燃料电池结构组成
固体氧化物燃料电池结构

固体氧化物燃料电池结构
固体氧化物燃料电池(Solid Oxide Fuel Cell,SOFC)是一种高温燃料电池,其正负极和电解质都是固体材料。
SOFC的基本结构包括阳极(正极)、阴极(负极)和固体电解质。
阳极和阴极之间的电解质起到离子传导和电子阻隔的作用。
阳极通常由金属或金属氧化物制成,常用材料有镍、镍钇复合氧化物。
阳极上的燃料气体(如氢气、甲烷等)被分解成带负电荷的氢离子(H-)和自由电子。
氢离子通过固体电解质传递到阴极。
阴极通常是由氧化物材料制成,如尺寸稳定的氧化钇钇钛酸盐(Yttria-Stabilized Zirconia,YSZ)。
在阴极上,氧气分子被还原成氧离子(O2-),并与通过电解质传递过来的氢离子结合形成水。
固体电解质是SOFC的核心组件,通常由固体氧化物制成,如YSZ、氧化锆、氧化铈等。
固体电解质的主要功能是提供氧离子传导通道,同时阻隔电子的通过。
固体氧化物燃料电池的结构具有高温操作、高效率和不要求纯净燃料等优点,因此被广泛应用于分布式能源系统、电力和热力联产等领域。
燃料电池催化层结构

燃料电池催化层结构
燃料电池催化层是燃料电池中最核心的部件之一,它能够将燃料和氧气转化为电能,实现能源转换。
而催化层的结构和性能是影响燃料电池效率和寿命的关键因素之一。
催化层通常由三个主要组成部分构成:催化剂、碳载体和粘结剂。
其中,催化剂是催化层的关键部分,它能够促进氧气和燃料之间的反应。
常用的催化剂包括铂、钯和铑等贵金属。
碳载体则是催化剂的承载体,能够提供足够的表面积和导电性。
粘结剂则用于粘合催化剂和碳载体。
除了这三个主要组成部分外,催化层的结构也是十分重要的。
常见的催化层结构包括:传统三相界面结构、近零水结构和纳米结构等。
传统三相界面结构的催化层具有较高的催化活性,但存在水分散困难、反应速率慢等问题;近零水结构的催化层则能够提高反应速率和稳定性,但催化活性有所降低;纳米结构的催化层则能够提高催化活性和稳定性,但制备难度较大。
总之,燃料电池催化层的结构和性能对于燃料电池的运行效率和寿命有着至关重要的影响。
未来,随着催化层材料和制备技术的不断发展,燃料电池的性能和应用前景也将得到进一步提升。
- 1 -。
燃料电池+蓄电池电动汽车动力系统的结构

燃料电池和蓄电池是现代电动汽车动力系统中重要的组成部分,它们各自发挥着不同的作用,共同构成了高效、环保的动力系统。
本文将从燃料电池和蓄电池的组成结构、工作原理及优缺点等方面展开详细介绍,希望能够为读者对电动汽车动力系统有更深入的了解。
一、燃料电池的结构1. 电解质膜:作为燃料电池中的主要组件之一,电解质膜起着将氢气和氧气分离开的作用,同时还能传导质子和电子。
2. 阳极:燃料电池的阳极为氢气的氧化反应提供了场所,并且促进了电子的运动,使其向阴极流动。
3. 阴极:阴极是氧气还原的场所,其表面覆盖着催化剂,促进氧气在此处与质子和电子结合,生成水。
4. 增湿板:增湿板用于控制燃料电池中的水分平衡,使得电解质膜的温度和湿度保持在适宜的范围内。
5. 氢气供应系统:燃料电池中需要氢气作为燃料,氢气供应系统会将氢气从储罐中引入燃料电池中进行反应。
二、燃料电池的工作原理1. 氢氧反应:在阳极,氢气会发生氧化反应,生成氢离子和电子。
2. 电子流动:电子会沿着外部电路流向阴极,产生电流。
3. 氧还原:在阴极,氧气会与生成的氢离子和电子结合,生成水,释放出能量。
4. 电化学反应:整个过程是一个电化学反应,通过氢气、氧气在阳极和阴极的反应,将化学能转化为电能。
三、燃料电池的优缺点1. 优点:1) 高能量密度:相比传统的锂电池,燃料电池具有更高的能量密度,能够提供更长的续航里程。
