九年级数学上册 圆 几何综合中考真题汇编[解析版]

九年级数学上册 圆 几何综合中考真题汇编[解析版]
九年级数学上册 圆 几何综合中考真题汇编[解析版]

九年级数学上册圆几何综合中考真题汇编[解析版]

一、初三数学圆易错题压轴题(难)

1.如图①,一个Rt△DEF直角边DE落在AB上,点D与点B重合,过A点作二射线AC 与斜边EF平行,己知AB=12,DE=4,DF=3,点P从A点出发,沿射线AC方向以每秒2个单位的速度运动,Q为AP中点,设运动时间为t秒(t>0)?

(1)当t=5时,连接QE,PF,判断四边形PQEF的形状;

(2)如图②,若在点P运动时,Rt△DEF同时沿着BA方向以每秒1个单位的速度运动,当D点到A点时,两个运动都停止,M为EF中点,解答下列问题:

①当D、M、Q三点在同一直线上时,求运动时间t;

②运动中,是否存在以点Q为圆心的圆与Rt△DEF两个直角边所在直线都相切?若存在,求出此时的运动时间t;若不存在,说明理由.

【答案】(1)平行四边形EFPQ是菱形;(2)t=;当t为5秒或10秒时,以点Q为圆心的圆与Rt△DEF两个直角边所在直线都相切.

【解析】

试题分析:(1)过点Q作QH⊥AB于H,如图①,易得PQ=EF=5,由AC∥EF可得四边形EFPQ是平行四边形,易证△AHQ∽△EDF,从而可得AH=ED=4,进而可得AH=HE=4,根据垂直平分线的性质可得AQ=EQ,即可得到PQ=EQ,即可得到平行四边形EFPQ是菱形;(2)①当D、M、Q三点在同一直线上时,如图②,则有AQ=t,EM=EF=,AD=12-t,DE=4.由EF∥AC可得△DEM∽△DAQ,然后运用相似三角形的性质就可求出t的值;

②若以点Q为圆心的圆与Rt△DEF两个直角边所在直线都相切,则点Q在∠ADF的角平分线上(如图③)或在∠FDB的角平分线(如图④)上,故需分两种情况讨论,然后运用相似三角形的性质求出AH、DH(用t表示),再结合AB=12,DB=t建立关于t的方程,然后解这个方程就可解决问题.

试题解析:(1)四边形EFPQ是菱形.

理由:过点Q作QH⊥AB于H,如图①,

∵t=5,∴AP=2×5=10.

∵点Q是AP的中点,

∴AQ=PQ=5.

∵∠EDF=90°,DE=4,DF=3,

∴EF==5,

∴PQ=EF=5.

∵AC∥EF,

∴四边形EFPQ是平行四边形,且∠A=∠FEB.

又∵∠QHA=∠FDE=90°,

∴△AHQ∽△EDF,

∴.

∵AQ=EF=5,

∴AH=ED=4.

∵AE=12-4=8,

∴HE=8-4=4,

∴AH=EH,

∴AQ=EQ,

∴PQ=EQ,

∴平行四边形EFPQ是菱形;

(2)①当D、M、Q三点在同一直线上时,如图②,

此时AQ=t,EM=EF=,AD=12-t,DE=4.

∵EF∥AC,

∴△DEM∽△DAQ,

∴,

∴,

解得t=;

②存在以点Q为圆心的圆与Rt△DEF两个直角边所在直线都相切,此时点Q在∠ADF的角平分线上或在∠FDB的角平分线上.Ⅰ.当点Q在∠ADF的角平分线上时,

过点Q作QH⊥AB于H,如图③,

则有∠HQD=∠HDQ=45°,

∴QH=DH.

∵△AHQ∽△EDF(已证),

∴,

∴,

∴QH=,AH=,

∴DH=QH=.

∵AB=AH+HD+BD=12,DB=t,

∴++t=12,

∴t=5;

Ⅱ.当点Q在∠FDB的角平分线上时,

过点Q作QH⊥AB于H,如图④,

同理可得DH=QH=,AH=.

∵AB=AD+DB=AH-DH+DB=12,DB=t,

∴-+t=12,

∴t=10.

综上所述:当t为5秒或10秒时,以点Q为圆心的圆与Rt△DEF两个直角边所在直线都相切.

考点:1.圆的综合题;2.线段垂直平分线的性质;3.勾股定理;4.菱形的判定;5.相似三角形的判定与性质.

2.如图,在△ABC 中,∠C=90°,∠CAB=30°,AB=10,点D 在线段AB 上,AD=2.点P ,Q 以相同的速度从D 点同时出发,点P 沿DB 方向运动,点Q 沿DA 方向到点A 后立刻以原速返回向点B 运动.以PQ 为直径构造⊙O ,过点P 作⊙O 的切线交折线AC ﹣CB 于点E ,将线段EP 绕点E 顺时针旋转60°得到EF ,过F 作FG ⊥EP 于G ,当P 运动到点B 时,Q 也停止运动,设DP=m .

(1)当2<m≤8时,AP=,AQ=.(用m 的代数式表示) (2)当线段FG 长度达到最大时,求m 的值; (3)在点P ,Q 整个运动过程中,

①当m 为何值时,⊙O 与△ABC 的一边相切? ②直接写出点F 所经过的路径长是.(结果保留根号)

【答案】(1)2+m ,m ﹣2;(2)m=5.5;(3)①当m=1或4或104

33

与△ABC 的边相切.②点F 11365

72

【解析】

试题分析:(1)根据题意可得AP =2+m ,AQ =m ?2.

(2)如图1中在Rt △EFG 中, 30,90EFG A EGF ∠=∠=∠=, 推出3

cos30cos302

FG EF PE EP =?=?=,所以当点E 与点C 重合时,PE 的值最大,求出此时EP 的长即可解决问题.

(3)①当02t <≤ (Q 在往A 运动)时,如图2中,设O 切AC 于H ,连接OH .

当28m <≤(Q 从A 向B 运动)时,则PQ =(2+m )?(m ?2)=4,如图3中,设

O 切AC 于H .连接

OH .如图4中,设O 切BC 于N ,连接ON .

分别求解即可.

②如图5中,点F 的运动轨迹是F 1→F 2→B .分别求出122F F F B ,即可解决问题. 试题解析:(1)当28m <≤时,AP =2+m ,AQ =m ?2. 故答案为2+m ,m ?2. (2)如图1中,

在Rt △EFG 中, 30,90EFG A EGF ∠=∠=∠=,

3

cos30cos30FG EF PE EP ∴=?=?=

, ∴当点E 与点C 重合时,PE 的值最大, 易知此时53553

AC BC EP AB ??=

==,

3

tan30(2)3

EP AP m =?=+?, 533

(2)m ∴

=+?,

∴m =5.5

(3)①当02t <≤ (Q 在往A 运动)时,如图2中,设

O 切AC 于H ,连接OH .

则有AD =2DH =2, ∴DH =DQ =1,即m =1.

当28m <≤(Q 从A 向B 运动)时,则PQ =(2+m )?(m ?2)=4, 如图3中,设

O 切AC 于H .连接OH .

则AO =2OH =4,AP =4+2=6, ∴2+m =6, ∴m =4. 如图4中,设

O 切BC 于N ,连接ON .

在Rt △OBN 中, 43

sin60OB ON ==

43

10AO ∴=- 43

12AP ∴=-

43

212m ∴+= 3

103

m ∴=-

综上所述,当m =1或4或43

10O 与△ABC 的边相切。 ②如图5中,点F 的运动轨迹是F 1→F 2→B .

易知122353

,,5332

AF CF AC =

==,

122353113

53326

F F ∴=-

-=,

60,30FEP PEB ∠=∠=,

90FEB ∴∠=,

tan EF EP EBF EB EB

∴∠=

=为定值, ∴点F 的第二段的轨迹是线段2BF , 在2Rt BF C 中, 222222535

5(

)722

BF BC F C =+=+=,

∴点F 的运动路径的长为

115

37.62

+

3.如图1,四边形ABCD 中,

为它的对角线,E 为AB 边上一动点(点E 不与点

A 、

B 重合),EF ∥A

C 交BC 于点F ,FG ∥B

D 交DC 于点G ,GH ∥AC 交AD 于点H ,连接H

E .记四边形EFGH 的周长为,如果在点的运动过程中,的值不变,则我们称四边形ABCD 为“四边形”, 此时的值称为它的“值”.经过探究,可得矩形是“四边形”.如图2,矩形ABCD 中,若AB=4,BC=3,则它的“值”为 .

