人教版高中数学必修4第一章人教版高中数学必修4第一章《三角函数》教材分析和教学建议

合集下载

高中数学必修四 第一章三角函数 1.2.2 同角三角函数的基本关系

高中数学必修四 第一章三角函数 1.2.2 同角三角函数的基本关系

故 tan ������
1 sin2������
-1
=
tan
������
1-sin2������ sin2������
=
tan
������
cos������ sin������
=
sin������ cos������
·-scions������������
=
−1.
(2)证法一:sin2α+cos2α=1⇒1-cos2α=sin2α
sin������ 1 + cos������ ∴ 1-cos������ = sin������ .
题型一 题型二 题型三 题型四 题型五
题型四 已知 tan α 的值求其他代数式的值
【例4】 已知tan α=7,求下列各式的值.
(1)
sin������+cos������ 2sin������-cos������
则 sin α=−
1-cos2 ������
=

15 17
,
tan
������
=
sin������ cos������
=
185.
反思已知cos α(或sin α)求tan α时,先利用平方关系求出sin α(或 cos α),再利用商关系求出tan α.注意在求sin α(或cos α)时,往往需分 类讨论α所在的象限.
证明三角恒等式就是通过转化和消去等式两边的差异来促成统 一的过程,证明的方法在形式上显得较为灵活.常用的有以下几种:
(1)直接法——从等式的一边开始直接化为等式的另一边,常从比 较复杂的一边开始化简到另一边,其依据是相等关系的传递性.
(2)综合法——由一个已知成立的等式(如公式等)恒等变形得到 所要证明的等式,其依据是等价转化的思想.

最新人教版高中数学必修4第一章《三角函数》本章总览

最新人教版高中数学必修4第一章《三角函数》本章总览

第四章 三角函数
网络体系总览
考点目标定位
1.角的概念的推广.弧度制.
2.任意角的三角函数.单位圆中的三角函数线.
3.同角三角函数的基本关系式.正弦、余弦的诱导公式.
4.两角和与差的正弦、余弦、正切.二倍角的正弦、余弦、正切.
5.正弦函数、余弦函数的图象和性质.周期函数.
6.函数y=Asin(ωx+φ)的图象.正切函数的图象和性质.已知三角函数值求角. 复习方略指南
本部分内容历来为高考命题的热点,其分值约占15%,一般都是二或三个小题,一个大题.小题主要考查三角函数的基本概念、图象、性质及“和、差、倍角”公式的运用.大题则着重考查y=Asin(ωx+φ)的图象和性质及三角函数式的恒等变形.试题大都来源于课本中的例题、习题的变形,一般为容易题或中档题.因此复习时应“立足于课本,着眼于提高”. 本章内容公式多,三角函数作为工具,和其他知识间的联系密切,因此复习中应注意:
1.弄清每个公式成立的条件,公式间的内在联系及公式的变形、逆用等.切不可死记硬背,要在灵、活、巧上下功夫.
2.本章突出显现以数形结合思想与等价转化思想为主导的倾向.在本章复习中,应深刻理解数与形的内在联系,理解众多三角公式的应用及三角函数式的化简、求值、证明等无一不体现等价转化思想.
3.通过图象的变换理解并掌握利用变换研究图象的思想方法,并从中体会“变换美”.
4.有关三角函数方面的应用题,大都需要用“辅助角公式”asinx+bcosx=22b a sin(x+φ)(其中φ角所在象限由a 、b 的符号确定,φ角的值由tan φ=a
b 确定)将函数化成y=Asin(ωx+φ)+h
的形式,再求其最值或周期等.。

高一数学必修4三角函数(1)

高一数学必修4三角函数(1)

