“>”或“<”填空:
(1)9___>_____-16; (2)-175___<_____-125;(3)0___>_____-7.
[解析] 因为正数大于负数,所以 9>-16;因为在数轴
7
2
数学5·课标版(BS)
第二章复习
(4) 运 算 律 : ① 交 换 律 : a·b = _____ ; ② 结 合 律 : (a·b)·c =
__a_·(_b_8(·1_.c))_法有则;理一③数:乘的两法除数对法相加除法,的同分号配得律_:_b_·a_a(,b+异c号)=得_a__b___+___,_a_c并__把. 绝对
2最0新19北/11师/8大版初中数学精品
数学2·1 课标版(BS)
第二章复习
易错警示
(1)-22 与(-2)2 不同,-22 的底数是 2,(-2)2 的底数
是-2;
(2)在计算 12÷
12―13―14时,要清楚除法没有分配律;
(3)有理数的混合运算一定要按照顺序进行,同时要注
意每一步运算的符号.
幂
底数
指数
2019/11/8
最新北师大版初中数学精品
6数学·课标版(BS)
《2.6有理数的加减混合运算》第二课时(教案)北师大版数学七年级上册

第二章有理数及其运算··第二课时教案班级:课时:课型:一、学情分析在对本章的学习过程中,学生已经具备了一定的探究能力,能主动发现、探究一些数学活动.在上一课时学生已经掌握简单的加减混合运算,能应用加减混合运算解决一些简单问题,这为本课学习奠定了基础.二、教学目标1. 能将有理数的加减混合运算统一成加法.2. 能将加法运算写成省略括号及前面加号的形式.3. 能根据具体问题,适当运用运算律简化运算.三、重点难点【教学重点】将有理数的加减混合运算统一成加法及省略加号和括号.【教学难点】能根据具体情况,适当运用运算律简化运算.四、教学过程设计第一环节【复习旧知引入新课】1.有理数的加法法则:(1)同号两数相加,取相同的符号,并把绝对值相加.(2)异号两数相加,绝对值相等时和为0 ;绝对值不等时取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值.(3)一个数同0 相加,仍得这个数.2.有理数的减法法则:减去一个数,等于加上这个数的相反数.3.计算:(1)(-12)+25 = 13 ;(2)17+(-21)= -4 ;(3)(-4)-16 = -20 ;(4)33-(-27)= 60 ;(5)(-37)-(-12)+(-13)+28 = -10 ;(6)(-12)+(-8)+(-6)+5 = -21 .设计意图:有理数的加减法法则是有理数加减混合运算的依据,本环节通过帮学生复习回顾,巩固学生基础,减小新课学习难度.第二环节【合作交流探索新知】一架飞机进行特技表演,起飞后的高度变化如下表:此时飞机比起飞点高了多少千米?教师提问:对于题中的“高度变化”,你是怎么理解的?你能通过列式计算此时飞机的高度吗?学生踊跃发言.教师展示PPT.关于这个问题,国国和粒粒有着不同的解法.国国的解法:粒粒的解法:-- 4.5+(-)+1.1+(-)-= 1.3+1.1+(-)--= 1(km). = 1(km).师:比较以上两种算法,你发现了什么?教师引导学生发现:4.5+(-)+1.1+(-)=--当左边省略加号和括号变成了右边的式子,因此--可以看作4.5、-3.2、1.1、-1.4 这 4 个数的和.师:有理数的加减混合运算可以统一成加法运算.如何将有理数加减法统一成加法呢?例如:(-13)-(-7)+(-8)-(+5)=(-13)+(+7)+(-8)+(-5)在和式中,通常把各个加数的括号和它前面的加号省略不写,写成省略加号的和的形式.即(-13)-(-7)+(-8)-(+5)= -13+7-8-5.师:有理数加减法统一成加法的依据是什么呢?学生思考后回答:有理数减法法则.师:-13+7-8-5按不同的意义有不同的读法.①按这个式子表示的意义来读:可读作“负13、正7、负8、负 5 的和”;②按算式来读:可读作“负13 加7 减8 减5”.--1.4 可以读作?选取一名学生代表回答:“正 4.5、负 3.2、正1.1、负1.4 的和”或“4.5 减3.2 加1.1 减1.4”.师:4.5+(-)+1.1+(-)还有其他计算方法吗?学生猜测是否可以用加法运算律进行简化运算?师生共同进行运算.4.5+(-)+1.1+(-)= 4.5+1.1+[(-)+(-)]= 5.6+(-)= 1.设计意图:本环节主要引导学生思考,通过对两种算法的比较,让学生体会到加减混合运算课统一成加法,理解利用运算律可以简化运算,为进一步学习有理数的加减混合运算做铺垫.第三环节【应用迁移巩固提高】例1.将下列式子写成省略括号和加号的形式,并用两种读法将它读出来.(1)(-12)-(+8)+(-6)-(-5);(2)(-13)-(-7)+(-21)-(+9)+(+32).例2.计算:(1)(-8)-(-15)+(-9)-(-12);(2)5.8432143++⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛-; (3)()5.273165.12743--⎪⎭⎫ ⎝⎛-++⎪⎭⎫ ⎝⎛-; (4)⎪⎭⎫ ⎝⎛-+-⎪⎭⎫ ⎝⎛-341531; (5)()()10785612--+⎪⎭⎫ ⎝⎛---; (6)⎪⎭⎫ ⎝⎛+-⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛-813414215874.例3.下表是某年某市汽油价格的调整情况:注:正号表示比前一次上涨,负号表示比前一次下降.与上一年年底相比,11 月 9 日汽油价格是上升了还是下降了?变化了多少元?设计意图:通过例题教学使学生巩固解决有理数加减混合运算的方法,掌握有理数加减混合运算统一成加法的方法,进一步提高学生的运算能力.【答案】例1.解:(1)(-12)-(+8)+(-6)-(-5)=(-12)+(-8)+(-6)+(+5)= -12-8-6+5;读作负 12 减 8 减 6 加 5 或负 12,负 8,负 6,正 5 的和.(2)(-13)-(-7)+(-21)-(+9)+(+32)=(-13)+(+7) +(-21)+(-9)+(+32)= -13+7-21-9+32.读作负13 加 7 减 21 减 9 加 32 或负 13,正 7,负 21,负 9,正 32 的和.例2.