(1)等腰梯形 (填“是”或 “不是”)“四边形”; (2)如图3,是⊙O 的直径,A 是⊙O 上一点,,点为

上的一动

点,将△

沿

的中垂线翻折,得到△

.当点运动到某一位置时,以、、、

、、中的任意四个点为顶点的“四边形”最多,最多有 个. 【答案】“值”为10;(1)是;(2)最多有5个. 【解析】

试题分析:仔细分析题中“四边形”的定义结合矩形的性质求解即可; (1)根据题中“四边形”的定义结合等腰梯形的性质即可作出判断;

(2)根据题中“四边形”的定义结合中垂线的性质、圆的基本性质即可作出判断. 矩形ABCD 中,若AB=4,BC=3,则它的“值”为10; (1)等腰梯形是“四边形”;

(2)由题意得当点运动到某一位置时,以、、、、、中的任意四个点为顶点的“

四边形”最多,最多有5个. 考点:动点问题的综合题

点评:此类问题综合性强,难度较大,在中考中比较常见,一般作为压轴题,题目比较典型.

4.如图,在ABC ?中,90ACB ∠=?,45ABC ∠=?,12BC cm =,半圆O 的直径

12DE cm =.点E 与点C 重合,半圆O 以2/cm s 的速度从左向右移动,在运动过程中,

点D 、E 始终在BC 所在的直线上.设运动时间为()x s ,半圆O 与ABC ?的重叠部分的面积为(

)2

S cm

(1)当0x =时,设点M 是半圆O 上一点,点N 是线段AB 上一点,则MN 的最大值为_________;MN 的最小值为________.

(2)在平移过程中,当点O 与BC 的中点重合时,求半圆O 与ABC ?重叠部分的面积

S ;

(3)当x 为何值时,半圆O 与ABC ?的边所在的直线相切?

【答案】(1)24cm ,()

926cm ;(2)2

(189)cm π+;(3)0x =或6x =或

932x =-【解析】 【分析】

(1)当N 与点B 重合,点M 与点D 重合时,MN 最大,此时121224()MN DB DE BC cm ==+=+=如图①,过点O 作ON

AB ⊥于N ,与半圆交于点

M ,此时MN 最小,MN ON OM =-,

2

61218()92()OB OC CB cm ON BN cm =+=+===

=,所以

926()MN ON OM cm =-=-;

(2)当点O 与BC 的中点重合时,如图②,点O 移动了12cm ,设半圆与AB 交于点H ,连接OH 、CH ,6OH OC OB ===,

2901

6669183602

BOH HOC S S S ππ?=+=

?+??=+阴影扇形; (3)当半圆O 与直线AC 相切时,运动的距离为0或12,所以0x =(秒)或6(秒);当半圆O 与直线AB 相切时,如图③,连接OH ,则OH AB ⊥,6OH =,262OB OH ==,1262OC BC OB =-=-,移动的距离为

612621862()cm +-=-,运动时间为1862

9322

x -=

=-(秒). 【详解】

解:解(1)当N 与点B 重合,点M 与点D 重合时,MN 最大,此时121224()MN DB DE BC cm ==+=+=

如图①,过点O 作ON AB ⊥于N ,与半圆交于点M ,此时MN 最小,

MN ON OM =-,

45ABC ∠=?, 45NOB ∴∠=?,

在Rt ONB ?中,61218()OB OC CB cm =+=+= 2

92()ON BN OB cm ∴==

=, 926()MN ON OM cm ∴=-=-,

故答案为24cm ,(926)cm -;

(2)当点O 与BC 的中点重合时,如图②,点O 移动了12cm ,

设半圆与AB 交于点H ,连接OH 、CH .

BC 为直径,

90CHB ∴∠=?,

45ABC ∠=?

45HCB ∴∠=?,

HC HB ∴=,

OH BC ∴⊥,6OH OC OB ===,

2901

6669183602

BOH HOC S S S ππ?=+=

?+??=+阴影扇形; (3)当半圆O 与直线AC 相切时,运动的距离为0或12, 0x ∴=(秒)或6(秒);

当半圆O 与直线AB 相切时,如图③,

连接OH ,则OH AB ⊥,6OH = 45B ∠=?,90OHB ∠=?, 262OB OH ∴==, 1262OC BC OB =-=-,

移动的距离为612621862()cm +-=-, 运动时间为1862

932x -=

=-(秒), 综上所述,当x 为0或6或932-时,半圆O 与ABC ?的边所在的直线相切. 【点睛】

本题考查了圆综合知识,熟练掌握勾股定理以及圆切线定理是解题的关键.要注意分类讨论.

5.如图,AB 为⊙O 的直径,CD ⊥AB 于点G ,E 是CD 上一点,且BE =DE ,延长EB 至点P ,连接CP ,使PC =PE ,延长BE 与⊙O 交于点F ,连结BD ,FD . (1)连结BC ,求证:△BCD ≌△DFB ; (2)求证:PC 是⊙O 的切线; (3)若tan F =

23,AG ﹣BG =

5

33

,求ED 的值.

【答案】(1)详见解析;(2)详见解析;(3)DE =

133

9

【解析】

【分析】

(1)由BE=DE可知∠CDB=∠FBD,而∠BFD=∠DCB,BD是公共边,结论显然成立.(2)连接OC,只需证明OC⊥PC即可.根据三角形外角知识以及圆心角与圆周角关系可知∠PEC=2∠CDB=∠COB,由PC=PE可知∠PCE=∠PEC=∠COB,注意到AB⊥CD,于是

∠COB+∠OCG=90°=∠OCG+∠PEC=∠OCP,结论得证.

(3)由于∠BCD=∠F,于是tan∠BCD=tanF=2

3

=

BG

CG

,设BG=2x,则CG=3x.注意到AB是

直径,连接AC,则∠ACB是直角,由射影定理可知CG2=BG?AG,可得出AG的表达式(用

x表示),再根据AG-BG=53

3

求出x的值,从而CG、CB、BD、CD的长度可依次得出,

最后利用△DEB∽△DBC列出比例关系算出ED的值.【详解】

解:(1)证明:因为BE=DE,

所以∠FBD=∠CDB,

在△BCD和△DFB中:

∠BCD=∠DFB

∠CDB=∠FBD

BD=DB

所以△BCD≌△DFB(AAS).

(2)证明:连接OC.

因为∠PEC=∠EDB+∠EBD=2∠EDB,

∠COB=2∠EDB,

所以∠COB=∠PEC,

因为PE=PC,

所以∠PEC=∠PCE,

所以∠PCE=∠COB,

因为AB⊥CD于G,

所以∠COB+∠OCG=90°,

所以∠OCG+∠PEC=90°,

即∠OCP=90°,

所以OC⊥PC,

所以PC是圆O的切线.

(3)因为直径AB ⊥弦CD 于G , 所以BC =BD ,CG =DG , 所以∠BCD =∠BDC , 因为∠F =∠BCD ,tanF =23

, 所以∠tan ∠BCD =

23=BG CG

, 设BG =2x ,则CG =3x . 连接AC ,则∠ACB =90°,

由射影定理可知:CG 2=AG?BG ,

所以AG =229922

x C x

G x G B ==

因为AG ﹣BG ,

所以

23

92x x -=

解得x ,

所以BG =2x CG =3x =

所以BC =,

所以BD =BC , 因为∠EBD =∠EDB =∠BCD , 所以△DEB ∽△DBC , 所以

B

DB DC DE

D =,

因为CD =2CG =

所以DE =2DB CD =

. 【点睛】

本题为圆的综合题,主要考查了垂径定理,圆心角与圆周角的性质、等腰三角形的性质、全等三角形的判定与性质、切线的判定、射影定理、勾股定理、相似三角形的判定与性质等重要知识点.第(1)、(2)问解答的关键是导角,难度不大,第(3)问解答的要点在于根据射影定理以及条件当中告诉的两个等量关系求出BG 、CG 、BC 、BD 、CD 的值,最后利用“共边子母型相似”(即△DEB ∽△DBC )列比例方程求解ED .

6.如图①②,在平面直角坐标系中,边长为2的等边CDE

?恰好与坐标系中的OAB

?

重合,现将CDE

?绕边AB的中点(

G G点也是DE的中点),按顺时针方向旋转180?到

1

C DE的位置.

(1)求1

C点的坐标;

(2)求经过三点O、A、1C的抛物线的解析式;

(3)如图③,G是以AB为直径的圆,过B点作G的切线与x轴相交于点F,求切线BF的解析式;

(4)抛物线上是否存在一点M,使得:16:3

AMF OAB

S S

??

=.若存在,请求出点M的坐标;若不存在,请说明理由.

【答案】(1)

1

3)

C;(2)2

33

33

y x x

=-;(3)

323

33

y x

=+;(4)12

8383

4,,2,

33

M M

???

-

?

?

????

【解析】

【分析】

(1)利用中心对称图形的性质和等边三角形的性质,可以求出.

(2)运用待定系数法,代入二次函数解析式,即可求出.

(3)借助切线的性质定理,直角三角形的性质,求出F,B的坐标即可求出解析式.(4)当M在x轴上方或下方,分两种情况讨论.

