有理数知识点总结
有理数知识点整理

有理数知识点整理有理数是数学中的重要概念之一,它是指可以表示为两个整数的比值的数。
有理数包括正整数、负整数、零以及分数。
在这篇文档中,我们将整理一些与有理数相关的重要知识点。
一、有理数的定义有理数的定义是:可以表示为两个整数的比值的数。
形式上,有理数的表示通常采用分数的形式,如-5/3、2/5等。
有理数可以用来表示实际生活中的很多情况,例如温度、距离、时间等。
二、有理数的分类1. 正整数:如1、2、3等。
2. 负整数:如-1、-2、-3等。
3. 零:即0,表示没有任何数量。
4. 正分数:如1/2、3/4等,在分数中,分子大于分母。
5. 负分数:如-1/2、-3/4等,在分数中,分子小于分母。
三、有理数的加法和减法1. 有理数的加法:当两个有理数的符号相同时,将它们的绝对值相加,并保持相同的符号。
当两个有理数的符号不同时,将绝对值较大的数减去绝对值较小的数,并保持绝对值较大的数的符号。
2. 有理数的减法:将减数取其相反数,然后按照加法的规则进行计算。
四、有理数的乘法和除法1. 有理数的乘法:将两个有理数的绝对值相乘,然后确定乘积的符号。
即两个有理数的符号相同,结果为正;两个有理数的符号不同,结果为负。
2. 有理数的除法:将被除数与除数的绝对值相除,然后确定商的符号。
即被除数和除数的符号相同,商为正;被除数和除数的符号不同,商为负。
五、有理数的比较1. 相同符号的有理数比较大小:绝对值大的有理数更大。
2. 不同符号的有理数比较大小:正数大于负数,绝对值大的数较小。
六、有理数的性质1. 有理数加法的封闭性:两个有理数相加的结果还是一个有理数。
2. 有理数乘法的封闭性:两个有理数相乘的结果还是一个有理数。
3. 有理数加法的结合律:对于任意三个有理数a、b、c,有(a+b)+c = a+(b+c)。
4. 有理数乘法的结合律:对于任意三个有理数a、b、c,有(a*b)*c = a*(b*c)。
5. 有理数乘法对加法的分配律:对于任意三个有理数a、b、c,有a*(b+c) = a*b + a*c。
有理数的历史知识点总结

有理数的历史知识点总结有理数是数学中的一个基本概念,它包括整数和分数。
有理数的历史可以追溯到古代文明,以下是对有理数历史知识点的总结:1. 古埃及时期:最早的有理数概念可以追溯到古埃及时期,大约公元前2000年左右。
古埃及人在解决土地测量和建筑问题时,使用了分数的概念。
2. 古巴比伦时期:古巴比伦人(约公元前1800年至前1600年)使用六十进制系统,他们能够处理分数,尤其是那些分子为1的分数。
3. 古希腊时期:古希腊数学家,如毕达哥拉斯学派,对有理数和无理数进行了区分。
他们发现,并非所有的数都可以表示为两个整数的比值,这导致了无理数的发现。
4. 中国古代:中国古代数学家在《九章算术》等著作中,也对分数进行了深入研究,他们使用算筹来表示分数。
5. 印度数学:在印度,大约在公元5世纪,数学家阿里亚巴塔(Aryabhata)在他的著作中使用了有理数的概念,并对分数进行了系统化处理。
6. 伊斯兰黄金时代:在8世纪到13世纪的伊斯兰黄金时代,数学家们对有理数和分数进行了进一步的研究,特别是在代数学的发展中。
7. 文艺复兴时期:在文艺复兴时期,欧洲数学家开始重新发现和整合古代文明的数学知识,有理数的概念得到了进一步的发展和完善。
8. 现代数学:在现代数学中,有理数被定义为可以表示为两个整数比值的数,即形式为\( \frac{a}{b} \)的数,其中\( a \)和\( b \)是整数,且\( b \neq 0 \)。
有理数集合在数学符号中通常表示为\( \mathbb{Q} \)。
9. 有理数的性质:有理数具有序性、可加性、可乘性等基本性质。
它们可以进行四则运算,并且有理数集合在加法和乘法下是封闭的。
10. 有理数与无理数:有理数与无理数共同构成了实数集合。
无理数是不能表示为两个整数比值的数,如圆周率π和黄金分割比φ。
有理数的历史是数学发展史上的重要组成部分,它们的研究和应用贯穿了整个数学史,对现代数学的形成和发展有着深远的影响。