解:(1)原式 =(-8)+15+(-9)+12= 15 +12+[(-8)+(-9)] = 27+(-17)= 10;(2)原式 =5.8432143+++⎪⎭⎫ ⎝⎛- =⎪⎭⎫ ⎝⎛++⎥⎦⎤⎢⎣⎡+⎪⎭⎫ ⎝⎛-5.8214343 =0+9=9;(3)原式 =5.273165.12743+⎪⎭⎫ ⎝⎛-++⎪⎭⎫ ⎝⎛- =()5.25.127316743++⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛- =-20+15=-5;(4)原式 =()⎪⎭⎫ ⎝⎛-+-+⎪⎭⎫ ⎝⎛-341531 =()153431-+⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛- =()1535-+⎪⎭⎫ ⎝⎛- =3216-;(5)原式 =10785612--+- =⎪⎭⎫ ⎝⎛-+--10756812 =2120+- =239-;(6)原式 =813414215874--+⎪⎭⎫ ⎝⎛- =813414215874----++--=()⎪⎭⎫ ⎝⎛--+-+--+-814121873454 =436-- =436-.例3.解:由题意得:-140+290+400+600-220+300-190+480 = 1520,所以与上一年年底相比,11 月 9 日汽油价格上升了,上升了 1520 元/吨.第四环节 【随堂练习 巩固新知】1.(2022秋•新乐市期末)把算式:(-5)-(-4)+(-7)-(+2)写成省略括号的形式,结果正确的是( )A .-5-4+7-2B .5+4-7-2C .-5+4-7-2D .-5+4+7-22.(2022秋•桥西区校级期中)下列式子可读作:“负 1,负 3,正 6,负 8的和”的是( )A .-1+(-3)+(+6)-(-8)B .-1-3+6-8C .-1-(-3)-(-6)-(-8)D .-1-(-3)-6-(-8)3.(2022秋•福田区校级月考)计算:()⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛-++85443125.0=( ) A .415 B .4 C .853-D .-44.(2022秋•当涂县期末)8-(+11)-(-20)+(-19)写成省略加号的和的形式是 .5.(2022秋•潍城区期中)一只蜗牛从地面开始爬高为 6 米的墙,向上爬 3 米,然后向下滑 1 米,接着又向上爬 3 米,然后又向下滑1 米,则此时蜗牛离地面的距离为 米.设计意图:本环节为基础练习,让学生能熟练的进行加减混合运算统一成加法的写法,加强学生的运算技能.【答案】2.B3.B4.8-11+20-19.5.4.第五环节 【当堂检测 及时反馈】-32-23 中把省略的“+”号填上应得到( )A .1.17+32+23B .-1.17+(-32)+(-23)C .1.17+(-32)+(-23)-(+32)-(+23)2.(2022秋•点军区期中)a ,b ,c 为三个有理数,下列各式可写成a -b +c 的是( )A .a -(-b )-(+c )B .a -(+b )-(-c )C .a +(-b )+(-c )D .a +(-b )-(+c )3.(2022秋•沙河市期末)为计算简便,把(-)-(-)-()+()+(-)写成省略加号的和的形式,并按要求交换加数的位置正确的是( )A .---3.5B .--3.5C .----3.5D .---0.5+3.54.(2022秋•金堂县校级月考)计算1+(-2)+3+(-4)+5+(-6)+…+19+(-20)得( )A .10B .-10C .20D .-20a = 41-,b = -2,c = 432-,那么|a |+|b |-|c |等于( )A .21-B .211C .21D .211-6.(2022秋•淅川县期中)某件商品原价 18 元,后来又跌 1.5 元,下午又涨价 0.3 元,则这一商品最终价格是( )A .0.3 元B .16.2 元C .16.8 元D .18 元7.(2022秋•海曙区期中)和式431121132+--中第 3 个加数是 ,该和式的运算结果是 .8.数学活动课上,王老师给同学们出了一道题,规定一种新运算“☆”,对于任意有理数a 和b ,有a ☆b = a -b +1,则[2☆(-3)]☆(-2)的值为 .9.计算:--|-2.32|+(-);(2)⎪⎭⎫ ⎝⎛+++⎪⎭⎫ ⎝⎛-+-21775.24335.0;(3)2134317329655-+--.10.(2022秋•槐荫区期中)上海世博会第一天(5 月 1 日)的进园人数为 20.3 万人,以后的 6 天里每天的进园数变化如下表(正数表示比前一天多的人数,负数表示比前一天少的人数,(单位:万人)①5 月 2 日的进园人数是多少?② 5 月 1 日- 5 月 7 日这 7 天内的进园人数最多的是哪天?最少的是哪天?它们相差多少?③求出这 7 天进园的总人数.设计意图:通过本环节练习,巩固学生对新知识的掌握,同时进一步培养学生分析问题、解决问题的能力.【答案】1. C2.B3.A4.A5.7.311-,611. 8.9.---=(-)-()= 10-20= -10;(2)原式=21743243321++--=⎪⎭⎫⎝⎛--⎥⎦⎤⎢⎣⎡+⎪⎭⎫ ⎝⎛-43243321721=7-1=6;(3)原式 =2134317329655--++----=()⎪⎭⎫⎝⎛-+--+-+--2143326531795 =450- =45-.(万人),则 5 月 2 日进园人数为 21.5 万人;②根据题意得:这 7 天的人数分别为:20.3,21.5,13.1,14.5,8.2,10.9,14.8,则 5 月 2 日人数最多,5 日人数最少,-(万人);(万人),则这7 天进园总人数为103.3 万人.第六环节【拓展延伸能力提升】1.若|a|= 3,|b|= 1,|c|= 5,且|a+b|= a+b,|a+c|= -(a+c),求a-b+c的值.2.(1)有1,2,3,…,11,12 共12 个数字,请在每两个数字之间添上“+”或“-”,使它们的和为0;(2)若有1,2,3,…,2007,2008 共2008 个数字,请在每两个数字之间添上“+”或“-”,使它们的和为0;(3)根据(1)(2)的规律,试判断能否在1,2,3,…,2022,2022,共2022 个数字的每两个数字之间添上“+”或“-”,使它们的和为0?若能,请说明添法;若不能,请说明理由.设计意图:本环节为拔高练习,拓展学生的知识面,展现有梯度的教学理念.【答案】1.解:因为|a|= 3,|b|= 1,|c|= 5,且|a+b|= a+b,|a+c|= -(a+c),所以a = 3,b = ±1,c = -5,当a = 3,b = 1,c = -5 时,a-b+c = 3-1+(-5)= -3;当a = 3,b = -1,c = -5 时,a-b+c = 3-(-1)+(-5)= -1;综上所述,a-b+c的值为-3 或-1.2.解:(1)1-2+3-4+5-6-7+8-9+10-11+12 = 0;(2)1-2+3-4+...+1003-1004-1005+1006+ (2007)2008 = 0;(3)不能.因为 1 到2022 的总个数为奇数,每两个数字之间添上“+”或“-”,不能使它们的为和0.第七环节【总结反思知识内化】课堂小结:1.将有理数的加减混合运算统一成加法运算,依据是:有理数的减法法则.2.在把有理数的加减混合运算统一成加法运算的算式中,通常把各个加数的括号和它前面的加号省略不写,从而写成省略加号的和的形式.3. 运用加法交换律和结合律简化运算:(1)同号结合法;(2)凑整法;(3)相反数结合法;(4)同分母结合法;(5)同形结合法;(6)拆项法.设计意图:通过小结,使学生梳理本节课所学内容,把握本节课的核心——有理数的加减混合运算. 第八环节【布置作业夯实基础】。