【详解】

解:(1)将等边CDE

?绕边AB的中点G按顺时针方向旋转180?到△

1

C DE,

则有,四边形'

OAC B是菱形,所以

1

C的横坐标为3,

根据等边CDE

?的边长是2,

利用等边三角形的性质可得

1

3)

C;

(2)抛物线过原点(0,0)

O,设抛物线解析式为2

y ax bx

=+,

把(2,0)

A,3)

C'代入,得

420

933

a b

a b

+=

??

?

+=

??

解得

3

3

a=,

23

b=

∴抛物线解析式为233

y x x =

-;

(3)90ABF ∠=?,60BAF ∠=?,

30AFB ∴∠=?, 又2AB =, 4AF ∴=, 2OF ∴=,

(2,0)F ∴-,

设直线BF 的解析式为y kx b =+,

把B ,(2,0)F -代入,得20k b k b ?+=??-+=??

解得k =

b =

∴直线BF 的解析式为33

y x =

+

(4)①当M 在x 轴上方时,存在2()M x ,

211

:[4)]:[216:322

AMF OAB S S ??=???=,

得2280x x --=,解得14x =,22x =-,

当14x =时,244y ,

当12x =-时,2(2)(2)y =--=

1M ∴,2(M -;

②当M 在x 轴下方时,不存在,设点2()M x x ,

211

:[4)]:[216:322

AMF OAB S S ??=-???=,

得2280x x -+=,240b ac -<无解,

综上所述,存在点的坐标为1M ,2(M -. 【点睛】

此题主要考查了旋转,等边三角形的性质,菱形的判定和性质,以及待定系数法求解二次函数解析式和切线的性质定理等,能熟练应用相关性质,是解题的关键.

7.△ABC内接于⊙O,AB=AC,BD⊥AC,垂足为点D,交⊙O于点E,连接AE.

(1)如图1,求证:∠BAC=2∠CAE;

(2)如图2,射线AO交线段BD于点F,交BC边于点G,连接CE,求证:BF=CE;

(3)如图3,在(2)的条件下,连接CO并延长,交线段BD于点H,交⊙O于点M,连接FM,交AB边于点N,若BH=DH,四边形BHOG的面积为2,求线段MN的长.【答案】(1)见详解;(2)见详解;(3)6

MN

【解析】

【分析】

(1)先依据等腰三角形的性质和三角形的内角和定理证明∠BAC+2∠C=180°,然后得到

2∠CAE+2∠E=180°,然后根据同弧所对的圆周角相等得到∠E=∠C,即可得到结论;

(2)连接OB、OC.先依据SSS证明△ABO≌△ACO,从而得到∠BAO=∠CAO,然后在依据ASA证明△ABF≌△ACE,最后根据全等三角形的性质可证明BF=CE;

(3)连接HG、BM.由三线合一的性质证明BG=CG,从而得到HG是△BCD的中位线,则∠FHO=∠AFD=∠HFO,于是可得到HO=OF,然后得到∠OGH=∠OHG,从而得到OH=OG,则OF=OG,接下来证明四边形MFGB是矩形,然后由MF∥BC证明△MFH∽△CBH,从而可证明HF=FD.接下来再证明△ADF≌△GHF,由全等三角形的性质的到AF=FG,然后再证明△MNB≌△NAF,于是得到MN=NF.设S△OHF=S△OHG=a,则S△FHG=2a,S△BHG=4a,然后由S四边形BHOG2,可求得2,设HF=x,则BH=2x,然后证明△GFH∽△BFG,由相似三角形

的性质可得到2x,然后依据S△BHG=1

2

2,可求得x=2,故此可得到HB、

GH的长,然后依据勾股定理可求得BG的长,于是容易求得MN的长.【详解】

解:(1)∵AB=AC,

∴∠ABC=∠ACB.

∴∠BAC+2∠C=180°.

∵BD⊥AC,

∴∠ADE=90°.

∴∠E+∠CAE=90°.

∴2∠CAE+2∠E=180°.

∵∠E=∠ACB,

∴2∠CAE+2∠ACB=180°.

∴∠BAC=2∠CAE.

(2)连接OB、OC.

∵AB=AC,AO=AO,OB=OC,

∴△ABO≌△ACO.

∴∠BAO=∠CAO.

∵∠BAC=2∠CAE,

∴∠BAO=∠CAE.

在△ABF和△ACE中,

ABF ACE

AB AC

BAF CAE

∠=∠

?

?

=

?

?∠=∠

?

∴△

ABF≌△ACE.

∴BF=CE.

(3)连接HG、BM.

∵AB=AC,∠BAO=∠CAO,

∴AG⊥BC,BG=CG.

∵BH=DH,

∴HG是△BCD的中位线.

∴HG∥CD.

∴∠GHF=∠CDE=90°.

∵OA=OC,

∴∠OAC=∠OCA.

∵∠OAC+∠AFD=90°,∠OCA+∠FHO=90°,∴∠FHO=∠AFD=∠HFO.

∴HO=OF.

∵∠HFO+∠OGH=90°,∠OHF+∠OHG=90°, ∴∠OGH=∠OHG . ∴OH=OG . ∴OF=OG . ∵OM=OC ,

∴四边形MFCG 是平行四边形. 又∵MC 是圆O 的直径, ∴∠CBM=90°. ∴四边形MFGB 是矩形. ∴MB=FG ,∠FMB=∠AFN=90°. ∵MF ∥BC , ∴△MFH ∽△CBH .

1

2HF MF BH CB ==. ∴HF :HD=1:2. ∴HF=FD .

在△ADF 和△GHF 中,

AFD GFH ADF GHF FH FD ∠=∠??

∠=∠??=?

, ∴△ADF ≌△GHF . ∴AF=FG . ∴MB=AF .

在△MNB 和△NAF 中,

90BMF AFN ANF BNM MB AF ∠=∠=???

∠=∠??=?

, ∴△MNB ≌△NAF . ∴MN=NF .

设S △OHF =S △OHG =a ,则S △FHG =2a ,S △BHG =4a , ∴S 四边形BHOG

. ∴

. 设HF=x ,则BH=2x .

∵∠HHG=∠GFB ,∠GHF=∠FGB , ∴△GFH ∽△BFG . ∴

HF GH HG BH =,即2x HG

HG x

=. ∴

∴S△BHG=1

2

BH?HG=

1

2

×2x?2x=42,

解得:x=2.

∴HB=4,GH=22.

由勾股定理可知:BG=26.

∴MF=26.

∴MN=NF=6.

【点睛】

本题主要考查的是圆的综合应用,解答本题主要应用了圆周角定理、全等三角形的性质和判定、相似三角形的性质和判断、勾股定理的应用、矩形的性质和判定,找出图中相似三角形和全等三角形是解题的关键.

8.如图,已知AB是⊙O的直径,C是⊙O上一点(不与A、B重合),D为的AC中点,过点D作弦DE⊥AB于F,P是BA延长线上一点,且∠PEA=∠B.

(1)求证:PE是⊙O的切线;

(2)连接CA与DE相交于点G,CA的延长线交PE于H,求证:HE=HG;

(3)若tan∠P=

5

12

,试求

AH

AG

的值.

【答案】(1)证明见解析;(2)证明见解析;(3)

13

10 AH

AG

=.

【解析】

【分析】

(1)连接OE,由圆周角定理证得∠EAB+∠B=90°,可得出∠OAE=∠AEO,则

∠PEA+∠AEO=90°,即∠PEO=90°,则结论得证;

(2)连接OD,证得∠AOD=∠AGF,∠B=∠AEF,可得出∠PEF=2∠B,∠AOD=2∠B,可证得∠PEF=∠AOD=∠AGF,则结论得证;

(3)可得出tan∠P=tan∠ODF=

5

12

OF

DF

=,设OF=5x,则DF=12x,求出AE,BE,得

2

3

AE

BE

=,证明△PEA∽△PBE,得出2

3

PA

PE

=,过点H作HK⊥PA于点K,证明∠P=

∠PAH,得出PH=AH,设HK=5a,PK=12a,得出PH=13a,可得出AH=13a,AG=10a,则可得出答案.