高一数学必修4:三角函数1. 引言三角函数作为数学中的一门分支,是高中数学学习过程中的必修内容之一。

本文将介绍高一数学必修4中的三角函数知识点,包括三角函数的定义、性质以及常见的应用。

2. 三角函数的定义三角函数包括正弦函数、余弦函数和正切函数。

这三个函数可以描述一个角在单位圆上的表示,从而与三角比、三角恒等式等相关。

2.1 正弦函数正弦函数(sin)表示一个角的对边与斜边之间的比值。

在单位圆上,对于角θ,其正弦函数值为sin(θ) = 对边 / 斜边。

2.2 余弦函数余弦函数(cos)表示一个角的邻边与斜边之间的比值。

在单位圆上,对于角θ,其余弦函数值为cos(θ) = 邻边 / 斜边。

2.3 正切函数正切函数(tan)表示一个角的对边与邻边之间的比值。

在单位圆上,对于角θ,其正切函数值为tan(θ) = 对边 / 邻边。

3. 三角函数的性质三角函数具有一些重要的性质,这些性质在解决三角函数相关题目时起着重要的作用。

3.1 周期性正弦函数和余弦函数的周期都是2π。

也就是说,对于任意的θ,有sin(θ + 2π) = sin(θ)和cos(θ + 2π) = cos(θ)。

3.2 正弦函数和余弦函数的关系根据单位圆上的几何关系,对于任意的θ,有sin(θ) = cos(π/2 - θ)和cos(θ) = sin(π/2 - θ)。

3.3 正切函数的性质正切函数的性质与正弦函数和余弦函数有所不同。

正切函数在某些特定的θ值会出现无穷大或不存在的情况。

例如,tan(π/2)是不存在的,tan(0)等于0。

4. 三角函数的应用三角函数在实际问题中有着广泛的应用。

以下是一些常见的三角函数应用示例:4.1 三角函数的图像通过绘制正弦函数和余弦函数的图像,可以帮助我们更好地理解它们的周期性和变化规律。

通过图像可以观察到函数的最大值、最小值、周期等特点。

4.2 三角函数的运动学应用在物理学中,三角函数经常被用于描述物体的运动。

高一数学人教A版必修4第一章(三角函数)本章小结课件

高一数学人教A版必修4第一章(三角函数)本章小结课件

1-(-
5 5
)2
=
-
2
5 5
.
6. 用 cosa 表示 sin4a-sin2a+cos2a.
解: sin4a-sin2a+cos2a = sin2a(sin2a-1)+cos2a = sin2a(-cos2a)+cos2a = cos2a(1-sin2a) = cos4a.
7. 求证:
(1) 2(1-sina)(1+cosa) = (1-sina+cosa)2; (2) sin2a+sin2b-sin2a·sin2b+cos2a·cos2b =1.
6. 终边位置确定三角函数值的正负
y
y
y
++ -o - x
-+
ox
-+
-+
ox
+-
sina
cosa
tana
正弦上正下负, 余弦右正左负, 正切一三正二四负.
7. 同角三角函数的关系
sin2a+cos2a=1,
sina cosa
=
tana
.
常用的变形:
sin2a=1-cos2a. cos2a=1-sin2a.
解: 由已知得 sin2x=4cos2x, 1-cos2x=4cos2x,
解得 cos x =
5 5
.
又由已知得 tanx =2,
则 x 是第一、第三象限角.
当 x 是第一象限角时,
cos x =
5 5
,
sin x =
1-(
5 5
)2=
2
5 5
;
当 x 是第三象限角时,

人教版高中数学必修4第一章三角函数《1.4三角函数的图象与性质:1.4.2 正弦函数、余弦函数的性质》教学PPT

人教版高中数学必修4第一章三角函数《1.4三角函数的图象与性质:1.4.2 正弦函数、余弦函数的性质》教学PPT

解:(2)当x 2k , k Z时,函数取得最大值,ymax 1
2
当x 2k , k Z时,函数取得最小值,
2
ymin 1
函数取得最大值的x的集合是x
x
2
2k
,
k
Z
,ymax
1,
函数取得最大值的x的集合是x
x
2
2k
,
k
Z
,ymin
1.
二、 正、余弦函数的奇偶性
-4 -3
例1.下列函数有最大(小)值?如果有,请写出取最大(小) 值时的自变量x的集合,并说出最大(小)值是什么?
(1)y cos x 1, x R; (2)y sin x, x R.
解:(1)当x 2k , k Z时,ymax 11 2,
当x 2k , k Z时,ymin 11 0.
1.4.2 正弦、余弦函数的性质
(1)周期性
定义域、值域
-4 -3
y
1
-2
- o
-1
y=sinx (xR)
2
3
4
定义域 xR
-4 -3
y=cosx (xR)
y
1
-2
- o
-1
值 域 y[ - 1, 1 ]
2
3
4
5 6x 5 6x
举例:
生活中“周而复始”的变化规律。
24小时1天、7天1星期、365天1年……. 相同的间隔重复出现的现象称为周期现象. 数学中又有哪些周期现象呢?
思考:y=sinx,x∈R的图象为什么会重复出现形 状相同的曲线呢?
y
1
4
3
2
7 2
5
3
2