有理数的加减混合运算_七年级数学教案

有理数的加减混合运算_七年级数学教案篇一:七年级数学上册有理数加减混合运算一、教学目的1、掌握有理数混合运算的法那么,并能纯熟的按有理数运算顺序进展有理数加、减、乘、除、乘方、的混合运算。
2、在运算过程中合理的使用简化运算,培养良好的运算才能。
3、通过玩“24点”游戏开拓思维,更好掌握有理数的混合运算。
二、重点、难点1、重点:纯熟进展有理数的混合运算。
2、难点:在运算中灵敏使用运算律同时能准确掌握符号征询题。
三、教学过程1、(幂),a是底数,n是指数,??叫做幂,他表示n个a相乘。
在前面几节课我们一共学习了5种运算,分别是那些运算呢?(学生答复:加法、减法、乘法、除法、乘方),留意乘方也是一种运算,我们学习了这五种运算所总结归纳出的法那么再有理数的范围内都是适用的。
下面我们来检测一下大家,本人在练习23+ 我们一起检验一下本人做的对不对。
首先看第一题:这一题是那种运算(学生答:加法)。
那么前面我们学习的有理数加法的法那么是?学生答:同号两数相加,取一样的符号,并把绝对值相加:异号两数相加,绝对值相等时和为0,绝对值不等时取绝对值较大的数的符号,并用较大的绝对值减去较2、讲授新知通过练习我们复习了前面学过的有理数的加法、减法、乘法、除法、乘方这五种运323那么,明白了如何分别进展这些法那么的运用,今天我们就来学习有理数的混合运算。
大家来看一下这个算式:考虑该如何处理这个征询题,3+2??×(-??)=?提示:在学习了乘方之后,我们说乘方是更高一级的运算在有乘方的算式中先算乘我们一起来处理这个征询题:首先我们先来推断一下这个式子包含了哪几种运算?(加法、乘方、乘法),??=4 那么这个式子我们可以把它变成。
3+4×(-??)=?如此的话同学们是不是就见过了呢?接下来应该算乘法最后再算加法。
例1、3+2×(?) 215解:原式=3+4×(?)=3+(?=154)511 5现在我们本人总结一下有理数加减混合运算的顺序:先算乘方,再算乘除,最后算加减,假设有括号先算括号的话,先算括里面的。
人教版七年级数学上册第一章《有理数》(大单元教学设计)

5.掌握有理数的乘方运算规则,能够求解简单的乘方问题。
(二)过程与方法
1.通过小组讨论、互动问答等方式,培养学生合作学习的能力,提高解决问题的效率。
2.通过实际例题的分析与解答,培养学生运用数学知识解决实际问题的能力,让学生体会数学与生活的紧密联系。
为了巩固学生对有理数知识的掌握,培养他们运用所学解决问题的能力,特布置以下作业:
1.基础知识巩固:
-完成课本第1-2页的练习题,涉及有理数的概念、分类及简单的加减运算。
-结合实际生活,举例说明有理数在生活中的应用。
2.运算能力提升:
-完成课本第3-4页的练习题,涵盖有理数的混合运算,包括加减乘除及括号的运用。
1.回顾本节课所学内容:引导学生回顾有理数的概念、运算规则、相反数和绝对值等知识点。
2.归纳总结:教师总结本节课的重点和难点,强调有理数运算的注意事项。
3.布置作业:布置适量的课后作业,要求学生在课后巩固所学知识。
4.激发兴趣:鼓励学生在课后继续探索有理数的奥秘,提高他们的自主学习能力。
五、作业布置
1.教学方法:
-采用启发式教学,引导学生通过观察、思考、总结,发现有理数的运算规律。
-利用数轴、符号等工具,形象地展示有理数的特点,帮助学生理解和记忆。
-设计丰富的教学活动,如小组讨论、互动问答、实际例题分析等,激发学生的学习兴趣和参与度。
2.教学策略:
-针对学生的认知水平,逐步引导他们从整数运算向有理数运算过渡,降低学习难度。
-对运算过程中容易出错的地方进行重点讲解和示范,帮助学生掌握正确的运算方法。
-注重培养学生的数学思维,引导他们在解决实际问题时,能够灵活运用所学知识。
七年级数学上册第二章有理数及其运算1有理数优秀教案(新版)北师大版

1.内容构造特色本章是在小学非负有理数知识的基础上引进负数的.第一介绍有理数的基本看法,而后再学习有理数的运算,并用有理数的知识解决实质问题.本章知识的引入着重从实质情境下手,经过学习有理数的分类、相反数、数轴、绝对值、有理数大小的比较,理解并掌握有理数的看法,初步浸透数形联合的数学思想,经过研究归纳的方式,追求有理数的加法、减法法例和运算律,经过研究规律的方式归纳总结有理数的乘、除法法例和运算律,在现实背景中理解有理数乘方的意义,经过 24 点游戏的建立,训练基本运算能力,培育思想能力,经过计算器的使用,既使学生解脱了繁琐的运算,同时又培育了学生研究数字规律的能力.2.教材的地位及作用数是学习代数式、方程、不等式、函数等内容的基础.本章是初中阶段对数学习的一部分.在小学阶段学生已经学习了算术数,累积了初步的数感、符号感和基本的运算能力,本章将进一步研究有理数的有关知识并解决实质问题.教材经过现实生活供给的问题背景,给学生供给了归纳、猜想、考证、推理、计算、沟通等数学活动时机,使学生在活动中发现问题、研究规律,促使了学生对知识的理解和掌握.因此,本章内容在知识的掌握、数学思想方法的浸透、学习能力的培育等方面都是特别重要的.3.教课要点与难点教课要点:(1)有理数的看法,特别是有理数的分类、绝对值、相反数等的看法.(2)有理数大小的比较方法,研究有理数四则运算法例并娴熟计算.(3)用科学记数法表示数.(4)应用有理数的有关知识解决实质问题.教课难点:(1)有理数的看法和有理数的运算.(2)数形联合思想的应用.4.教课目的(1)在详细情境中,理解有理数及其运算的意义.(2)能用数轴上的点表示有理数,会比较有理数的大小.(3)借助数轴理解相反数和绝对值的意义,会求有理数的相反数与绝对值.(4)经历研究有理数运算法例和运算律的过程;掌握有理数的加、减、乘、除、乘方及简单的混杂运算 ( 以三步为主 ) ;理解有理数的运算律,并能运用运算律简化运算.(5)会利用科学记数法表示数.(6)能运用有理数及其运算解决简单的实质问题.5.教课建议第一,教师应尽量从实质问题引入有理数的看法,借助风趣的情境和生活实例帮助学生理解看法,使学生正确地理解正数和负数是表示拥有相反意义的量.也可让学生自己从生活中找寻素材,加深理解;第二,进行有理数运算教课时,鼓舞学生自己研究运算法例和运算律,并在与伙伴沟通的过程中逐渐形成较为规范的解题格式.在该过程中,倡导算法多样化,教课时应减少繁难的笔算,对于出现的繁琐运算,鼓舞学生使用计算器;第三,要重视应用有理数及其运算解决实质问题的教课,让学生会用正负数表示实质问题中的量,能用运算的结果作出合理的解说,并给予实质意义.6.