【详解】

解:(1)证明:如图1,连接OE,

∵AB是⊙O的直径,

∴∠AEB=90°,

∴∠EAB+∠B=90°,

∵OA=OE,

∴∠OAE=∠AEO,

∴∠B+∠AEO=90°,

∵∠PEA=∠B,

∴∠PEA+∠AEO=90°,

∴∠PEO=90°,

又∵OE为半径,

∴PE是⊙O的切线;

(2)如图2,连接OD,

∵D为AC的中点,

∴OD⊥AC,设垂足为M,

∴∠AMO=90°,

∵DE⊥AB,

∴∠AFD=90°,

∴∠AOD+∠OAM=∠OAM+∠AGF=90°,∴∠AOD=∠AGF,

∵∠AEB=∠EFB=90°,

∴∠B=∠AEF,

∵∠PEA=∠B,

∴∠PEF=2∠B,

∵DE⊥AB,

∴AE AD

∴∠AOD=2∠B,

∴∠PEF=∠AOD=∠AGF,

∴HE=HG;

(3)解:如图3,

∵∠PEF=∠AOD,∠PFE=∠DFO,∴∠P=∠ODF,

∴tan∠P=tan∠ODF=

5

12 OF

DF

=,

设OF=5x,则DF=12x,

∴OD22

OF DF

+13x,

∴BF=OF+OB=5x+13x=18x,AF=OA﹣OF=13x﹣5x=8x,

∵DE⊥OA,

∴EF=DF=12x,

∴AE22

AF EF

+13,BE22

EF BF

+13,∵∠PEA=∠B,∠EPA=∠BPE,

∴△PEA∽△PBE,

4132

3

613

PA AE

PE BE

===,

∵∠P+∠PEF=∠FAG+∠AGF=90°,∴∠HEG=∠HGE,

∴∠P=∠FAG,

又∵∠FAG=∠PAH,

∴∠P=∠PAH,

∴PH=AH,

过点H作HK⊥PA于点K,

∴PK=AK,

1

3 PK

PE

=,

∵tan∠P=

5 12

设HK=5a,PK=12a,∴PH=13a,

中考数学几何综合圆的综合大题压轴题

圆的综合大题 1.如图,⊙O是△ABC的外接圆,FH是⊙O的切线,切点为F,FH∥BC,连接AF交BC于E,∠ABC的平分线BD交AF于D,连接BF. (1)证明:AF平分∠BAC; (2)证明:BF=FD; (3)若EF=4,DE=3,求AD的长. 2.如图,AB是⊙O的直径,过点B作⊙O的切线BM,点P在右半圆上移动(点P与点A,B不重合),过点P作PC⊥AB,垂足为C;点Q在射线BM上移动(点M在点B的右边),且在移动过程中保持OQ∥AP. (1)若PC,QO的延长线相交于点E,判断是否存在点P,使得点E恰好在⊙O上?若存在,求出∠APC的大小;若不存在,请说明理由; (2)连接AQ交PC于点F,设,试问:k的值是否随点P的移动而变化?证明你的结论.

3.已知:如图1,把矩形纸片ABCD折叠,使得顶点A与边DC上的动点P重合(P不与点D,C重合),MN为折痕,点M,N分别在边BC,AD上,连接AP,MP,AM,AP与MN相交于点F.⊙O过点M,C,P. (1)请你在图1中作出⊙O(不写作法,保留作图痕迹); (2)与是否相等?请你说明理由; (3)随着点P的运动,若⊙O与AM相切于点M时,⊙O又与AD相切于点H.设AB为4,请你通过计算,画出这时的图形.(图2,3供参考) 4.在⊙O中,弦AB与弦CD相交于点G,OA⊥CD于点E,过点B作⊙O的切线BF交CD的延长线于点F. (I)如图①,若∠F=50°,求∠BGF的大小; (II)如图②,连接BD,AC,若∠F=36°,AC∥BF,求∠BDG的大小.

5.如图,在⊙O中,半径OD⊥直径AB,CD与⊙O相切于点D,连接AC交⊙O 于点E,交OD于点G,连接CB并延长交⊙于点F,连接AD,EF. (1)求证:∠ACD=∠F; (2)若tan∠F= ①求证:四边形ABCD是平行四边形; ②连接DE,当⊙O的半径为3时,求DE的长. 6.如图,⊙O的直径AB为10cm,弦BC为6cm,D、E分别是∠ACB的平分线与⊙O,AB的交点,P为AB延长线上一点,且PC=PE. (1)求AC、AD的长; (2)试判断直线PC与⊙O的位置关系,并说明理由.

中考数学专题突破几何综合

2016年北京中考专题突破几何综合 在北京中考试卷中,几何综合题通常出现在后两题,分值为8分或7分.几何综合题主要包含三角形(全等、相似)、四边形、锐角三角函数、圆等知识,主要研究图形中的数量关系、位置关系、几何计算以及图形的运动、变换等规律. 求解几何综合题时,关键是抓住“基本图形”,能在复杂的几何图形中辨认、分解出基本图形,或通过添加辅助线补全、构造基本图形,或运用图形变换的思想将分散的条件集中起来,从而产生基本图形,再根据基本图形的性质,合理运用方程、三角函数的运算等进行推理与计算. 1.[2015·北京] 在正方形ABCD中,BD是一条对角线,点P在射线CD上(与点C,D 不重合),连接AP,平移△ADP,使点D移动到点C,得到△BCQ,过点Q作QH⊥BD于点H,连接AH,PH. (1)若点P在线段CD上,如图Z9-1(a). ①依题意补全图(a); ②判断AH与PH的数量关系与位置关系,并加以证明. (2)若点P在线段CD的延长线上,且∠AHQ=152°,正方形ABCD的边长为1,请写出求DP长的思路.(可以不写出计算结果 .........) 图Z9-1 2.[2014·北京] 在正方形ABCD外侧作直线AP,点B关于直线AP的对称点为E,连接BE,DE,其中DE交直线AP于点F. (1)依题意补全图Z9-2①; (2)若∠PAB=20°,求∠ADF的度数; (3)如图②,若45°<∠PAB<90°,用等式表示线段AB,FE,FD之间的数量关系,并证明.

图Z9-2 3.[2013·北京] 在△ABC中,AB=AC,∠BAC=α(0°<α<60°),将线段BC绕点B 逆时针旋转60°得到线段B D. (1)如图Z9-3①,直接写出∠ABD的大小(用含α的式子表示); (2)如图②,∠BCE=150°,∠ABE=60°,判断△ABE的形状并加以证明; (3)在(2)的条件下,连接DE,若∠DEC=45°,求α的值. 图Z9-3 4.[2012·北京] 在△ABC中,BA=BC,∠BAC=α,M是AC的中点,P是线段BM上的动点,将线段PA绕点P顺时针旋转2α得到线段PQ. (1)若α=60°且点P与点M重合(如图Z9-4①),线段CQ的延长线交射线BM于点D,请补全图形,并写出∠CDB的度数; (2)在图②中,点P不与点B,M重合,线段CQ的延长线与射线BM交于点D,猜想∠CDB 的大小(用含α的代数式表示),并加以证明; (3)对于适当大小的α,当点P在线段BM上运动到某一位置(不与点B,M重合)时,能使得线段CQ的延长线与射线BM交于点D,且PQ=DQ,请直接写出α的范围. 图Z9-4

2015中考数学分类汇编圆综合题学生版

2015中考数学真题分类汇编圆综合题 一.解答题(共30小题) 1.(2015?大连)如图,AB是⊙O的直径,点C,D在⊙O上,且AD平分∠CAB,过点D作AC的垂线,与AC的延长线相交于点E,与AB的延长线相交于点F. (1)求证:EF与⊙O相切; (2)若AB=6,AD=4,求EF的长. 2.(2015?潍坊)如图,在△ABC中,AB=AC,以AC为直径的⊙O交BC于点D,交AB于点E,过点D作DF⊥AB,垂足为F,连接DE. (1)求证:直线DF与⊙O相切; (2)若AE=7,BC=6,求AC的长. 3.(2015?枣庄)如图,在△ABC中,∠ABC=90°,以AB的中点O为圆心、OA为半径的圆交AC于点D,E是BC的中点,连接DE,OE. (1)判断DE与⊙O的位置关系,并说明理由; (2)求证:BC2=CD?2OE; (3)若cos∠BAD=,BE=6,求OE的长. 4.(2015?西宁)如图,已知BC为⊙O的直径,BA平分∠FBC交⊙O于点A,D是射线BF上的一点,且满足=,过点O作OM⊥AC于点E,交⊙O于点M,连接BM, AM. (1)求证:AD是⊙O的切线;

(2)若sin∠ABM=,AM=6,求⊙O的半径. 5.(2015?广元)如图,AB是⊙O的弦,D为半径OA的中点,过D作CD⊥OA交弦于点E,交⊙O于点F,且CE=CB. (1)求证:BC是⊙O的切线; (2)连接AF、BF,求∠ABF的度数; (3)如果CD=15,BE=10,sinA=,求⊙O的半径. 6.(2015?北海)如图,AB、CD为⊙O的直径,弦AE∥CD,连接BE交CD于点F,过点E作直线EP与CD的延长线交于点P,使∠PED=∠C. (1)求证:PE是⊙O的切线; (2)求证:ED平分∠BEP; (3)若⊙O的半径为5,CF=2EF,求PD的长. 7.(2015?莆田)如图,在四边形ABCD中,AB=AD,对角线AC,BD交于点E,点O 在线段AE上,⊙O过B,D两点,若OC=5,OB=3,且cos∠BOE=.求证:CB是⊙O的切线.