2) 快速加氢:与充电电池相比,燃料电池的加氢速度更快,且使用过程更加便捷。
3) 长期使用寿命:燃料电池具有较长的使用寿命,且不会出现充放电次数增加而引起的寿命下降。
2. 缺点:1) 基础设施不完善:目前氢气加氢站的建设还比较少,用户在使用燃料电池车辆时可能会受到基础设施限制。
2) 成本较高:燃料电池的制造成本较高,且目前的生产规模较小,导致单车成本较高。
3) 能源转化率较低:燃料电池的能源转化率(氢气到电能)较低,依然存在能源浪费的问题。
四、蓄电池的结构1. 正极:蓄电池的正极通常由氧化物制成,具有较高的氧化还原能力。
燃料电池工作原理、分类及组成_图文

磷酸 (PAFC)
电解质
KOH
含氟质子交换膜
H3PO4
阳极
Pt/C
Pt/C
Pt/C
阴极
C(含觸煤)
流动离 子
操作温 度 可用 燃料
特性
OH-
室温~100℃
精炼氢气 电解副产氢气 1.需使用高纯度氢
气做燃料 2.低腐蚀性及低温
较易选择材料
Pt/C
H+
室温~80℃
天然气、甲醇 汽油
1.功率密度高, 体积小,重量轻 2.低腐蚀性及低溫 ,较易选择材料
当采用甲醇水溶液作燃料时,DMFC的核心部件MEA阳 极侧是浸入甲醇水溶液中的,加之在DMFC工作时, 又有C02的析出;而阴极侧,排水量也远大于电化学 反应生成水,不管是气化蒸发以气态排出,还是靠 毛细力渗透到扩散层外部被气体吹扫以液态排水, 均会对电极与膜之间结合界面产生一定分离作用力。
因此,在制备DMFC的MEA时,与PEMPC的MEA相比,要改 进结构与工艺,增加MEA的电极与膜之间的结合力,防 止MEA在电池长时间工作时膜与电极分离、增加欧姆极 化,大幅度降低电池性能,严重时导致电池失效。
根据电池工作温度不同,AFC系统可分为中温型与 低温型两种。
前者以培根中温燃料电池为代表,它由英国培根 (F.T.Bacon)研制,工作温度约为523K,阿波罗 登月飞船上使用的AFC系统就属于这一类型。
低 温 型 APC 系 统 的 工 作 温 度 低 于 373K , 是 现 在 AFC系统研究与开发的重点。
因此与PEMFC相比,DMFC阴极侧不但排水负荷增 大,而且阴极被水掩的情况更严重,在设计DMFC 阴极结构与选定制备工艺时必须考虑这一因素。
正因为如此,在至今评价DMFC时,阴极氧化剂(如 空气中氧)的利用率均很低,其目的是增加阴极流 场内氧化剂的流动线速度,以利于向催化层的传质 和水的排出,但这势必增加DMFC电池系统的内耗, 这是研究高效大功率DMFC电池系统时必须解决的 技术问题。
锌-空气燃料电池

锌-空气燃料电池,也被称为锌-氧空气电池,是一种基于锌和空气中的氧气进行电化学反应产生电能的电池。
这种电池具有体积小、电荷容量大、质量小、能在宽广的温度范围内正常工作、无腐蚀且工作安全可靠的特性。
锌-空气燃料电池的基本结构包括锌电极、空气电极、电解液和隔膜四个部分。
其中,空气电极由催化层、集流体和气体扩散层三个部分组成。
放电过程中,氧气在空气电极上发生还原反应,而在锌电极上,锌进行氧化反应,从而产生电流。
锌-空气燃料电池的优点包括来源无限、电池价廉、安全、零污染、高能量、大功率、低成本及材料可再生等。
由于铂(Pt)基电极催化材料能够实现氧还原反应(ORR)的四电子转移反应机制,因此大多数锌-空气燃料电池的阴极催化材料采用Pt基材料。
然而,为了降低成本,研究人员正在研发高效廉价的阴极催化材料来替代Pt基电极催化材料。
总的来说,锌-空气燃料电池因其独特的优势和广泛的应用前景,被认为是一种理想的动力电源,尤其在电动汽车等领域有着巨大的应用潜力。