课时分派1 有理数1课时2数轴1课时3 绝对值 1 课时4有理数的加法 2 课时5 有理数的减法 1 课时6有理数的加减混杂运算 3 课时7 有理数的乘法 2 课时8有理数的除法 1 课时9 有理数的乘方 2 课时10科学记数法 1 课时11 有理数的混杂运算 1 课时12用计算器进行运算 1 课时1有理数教课要点与难点教课要点:1.理解并掌握有理数的看法.2.会用正、负数表示生活中拥有相反意义的量.教课难点:有理数的分类.学情剖析认知基础:学生在小学已经学习并掌握了非负有理数的意义,对应用非负有理数表示生活中的量比较熟习,而且已经娴熟地掌握了非负有理数的四则运算法例及运算律,能规范条理地表述运算过程,初步拥有了有条理地思虑和书面表达能力,这些都为本章的学习确立了基础.活动经验基础:北师大版的小学数学重视学生的生活经验,亲密数学与现实的联系,教材对重要的数学内容都是依照“问题情境——成立模型——解说与应用”的表达方式编排的,学生在学习中掌握了基本的数学知识和方法,形成了优秀的数学思想习惯和应意图识,有了必定的解决问题的能力,同时学生在研究详细问题的过程中自主地参加、研究和沟通,具备了必定的主动参加、合作意识和初步的察看、剖析、抽象归纳的能力.教课目的1.了解正数与负数是从实质需要中产生的,并会判断一个数是正数仍是负数.2.会用正、负数表示拥有相反意义的量.3.在负数看法的形成过程中,培育学生的察看、归纳与归纳的能力.教课方法创建情境,以问题为载体给学生供给研究的空间,指引学生踊跃研究.经过小组沟通合作的形式,建立以教师为主导,学生为主体自主研究的讲堂学习环境,使学生在研究合作的过程中掌握知识,提升技术,形成自己的看法.教课过程一、引入新课设计说明教材例题切近学生生活实质,生动开朗,经过对该例设置问题串,由浅入深,指引学生在轻松熟习的氛围中进行思虑,既复习旧知,作好新知学习的铺垫,同时鼓舞学生勇敢想象,充足进行思虑、沟通.阅读教材本节开端部分的内容,回答以下问题:问题 1:你能很快地为这两个队排一下名次吗?你的依照是什么?学生排名次的依照可能不独一,如:数笑容的个数、计算总得分等,只需学生能充足思虑,正确表达出排名次的依照,就进行夸奖.问题 2:在达成表格后,你有什么发现?学生经过填“答错题的得分”这一栏,发现“- 3”“- 2”,这类数字是我们没有学过的数,它是什么数?表示什么意义?和我们从前学过的数有什么关系?——引入新课.教课说明以上问题从学生已有的知识下手,以问题为载体,自然理顺学生解决问题的思路,问题 1 和问题 2 对于开辟学生解题思想有很大帮助,使个性化思想获得鼓舞和发展,同时引入了新课的学习.实践证明,该设计调换了学生的踊跃性,成功引入了新课.二、讲解新课1.达标导学,初探新知经过上边的问题我们看到,生活中的有些量用我们从前学过的数不可以表示了,这些比0小的数,能够用带有“-”的数来表示.比方-10,我们读作“负10”.对于比 0 大的数,我们用带有“+”的数来表示.如+10,读作“正10”.注意:“+”经常能够省略.问题:“-”能够省略吗?为何?学生回答:不可以够省略.“+”和“-”是表示数的性质符号,“-”省略了,数的性质就改变了.2.小组议论,理解新知生活中你见过带有“-”的数吗?设计说明安排一活的目的,主要了鼓舞学生自己找生活中的例子,并在求例的程中领会数的引入是生活的需要.同,能够依据需要,一些学生熟习的例睁开.如,零上温度与零下温度,海拔高于海平面的高度与海拔低于海平面的高度,等等.2像 5,1.2 ,3⋯的数叫做正数,它都比0 大.在正数前方加上“-”的数叫做数,如-10,- 3,⋯1:正数和数有什么关系?依据学生对于拥有相反意的量的,使学生通数学模型的察、、归纳、沟通等数学活,一步理解怎用正、数表示生活中拥有相反意的量,掌握正、数的意,培育学生的正、数的数感.2: 0 是正数是数?学生的回答会多种多,甚至有的学生没法回答,里教明确告学生,引入数以后,“ 0”的意就不表示“没有”了,它是正、数的分界,是“基准”.3:“-”的数必定是数?学生回答有必定困.于正数和数的看法,要提示学生注意不要“+”的数就是正数,“-”的数就是数.如-a不必定是数.但此不易引申太多.3.例理,稳固新知明通例的教课,要修业生能正确地表达出数所表示的意以及用正、数表示相反意的量;同,认识其实不是全部的基准都必0.教材例 (例):1:在以上 3 道中正数、数分表示什么量?2:每道的基准分是什么?1 依据学生的回答,上人常把零上的温度、上涨的高度、向的行程等定正的,而把零下的温度、降落的高度、向西的行程等与前方意相反的量定的; 2 要修业生注意其实不是全部的基准都必0,如第 1 小的基准静止不,第 2 小的基准一只球的准量,第 3 小的基准10 kg.明了学生更好地理解稳固正数和数是表示一意相反的量,在例解达成后及充,同通填空的形式范写格式,包含正、数的写及填空的位.通培育学生范地写.达成后教可提学生各中互相反意的量分是什么?基准分是什么?帮助学生更全面地理解本的要点.(1)海平面上的高度正,海平面下的深度,海平面下 150 米作 ________;(2)盈余 100 元作+ 100 元,那么100 元作 ________;(3)假如零上 5 ℃ 作+ 5 ℃,那么零下 5 ℃ 作 ________;(4)某运面粉 7.5 吨作+ 7.5 吨,那么运出 3.8 吨作 ________;(5)西两个相反方向,假如- 4 米表示一个物体向西运 4 米,那么+ 2 米表示________,物体原地不 ________;(6)向南走- 4 米,上是向 ________走了 ________米.4.小活,再探新知在大家分活,列我已学的数,而后将列的全部数适合地分红几,并明分的原因.有理数的分:正整数整数零有理数(按定)整数有理数(按性分数正分数分数正整数正数正分数)零整数数分数整数和分数称有理数.明有理数的看法是本的要点内容,通使学生充足理解有理数的分.2把以下各数填入相数集里:3,- 2,3.5 ,-3, 0,- 3.14 ,- 10%正数会合:⋯;数会合:⋯;整数会合:⋯;有理数会合:⋯.教课明本程通初探、理解、稳固、再探四个,使学生在教的引下,通的探、沟通、合作,自主地解决,稳固知.同的使学生的新知获得了及地稳固掌握,教课成效优秀.三、稳固提升明通三个,使学生本学程中易出和模糊的看法从不一样型加以理解,掌握解技巧.1.小学学的小数能否是有理数?属于分中的哪一?2.判断以下法能否正确:(1)一个有理数不是整数就是分数;(2)一个有理数不是正数就是数;(3)一个整数不是正整数就是整数;(4)一个分数不是正分数就是分数.3.一:一种商品的准价钱是200 元,但跟着季的化,商品的价钱可浮±10%.(1)±10%的含是什么?(2)你算出商品的最高价钱和最廉价钱;(3)假如以准价钱准,超准作“+”,低于准作“-”,商品价钱的浮范又能够怎表示?答案: 1.有限小数和无穷循小数都是有理数,属于分数;无穷不循小数不是有理数.2.第 (1) , (4) 法正确.3.(1) ±10%的含是在准的基上涨价或降价的幅度不超10%.