高中数学必修四 第1章 三角函数课件 1.1.2 弧度制

高中数学必修四 第1章 三角函数课件 1.1.2 弧度制
高中数学 必修四
第一章 三角函数
1.1.2 弧度制
【教学目标】 1.了解角的另外一种度量方法——弧度制. 2.能进行弧度与角度的互化. 3.掌握弧度制中扇形的弧长公式和面积公式. 【重难点】 1.对弧度制概念的理解.(难点) 2.弧度制与角度制的互化.(重点、易错点)
新知导学
1.度量角的单位制 (1)角度制 用度作为单位来度量角的单位制叫做角度制,规定 1 度的角等 1 于周角的 360 . (2)弧度制 ①弧度制的定义
[思路探索] 本题主要考查角度与弧度的换算,直接套用角度与 弧度的换算公式,即度数×1π80=弧度数,弧度数×1π80°=度 数.
解 (1)20°=2108π0=π9. (2)-15°=-11850π=-1π2. (3)71π2=172×180°=105°. (4)-115π=-151×180°=-396°.

α2kπ+π2<α<2kπ+π,k∈Z


α2kπ+π<α<2kπ+32π,k∈2π<α<2kπ+2π,k∈Z

类型一 角度制与弧度制的换算 【例 1】 将下列角度与弧度进行互化.
(1)20°;(2)-15°;(3)71π2;(4)-115π.
解 (1)-1 500°=-1 500×1π80=-253π=-10π+53π. ∵53π是第四象限角,∴-1 500°是第四角限角. (2)∵25π=25×180°=72°,∴终边与角25π相同的角为 θ=72°+ k·360°(k∈Z),当 k=0 时,θ=72°;当 k=1 时,θ=432°, ∴在 0°~720°范围内,与25π角终边相同的角为 72°,432°. [规律方法] 用弧度制表示终边相同的角 2kπ+α(k∈Z)时,其 中 2kπ 是 π 的偶数倍,而不是整数倍,还要注意角度制与弧度 制不能混用.

人教A版高中数学必修4《第一章 三角函数 1.2 任意角的三角函数 阅读与思考 三角学与天文学》_20

§1.2.2同角三角函数的基本关系教学目标:(一)知识与技能:1、能根据三角函数的定义,导出同角三角函数的基本关系式及其内在联系;2、理解和掌握已知一个角的三角函数值求其它三角函数值的思想方法。

(二)过程与方法:1、牢固掌握同角三角函数的两个关系式,并能灵活运用于解题;2、提高学生分析、解决三角函数问题的思维能力和正确运算能力。

(三)情感态度与价值观:1、增强学生的自主学习能力和数形结合、分类讨论的数学思维想;2、培养和提高学生的推理分析能力和解决问题的综合能力;3、激发学生的学习兴趣,为以后的学习打好基础。

教学重点:同角三角函数的基本关系的推导及其应用(化简、求值和恒等式证明)教学难点:三角函数值的符号的确定,同角三角函数的基本关系式的变式应用。

教学方法:引导分析、合作探究、讲练结合。

(一)教法:采取诱思探究性教学方法,在教学中提出问题,创设情景引导学生主动观察、思考、类比、讨论、总结、证明,让学生做学习的主人,在主动探究中汲取知识,提高自身能力。

(二)学法:从学生原有的知识和能力出发,在教师的带领下,通过合作交流,共同探索,逐步解决问题.数学学习必须注重概念、原理、公式、法则的形成过程,突出数学本质。

课型:新授课教具:计算机,多媒体投影,黑板教学过程:(一)、问题引入:1、任意角的三角函数定义:P x y,它与原点的距离为:设角α是一个任意角,α终边上任意一点(,)(0)r r ==>,那么:sin y r α=,cos x r α=,tan y xα=, 2、当角α分别在不同的象限时,sin α、cos α、tg α的符号分别是怎样的? 3、背景:如果53sin =A ,A 为第一象限的角,如何求角A 的其它三角函数值? 4、问题:由于α的三角函数都是由x 、y 、r 表示的,则角α的三个三角函数之间有什么关系?(二)、新知探究:(板书课题:同角的三角函数的基本关系) 由三角函数的定义,我们可以得到以下关系:1、商数关系:2、平方关系: 说明:①注意“同角”,至于角的形式无关重要,如22sin 4cos 41αα+=等; ②注意这些关系式都是对于使它们有意义的角而言的,如tan cot 1(,)2k k Z πααα⋅=≠∈ ③对这些关系式不仅要牢固掌握,还要能灵活运用(正用、反用、变形用),如:cos α= 22sin 1cos αα=-, sin cos tan ααα=等。