然而,该电池的发展还需要克服一些技术难题,如提高电池性能、延长使用寿命等。
15. 燃料电池电动汽车的基本组成和结构讲述

4.848 18.3 76.3
汽车爬坡试验
Performances
Motor power: 24kW (60 kW)
FCE power: 30 kW
Battery :
50AH
Max speed: 110 km/h
Grade ability : > 20%
Acceleration: 15.9s
1、燃料电池车工作原理
急剧加速状态下,对应于峰值功率指令,燃料电池 系统与峰值电源两者都向电动机驱动装置供给牵引 功率; 在制动状态下,电动机运行于发电机状态,将部分 制动能量变换为电能,并储存在峰值电源中; 当负载功率小于燃料电池系统的额度功率时,峰值 电源也能从燃料电池系统补充、恢复其能量。
2、燃料电池控制策略
燃料电池的优势:
(1)效率高,燃料电池的化学反应不受卡诺循环的限制, 理论上能量效率可接近80%,实际效率已达50~70%。 (2)清洁无污染。 (3)效率随输出功率变化的特性好,燃料电池的效率在额 定功率附近可达60%,部分功率下运行时效率会高于额定功 率下的效率,可达约70%,过载功率下运行时效率略低于额 定功率的效率,可达50~55%。燃料电池的效率随输出功率 变化的特性比内燃机更适合于汽车的实际运行。 (4)过载能力强,燃料电池的短时过载能力可达200%的额 定功率,更适合于汽车的加速、爬坡等工况。 (5)设计方便性 (6)低噪音
照片4 – 时间: 1分, 30 秒,
照片 5 – 时间: 2 分, 20 秒 – 内部爆燃
照片 6 – 时间: 2 分, 40 秒 – 驾驶座侧后轮胎爆裂
照片 7 – 时间: 2 分, 40 秒 – 驾驶座侧后轮胎
爆裂的残片飞到乘客侧
说明固体氧化物燃料电池的结构和工作原理
说明固体氧化物燃料电池的结构和工作原理固体氧化物燃料电池(Solid Oxide Fuel Cell,SOFC)是一种高效、环保的能源转化装置,其结构和工作原理如下:1. 结构:固体氧化物燃料电池由阳极、阴极和电解质三部分组成。
阳极和阴极之间是氧化物电解质,常用的是氧化钇稳定的锆(YSZ)。
阳极往往采用镍-YSZ(Ni-YSZ)复合材料。
阳极和阴极之间通过气体流道相连。
气体流道中常需添加催化剂,以促进反应。
2. 工作原理:当燃料(如氢气、甲烷等)与氧气在阳极和阴极上分别发生氧化和还原反应时,固体氧化物燃料电池开始工作。
在阳极上,燃料被分解成电子(e-)和氢离子(H+);氢离子通过电解质迁移至阴极表面。
在阴极上,氧气接受电子和氢离子,生成氧离子(O2-)。
而电子则通过外部回路流动,产生电流。
在电解质内,氧离子和氢离子发生脱氧反应,形成水(H2O)。
由于脱氧反应在稳定的高温下进行,因此固体氧化物燃料电池需要高温下工作,通常在800℃至1000℃之间。
3. 特点和应用:固体氧化物燃料电池具有高效能、低污染、可逆性强等特点,可以广泛应用于能源转化领域。
它可以利用多种燃料进行工作,如氢气、甲烷、乙醇等。
同时,SOFC还可以利用废热,实现能量的综合利用。
在实际应用中,固体氧化物燃料电池可以用于家庭能源供应、工业暖通和电力站等领域。
其高效能和环保特性,使其具有取代传统燃料电池和化石燃料发电的潜力。
总之,固体氧化物燃料电池是一种具有生动结构和工作原理的高效环保设备。
通过深入了解其结构和工作原理,我们可以更好地理解和应用固体氧化物燃料电池,促进能源转化技术的发展和应用。
燃料电池
4燃料电池的现状