(2) 最高价钱200+200×10%= 220( 元 ) ;最廉价钱200-200×10%= 180( 元 ) .(3)因 220- 200= 20( 元) ,200- 180= 20( 元 ) ,因此件商品涨价或降价的幅度不超 20元,因此件商品价钱的浮范又能够表示± 20 元.中考接:1.在一条东西向的跑道上,小亮先向东走了8 米,记作“+ 8 米”,又向西走了10 米,此时他的地点可记作()A.+2米B.-2米C.+18米D.-18米2.假如水库的水位高于标准水位 3 m时,记作+ 3 m,那么低于标准水位 2 m时,应记作()A.- 2 m B .- 1 m C .+ 1 m D .+ 2 m 答案: 1.B 2. A教课说明本过程仍旧先让学生独立思虑,再进行小组沟通的方式进行睁开.讲堂上鼓舞学生勇敢讲话,用自己的语言说明原因,进一步培育提升学生的思想表达能力.练习 1 对于有限小数和无穷循环小数都是分数,学生不可以很好的说明原因,考虑到为防止喧宾夺主,教课时可视学生状况适合解说.四、总结反省经过本节课的学习,请大家总结我们都学到了哪些数学知识和方法?1.我们知道了为何要学习负数,学会了用正、负数表示生活中的拥有相反意义的一对量,还知道了有理数都包含哪些数及其分类.2.我们还要掌握分类的思想方法.3.学生易疑惑的地方:学生对于有理数的分类理解不是很好,易把两种分类混杂和重复,应经过判断题或选择题的形式多加练习.评论与反省本节课设计为学生创建了轻松快乐地自主研究沟通的学习环境,四大环节的设计依照学生的认知规律,重在发掘学生潜力,给了学生更多的思虑空间.教课过程中着重发挥学生的主体作用,培育学生在学习互动过程中学会竞争与合作,加强团队相助合作精神.教课时向来让学生处于发现问题、提出猜想、沟通议论的状态中,用自己的思想方式形成自己对于问题独专门理解和认识 .。
七年级数学有理数整章复习华东师大版知识精讲
七年级数学有理数整章复习华东师大版【本讲教育信息】一、教学内容有理数整章复习二、知识要点⑴理解有理数的意义,会判断一个数是正数还是负数,能应用正负数表示生活中具有相反意义的量.⑵认识数轴,会用数轴上的点表示有理数,能借助数轴,了解相反数的概念,比较有理数的大小,初步理解绝对值的概念.⑶理解有理数的加减乘除及乘方的法则和运算律,会求有理数的倒数,能熟练地进行有理数运算,并能用运算律简化运算.⑷掌握有理数混合运算的法则,并能熟练地进行有理数加、减、乘、除、乘方的混合运算(以三步为主).⑸会使用计算器进行有理数的加、减、乘、除、乘方的运算.⑹掌握科学记数法,以及精确数及有效数字的概念及应用⑴相关概念、法则、运算律的理解与掌握;⑵有理数混合运算的法则的应用及有理数的混合运算技巧;⑶应用有理数的运算解决实际问题.三、考点分析⑴数轴:规定了原点、正方向和单位长度的直线叫做数轴;原点、正方向和单位长度称作数轴的三要素.⑵相反数:只有符号不同的两个数是互为相反数. 0的相反数是0;a 的相反数是a -.如果,a b 互为相反数,则有0a b +=,a b =-;反之亦成立.⑶绝对值:一个数a 的绝对值就是数轴上表示数a 的点离开原点的距离. 数a 的绝对值记作.a 其性质是:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.根据绝对值的性质,我们可以得到:①0a ≥;②若a a =,则0a ≥;若a a =-,则0a ≤.⑷倒数:乘积为1的两个数互为倒数,我们称其中一个数为另一个数的倒数.这个概念我们可以这样来理解:①a 的倒数是()10a a≠;②0没有倒数;③若,a b 互为倒数,则1ab =;反之亦成立.⑸有效数字和科学记数法一个近似数四舍五入到哪一位,就说它精确到哪一位,这时,从左边第一个不是零的数字起到右边精确到的数位止,所有的数字叫做这个数的有效数字.一般地,把一个绝对值大于10的数记成10n a ⨯的形式,其中1||10a ≤<,n 是正整数,这种记数方法叫做科学记数法.⑴用法则比较:正数都大于0,负数都小于0,正数大于一切负数;两个负数,绝对值大的反而小.⑵用数轴比较:在同一数轴上表示的两个数,右边的数总比左边的数大.⑴有理数的运算法则:①加法法则:同号两数相加,取相同的符号,并把绝对值相加;异号两数相加,绝对值相等时和为0,绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值;一个数同0相加,仍得这个数.②减法法则:减去一个数,等于加上这个数的相反数.③乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘;任何数与0相乘,积仍为0. 特别地,几个不为0的有理数相乘,积的符号由负因数的个数决定,当负因数有奇数个时,积为负;当负因数有偶数个时,积为正.④除法法则:除以一个数等于乘以这个数的倒数.⑤有理数的乘方:求几个相同因数积的运算叫做乘方;乘方的结果叫幂,乘方是乘法的特例,由乘法法则知:正数的任何次幂都是正数,负数的奇次幂是负数,负数的偶次幂是正数,0的任何次幂都是0.⑵运算律:① 加法交换律:a b b a +=+;② 加法结合律:()()a b c a b c ++=++;③ 乘法交换律:ab ba =; ④ 乘法结合律:()()ab c a bc =;⑤ 乘法分配律:().a b c ab ac +=+⑶运算顺序:先算乘方,再算乘除,最后算加减,如果有括号,就先算括号里边的;对于同一级运算,则按从左到右的顺序进行.注意:①有理数的运算与小学学过的运算有一个重要的区别就是多了一个符号问题,解决问题的关键就是遵循法则,先确定符号,再算绝对值;②五条运算律是进行简便运算的依据,在混合运算中,要灵活应用运算律,有时还需将它们逆向使用.⑷运用计算器计算:在计算时要熟悉功能键盘,掌握按键顺序.在输入一个多位数时,按键顺序应是从高位到低位依次输入;做四则运算时,其按键顺序应是从左到右,可与式子书写的顺序一样.【典型例题】例1. 填空:⑴在知识竞赛中,如果+10分表示加10分,那么扣20分可表示成;⑵某人转动转盘,如果沿逆时针转5圈记作+5圈,那么沿顺时针转12圈可表示成; ⑶;析解:本题主要是考查同学们运用正负数表示相反意义的量的能力.答案分别是:⑴-20;⑵-12;⑶低于标准0.03克.点评:怎样利用生活中的常见量表示正负数,理解正负数,练习本题时还需要再作一次认真的总结.例2.填空:⑴若m ,n 互为相反数,则m + n = .⑵-2006的倒数是.⑶()3--=_____. ⑷2--的倒数是( ).析解:⑴由相反数的性质知,0m n +=,故填0;⑵由倒数的概念知,-2006的倒数是-12006;⑶由相反数的性质知,()3--=3;⑷由于2--=-2,因而它的倒数是12-. 点评:初学代数,首先必须确保性质符号的准确.例3.如图,数轴上AB ,两点所表示的两数的( )A.和为正数B.和为负数 析解:本题重在考查能否应用数形结合思想及数轴上的点所提供的信息进行判别. 