数学》必修④第一章正弦函数的图像(共21张PPT)

2.通过练习检测学生对知识的掌握情况: 可能出现问题:不会找五个点; 几何作图不够美观
3.根据学生在课后作业情况,查漏补缺。
谢谢
华侨中学 苏育亮
播下一个行动,收获一种习惯;播下一种习惯,收获一种性格;播下一种性格,收获一种命运。思想会变成语言,语言会变成行动,行动会变成习惯,习惯会变成性格。性 制,会变成生活的必需品,不良的习惯随时改变人生走向。人往往难以改变习惯,因为造习惯的就是自己,结果人又成为习惯的奴隶!人生重要的不是你从哪里来,而是你 时侯,一定要抬头看看你去的方向。方向不对,努力白费!你来自何处并不重要,重要的是你要去往何方,人生最重要的不是所站的位置,而是所去的方向。人只要不失去 这个世界唯一不变的真理就是变化,任何优势都是暂时的。当你在占有这个优势时,必须争取主动,再占据下一个优势,这需要前瞻的决断力,需要的是智慧!世上本无移 是:山不过来,我就过去。人生最聪明的态度就是:改变可以改变的一切,适应不能改变的一切!亿万财富不是存在银行里,而是产生在人的思想里。你没找到路,不等于 什么,你必须知道现在应该先放弃什么!命运把人抛入最低谷时,往往是人生转折的最佳期。谁能积累能量,谁就能获得回报;谁若自怨自艾,必会坐失良机人人都有两个 一个是心门,成功的地方。能赶走门中的小人,就会唤醒心中的巨人!要想事情改变,首先自己改变,只有自己改变,才可改变世界。人最大的敌人不是别人,而是自己, 1、烦恼的时候,想一想到底为什么烦恼,你会发现其实都不是很大的事,计较了,就烦恼。我们要知道,所有发生的一切都是该发生的,都是因缘。顺利的就感恩,不顺 渡寒潭,雁过而潭不留影;风吹疏竹,风过而竹不留声。”修行者的心境,就是“过而不留”。忍得住孤独;耐得住寂寞;挺得住痛苦;顶得住压力;挡得住诱惑;经得起 子;担得起责任;1提得起精神。闲时多读书,博览凝才气;众前慎言行,低调养清气;交友重情义,慷慨有人气;困中善负重,忍辱蓄志气;处事宜平易,不争添和气; 泊且致远,修身立正气;居低少卑怯,坦然见骨气;卓而能合群,品高养浩气淡然于心,自在于世间。云淡得悠闲,水淡育万物。世间之事,纷纷扰扰,对错得失,难求完 反而深陷于计较的泥潭,不能自拔。若凡事但求无愧于心,得失荣辱不介怀,自然落得清闲自在。人活一世,心态比什么都重要。财富名利毕竟如云烟,心情快乐才是人生 在路上,在脚踏实地的道路上;我们的期待在哪里?在路上,在勤劳勇敢的心路上;我们的快乐在哪里?在路上,在健康阳光的大道上;我们的朋友在哪里?在心里,在真 钟,对自己负责;善于发现看问题的角度;不满足于现状,别自我设限;勇于承认错误;不断反省自己,向周围的成功者学习;不轻言放弃。做事要有恒心;珍惜你所拥有 学会赞美;不找任何借口。与贤人相近,则可重用;与小人为伍,则要当心;只满足私欲,贪图享乐者,则不可用;处显赫之位,任人唯贤,秉公办事者,是有为之人;身 则可重任;贫困潦倒时,不取不义之财者,品行高洁;见钱眼开者,则不可用。人最大的魅力,是有一颗阳光的心态。韶华易逝,容颜易老,浮华终是云烟。拥抱一颗阳光 随缘。心无所求,便不受万象牵绊;心无牵绊,坐也从容,行也从容,故生优雅。一个优雅的人,养眼又养心,才是魅力十足的人。容貌乃天成,浮华在身外,心里满是阳 飞,心随流水宁。心无牵挂起,开阔空净明。幸福并不复杂,饿时,饭是幸福,够饱即可;渴时,水是幸福,够饮即可;裸时,衣是幸福,够穿即可;穷时,钱是幸福,够 畅即可;困时,眠是幸福,够时即可。爱时,牵挂是幸福,离时,回忆是幸福。人生,由我不由天,幸福,由心不由境。心是一个人的翅膀,心有多大,世界就有多大。