(完整版)有理数的乘法知识点总结

(完整版)有理数的乘法知识点总结有理数的乘法知识点总结1. 有理数的定义有理数是可以表示为分数形式的数,分为正有理数、负有理数和 0。
2. 有理数的乘法有理数的乘法满足以下性质:- 正数与正数相乘,结果仍为正数。
- 负数与负数相乘,结果仍为正数。
- 正数与负数相乘,结果为负数。
- 任何数与 0 相乘,结果都为 0。
3. 有理数的乘法的计算方法3.1 有理数的乘法运算法则- 正数与正数相乘,直接相乘并保留正号。
- 负数与负数相乘,直接相乘并保留正号。
- 正数与负数相乘,直接相乘并改变结果的符号为负号。
3.2 有理数的乘法性质- 乘法交换律:a * b = b * a,对于任意有理数 a 和 b 成立。
- 乘法结合律:(a * b) * c = a * (b * c),对于任意有理数 a、b 和c 成立。
- 乘法分配律:a * (b + c) = (a * b) + (a * c),对于任意有理数 a、b 和 c 成立。
4. 带有变量的有理数的乘法带有变量的有理数的乘法遵循与实数乘法相同的规则,即乘法交换律、结合律和分配律。
需要注意的是,当变量的符号与数的符号不同时,结果为负数。
5. 实际应用有理数的乘法在日常生活中的应用非常广泛,例如:- 购物时计算打折后的价格。
- 解决家庭预算问题。
- 勾股定理中的边长关系。
6. 总结有理数的乘法遵循特定的规则,可以通过直接相乘并根据符号进行判断来计算结果。
了解有理数的乘法规则可以帮助我们更好地理解数学问题,并在实际应用中得到运用。
有理数知识点总结

有理数知识点总结理数是指可以用有限个整数相加、相减或相乘来表示的数。
理数包括正整数、负整数、零和分数。
1. 整数:正整数、负整数和零都是整数。
整数的运算有加法、减法和乘法。
加法的运算结果仍然是整数,减法的运算结果也可以是整数,但乘法的运算结果不一定是整数,可能是分数。
2. 分数:分数由分子和分母组成,分子是整数,分母是非零整数。
分数的运算包括加法、减法、乘法和除法。
加法和减法的分数运算基本规则是先通分,然后进行相应的运算。
乘法和除法的分数运算基本规则是分子相乘,分母相乘。
两个分数相除可以变成将除数的分子分母互换,然后再进行乘法运算。
3. 小数:小数是分数的一种特殊形式,用有限的十进制数或无限循环的十进制数表示。
小数可以转换为分数,将小数的数值部分作为分子,小数点后的位数作为分母的10的幂。
4. 数轴:数轴是用来表示有理数的直线,从左向右递增,可以根据数轴进行加法、减法和比较大小等操作。
5. 绝对值:绝对值是一个有理数的非负值。
对于正数,它的绝对值等于本身;对于负数,它的绝对值等于去掉负号。
绝对值的运算规则包括绝对值取正和绝对值取负。
6. 有理数的大小比较:有理数的大小比较可以根据数轴上的位置进行判断,也可以通过将有理数化为相同的分数形式进行比较。
在数轴上,离原点越远的数值越大。
7. 有理数的相反数:一个有理数的相反数是与它数值大小相等但符号相反的有理数。
8. 有理数的倒数:一个非零有理数的倒数是与它的分数定义中分子和分母交换位置后得到的分数。
倒数的运算规则包括正数的倒数仍然是正数,负数的倒数是与它的绝对值的倒数相等。
这些是关于有理数的一些基本知识点总结,理解这些知识点有助于我们在数学运算中正确地使用有理数。
正负数有理数知识点总结

正负数有理数知识点总结正负数,也称作有理数,在数学中占有重要的地位。
了解和掌握正负数的概念、性质和运算规则,能够帮助我们更好地理解和应用数学知识。
下面将对正负数的知识点进行总结。
一、正负数概念和表示方法1. 正数:是大于零的实数,用"+"号表示,如+3、+5.2等。
2. 负数:是小于零的实数,用"-"号表示,如-2、-6.7等。
3. 数轴:数轴是用来表示数值大小和位置关系的直线,数轴的中心是零点,正数在零点的右侧,负数在零点的左侧。
4. 相反数:两个数绝对值相等,但符号相反,称为相反数。
如+4和-4、+2.5和-2.5。
5. 绝对值:一个数的绝对值表示该数离零点的距离,无论该数是正数还是负数,它的绝对值都是正数。