目前,使用燃料电池面临的主要问题: 1 燃料问题 氧气可以直接从空气中获得,比较省 力;氢气则需要消耗电能以电解水或在催化剂的作 用下重组碳氢化合物这两种方法获取。但也有人认 为氢可以从天然气中产生,其成本同生产汽油相当。 如将燃料电池高效率因素考虑进来,使用氢将比汽 油更加经济。 2 安全问题 氢气是易燃气体,使用时要防止泄露, 爆炸等危险情况的发生。 阻碍燃料电池推广应用的关键问题还有成本高、 寿命短、体积大等,归根结底还是技术问题。
2.4溶化的碳酸盐燃料电池 (molten carbonate fuel cell--MCFC)
溶化的碳酸盐燃料电池与上述讨论的燃料电池差异较 大,这种电池不是使用溶化的锂钾碳酸盐就是使用锂钠碳酸 盐作为电解质。当温度加热到650℃时,这种盐就会溶化, 产生碳酸根离子,从阴极流向阳极,与氢结合生成水,二氧 化碳和电子。电子然后通过外部回路返回到阴极,在这过程 中发电。 CO32 + H 2 → H 2O + CO 2 + 2e 阳极反应: 2CO 2 + O 2 + 4e → 2CO 3 2 阴极反应: 这种电池工作的高温能在内部重整诸如天然气和石油 的碳氢化合物,在燃料电池结构内生成氢。且白金催化剂可 用廉价的一类镍金属代替,其产生的多余热量还可被联合热 电厂利用。这种燃料电池的效率最高可达60%。 这种电池需要较长的时间方能达到工作温度,因此不能 用于交通运输。
直 接 燃 料 电 池 混 合 动 力 系 统 结 构
5.2燃料电池汽车的特点
1、效率高 燃料电池汽车路试时可以达到40~50%的效率而 普通汽车只有10~16%。燃料电池汽车总效率比 混合动力汽车也要高。 2、环保 燃料电池电动汽车仅排放热和水——高效、环境 友好的清洁汽车。 3、可持续发展 燃料电池可节省石油。目前令全世界对石油的依 存度,超过警戒线30%,预计2020年>60%。
磷酸型燃料电池
contents
目录
• 燃料电池概述 • 磷酸型燃料电池结构与组成 • 磷酸型燃料电池工作原理及性能参数 • 磷酸型燃料电池制备工艺及优化方法 • 磷酸型燃料电池应用领域与市场前景 • 实验设计与数据分析方法
01 燃料电池概述
燃料电池定义与原理
燃料电池是一种将燃料和氧化剂中的化学能直接转化为电能 的发电装置。其基本原理是电化学反应,通过燃料在阳极的 氧化和氧化剂在阴极的还原,产生电子流动从而形成电流。
• 提高电池温度:适当提高电池的工作温度,有利于提高电解质的质子传导效率 和电极的催化活性,从而提高电池性能。然而,过高的温度可能导致电池材料 的热稳定性和机械性能下降,因此需要权衡温度对电池性能的影响。
• 优化电池管理系统:通过改进电池管理系统的控制策略、提高系统的能量转换 效率等方式,优化电池的运行状态,延长电池的使用寿命并提高性能。例如, 可以采用先进的控制算法对电池进行充放电管理,避免过度充放电对电池造成 损害。
不同于传统电池,燃料电池的燃料和氧化剂并非预先存储于 电池内部,而是由外部供给,因此理论上只要不断供给燃料 和氧化剂,燃料电池就能持续发电。
燃料电池分类及应用领域
根据电解质的不同,燃料电池可分为碱性燃料电池(AFC)、 磷酸型燃料电池(PAFC)、熔融碳酸盐燃料电池(MCFC)、 固体氧化物燃料电池(SOFC)及质子交换膜燃料电池 (PEMFC)等。
工作原理介绍
1 2 3
电解质
采用磷酸作为电解质,利用其在高温下的离子导 电性。
电极反应
在阳极,燃料(如氢气)发生氧化反应,释放出 电子;在阴极,氧化剂(如氧气)接受电子发生 还原反应。
离子传导
磷酸中的氢离子在电极间传导,形成电流。
燃料电池电动汽车的基本组成和结构讲述课件
加氢站等基础设施的建设目前还相对滞后,无法满足大规模推广燃料电池电动汽车的需求 。如何快速、有效地建设氢能供应基础设施是燃料电池电动汽车发展面临的又一挑战。
THANKS