很 的环境,也不是他人的言行,而是我们自己。人心如江河,窄处水花四溅,宽时水波不兴。世间太大,一颗心承载不起。生活的最高境界,一是痛而不言,二是笑而不语。 人生的幸福在于祥和,生命的祥和在于宁静,宁静的心境在于少欲。无意于得,就无所谓失去,无所谓失去,得失皆安谧。闹市间虽见繁华,却有名利争抢;田园间无争, 和升平,最终不过梦一场。心静,则万象皆静。知足者常在静中邂逅幸福。顺利人生,善于处理关系;普通人生,只会使用关系;不顺人生,只会弄僵关系。为人要心底坦 脑清醒,不为假象所惑。智者,以别人惨痛的教训警示自己;愚者,用自己沉重的代价唤醒别人。对人多一份宽容,多一份爱心;对事多一份认真,多一份责任;对己多一 长,志不可满,乐不可极,警醒自己。静能生慧。让心静下来,你才能看淡一切。静中,你才会反观自己,知道哪些行为还需要修正,哪些地方还需要精进,在静中让生命 觉悟。让心静下来,你才能学会放下。你放下了,你的心也就静了。心不静,是你没有放下。静,通一切境界。人与人的差距,表面上看是财富的差距,实际上是福报的差 实际上是人品的差距;表面上看是气质的差距,实际上是涵养的差距;表面上看是容貌的差距,实际上是心地的差距;表面上看是人与人都差不多,内心境界却大不相同, 很重要的一件事。因为当一个人具有感恩的心,心会常常欢喜,总是觉得很满足,一个不感恩不满足的人,总是会觉得欠缺、饥渴。一个常感恩的人,会觉得自己很幸运, 这样一想、一感恩,就变得很快乐。这种感恩的心,对自己其实是有很大利益。压力最大的时候,效率可能最高;最忙碌的时候,学的东西可能最多;最惬意的时候,往往 太阳就要光临。成长不是靠时间,而是靠勤奋;时间不是靠虚度,而是靠利用;感情不是靠缘分,而是靠珍惜;金钱不是靠积攒,而是靠投资;事业不是靠满足,而是靠踏 件事。因为当一个人具有感恩的心,心会常常欢喜,总是觉得很满足,一个不感恩不满足的人,总是会觉得欠缺、饥渴。一个常感恩的人,会觉得自己很幸运,有时候其实 一感恩,就变得很快乐。这种感恩的心,对自己其实是有很大利益。压力最大的时候,效率可能最高;最忙碌的时候,学的东西可能最多;最惬意的时候,往往是失败的开 光临。成长不是靠时间,而是靠勤奋;时间不是靠虚度,而是靠利用;感情不是靠缘分,而是靠珍惜;金钱不是靠积攒,而是靠投资;事业不是靠满足,而是靠踏实。以平 在危险面前,平常心就是勇敢;在利诱面前,平常心就是纯洁;在复杂的环境面前,平常心就是保持清醒智慧。平常心不是消极遁世,而是一种境界,一种积极的人生。不 一个有价值的人而努力。命运不是机遇,而是选择;命运不靠等待,全靠争取。成熟就是学会在逆境中保持坚强,在顺境时保持清醒。时间告诉你什么叫衰老,回忆告诉你 要外来的赞许时,心灵才会真的自由。你没那么多观众,别那么累。温和对人对事。不要随意发脾气,谁都不欠你的。现在很痛苦,等过阵子回头看看,会发现其实那都不 交。人有绝交,才有至交学会宽容伤害自己的人,因为他们很可怜,各人都有自己的难处,大家都不容易。学会放弃,拽的越紧,痛苦的是自己。低调,取舍间,必有得失 错误面前没人爱听那些借口。慎言,独立,学会妥协的同时,也要坚持自己最基本的原则。付出并不一定有结果。坚持可能会导致失去更多过去的事情可以不忘记,但一定 作一个最好的打算和最坏的打算。做一个简单的人,踏实而务实。不沉溺幻想。不庸人自扰。不说谎话,因为总有被拆穿的一天。别人光鲜的背后或者有着太多不为人知的 学习。不管学习什么,语言,厨艺,各种技能。注意自己的修养,你就是孩子的第一位老师。孝顺父母。不只是嘴上说说,即使多打几个电话也是很好的。爱父母,因为他 爱的最无私的人。