二、正负数的运算规则1. 加法:同号相加,取相同符号,绝对值相加;异号相加,取绝对值较大的数的符号,绝对值取较大的绝对值减去较小的绝对值。
2. 减法:加上被减数的相反数,然后按照加法规则进行计算。
3. 乘法:同号相乘得正,异号相乘得负。
4. 除法:同号相除得正,异号相除得负。
5. 乘方:正数乘以正数、负数乘以负数,结果都是正数;负数乘以正数、正数乘以负数,结果都是负数。
三、正负数的性质1. 正数与正数相乘,结果仍为正数;负数与负数相乘,结果仍为正数。
2. 正数与正数、负数与负数相加,结果为正数;正数与负数相加,结果的绝对值小于两个数的绝对值。
3. 0是非负数,同时也是非正数。
0与任何非零数相乘等于0,0除以任何非零数等于0。
四、实际应用1. 温度计:温度计上的零点下方表示负温度,零点上方表示正温度,通过负数的概念和表示方法,可以更好地理解和使用温度计。
2. 涉及方向的问题:在计算方向相关的问题时,正数可以表示顺时针方向,负数可以表示逆时针方向。
3. 电子账户:银行账户中,正数代表存款,负数代表欠款,通过正负数的运算规则和性质,可以进行账户余额的计算和处理。
有理数知识点总结归纳

有理数知识点总结归纳有理数是数学中的一个重要概念,是整数和分数的统称。
在数学的学习中,对于有理数的理解和运算是基础中的基础。
本文将对有理数的相关知识点进行总结和归纳,帮助读者更好地理解和掌握有理数的概念与运算。
一、有理数的定义有理数指的是可以写成两个整数的比例形式的数,即分数,同时还包括所有整数。
有理数可以表示为 p/q的形式,其中p和q是整数,且q不等于零。
二、有理数的分类1. 正有理数:即大于零的有理数,如1/4, 2/3, 5/7等。
2. 负有理数:即小于零的有理数,如-1/3, -2/5, -4/7等。
3. 零:即整数与分数中的0,如0/1, 0/2, 0/3等。
三、有理数的比较1. 相反数的比较:对于两个有理数a和-b,如果a > -b,则a大于-b;如果a = -b,则a等于-b;如果a < -b,则a小于-b。
2. 同号数的比较:对于两个同号的有理数a和b,如果a > b,则a大于b;如果a = b,则a等于b;如果a < b,则a小于b。
3. 异号数的比较:对于一个正有理数和一个负有理数,正数永远大于负数。
四、有理数的运算1. 加法运算:对于两个有理数a和b,可以直接将它们的分母取公倍数,然后按照分数的加法规则进行计算。
例如:3/4 + 2/5 = (3*5)/(4*5) + (2*4)/(5*4) = 15/20 + 8/20 = 23/202. 减法运算:减法的原理类似于加法,只需要将第二个数改为相反数后进行加法运算。
例如:3/4 - 2/5 = 3/4 + (-2/5) = 15/20 + (-8/20) = 7/203. 乘法运算:乘法的规则是将两个有理数的分子乘积作为结果的分子,分母乘积作为结果的分母。
例如:3/4 * 2/5 = (3*2)/(4*5) = 6/20 = 3/104. 除法运算:除法的规则是将第一个数作为被除数,第二个数的倒数作为除数,然后进行乘法运算。
有理数知识点总结归纳
有理数知识点总结归纳有理数是我们数学中的一个重要概念,它包括整数和分数。
有理数具有多种运算性质和特点,对于学生来说,掌握有理数知识点是十分重要的。
本文将对有理数的定义、性质、运算法则以及应用进行总结归纳,帮助读者更好地理解和应用有理数。
一、有理数的定义有理数是可以写成两个整数的比值形式的数,其中分子和分母都是整数,且分母不为零。
通常可以用分数的形式表示有理数,例如1/2、3/4等。
有理数集合包括正整数、负整数、零以及正分数、负分数。
二、有理数的性质1. 有理数可以进行加、减、乘、除运算,并且运算结果仍然是有理数。
2. 有理数满足交换律、结合律和分配律。
3. 有理数的相反数是唯一的。
4. 有理数之间可以进行比较大小,有理数集合在数轴上是有序排列的。
三、有理数的运算法则1. 加法运算:有理数的加法满足两个整数相加、两个分数相加以及整数与分数相加的情况。