感谢观看
市场前景
随着环保意识的增强和新能源汽车市 场的不断扩大,燃料电池电动汽车有 望在未来成为重要的交通出行方式。
燃料电池电动汽车的基本组
02
成
燃料电池系统
燃料电池堆
发生电化学反应产生电流的核心部件。
氧化剂供应系统
将氧气(通常来自空气)输送到燃料电池 堆的部件。
燃料供应系统
将氢气从储存装置输送到燃料电池堆的部 件。
面临的挑战
成本问题
目前,燃料电池的生产成本以及燃料电池电动汽车的售价都相对较高,限制了其大规模推 广。如何降低生产成本和售价是燃料电池电动汽车普及面临的重要挑战。
技术问题
虽然燃料电池技术已经取得了显著进步,但在性能、寿命和安全性等方面仍存在诸多挑战 。需要进一步提高燃料电池的性能和稳定性,以满足汽车行驶的需求。
燃料电池电动汽车的发展现状
技术进步
随着燃料电池技术的不断发展,燃料 电池电动汽车的性能和成本效益逐渐 提升,为大规模商业化应用奠定了基
础。
产业合作
汽车制造商、能源公司、科研机构等 多方合作,共同推动燃料电池电动汽
车技术的进步和应用拓展。
政府支持
各国政府纷纷出台政策扶持燃料电池 电动汽车产业发展,推动基础设施建 设和技术研发。
车身结构
轻量化设计
燃料电池电动汽车的车身结构通常采用轻量化材料,如 高强度钢、铝合金和碳纤维等,以降低整车质量,提高 能源利用效率。
空间布局
由于燃料电池系统的特殊性质,车身结构需要为燃料电 池堆、储氢罐等关键部件提供合适的空间和保护,确保 安全性和稳定性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
燃料电池结构组成
燃料电池主要由三部分组成,即电极、电解质隔膜和外部电路(集电器)。
1、电极
燃料气和氧化气分别由燃料电池的阳极和阴极通入。
电极主要可分为两部分,其一为阳极(Anode),另一为阴极(Cathode),厚度一般为200-500mm;其结构与一般电池之平板电极不同之处,燃料电池的电极为多孔结构,所以设计成多孔结构的主要原因是燃料电池所使用的燃料及氧化剂大多为气体(例如氧气、氢气等),而气体在电解质中的溶解度并不高,为了提高燃料电池的实际工作电流密度与降低极化作用,故发展出多孔结构的的电极,以增加参与反应的电极表面积,而此也是燃料电池当初所以能从理论研究阶段步入实用化阶段的重要关键原因之一。
燃料电池的电极性能的好坏关键在于触媒的性能、电极的材料与电极的制程等,目前高温燃料电池之电极主要是以触媒材料制成,例如固态氧化物燃料电池(简称SOFC)的Y2O3-stabilized-ZrO2(简称YSZ)及熔融碳酸盐燃料电池(简称MCFC)的氧化镍电极等,而低温燃料电池则主要是由气体扩散层支撑一薄层触媒材料而构成,例如磷酸燃料电池(简称PAFC)与质子交换膜燃料电池(简称PEMFC)的白金电极等[4] 。
2、电解质隔膜
电解质隔膜的主要功能在分隔氧化剂与还原剂,并传导离子,故电解质隔膜越薄越好,但亦需顾及强度,就现阶段的技术而言,其一般厚度约在数十毫米至数百毫米。
为阻挡两种气体混合导致电池内短路,电解质通常为致密结构[3] 。
至于材质,目前主要朝两个发展方向,其一是先以石棉(Asbestos)膜、碳化硅SiC膜、铝酸锂(LiAlO3)膜等绝缘材料制成多孔隔膜,再浸入熔融锂-钾碳酸盐、氢氧化钾与磷酸等中,使其附着在隔膜孔内,另一则是采用全氟磺酸树脂(例如PEMFC)及YSZ(例如SOFC)。
另外,由于使用的电解质膜为固态,可避免电解质腐蚀。
3、外部电路(集电器)
又称作双极板(Bipolar Plate),具有收集电流、分隔氧化剂与还原剂、疏导反应气体等之功用,集电器的性能主要取决于其材料特性、流场设计及其加工技术。