由图知,A 点表示3-,B 点表示3,所以()()330,339-+=-⨯=-,又因为0既不是正数,也不是负数,故选D.点评:本题考查的是数轴的知识及运算符号的确定.例4.奥运会于2008年8月8日20时在开幕,如图是5个城市的国际标准时间(单位:时),那么时间2008年8月8日20时应是( ).2008年8月8日2008年8月8日7时2008年8月9日2008年8月8日19时分析:中学地理中,我们学习了时区与时差的知识:是东八区,汉城是东九区,纽约在西五区,多伦多在西四区,而伦敦恰好在东西两区之间.我们可将这些城市的国际标准时间(单位:小时)在数轴上表示出来(如上图),从图可以看出,数轴上两点之间的单位长度实际上就是两地之间的时差.由此可轻松得到:与纽约的时差为13小时,与多伦多的时差为12小时,与伦敦的时差为8小时,与汉城的时差为-1小时.答案选B.点评:本题巧妙地把时差与数轴相结合,将实际问题转化成了求解数轴上两点之间的距离(单位长度)这样的数学问题.例5.下列四个运算中,结果最小的是( ).×÷(-2)析解:这四个数是:()121+-=-,()123--=,()122⨯-=-,()1122÷-=-. 由于12132-<-<-<,所以2-最小,故选C. 点评:本题考查的是四边形的加减乘除运算法则以及有理数大小的比较.例6.福娃出题:请按气球上所示的有理数将五个气球由大到小重新排序.分析:先将各数在数轴上表示出来,再根据“数轴上右边的点表示的数总比左边的点表示的数大”,这些数的大小关系就一目了然啦.解:如图所示:∴-(-4)>︱-2.5︱>0>-21>-︱-2︱. 所以,这五个气球按大小排序的结果是绿、蓝、红、棕、黄.点评:用这种方法解题时,原数轴上的表示单位长度的数要标在数轴的下方,而要比较大小的数应标在数轴的上方,这样,我们比较大小时,就更清楚明白了.例7.如果0,0,0a b a b <>+<,那么下列关系式中正确的是( ).A.a b b a >>->-B.a a b b >->>-C.b a b a >>->-D.a b b a ->>->析解:本题可利用特殊值法,根据条件可令5,3a b =-=,则5,3a b -=-=-,所以5335>>->-,即a b b a ->>->,故选D.点评:本题也可以运用画数轴的方法,利用数形结合的思想来解决问题.例8.计算下列各题:⑴()()()215248-+⨯---÷-; ⑵4121818343-+--. 分析:对于有理数的混合运算,要注意运算顺序和运算法则.解:⑴原式=)8(16)10(1-÷--+-=9)2()10(1-=---+-; ⑵原式=)418183()2143(++-+=214345=-.点评:在进行混合运算时,能用运算律简便运算的一定要用运算律来进行运算.例9.用“☆”定义新运算: 对于任意实数a 、b , 都有a ☆b =b 2+1. 例如7☆4=42+1=17,那么5☆3=.析解:本题用“☆”定义了一种新运算,对“☆”的理解是解题的关键,理解透了,与常规的运算区别不大. 由题意可知,5☆323110=+=.点评:新概念运算题是近几年中考试题中的新宠,要注意总结此类题的解题方法.例10.计算下列各题: ⑴)721()1179154238312(-⨯+-; ⑵)194(6)194(13)194(7-⨯--⨯+-⨯-. 分析:本题主要考查有理数乘法的交换律、结合律、分配律的运用.应用运算律可以简化运算,同时也可提高做题的速度,减少计算量.解:⑴)721()1179154238312(-⨯+-=)721(11791)721(54238)721(312-⨯+-⨯--⨯ =)79(11791)79(54238)79(37-⨯+-⨯--⨯=3513173=-+-; ⑵)194(6)194(13)194(7-⨯--⨯+-⨯-=)194()6137(-⨯-+-=0)194(-⨯=0. 点评:对于乘法分配律a (b +c )=ab +ac 有两种运用方法,一种是顺用公式,如上题中的⑴,另一种是逆用公式,如上题中的⑵,在做题时,应具体问题具体分析.例11.神舟六号飞船,在平安飞行115小时32分后重返神州. 用科学记数法表示神舟六号飞船飞行的时间是________ 秒 (保留三个有效数字).析解:10na ⨯中a 的取值X 围是110a ≤<,底数10的指数n 等于所表示的整数位数减去1. 因为115小时32分11536003260415920=⨯+⨯=(秒),所以415920秒保留三个有效数字为54.1610⨯秒,故填54.1610.⨯点评:本题考查的是科学记数法及其运算,由于数字较大,计算时很容易出错,因此一定要特别当心,没有特别说明的话,建议此题用计算器来解决.例12.小王利用计算机设计了一个计算程序,输入和输出的数据如下表: 输入… 1 2 3 4 5 … 输出 … 12 25 310 417 526… 那么,当输入数据为8时,输出的数据为.析解:只要细读表格便可发现,输出的分数的分子分别对应着输入数,分母分别是对应输入数的平方加1.因此当输入的数据为8时,输出的分数的分子为8,分母为281+,所以输出的数据为8.65故填8.65点评:本题是一道规律探究题,主要考查同学们的数学思维、观察及推理能力.例13.()()2007200888-+-能被下列数整除的是( ).A.3B.5 C析解:本题重在考查转化思想,因为直接计算显然不大可能,因此可把原式转化为2006200588-,由乘方的意义及乘法分配律得,()()200720072007200887)18()8(88⨯=+-•-=-+-,故选C.点评:从()()2007200888-+-到200787⨯的运算,只要掌握了乘方的概念,我们就会发现这是一道看似超纲的,其实却没超纲的好题.例14.按下图的程序计算,若开始输入的值为x =3, 则最后输出的结果为( ).A.6B.21 C析解:这是一道循环结构的程序运算题, 输入x ,计算2)1(+x x 的值后,若大于1,则输出结果;若不大于100,则把计算出的结果当作x 代入再计算,直至计算出的值大于100,才输出.输入3时,有62)13(3=+⨯<100,再把6代入,有212)16(6=+⨯<100,再把21代入,有2312)121(21=+⨯>100,输出,故选D.点评:根据新课程标准的要求,学生要能够熟练地掌握和使用计算器.此种题型以计算器程序的形式呈现在学生面前,有利于考查学生对计算器程序的认识和理解;从而培养学生良好的思维品质,符合时代潮流.例15.阅读下列材料,解答问题.饮水问题是关系到学生身心健康的重要生活环节,我校共有教学班24个,平均每班有学生50人,经估算,学生一年在校时间约为240天(除去各种节假日),春、夏、秋、冬季各60天.原来,学生饮水一般都是购零售价为1.5元/瓶的纯净水,每个学生春、秋、冬季平均每天买1瓶纯净水,夏季平均每天要买2瓶纯净水.