对于整数相加,直接将两个整数相加即可;对于分数相加,先化为相同分母的分数,然后再将分子相加,并保留相同的分母;整数与分数相加,可以先将整数转化为分数,然后按照相同分母的分数相加法则进行计算。
2. 减法运算:有理数的减法可以转化为加法来进行处理。
对于减法运算,可以用被减数加上减数的相反数来代替,然后按照加法运算法则进行计算。
3. 乘法运算:有理数的乘法可以分为整数乘整数、整数乘分数以及分数乘分数的情况。
对于整数乘整数,直接将两个整数相乘即可;对于整数乘分数,将整数转化为分数,然后按照分数乘法法则进行运算;分数的乘法可以直接将分子相乘作为新的分子,分母相乘作为新的分母。
4. 除法运算:有理数的除法可以转化为乘法运算来进行处理。
对于除法运算,可以用被除数乘以除数的倒数来代替,然后按照乘法运算法则进行计算。
四、有理数的应用有理数在我们的日常生活中有着广泛的应用。
以下列举几个具体的例子:1. 购物时的折扣和加价:折扣通常以分数表示,例如八折即打八分之一的折扣;加价也可以以分数表示,例如加价百分之二十即加一分之五的价格。
有理数及其运算知识点总结
有理数及其运算知识点总结
1. 有理数是可以表达为两个整数的比值的数,包括正整数、负整数、零以及可以用分数表示的数。
2. 有理数的加法和减法运算:
- 相同符号的有理数相加减,绝对值相加减,结果带相同符号。
- 不同符号的有理数相加减,绝对值相减,结果带绝对值大的符号。
3. 有理数的乘法和除法运算:
- 相同符号的有理数相乘、相除,结果为正数。
- 不同符号的有理数相乘、相除,结果为负数。
4. 有理数的乘法:
- 非零有理数相乘,绝对值相乘,符号由乘法规则决定。
- 0乘以任何数等于0。
5. 有理数的除法:
- 非零有理数相除,绝对值相除,符号由除法规则决定。
- 0不能作为除数。
6. 有理数的乘方:
- 正数的乘方:底数不变,指数相乘。
- 零的非负整数次幂为0,零的负整数次幂没有定义。
- 1的任何整数次幂仍为1。
- 负数的偶次幂为正数,奇次幂为负数。
7. 有理数的相反数是指与其绝对值相等,但符号相反的数。
8. 有理数的倒数是指其倒数等于它的分子和分母互换位置后的比值。
9. 有理数的绝对值是指其去掉符号的值。
10. 有理数的大小比较:
- 两个有理数绝对值相等,但符号相反时,负数较大。
- 两个正数比较大小,绝对值大的数较大。
- 两个负数比较大小,绝对值小的数较大。
这些是有理数及其运算的基本知识点总结,能够帮助理解有理数的概念和规则。
有理数知识点
有理数知识点一、关键信息项1、有理数的定义:整数(正整数、0、负整数)和分数的统称。
2、有理数的分类:按定义分类:分为整数和分数。
按性质分类:分为正有理数、0、负有理数。
3、数轴:规定了原点、正方向和单位长度的直线。
4、相反数:绝对值相等,符号相反的两个数。
5、绝对值:数轴上表示数 a 的点与原点的距离。
6、有理数的大小比较:正数大于 0,0 大于负数,正数大于负数。
两个负数,绝对值大的反而小。
7、有理数的加法法则:同号两数相加,取相同的符号,并把绝对值相加。
异号两数相加,绝对值相等时和为 0;绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值。
一个数同 0 相加,仍得这个数。
8、有理数的减法法则:减去一个数,等于加上这个数的相反数。
9、有理数的乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘。
任何数同 0 相乘,都得 0。
10、有理数的除法法则:除以一个不等于 0 的数,等于乘这个数的倒数。
两数相除,同号得正,异号得负,并把绝对值相除。
0 除以任何一个不等于 0 的数,都得 0。
11、乘方:求 n 个相同因数乘积的运算,叫做乘方。
12、科学记数法:把一个大于 10 的数表示成 a×10^n 的形式(其中a 大于或等于 1 且小于 10,n 是正整数)。
二、详细内容11 有理数的定义有理数是能够表示为两个整数之比的数,包括整数和分数。
整数可以看作是分母为 1 的分数。
例如,5 可以表示为 5/1,-3 可以表示为-3/1。