中考数学圆综合题汇编

25题汇编 1. 如图,AB 是⊙O 的直径,BC 是⊙O 的切线,切点为B ,AD 为弦,OC ∥AD 。 (1)求证:DC 是⊙O 的切线; (2)若OA=2,求OC AD 的值。 2. 如图,⊙O 是△ABC 的外接圆,∠B=60°,CD 是⊙O 的直径,P 是CD 延长线上的一点,且AP=AC (1)求证:直线AP 是⊙O 的切线; (2)若AC=3,求PD 的长。 3. 如图,已知AB 是⊙O 的直径,AM 和BN 是⊙O 的两条切线,点E 是⊙ O 上一点,点D 是AM 上一点,连接DE 并延长交BN 于点C ,连接OD 、BE ,且OD ∥BE 。 (1)求证:DE 是⊙O 的切线; (2)若AD=1,BC=4,求直径AB 的长。 D C B A O C B M N E D B A O

4. 如图,△ABC 内接于⊙O ,弦AD ⊥AB 交BC 于点E ,过点B 作⊙O 的切线交DA 的延长线于点F ,且∠ABF=∠ABC 。 (1)求证:AB=AC ; (2)若EF=4,2 3 tan = F ,求DE 的长。 5. 在△ABC 中,AB=AC ,以AB 为直径作⊙O ,交BC 于点D ,过点D 作DE ⊥AC ,垂足为E 。 (1)求证:DE 是⊙O 的切线; (2)若AE=1,52=BD ,求AB 的长。 6. 如图,AB 是⊙O 的直径,C 是⊙O 上一点,AD 垂直于过点C 的直线,垂足为D ,且AC 平分 ∠BAD 。 (1)求证:CD 是⊙O 的切线; (2)若62=AC ,AD=4,求AB 的长。 A

7. 如图,AB 为⊙O 的直径,C 为⊙O 上一点,AD 和过C 点的切线互相垂直,垂足为点D ,AD 交⊙O 于点E 。 求证:(1)AC 平分∠DAB ; (2)若∠B=60°,32 CD ,求AE 的长。 8. 如图,⊙O 是△ABC 的外接圆,AC 是⊙O 的直径,弦BD=BA ,AB=12,BC=5,BE ⊥DC 交DC 的延长线于点E 。 (1)求证:BE 是⊙O 的切线; (2)求DE 的长。 9. 如图,在Rt △ABC 中,∠C=90°,CB=CA=6,半径为2的⊙F 与射线BA 相切于点G ,且AG=4,将Rt △ABC 绕点A 顺时针旋转135°后得到Rt △ADE ,点B 、C 的对应点分别是点D 、E 。 (1)求证:DE 为⊙F 的切线; (2)求出Rt △ADE 的斜边AD 被⊙ F 截得的弦PQ 的长度。 A E A D

中考数学几何综合题汇总.doc

如图 8,在Rt ABC中,CAB 90,AC 3 , AB 4 ,点 P 是边 AB 上任意一点,过点 P 作PQ AB 交BC于点E,截取 PQ AP ,联结 AQ ,线段 AQ 交BC于点D,设 AP x ,DQ y .【2013徐汇】 (1)求y关于x的函数解析式及定义域;( 4 分) (2)如图 9,联结CQ,当CDQ和ADB相似时,求x的值;( 5 分) (3)当以点C为圆心,CQ为半径的⊙C和以点B为圆心,BQ为半径的⊙B相交的另一个交点在边 AB 上时,求 AP 的长.( 5 分) C Q D E A P B (图 8) C Q D E A (图 9) P B C A B (备用图) 【2013 奉贤】如图,已知AB是⊙O的直径,AB=8,点C在半径OA上(点C与点O、A不重合),过点 C作 AB的垂线交⊙ O于点 D,联结 OD,过点 B 作 OD的平行线交⊙ O于点 E、交射 线CD于点 F. (1)若 ⌒ ED BE⌒ ,求∠ F 的度数; (2)设CO x, EF y,写出y 与x之间的函数解析式,并写出定义域;

(3)设点 C 关于直线 OD 的对称点为 P ,若△ PBE 为等腰三角形,求 OC 的长. 第 25 题 【 2013 长宁】△ ABC 和△ DEF 的顶点 A 与 D 重合,已知∠ B = 90 . ,∠ BAC = 30 . , BC=6,∠ FDE = 90 , DF=DE=4. (1)如图①, EF 与边 、 分别交于点 ,且 . 设 DF a ,在射线 上取 AC AB G 、H FG=EH DF 一点 P ,记: DP xa ,联结 CP. 设△ DPC 的面积为 y ,求 y 关于 x 的函数解析式,并写 出定义域; (2)在( 1)的条件下,求当 x 为何值时 PC // AB ; ( 3)如图②,先将△ DEF 绕点 D 逆时针旋转,使点 E 恰好落在 AC 边上,在保持 DE 边与 AC 边完 全重合的条件下, 使△ DEF 沿着 AC 方向移动 . 当△ DEF 移动到什么位置时, 以线段 AD 、FC 、BC 的长度为边长的三角形是直角三角形. 图① 图② 【 2013 嘉定】已知 AP 是半圆 O 的直径,点 C 是半圆 O 上的一个动点 (不与点 A 、P 重合),联结 AC ,以直线 AC 为对称轴翻折 AO ,将点 O 的对称点记为 O 1 ,射线 AO 1 交半圆 O 于 点 B ,联结 OC . (1)如图 8,求证: AB ∥ OC ; (2)如图 9,当点 B 与点 O 1 重合时,求证: AB CB ;

中考数学圆的综合-经典压轴题及答案

中考数学圆的综合-经典压轴题及答案 一、圆的综合 1.如图,点A、B、C分别是⊙O上的点, CD是⊙O的直径,P是CD延长线上的一点,AP=AC. (1)若∠B=60°,求证:AP是⊙O的切线; (2)若点B是弧CD的中点,AB交CD于点E,CD=4,求BE·AB的值. 【答案】(1)证明见解析;(2)8. 【解析】 (1)求出∠ADC的度数,求出∠P、∠ACO、∠OAC度数,求出∠OAP=90°,根据切线判定推出即可; (2)求出BD长,求出△DBE和△ABD相似,得出比例式,代入即可求出答案. 试题解析:连接AD,OA, ∵∠ADC=∠B,∠B=60°, ∴∠ADC=60°, ∵CD是直径, ∴∠DAC=90°, ∴∠ACO=180°-90°-60°=30°, ∵AP=AC,OA=OC, ∴∠OAC=∠ACD=30°,∠P=∠ACD=30°, ∴∠OAP=180°-30°-30°-30°=90°, 即OA⊥AP, ∵OA为半径, ∴AP是⊙O切线. (2)连接AD,BD,

∵CD是直径, ∴∠DBC=90°, ∵CD=4,B为弧CD中点, ∴BD=BC=, ∴∠BDC=∠BCD=45°, ∴∠DAB=∠DCB=45°, 即∠BDE=∠DAB, ∵∠DBE=∠DBA, ∴△DBE∽△ABD, ∴, ∴BE?AB=BD?BD=. 考点:1.切线的判定;2.相似三角形的判定与性质. 2.如图,已知△ABC内接于⊙O,BC交直径AD于点E,过点C作AD的垂线交AB的延长线于点G,垂足为F.连接OC. (1)若∠G=48°,求∠ACB的度数; (2)若AB=AE,求证:∠BAD=∠COF; (3)在(2)的条件下,连接OB,设△AOB的面积为S1,△ACF的面积为S2.若 tan∠CAF= 1 2,求1 2 S S的值. 【答案】(1)48°(2)证明见解析(3)3 4

中考数学专题复习圆的综合的综合题

一、圆的综合真题与模拟题分类汇编(难题易错题) 1.如图,点P在⊙O的直径AB的延长线上,PC为⊙O的切线,点C为切点,连接AC,过点A作PC的垂线,点D为垂足,AD交⊙O于点E. (1)如图1,求证:∠DAC=∠PAC; (2)如图2,点F(与点C位于直径AB两侧)在⊙O上,BF FA =,连接EF,过点F作AD 的平行线交PC于点G,求证:FG=DE+DG; (3)在(2)的条件下,如图3,若AE=2 3 DG,PO=5,求EF的长. 【答案】(1)证明见解析;(2)证明见解析;(3)EF=32. 【解析】 【分析】 (1)连接OC,求出OC∥AD,求出OC⊥PC,根据切线的判定推出即可; (2)连接BE交GF于H,连接OH,求出四边形HGDE是矩形,求出DE=HG,FH=EH,即可得出答案; (3)设OC交HE于M,连接OE、OF,求出∠FHO=∠EHO=45°,根据矩形的性质得出 EH∥DG,求出OM=1 2 AE,设OM=a,则HM=a,AE=2a,AE= 2 3 DG,DG=3a, 求出ME=CD=2a,BM=2a,解直角三角形得出tan∠MBO= 1 2 MO BM =,tanP= 1 2 CO PO =,设 OC=k,则PC=2k,根据OP=5k=5求出k=5,根据勾股定理求出a,即可求出答案.【详解】 (1)证明:连接OC, ∵PC为⊙O的切线,