学校为了减轻学生消费负担,要求每个班自行购买1台冷热饮水机,经调查,购买一台功率为500W 的冷热饮水机约为150元,纯净水每桶6元,每班春、秋两季,平均每1.5天购买4桶,夏季平均每天购买5桶,冬季平均每天购买1桶,饮水机每天开10小时,当地民用电价为0.50元 / 度.问题:⑴ 在未购买饮水机之前,全年平均每个学生要花费元钱来购买纯净水饮用.⑵ 请计算:在购买饮水机解决学生饮水问题后,每班全年共要花费多少元?⑶ 这项便利学生的措施实施后,东坡中学一年要为全体学生共节约元钱?析解:⑴∵每个学生春、秋、冬季每天1瓶矿泉水,夏季每天2瓶.∴一个学生在春、秋、冬季共购买180瓶矿泉水;夏天要购买120瓶矿泉水.∴×300=450元钱.⑵购买饮水机后,一年每个班所需纯净水的桶数为:春秋两季,每1.5天4桶,则120天共需(4×120)×32=320桶,夏季每天5桶,共要60×5=300桶.冬季每天1桶,共60 桶,∴××10×1000500×0.5=600(元).故每班学生全年共花费:4080+600+150=4830(元). ⑶∵一个学生节省的钱为450-504830=353.4元.∴×24×50=424080元. 点评:所谓阅读理解题,就是题目中提供一定的材料,介绍一个概念,给出一种解法,让你在理解材料的基础上,获得探索解决问题的方法,从而加以运用,解决实际问题.其目的是考查学生的阅读理解能力、收集处理信息的能力和运用知识解决实际问题的能力.五、本节数学思想方法的学习本章中的数学思想方法主要有:字母代数、数形结合、转化、分类等,要结合具体问题加以体会和运用.1.分类思想:若某个问题有多种情况,则需分别对每种情况进行讨论. 分类时要遵循两条原则,一是每次分类都要按照同一标准进行,二是分类时做到不重复、不遗漏. 如有理数的分类;有理数加法法则的分类等.2.数形结合思想:著名数学家华罗庚说:“数缺形时少直观,形少数时难入微”. 利用数形结合思想研究问题,可以使问题化难为易,化繁为简. 如有理数的大小比较、绝对值、加法法则等可以一目了然地在数轴上表示出来,既形象又直观.3.转化思想(化归思想):转化思想通常是指把陌生问题转化成熟悉问题,把新知识转化成旧知识,把抽象问题转化成具体问题. 如有理数的减(除)法是转化成加(乘)法来计算的,使加减(乘除)法运算统一成加(乘)法运算.【模拟试题】(答题时间:90分钟)一、细心选一选(每题3分,共30分)1. 在-23,-丨-6丨,-(-5),-33,(-11)2-20%,0中,正数的个数有( )2. 下列说法中不正确的是( )A. -5表示的点到原点的距离是5;B. 一个有理数的绝对值一定是正数;C. 一个有理数的绝对值一定不是负数;D. 互为相反数的两个数的绝对值一定相等.3. 下列各对数中,互为相反数的是( )A. -|-7|和+(-7)B. +(-10)和-(+10)C. (-4)3和-43D. (-5)4和-544. 比较-2.4,-0.5,-(-2),-3的大小,下列正确的是( )A.C.-(-2)>-0.5>-2.4>-35. 下列算式正确的是( ) A. -32=9 ; B.1441=-÷-)()(; C.1682-=-)(; D.325-=---)( 6. 已知m 是有理数,下列四个式子中一定是正数的是( )A.|m|+2B.|m|C.m -3D.-|m|7. 如果有理数a ,b 满足a +b>0,ab<0,则下列式子正确的是( )A.当a>0,b<0时,|a|>|b|B.当a<0,b>0时,|a|>|b|C.a>0,b>0D.a<0,b<08. ()()931275129735--+++=+-+-是应用了( )A. 加法交换律B. 加法结合律C. 分配律D. 加法的交换律与结合律*9. 下列说法不正确的是( )A. 近似数与表示的意义不一样;万精确到万位有三个有效数字;D. 510345.0⨯用科学记数法表示为41045.3⨯**10. 某城市按以下规定收取每月煤气费,用煤气不超过60立方米,按每立方米元收费;如果超过60立方米,超过部分按每立方米元收费。
有理数的加法教案优秀15篇
有理数的加法教案优秀15篇有理数的加法教案篇一一、教学目标(一)知识与技能1、使学生掌握有理数加法法则,并能运用法则进行计算;2、在有理数加法法则的教学过程中,注意培养学生的运算能力。
(二)过程与方法1、在教师创设的熟悉情境与学生探索法则的过程中,通过观察结果的符号及绝对值与两个加数的符号及其绝对值的关系,培养学生的分类、归纳、概括的能力。
2、在探索过程中感受数形结合和分类讨论的数学思想。
(三)情感、态度与价值观1、认识到通过师生合作交流,学生主动参与探索获得数学知识,从而提高学生学习数学的积极性。
2、创设教学情境,使学生更好地体验教学内容中的情境,理解数学的意义与数学实际应用。
二、教学重点会用有理数加法法则进行运算。
三、教学难点异号两数相加的#39;法则。
四、教学方法探究法、引导发现法五、教具准备多媒体课件、导学案六、教学过程(一)创设情景,引入新课。
小明沿着一条直线,先走两米,又走了三米,能否确定小明现在位于原来位置的哪个方向,与原来位置相距多少米?请把�(二)探究新知1、大家开始画数轴,以原点为起点,规定向右的�(1)若两次都是向右走,很明显,一共向右走了5米。
记作:(+2)+(+3)= +5(2)若两次都是向左走,很明显,一共向左走了5米。
记作:(-2)+(-3)= -5(3)若第一次向右走2米,第二次向左走3米,在数轴上,我们可以看到,小明位于原来位置的左方1米处。
记作:(+2)+(-3)= -1(4)若第一次向左走2米,第二次向右走3米,在数轴上,我们可以看到,小明位于原来位置的右方1米处。
记作:(-2)+ (+3)= +12、从刚才画数轴的过程中,我们知道了加法实际上是相继活动的合并。
我们可以借助数轴来得知两个有理数相加的结果。
请模仿刚才演示的过程,向右表示加数中的正数,向左表示加数中的负数,在数轴上表示两个数相加的过程,得到结果。
1)(-4)+ (-1)2)(+5)+(-3)3)(-4)+(+7)4)(-6)+33、通过实践,我们发现,能借助数轴很方便地得知有理数加法结果。
第1章有理数全章精品教案