分数则是形如 m/n(m、n 为整数,且 n 不等于 0)的数,例如1/2、-3/4 等。
111 有理数与无理数的区别无理数是不能表示为两个整数之比的数,例如圆周率π、根号2 等。
有理数和无理数共同构成了实数集合。
12 有理数的分类121 按定义分类整数:包括正整数、0、负整数。
正整数如 1、2、3 等;负整数如-1、-2、-3 等。
分数:包括正分数和负分数。
有理数知识点考点难点总结归纳
有理数知识点考点难点总结归纳有理数是数学中一种重要的数的概念,在数学学科的学习中经常会涉及到有理数的运算和性质。
掌握有理数的相关知识点、考点和难点,对于学习数学和解题非常重要。
本文将就有理数的知识点、考点和难点进行总结归纳,希望能够对读者有所帮助。
一、有理数的定义有理数是指可以表示为两个整数之比(分数形式)的数,包括正有理数、负有理数和0。
二、有理数的四则运算1. 加法:有理数的加法运算要注意符号的变化,同号相加取相同符号,异号相加取绝对值较大数的符号。
2. 减法:有理数的减法可以转化为加法运算,对减数取相反数,然后进行加法运算。
3. 乘法:有理数的乘法运算结果符号遵循正负号相同为正,正负号不同为负的原则。
4. 除法:有理数的除法可以转化为乘法运算,对除数取倒数,然后进行乘法运算。
三、有理数的性质1. 有理数的封闭性:有理数的加法、减法、乘法和除法的运算结果都是有理数。
2. 有理数的整除性:如果有理数a除以非零有理数b,商等于有理数c,则称a能被b整除,b能整除a;如果商c是整数,则a和b是整数关系;如果商c不是整数,则a和b是非整数关系。
3. 有理数的传递性:对于任意三个有理数a、b、c,如果a<b<c,则a和c之间也存在一个有理数,即b。
四、有理数的比较1. 同号比较:两个正有理数比较大小,绝对值较大的数较大;两个负有理数比较大小,绝对值较小的数较大。
2. 异号比较:正有理数大于负有理数;负有理数小于正有理数。
五、有理数的绝对值有理数a的绝对值表示为|a|,其中正有理数的绝对值等于其本身,负有理数的绝对值等于去掉负号。
六、有理数的约分和化简1. 约分:对于有理数a/b,如果a和b有公因数,可以将a和b同时除以最大公因数,使得a/b约分为最简形式。
2. 化简:对于有理数a+b/c,可以先将a和b进行整数部分的运算,然后将分数部分化简为最简形式。
七、有理数的应用有理数在实际生活中的应用非常广泛,例如在温度计上的正负温度、货币的盈亏计算、海拔的升降等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
有理数知识点总结
0的数叫做正数。
1.
0既不是正数也不是负数,是正数和负数的分界线,是整数,一、正数和负数自然数,有理数。
(不是带“—”号的数都是负数,而是在正数前加“—”的数。
)
2.意义:在同一个问题上,用正数和负数表示具有相反意义的量。
有理数:整数和分数统称有理数。
概念整数:正整数、0、负整数统称为整数。
分数:正分数、负分数统称分数。
(有限小数与无限循环小数都是有理数。
)
注:正数和零统称为非负数,负数和零统称为非正数,正整数和零统称为非
负整数,负整数和零统称为非正整数。
⑵按整数、分数分类:
正有理数正整数正整数
正分数整数0
零有理数负整数
负有理数负整数分数正分数
负分数负分数
1.概念:规定了原点、正方向、单位长度的直线叫做数轴。
三要素:原点、正方向、单位长度
2.对应关系:数轴上的点和有理数是一一对应的。
三、数轴
比较大小:在数轴上,右边的数总比左边的数大。
3.应用
求两点之间的距离:两点在原点的同侧作减法,在原点的两侧作加法。
(注意不带“+”“—”号)
代数:只有符号不同的两个数叫做相反数。
1.概念(0的相反数是0)
几何:在数轴上,离原点的距离相等的两个点所表示的数叫做相反数。
2.性质:若a与b互为相反数,则a+b=0,即a=-b;反之,
若a+b=0,则a与b互为相反数。
四、相反数
两个符号:符号相同是正数,符号不同是负数。
3.多重符号的化简
多个符号:三个或三个以上的符号的化简,看负号的个数,
当“—”号的个数是偶数个时,结果取正号