高中数学_三角函数的诱导公式教学设计学情分析教材分析课后反思

《三角函数的诱导公式》教学设计 (一)创设问题情境 师生活动:教师提问,学生思考、回答,学生口述的同时,教师加以引导并用幻灯片展示. 问题1: (1)各象限内三角函数值的符号是什么?(只讨论正弦、余弦、正切) (2)任意角的三角函数的定义是什么? (3)公式一的内容与作用是什么? 问题2:已知1sin30,2如何求sin210,sin330,sin150的值. 教师引导:能否再把0°~360°间的角的三角函数,化为我们熟悉的 0°~90°间的角的三角函数问题呢?这节课我们就来学习和研究这样的问题. 【设计意图】通过复习旧知,为新知识的学习打下基础.特别是各象限三角函数的符号,对于诱导公式记忆起关键作用.提出的新问题,引导学生进一步思考,激起学生们的兴趣. (二)探索开发新结论 教师引导:为了解决以上问题,我们采用各个击破的方法.首先看21030180,如果我们知道一个任意角与(π+)三角函数值的关系,问题就解决了. 探究一:任意角与(π+)三角函数值的关系. 问题3: ①与 (π+)角的终边关系如何?(互为反向延长线或关于原点对称) ②设与(π+)角的终边分别交单位圆于点P1,P2,则点P1与P2位置关系如何?(关于原点对称) ③设点P1(x,y),那么点P2的坐标怎样表示?(P2(-x,-y)) ④sin与sin(π+),cos与cos(π+),tan与tan(π+)的关系如何? 经过探索,归纳成公式

sinπsincosπcostanπtan ------公式 二 1sin210sin(30180)sin302.

【设计意图】公式二的三个式子中,sin)πsin(是第一个解决的问题,由于 方法及思路都是未知的,所以采取教师引导,师生合作共同完成办法.通过脚手架式的层层提问,引导学生自主推导诱导公式二,让学生体验证明猜想的乐趣,凸显学生学习的主体地位.同时,试图通过环环相扣的问题给学生传递“由宏观到微观考虑问题”的思维习惯,从而达到“授人以渔”的目的.后两个均由学生类比讨论完成. 学生活动:小组讨论,代表发言交流. 问题4:公式中的角仅是锐角吗? 【设计意图】课前提问的问题是以30引入的,之后的讨论只是用代数方法换成了一般形式的角,有些同学肯定会有这样的疑问,所以这个问题的解决好,就是突破难点的关键.引导学生互相讨论,交流可以使学生记忆更深刻. 师生活动:演示几何画板课件,首先作出第一象限的任意角,之后得到相应的三角函数值,拖动其终边上任意点,再让学生观察每一象限内三角函数值的符号和它们之间存在的对称关系,从而验证了猜想,使学生更好的理解了这个公式. 【设计意图】通过多媒体演示,发现变化规律,从而总结出三角函数的诱导公式. 类比第一个问题的解决方法,我们再来解决后面的两个问题.观察33036030,由公式一知330的终边与30的终边相同,所以我们必须知道一个任意角与(-)三角函数值的关系. 探究二:任意角与(-)三角函数值的关系. 问题5: ①与(-)角的终边位置关系如何?(关于x轴对称) ②设与(-)角的终边分别交单位圆于点P1,P2点P1与P2位置关系如何(关于x轴对称) ③设点P1(x,y),则点P'的坐标怎样表示?[P2(x,-y)] ④sin与sin(-),cos与cos(-) ,tan与tan(-)关系如何? 经过探索,归纳成公式