∴OC⊥PC, ∵AD⊥PC, ∴OC∥AD, ∴∠OCA=∠DAC, ∵OC=OA, ∴∠PAC=∠OCA, ∴∠DAC=∠PAC; (2)证明:连接BE交GF于H,连接OH, ∵FG∥AD, ∴∠FGD+∠D=180°, ∵∠D=90°, ∴∠FGD=90°, ∵AB为⊙O的直径, ∴∠BEA=90°, ∴∠BED=90°, ∴∠D=∠HGD=∠BED=90°, ∴四边形HGDE是矩形, ∴DE=GH,DG=HE,∠GHE=90°, ∵BF AF =, ∴∠HEF=∠FEA=1 2 ∠BEA=190 2 o ?=45°, ∴∠HFE=90°﹣∠HEF=45°, ∴∠HEF=∠HFE, ∴FH=EH, ∴FG=FH+GH=DE+DG; (3)解:设OC交HE于M,连接OE、OF, ∵EH=HF,OE=OF,HO=HO, ∴△FHO≌△EHO, ∴∠FHO=∠EHO=45°,

中考数学压轴题精选(几何综合题)

中考数学压轴题(几何综合题) 1、如图1,△ABC中,∠ACB=90°,AC=4厘米,BC=6厘米,D是BC的中点.点E从A 出发,以a厘米/秒(a>0)的速度沿AC匀速向点C运动,点F同时以1厘米/秒的速度从C出发,沿CB匀速向点B运动,其中一个动点到达端点时,另一个动点也随之停止运动,过点E作AC的垂线,交AD于点G,连接EF,FG.设它们运动的时间为t秒(t>0).(1)当t=2时,△ECF∽△BCA,求a的值; (2)当a=1 2 时,以点E、F、D、G为顶点的四边形是平行四边形,求t的值; (3)当a=2时,是否存在某个时间,使△DFG是直角三角形?若存在,请求出t的值; 若不存在,请说明理由. 解:(1)∵t=2,∴CF=2厘米,AE=2a厘米, ∴EC=(4-2a ) 厘米. ∵△ECF∽△BCA.∴EC CF CB AC = ∴422 64 a - =.∴ 1 2 a=. (2)由题意,AE=1 2 t厘米,CD=3厘米,CF=t厘米. ∵EG∥CD,∴△AEG∽△ACD.∴EG AE CD AC =, 1 2 34 t EG =.∴EG= 3 8 t. ∵以点E、F、D、G为顶点的四边形是平行四边形,∴EG=DF. 当0≤t<3时,3 3 8 t t =-, 24 11 t=. 当3<t≤6时,3 3 8 t t=-, 24 5 t=. 综上 24 11 t=或 24 5 (3)由题意,AE=2t厘米,CF=t厘米,可得:△AEG∽△ACD AG=5 2 t厘米,EG= 3 2 t,DF=3-t厘米,DG=5- 5 2 t(厘米). G D B A C F E (第27题) D B A C 备用图 图1

中考数学几何综合题汇总

如图8,在ABC Rt ?中,?=∠90CAB ,3=AC ,4=AB ,点P 是边AB 上任意一点,过点P 作AB PQ ⊥交BC 于点E ,截取AP PQ =,联结AQ ,线段AQ 交BC 于点D ,设x AP =,y DQ =.【2013徐汇】 (1)求y 关于x 的函数解析式及定义域; (4分) (2)如图9,联结CQ ,当CDQ ?和ADB ?相似时,求x 的值; (5分) (3)当以点C 为圆心,CQ 为半径的⊙C 和以点B 为圆心,BQ 为半径的⊙B 相交的另一 个交点在边AB 上时,求AP 的长. (5分) 【2013奉贤】如图,已知AB 是⊙O 的直径,AB =8, 点C 在半径OA 上(点C 与点O 、A 不重合),过点C 作AB 的垂线交⊙O 于点D ,联结OD ,过点B 作OD 的平行线交⊙O 于点E 、交射线CD 于点F . (1)若 ,求∠F 的度数; (2)设,,y EF x CO ==写出y 与x 之间的函数解析式,并写出定义域; (图8) C A B D E P Q C A B D E P Q (图9) (备用图) C A B BE ED =⌒ ⌒

第25题 (3)设点C 关于直线OD 的对称点为P ,若△PBE 为等腰三角形,求OC 的长. 【2013长宁】△ABC 和△DEF 的顶点A 与D 重合,已知∠B =?90. ,∠BAC =?30. ,BC=6,∠ FDE =?90,DF=DE=4. (1)如图①,EF 与边AC 、AB 分别交于点G 、H ,且FG=EH . 设a DF =,在射线DF 上取一点P ,记:a x DP =,联结CP. 设△DPC 的面积为y ,求y 关于x 的函数解析式,并写出定义域; (2)在(1)的条件下,求当x 为何值时 AB PC //; (3)如图②,先将△DEF 绕点D 逆时针旋转,使点E 恰好落在AC 边上,在保持DE 边与AC 边完全重合的条件下,使△DEF 沿着AC 方向移动. 当△DEF 移动到什么位置时,以线段 AD 、FC 、BC 的长度为边长的三角形是直角三角形. 【2013嘉定】已知AP 是半圆O 的直径,点C 是半圆O 上的一个动点(不与点A 、P 重合),联结AC ,以直线AC 为对称轴翻折AO ,将点O 的对称点记为1O ,射线1AO 交半圆O 于点B ,联结OC . (1)如图8,求证:AB ∥OC ; (2)如图9,当点B 与点1O 重合时,求证:CB AB =; 图① 图②

2019年中考数学几何综合型试题分类汇编及答案

2019年中考数学几何综合型试题分类汇编及答案 各位读友大家好,此文档由网络收集而来,欢迎您下载,谢谢 1.重庆,11,4分)据报道,重庆主城区私家车拥有量近380000辆.将数380000用科学记数法表示为________ 【解析】科学记数法的正确写法是:a×。 【答案】×105 【点评】通常易犯的错误是a的整数位数不对。 2.过度包装既浪费资源又污染环境.据测算,如果全国每年减少10%的过度包装纸用量,那么可减排二氧化碳3120000吨.把数3120000用科学记数法表示为 ×105 ×106 ×105 ×107

【解析】3120000是一个7位整数,所以3120000用科学记数法可表示为×1000000=×106,故选B. 【答案】B 【点评】科学记数法是将一个数写成a×10n的形式,其中1≤|a|1时,n是正数;当原数的绝对值1时,n是正数;当原数的绝对值<1时,n是负数.学生在学习科学记数法时最不容易掌握的就是n的确定,查准是10的几次方。还有的学生容易把“×10n”忘记而丢失,要明确记清. 其方法是确定a,a是只有一位整数的数;确定n;当原数的绝对值≥10时,n 为正整数,n等于原数的整数位数减1;当原数的绝对值<1时,n为负整数,n 的绝对值等于原数中左起第一个非零数前零的个数. 16. 2011年安徽省棉花产量约378000吨,将378000用科学计数法表示应是______________. 【解析】科学记数法形式:a×10n 中n的值是易错点,由于378 000有6

位,所以可以确定n=6﹣1=5,所以378 000=×105 【答案】×105 【点评】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.表示时关键要正确确定a 的值以及n的值. 17.从权威部门获悉,中国海洋面积是万平方公里,约为陆地面积的三分之一, 万平方公里用科学计数法表示为平方公里 A. B. C. D. 【解析】∵万平方公里=×106平方公里,且结果保留两位有效数字 ∴×106平方公里≈ 【答案】C. 【点评】此题考查对科学计数法和有效数字的理解,把一个绝对值大于10