当“—”号的个数是奇数个时,结果取负号
1.概念:乘积为1的两个数互为倒数。
(倒数是它本身的数是±1;0没有倒数)
五、倒数
2.性质若a与b互为倒数,则a·b=1;反之,若a·b=1,则a与b互为倒数。
若a与b互为负倒数,则a·b=-1;反之,若a·b= -1则a与b互为负倒数。
a的点与原点的距离叫做数a的绝对值。
一个正数的绝对值是它的本身(若|a|=|b|,则a=b或a=﹣b)
一个负数的绝对值是它的相反数
0的绝对值是0
a >0,|a|=a 反之,|a|=a,则a≥0
a = 0,|a|=0 |a|=﹣a,则a≦0
a<0,|a|=‐a
注:非负数的绝对值是它本身,非正数的绝对值是它的相反数。
a (a>0) 的数有2个,他们互为相反数。
即±a。
|a|≥0。
几个非负数之和等
于0,则每个非负数都等于0。
故若|a|+|b|=0,则a=0,b=0
1.数轴比较法:在数轴上,右边的数总比左边的数大。
七、比较大小
2.代数比较法:正数大于零,负数小于零,正数大于一切负数。
两个负数比较大小时,绝对值大的反而小。
1.加法法则⑴同号两数相加,取相同的符号,并把绝对值相加。
⑵绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并
用较大的绝对值减去较小的绝对值。
互为相反数的两个数相
加得0。
⑶一个数同0相加,仍得这个数。
八、加减法 2.加法运算律:两个
加法交换律:两数相加,交换加数的位置,和不变。
即a+b=b+a
加法结合律:在有理数加法中,三个数相加,先把前两个数相加或者先把后
两个数相加,和不变。
即a+b+c=(a+b)+c=a+(b+c)
3.减法法则:减去一个数,等于加上这个数的相反数。
即a-b=a+(﹣)b
⑴两数相乘,同号得正,异号得负,并把绝对值相乘。
⑵任何数同0相乘,都得0。
1.乘法法则⑶多个不为0的数相乘,负因数的个数是偶数时,积为正数;负因数
的个数是奇数时,积为负数,即先确定符号,再把绝对值相乘,
绝对值的积就是积的绝对值。
⑷多个数相乘,若其中有因数0,则积等于0;反之,若积为0,则
至少有一个因数是0。
2.乘法运算律:三个
⑴乘法交换律:两数相乘,交换因数的位置,积相等。
即a×b=ba。
九、乘除法⑵乘法结合律:三个数相乘,先把前两个数相乘,或者先把后两个数相乘,
积相等。
即a×b×c=﹙a×b﹚×c=a×﹙b×c﹚。
⑶乘法分配律:一个数同两个数的和相乘,等于把这个数分别同这两个数相
乘,在把积相加。
即a×﹙b+c﹚=a×b+a×c。
3.除法法则:三个
⑴除以一个(不等于0)的数,等于乘这个数的倒数。
⑵两个数相除,同号得正,异号得负,并把绝对值相除。
⑶0除以任何一个不等于0的数,都得0。
4.四则运算法则:先乘除,后加减,有括号先算括号里的。
1.概念:求n个相同因数的积得运算,叫做乘方。
乘方的结果叫做幂。
一个数可以
看做这个数本身的一次方。
2.法则:先确定幂的符号,然后再计算幂的绝对值。
十、乘方 正数的任何次幂都是正数
负数的奇次幂是负数,负数的偶次幂是正数
0的任何正整数次幂都是0
3.混合运算法则:
⑴先乘方,再乘除,最后加减。
⑵同级运算,从左到右的顺序进行。
⑶如有括号,先算括号内的运算,按小括号,中括号,大括号依次进行。
在进
行有理数的运算时,要分两步走:先确定符号,再求值。
10的数表示成a ×10n 的形式(其中 a
是整数数位只有一位的数,n 为正整数)。
这种记数的方法叫做科
学记数法。
﹙1≤|a|<10﹚
注:一个n 为数用科学记数法表示为a ×10n -1
⑴精确到某位或精确到小数点后某位。
⑵保留几个有效数字
十一、科学记数法 注:对于较大的数取近似数时,结果一般用科学记数法来表示。
例如:256000(精确到万位)的结果是2.6×105
0数字起,到末尾数字止,所有的
数字都是这个数的有效数字。
注:⑴用科学记数法表示的近似数的有效数字时,只看乘号前面的数
字。
例如:3.0×104的有效数字是3,0 。
⑵带有记数单位的近似数的有效数字,看记数单位前面的数字。
例如:2.605万的有效数字是2,6,0,5。