高中数学人教版A版必修4《任意角的三角函数》优质PPT课件

第一章 三角函数
§1.2 任意角的三函数
明目标、知重点
内容 索引
01 明目标
知重点
填要点 记疑缺
04
明目标、知重点
明目标、知重点 1.通过借助单位圆理解并掌握任意角的三角函数定义, 了解三角函数是以实数为自变量的函数. 2.借助任意角的三角函数的定义理解并掌握正弦、余弦、 正切函数在各象限内的符号. 3.通过对任意角的三角函数定义的理解,掌握终边相同 角的同一三角函数值相等.
明目标、知重点
(2)sin(-1 320°)cos 1 110°+cos(-1 020°)sin 750°+tan 495°. 解 原式=sin(-4×360°+120°)cos(3×360°+30°)+ cos (-3×360°+60°)sin(2×360°+30°)+tan(360°+135°) =sin 120°cos 30°+cos 60°sin 30°+tan 135°
明目标、知重点
(2)cos α=xr(r>0),因此cos α的符号与x的符号相同,当α的终边 在第一、四象限时,cos α>0;当α的终边在第二、三象限时, cos α<0. (3)tan α=yx,因此tan α的符号由x、y确定,当α终边在第一、三 象限时,xy>0,tan α>0;当α终边在第二、四象限时,xy<0, tan α<0.
明目标、知重点
当堂测·查疑缺
1234
1.已知角α的终边经过点(-4,3),则cos α等于( D )
4
3
A.5
B.5
C.-35
D.-45
解析 因为角 α 的终边经过点(-4,3),所以 x=-4,y=3,r=5,
所以 cos α=xr=-45.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