中考数学综合题专题【圆】专题训练含答案

中考数学综合题专题【圆】专题训练含答案 一、选择题 1.(北京市西城区)如图,BC 是⊙O 的直径,P 是CB 延长线上一点,PA 切⊙O 于点A ,如果PA =3,PB =1,那么∠APC 等于 ( ) (A ) 15 (B ) 30 (C ) 45 (D ) 60 2.(北京市西城区)如果圆柱的高为20厘米,底面半径是高的 41,那么这个圆柱的侧面积是 ( ) (A )100π平方厘米 (B )200π平方厘米 (C )500π平方厘米 (D )200平方厘米 3.(北京市西城区)“圆材埋壁”是我国古代著名的数学菱《九章算术》中的一个问题,“今在圆材,埋在壁中,不知大小.以锯锯之,深一寸,锯道长一尺,问径几何?”用 现在的数学语言表述是:“如图,CD 为⊙O 的直径,弦AB ⊥CD ,垂足为E ,CE =1寸,AB =寸,求直径CD 的长”.依题意,CD 长为 ( ) (A )2 25寸 (B )13寸 (C )25寸 (D )26寸 4.(北京市朝阳区)已知:如图,⊙O 半径为5,PC 切⊙O 于点C ,PO 交⊙O 于点A ,PA =4,那么PC 的长等于 ( ) (A )6 (B )25 (C )210 (D )214 5.(北京市朝阳区)如果圆锥的侧面积为20π平方厘米,它的母线长为5厘 米,那么此圆锥的底面半径的长等于 ( ) (A )2厘米 (B )22厘米 (C )4厘米 (D )8厘米 6.(天津市)相交两圆的公共弦长为16厘米,若两圆的半径长分别为10厘 米和17厘米,则这两圆的圆心距为 ( ) (A )7厘米 (B )16厘米 (C )21厘米 (D )27厘米 7.(重庆市)如图,⊙O 为△ABC 的内切圆,∠C = 90,AO 的延长线交BC 于点D ,AC =4,DC =1,,则⊙O 的半径等于 ( )

人教中考数学圆的综合综合题汇编及详细答案

一、圆的综合 真题与模拟题分类汇编(难题易错题) 1.如图,AB 是半圆的直径,过圆心O 作AB 的垂线,与弦AC 的延长线交于点D ,点E 在OD 上DCE B ∠=∠. (1)求证:CE 是半圆的切线; (2)若CD=10,2 tan 3 B = ,求半圆的半径. 【答案】(1)见解析;(2)413 【解析】 分析: (1)连接CO ,由DCE B ∠=∠且OC=OB,得DCE OCB ∠=∠,利用同角的余角相等判断出∠BCO+∠BCE=90°,即可得出结论; (2)设AC=2x ,由根据题目条件用x 分别表示出OA 、AD 、AB ,通过证明△AOD ∽△ACB ,列出等式即可. 详解:(1)证明:如图,连接CO . ∵AB 是半圆的直径, ∴∠ACB =90°. ∴∠DCB =180°-∠ACB =90°. ∴∠DCE+∠BCE=90°. ∵OC =OB , ∴∠OCB =∠B. ∵=DCE B ∠∠, ∴∠OCB =∠DCE . ∴∠OCE =∠DCB =90°. ∴OC ⊥CE . ∵OC 是半径, ∴CE 是半圆的切线. (2)解:设AC =2x ,

∵在Rt △ACB 中,2 tan 3 AC B BC ==, ∴BC =3 x . ∴()() 22 2313AB x x x = +=. ∵OD ⊥AB , ∴∠AOD =∠A CB=90°. ∵∠A =∠A , ∴△AOD ∽△ACB . ∴ AC AO AB AD =. ∵1132OA AB x = =,AD =2x +10, ∴ 1 132210 13x x x = +. 解得 x =8. ∴13 8413OA = ?=. 则半圆的半径为413. 点睛:本题考查了切线的判定与性质,圆周角定理,相似三角形. 2.如图,在平面直角坐标系xoy 中,E (8,0),F(0 , 6). (1)当G(4,8)时,则∠FGE= ° (2)在图中的网格区域内找一点P ,使∠FPE=90°且四边形OEPF 被过P 点的一条直线分割成两部分后,可以拼成一个正方形. 要求:写出点P 点坐标,画出过P 点的分割线并指出分割线(不必说明理由,不写画法). 【答案】(1)90;(2)作图见解析,P (7,7),PH 是分割线. 【解析】 试题分析:(1)根据勾股定理求出△FEG 的三边长,根据勾股定理逆定理可判定△FEG 是直角三角形,且∠FGE="90" °. (2)一方面,由于∠FPE=90°,从而根据直径所对圆周角直角的性质,点P 在以EF 为直径

初中数学中考几何综合题[1]

页眉内容 中考数学复习--几何综合题 Ⅰ、综合问题精讲: 几何综合题是中考试卷中常见的题型,大致可分为几何计算型综合题与几何论证型综合题,它主要考查学生综合运用几何知识的能力,这类题往往图形较复杂,涉及的知识点较多,题设和结论之间的关系较隐蔽,常常需要添加辅助线来解答.解几何综合题,一要注意图形的直观提示;二要注意分析挖掘题目的隐含条件、发展条件,为解题创造条件打好基础;同时,也要由未知想需要,选择已知条件,转化结论来探求思路,找到解决问题的关键. 解几何综合题,还应注意以下几点: ⑴ 注意观察、分析图形,把复杂的图形分解成几个基本图形,通过添加辅助线补全或构造基 本图形. ⑵ 掌握常规的证题方法和思路. ⑶ 运用转化的思想解决几何证明问题,运用方程的思想解决几何计算问题.还要灵活运用数 学思想方法伯数形结合、分类讨论等). Ⅱ、典型例题剖析 【例1】(南充,10分)⊿ABC 中,AB =AC ,以AC 为直径的⊙O 与AB 相交于点E ,点F 是BE 的中点. (1)求证:DF 是⊙O 的切线.(2)若AE =14,BC =12,求BF 的长. 解:(1)证明:连接OD ,AD . AC 是直径, ∴ AD⊥BC. ⊿ABC 中,AB =AC , ∴ ∠B=∠C,∠BAD=∠DAC. 又∠BED 是圆内接四边形ACDE 的外角, ∴∠C =∠BED . 故∠B =∠BED ,即DE =DB . 点F 是BE 的中点,DF ⊥AB 且OA 和OD 是半径, 即∠DAC =∠BAD =∠ODA . 故OD ⊥DF ,DF 是⊙O 的切线. (2)设BF =x ,BE =2BF =2x . 又 BD =CD =21 BC =6, 根据BE AB BD BC ?=?,2(214)612x x ?+=?. 化简,得 27180x x +-=,解得 122,9x x ==-(不合题意,舍去).

中考数学几何图形综合复习

第四章图形的认识 本章思维导图 第一节图形初步 考点精要解析 考点一、平面展开图和三视图 1.平面展开图:将立体图形的表面适当剪开,可以展开成平面图形,这样的平面图形称为相应立体图形的展开图. 2.正方体的常见展开图 (1)“1-4-1”型,如图4-1-1所示. (2)“2-3-1”型,如图4-1-2所示.

(3)“3-3”型,如图4-1-3所示(4)“2-2-2”型,如图4-1-4所示 3.三视图 (1)主视图:从物体的前面向后面投射所得的视图称主视图——能反映物体的前面形状.(2)俯视图:从物体的上面向下面投射所得的视图称俯视图——能反映物体的上面形状.(3)左视图:从物体的左面向右面投射所得的视图称左视图——能反映物体的左面形状.注:画三视图时应注意一视图的位置要准确,看得见的部分的轮廓线通常画成实线,看不见的轮廓线通常画成虚线,主俯长对正、主左高平齐、俯左宽相等.即主视图和俯视图的长要相等;主视图和左视图的高相等;左视图和俯视图的宽要相等. 考点二:线与角 1.直线、射线与线段 (1)两个重要公理: ①经过两点有且只有一条直线,也称为“两点确定一条直线”. ②两点之间的连线中,线段最短,简称“两点之间,线段最短”. (2)两点之间的距离:连接两点的线段的长度. (3)线段的中点:把一条线段分成两条相等的线段的点叫作这条线段的中点. 2.角 (1)由公共端点的两条射线组成的图形叫作角. (2)角的分类 ①锐角——小于直角的角(0o<α<90o) ②直角——等于90o的角(α=90o). ③钝角——大于直角而小于平角的角(90o<α<180o).

(3)角的换算:1度=60分(1o=60'),1分=60秒(1'60" ). (4)角平分线:从一个角的顶点出发,把这个角分成两个相等的角的射线叫作这个角的平分线. (5)余角和补角 ①如果两个角的和是一个平角,那么这两个角互为补角,简称“互补”. ②如果两个角的和是一个直角,那么这两个角互为余角,简称“互余”. ③补角、余角的性质:同角或等角的余(补)角相等. 考点三:相交线与平行线 1.两条直线的位置关系 在同一平面内,两条直线的位置关系只有两种:(1)相交;(2)平行. 2.相交线 (1)对顶角与邻补角 ①对顶角:两条直线相交所成的四个角中,一个角的两边与另一个角的两边互为反向延长线,这两个角叫作对顶角.对顶角相等. ②邻补角:两条直线相交所成的四个角中,两个角有一条公共边,另一边互为反向延长线,这两个角叫作邻补角.邻补角互补. (2)垂线 ①定义:两条直线相交所成的四个角中,有一个角是直角,就说这两条直线互相垂直. ②垂线的性质 性质1:在同一平面内,过一点有且只有一条直线与已知直线垂直. 性质2:连接直线外一点与直线上各点的所有线段中,垂线段最短.简称:垂线段最短. ③点到直线的距离:直线外一点到这条直线的垂线段的长度,叫作点到直线的距离. 3.平行线 (1)定义:在同一平面内,不相交的两条直线叫作平行线. (2)平行公理:经过直线外一点,有且只有一条直线与已知直线平行. (3)平行公理的推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行.即“平行于同一条直线的两条直线平行”. 4.两直线平行的判定方法 (1)平行公理的推论. (2)同位角相等,两直线平行.