新人教版七年级数学上册第1章有理数第3.1节有理数的加法第2课时精品教案教学目标知识技能:经历有理数加法运算律的探索过程,理解有理数加法的运算律.能用运算律简化有理数加法的运算.使学生逐渐养成,“算必讲理”的习惯,培养学生初步的推理能力与表达能力.数学思考:培养学生的观察能力和思维能力.经历对有理数的运算,领悟解决问题应选择适当的方法.解决问题:能运用加法运算律简化加法运算.理解加法运算律在加法运算中的作用,适当进行推理训练.情感态度:在数学学习中获得成功的体验.教学重点:加法交换律和结合律,及其合理、灵活的运用教学难点:合理运用运算律.教学内容:课本第19至21页.教学过程设计活动一.复习回顾,引入课题.1.回顾复习:小学时已学过的加法运算律有哪几条?2.学生回答后教师接着问:你能用自己的语言或举例子来说明一下加法的交换律与结合律吗?3.提出问题:这些运算律在有理数加法中适用吗?这就是这节课我们要研究的课题.教学说明:通过上述过程启发得出小学时学的加法运算律在有理数范围内仍适用.活动二.分析问题,探究新知.1.探讨加法运算律在有理数范围内是否适用.问题1:我们如何知道加法交换律在有理数范围内是否适用?(先由教师举一些实际例子来说明,然后鼓励学生举不同的数来验证)问题2:我们如何用语言来叙述有理数加法的交换律呢?(这个问题请学生回答,并互相补充)2.教师归纳后板书:“有理数加法中,两个数相加,交换加数的位置,和不变.”问题3 :你能把有理数加法的交换律用字母来表示吗?由学生回答得出a+b=b+a后,教师指出:①式子中的字母分别表示任意的一个有理数.(如:既可成表示整数,也可以表示分数;既可以表示正数,也可以表示负数或0).②在同一个式子中,同一个字母表示同一个数.3.有理数加法结合律的学习.“加法运算律对所有有理数都成立”先直接给出,让学生举例尝试,起到验证的作用.要让学生举不同的数验证,是为避免学生只由一个例子即得出某种结论.鼓动学生用自己的语言表达所发现的结论或规律,并用式子表示出来.让学生感受字母表示数的含义,同时也让学生体会到数学符号语言的简洁性.4.思考:如果四个或四个以上的有理数相加时,还能使用加法交换律与结合律吗?与同伴交流你的看法,并举例子来说明你的观点.活动三.知识应用,例题解析.例1.计算:(1)16+(-25)十24+(-35);(2)(-2.48)+(+4.33)+(-7.52)+(-4.33).师生共同分析完成,教师规范板书:解:(1)原式=16+24+ (-25)十(-35)(教师提问:依据是什么?)=(16+24)+[(-25)+(-35)〕(教师提问:依据是什么?) =40+(一60)=20教学说明:先让学生按从左到右的顺序依次相加,算一算,再让学生说一说,通过这两道题目的计算,你有什么体会?(使用运算律能使运算简便,简化运算的方法有:把正数和负数分别相加,有相反毅的先把相反数相加,能凑整的先凑整等等).例2.课本第19页例4.①让学生估计一下总重量是超过标准重量还是不足标准重量.②让学生思考如何计算,学生能给教科书提供的解法1 .即先10袋小麦的总质量,再计算总计超过多千克.此时可组织学生讨论:有没有不同的解法?(此时,如果已有学生提出教材的解法2的思路,则请学生讨论这种解法的合理性.并比较这两种解法.这是一个有理数应用的例子,这两种解法都应让学生掌握,尤其是解法2更是体现学习有理数加法运算的必要性.)教学说明:要注重学习小组内的合作与交流,让每个学生都能从与同伴的交流中获益.鼓励学生在已有知识的基础上对结论做进一步探索,同时也为接下去的应用打下基础.强调算理,让学生在具体运算中体会运算律对简化运算的作用.通过例1的学习让学生明白:加法的交换律与结合律通常是结合起来使用的.此处与书本相对增加了一道题,主要是考虑到存在互为相反数的两数相加的简便性.也是培养学业生能力的需要.活动四.知识巩固,课堂练习.课本第20页小练习活动五.知识梳理,课堂小结.通过这节课的学习,你有哪些收获,引导学生自己总结.活动六.知识反馈,作业布置.1.课本第25页第2,9,10题2.阅读课本第20页“实验与探究”有兴趣的可完成幻方.。
有理数及其运算全章教案
第二章 有理数及其运算第一单元第一课时:数怎么不够用了教学目标:1、借助生活中的实例理解有理数的意义,体会负数引入的必要性和有理数应用的广泛性。
2、会判断一个数是正数还是负数,能应用正负数表示生活中具有相反意义的量。
教学重点与难点:重点:负数和有理数的概念难点:负数的概念的探索教学过程:一、引入新课请同学们看图2—1,这是某天世界城市天气预报表,你能读出这天东京和旧金山的气温世界城市天气城市 天气 高温 低温 城市 天气 高温 低温东京 莫斯科 法兰克福纽约 旧金山 曼谷 悉尼 多云 小雪 阴 小雪 阴 晴 晴 9 1 1 2 16 33 27 2 —4 —4 —3 9 23 19 开罗 巴黎 伦敦 柏林 罗马 汉城 新加坡 多云 阴 小雪 小雪 小雪 晴 雷阵雨 21 4 3 —1 9 —1 30 11—2—2—62—624我们的生活经验,也能知道纽约和柏林在这天的天气情况。
数据中—3、—1和—6是我们以前没有学过的数,但它们却在我们的生活中出现了。
你一定非常想知道这些数的来历,以及它们的意义等。
下面欠就来讨论这个问题。
二、新课的进行大家知道,气温分为零上温度、零度、零下温度,我们所学过的数只能表示零上温度和零度,而要表示零下温度,我们所学过的数就“不够用了”。
为了记录方便,人们就用带“—”号(读作“负”)的数来表示零下温度,这就出现了柏林的某一天的气温最高为—1度(即零下1度),最低—6度(即零下6度)。
对于比零度高的气温,可以在其前面加上“+”号(读作“正”),如东京某天的气温最高为+9度,最低+2度。
正数也可以不写前面的“正”号,如+9可以写成9等。
请同学们再看下面的问题:P 31讨论中,同学们可发现,第四队的分数“不够减”了,这里也出现了比零低的数,怎么办?这里我们同样可以用带有“—”号的数表示第四队的成绩,表示为—10。
这样我们就可用带有“+”号和“—”号的数表示各队每道题的得分情况,试完成下表:P 32表。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
有理数及其运算复习课教案
有理数及其运算复习课教案
以下是查字典数学网为您推荐的有理数及其运算复习课教案,希望本篇文章对您学习有所帮助。
有理数及其运算复习课教案
一、复习目标:
(一、)知识目标:1:理解五个重要概念:有理数、数轴、相反数、绝对值、倒数。
2:掌握四条法则:有理数的加、减、乘、除法则。
(二、)能力目标:1:会运用三条运算律进行有理数的简便运算。
2:初步领会有理数的两种方法(有理数大小的比较方法,平方表、立方表的查法)的作用。
3:进一步体验有理数的一个规定(有理数的混合运算的顺序规定)。
(三、)德育目标:1 :使学生养成言必有据、做必有理、答必正确的良好思维习惯。
2:增进学生的应用数学知识解决实际问题的数学思想。
二、重、难点:重点是有理数的混合运算,并能熟练地运用它解决简单的应用题。
难点是绝对值的应用。
三、教学过程
概念的系统化
若(a-1)2+(b+2)2=0,则a=__,b=__。
若 | a-b |+| b-3 | =0,则______。
(5 ) | 3 - | + | 4 | 的计算结果是__________ 。
(6 )已知:| x | =3, | y | = 2, 且 x y 0, 则x + y = __________ 。
( 7 ) 实数在数轴上的对应点如图,
a 0 b
化简 a + | a + b | - | b a | =___________。
( 8 )如果 | x 3 | = 0 ,那么 x =___________。
四、典型示例,科学归纳.
例 1、指出下列各数的相反数、倒数、绝对值,并指出哪两个数互为相反数、互为倒数、绝对值相等;把各数分别表示在数轴上,并填在相应的集合里。