人教版高中数学必修4第一章《三角函数》教材分析和教学建议
函数是刻画客观世界变化规律的数学模型,不同的变化规律应当用不同的函数来刻画.三角函数是描述客观世界中周期性变化规律的重要数学模型,在数学和其他领域中具有重要作用,它是学生在高中阶段学习的又一类重要的基本初等函数.本章中,学生将在数学1中学习函数概念与基本初等函数I 的基础上,学习三角函数及其基本性质,体会三角函数在解决具有周期变化规律的问题中的作用.通过本章的学习,学生将进一步加深对函数概念的理解,提高用函数概念解决问题的能力.
一、课程标准内容
1.了解任意角的概念和弧度制,能进行弧度与角度的互化.
2. 借助单位圆理解任意角三角函数(正弦、余弦、正切)的定义.
3. 借助单位圆中的三角函数线推导出诱导公式(2π±α, π±α的正弦、余弦、正切),能画出y =sin x , y =cos x , y =tan x 的图象,了解三角函数的周期性.
4. 借助图象理解正弦函数、余弦函数在[0,2π],正切函数在(-2π,2
π)上的性质(如单调性、最大和最小值、图象与x 轴交点等).
5. 理解同角三角函数的基本关系式:sin 2x +cos 2x =1,x x x tan cos sin =.
6. 结合具体实例,了解y =Asin (ωx +ϕ)的实际意义;能借助计算器或计算机画出y =Asin (ωx + ϕ)的图象,观察A ,ω,ϕ对函数图象变化的影响.
7. 会用三角函数解决一些简单实际问题,体会三角函数是描述周期变化现象的重要函数模型.
二、知识框图
三、教学要求
1.1任意角、弧度
四、教学建议
1.课时分配:(共16个课时)
2.重点难点
1.1 任意角和弧度制
重点:将0︒至360︒范围的角推广到任意角,了解弧度制,并能进行弧度与角度的换算. 难点:弧度的概念,用集合来表示终边相同的角和象限角.
1.2 任意角的三角函数
重点:任意角的正弦、余弦、正切的定义,同角三角函数的基本关系.
难点:用角的终边上的点的坐标来刻画三角函数;利用与单位圆有关的有向线段,表示任意角α的正弦、余弦、正切的函数值.
1.3三角函数的诱导公式
重点:诱导公式的探究,运用诱导公式进行简单三角函数式的求值、化简与恒等式的证明. 难点:(2
π±α)的诱导公式的推导. 1.4三角函数的图象与性质
重点:正弦、余弦、正切函数的图象及其主要性质(包括周期性、单调性、奇偶性、最值或值域).
难点:正弦函数和余弦函数图象间关系、图象间的变换.
1.5函数y=Asin(ωx+ϕ)的图象
重点:用平移变换和伸缩变换画函数y=Asin(ωx+ϕ)的图象变换过程.
难点:图象变换与函数解析式变换的内在联系的认识.
1.6三角函数模型的简单应用
重点: 用三角函数模型解决一些具有周期变化规律的实际问题.
难点: 将某些实际问题抽象为三角函数模型.
3.分析说明
任意角和弧度制,教学中要注意在学生已有生活经验的基础上,通过较丰富的实例展示角扩充的必要性.在直角坐标系中,引入象限角概念,为用代数方法研究角提供了基础. 要认识象限角的分类,通过比较、发现,导出同终边角的集合表示.要揭示引入实数度量角的必要性,弧长公式和扇形面积计算公式只需要会做简单应用. 本节内容涉及概念较多,在教学方法上建议:先由学生自学,而后教师设置一些问题供学生思考,在此基础上,可以通过讲授再现概念,通过练习理解概念,完成教学.
任意角的三角函数的教学,可通过计算机辅助,突出三对比值与终边上点的位置无关,
与角的终边有关.在此基础上,得出三种函数.教学中可运用三角函数定义,导出单位圆中它们的几何表示,既促进对三角函数定义的理解,又给出三角函数的几何意义. 但作为初次接触,学生能达到能辩认出任意角的正弦线、余弦线和正切线即可.教学中只运用三角函数定义导出两个同角三角函数基本关系即可.
三角函数的诱导公式的教学中可先创设情境,引入发现结论的条件,促成学生发现诱导公式. 为能使创设的情境与学生原有基础的距离缩小,需要复习一些已知知识,如终边相同的角的同一三角函数的值相等;单位圆与三角函数线等. 在此基础上,提出P26探究问题,给学生思考时间,而后,由学生发现,终边与角α的终边关于原点、x 轴、y 轴和直线y=x 对称的各类角的各种表示方法,借助单位圆,通过图形观察,由学生发现公式二至四,然后引导学生,概括四组公式,认识它们的作用. 而后安排的例题与练习,要围绕熟悉公式,理解化归与转化思想来进行, 并知道任意角的三角函数一定可以等价于转化为0至2
π内的角的三角函数. 公式五、六的教学可同上安排. 在本节小结中,要突出两点,一是突出几何图形对发现结论的影响,即我们是如何从单位圆的对称性与任意角终边的对称性中发现结论的. 二是在诱导公式的运用中隐含着化归与转化的思想.
三角函数的图象与性质的教学建议在通过给出一定的实例,展现正弦函数图象,使学生对这类函数图象有一个直观的了解.利用单位圆中的正弦线画出y=sinx 在一个周期内的图象,再经平移得出y=sinx (x ∈R )的图象,然后利用诱导公式经过平移变换得出y=cosx 的图象.引导学生观察图象上的关键点,引入“五点法”画简图的方法.学习正、余弦函数性质要注意借助图象的支持.函数周期性是首次引入,需要展示三角函数具有f( x + T ) = f ( x )的特征,由此引入定义,使学生理解周期性是三角函数的重要性质.对于正切函数,教材是先讲性质,再画图象,为此在图象产生后,可以反来利用图象观察性质.
函数y=Asin(ωx+ϕ)的图象的教学,可以借助计算机来模拟A,ω,ϕ的变化对函数y=Asin(ωx+ϕ)图象的影响,关键是建立y=sinx 与y=Asin(ωx+ϕ)图象的联系.利用前面研究结果,通过变换由y=sinx 的图象得出y=Asin(ωx+ϕ)图象. 其基本要求是掌握由ϕ→ω→A 的变换,也可以引入其它顺序的变换,从本质上掌握这类变换.通过图象引导学生认识y=Asin(ωx+ϕ)图象的五个关键点,由此得出“五点法”画y=Asin(ωx+ϕ)图象的方法.教学中可在A,ω,ϕ对函数y=Asin(ωx+ϕ)图象影响的基础上,介绍它们的物理意义.
三角函数模型的简单应用是通过4个例题,展现三角函数的简单应用,突出三角函数作为描述现实世界中周期变化现象的一种数学模型,其在刻画周期变化规律、预测其未来等方
面都发挥着十分重要的作用. 同时,也体现化归转化、方程与函数、数形结合等思想方法在研究解决问题中的作用.
五.注意问题
(1)准确把握教学要求.
(2)加强相关知识的联系,强调数学思想方法.
(3)恰当使用信息技术.。

相关文档
最新文档