中考数学圆的综合综合经典题及详细答案

中考数学圆的综合综合经典题及详细答案 一、圆的综合 1.如图,四边形OABC 是平行四边形,以O 为圆心,OA 为半径的圆交AB 于D ,延长AO 交O 于E ,连接CD ,CE ,若CE 是⊙O 的切线,解答下列问题: (1)求证:CD 是⊙O 的切线; (2)若BC=4,CD=6,求平行四边形OABC 的面积. 【答案】(1)证明见解析(2)24 【解析】 试题分析:(1)连接OD ,求出∠EOC=∠DOC ,根据SAS 推出△EOC ≌△DOC ,推出∠ODC=∠OEC=90°,根据切线的判定推出即可; (2)根据切线长定理求出CE=CD=4,根据平行四边形性质求出OA=OD=4,根据平行四边形的面积公式=2△COD 的面积即可求解. 试题解析:(1)证明:连接OD , ∵OD=OA , ∴∠ODA=∠A , ∵四边形OABC 是平行四边形, ∴OC ∥AB , ∴∠EOC=∠A ,∠COD=∠ODA , ∴∠EOC=∠DOC , 在△EOC 和△DOC 中, OE OD EOC DOC OC OC =?? ∠=∠??=? ∴△EOC ≌△DOC (SAS ), ∴∠ODC=∠OEC=90°, 即OD ⊥DC , ∴CD 是⊙O 的切线; (2)由(1)知CD 是圆O 的切线, ∴△CDO 为直角三角形, ∵S △CDO = 1 2 CD?OD , 又∵OA=BC=OD=4,

∴S△CDO=1 2 ×6×4=12, ∴平行四边形OABC的面积S=2S△CDO=24. 2.如图,⊙M交x轴于B、C两点,交y轴于A,点M的纵坐标为2.B(﹣33,O),C(3,O). (1)求⊙M的半径; (2)若CE⊥AB于H,交y轴于F,求证:EH=FH. (3)在(2)的条件下求AF的长. 【答案】(1)4;(2)见解析;(3)4. 【解析】 【分析】 (1)过M作MT⊥BC于T连BM,由垂径定理可求出BT的长,再由勾股定理即可求出BM的长; (2)连接AE,由圆周角定理可得出∠AEC=∠ABC,再由AAS定理得出△AEH≌△AFH,进而可得出结论; (3)先由(1)中△BMT的边长确定出∠BMT的度数,再由直角三角形的性质可求出CG 的长,由平行四边形的判定定理判断出四边形AFCG为平行四边形,进而可求出答案.【详解】 (1)如图(一),过M作MT⊥BC于T连BM, ∵BC是⊙O的一条弦,MT是垂直于BC的直径, ∴BT=TC=1 2 3 ∴124 ; (2)如图(二),连接AE,则∠AEC=∠ABC,∵CE⊥AB, ∴∠HBC+∠BCH=90°

中考数学复习专题:几何综合题(含答案)

几何综合题 1.已知△ABC中,AD是的平分线,且AD=AB,过点C作AD的垂线,交AD的延长线于点H. (1)如图1,若 ①直接写出B ∠和ACB ∠的度数; ②若AB=2,求AC和AH的长; (2)如图2,用等式表示线段AH与AB+AC之间的数量关系,并证明. 答案: (1)①75 B ∠=?,45 ACB ∠=?; ②作DE⊥AC交AC于点E. Rt△ADE中,由30 DAC ∠=?,AD=2可得DE=1,AE3 =. Rt△CDE中,由45 ACD ∠=?,DE=1,可得EC=1. ∴AC31 =+. Rt△ACH中,由30 DAC ∠=?,可得AH33 + =; (2)线段AH与AB+AC之间的数量关系:2AH=AB+AC 证明:延长AB和CH交于点F,取BF中点G,连接GH. BAC ∠ 60 BAC ∠=?

易证△ACH ≌△AFH . ∴AC AF =,HC HF =. ∴GH BC ∥. ∵AB AD =, ∴ ABD ADB ∠=∠. ∴ AGH AHG ∠=∠ . ∴ AG AH =. ∴()2222AB AC AB AF AB BF AB BG AG AH +=+=+=+==. 2.正方形ABCD 的边长为2,将射线AB 绕点A 顺时针旋转α,所得射线与线段BD 交于点M ,作CE AM ⊥于点E ,点N 与点M 关于直线CE 对称,连接CN . (1)如图1,当045α?<

中考数学几何综合题

几何综合题复习 几何综合题是中考试卷中常见的题型,大致可分为几何计算型与几何论证型综合题,它主要考查考生综合运用几何知识的能力。 一、几何论证型综合题 例1、()如图,已知:⊙O1与⊙O2是等圆,它们相交于A、B两点,⊙O2在⊙O1上,AC 是⊙O2的直径,直线CB交⊙O1于D,E为AB延长线上一点,连接DE。 (1)请你连结AD,证明:AD是⊙O1的直径; (2)若∠E=60°,求证:DE是⊙O1的切线。 分析:解几何综合题,一要注意图形的直观提示,二要注意分析挖掘题目的隐含条件,不断地由已知想可知,发展条件,为解题创条件打好基础。 证明: (1)连接AD,∵AC是⊙O2的直径,AB⊥DC Array∴∠ABD=90°, ∴AD是⊙O1的直径 (2)证法一:∵AD是⊙O1的直径, ∴O1为AD中点 连接O1O2, ∵点O2在⊙O1上,⊙O1与⊙O2的半径相等, ∴O1O2=AO1=AO2 ∴△AO1O2是等边三角形, ∴∠AO1O2=60° 由三角形中位线定理得:O1O2∥DC, ∴∠ADB=∠AO1O2=60° ∵AB⊥DC,∠E=60, ∴∠BDE=30,∠ADE=∠ADB+∠BDE=60°+30°=90° 又AD是直径, ∴DE是⊙O1的切线 证法二:连接O1O2, ∵点O2在⊙O1上,O1与O2的半径相等, ∴点O1在⊙O2 ∴O1O2=AO1=AO2, ∴∠O1AO2=60° ∵AB是公共弦, ∴AB⊥O1O2, ∴∠O1AB=30° ∵∠E=60° ∴∠ADE=180°-(60°+30°)=90° 由(1)知:AD是的⊙O1直径, ∴DE是⊙O1的切线. 说明:本题考查了三角形的中位线定理、圆有关概念以及圆的切线的判定定理等。

中考数学圆的综合提高练习题压轴题训练附详细答案

中考数学圆的综合提高练习题压轴题训练附详细答案 一、圆的综合 1.如图,点P在⊙O的直径AB的延长线上,PC为⊙O的切线,点C为切点,连接AC,过点A作PC的垂线,点D为垂足,AD交⊙O于点E. (1)如图1,求证:∠DAC=∠PAC; (2)如图2,点F(与点C位于直径AB两侧)在⊙O上,?? BF FA =,连接EF,过点F作AD 的平行线交PC于点G,求证:FG=DE+DG; (3)在(2)的条件下,如图3,若AE=2 3 DG,PO=5,求EF的长. 【答案】(1)证明见解析;(2)证明见解析;(3)EF=32. 【解析】 【分析】 (1)连接OC,求出OC∥AD,求出OC⊥PC,根据切线的判定推出即可; (2)连接BE交GF于H,连接OH,求出四边形HGDE是矩形,求出DE=HG,FH=EH,即可得出答案; (3)设OC交HE于M,连接OE、OF,求出∠FHO=∠EHO=45°,根据矩形的性质得出 EH∥DG,求出OM=1 2 AE,设OM=a,则HM=a,AE=2a,AE= 2 3 DG,DG=3a, 求出ME=CD=2a,BM=2a,解直角三角形得出tan∠MBO= 1 2 MO BM =,tanP= 1 2 CO PO =,设 OC=k,则PC=2k,根据OP=5k=5求出k=5,根据勾股定理求出a,即可求出答案.【详解】 (1)证明:连接OC, ∵PC为⊙O的切线,

∴OC⊥PC, ∵AD⊥PC, ∴OC∥AD, ∴∠OCA=∠DAC, ∵OC=OA, ∴∠PAC=∠OCA, ∴∠DAC=∠PAC; (2)证明:连接BE交GF于H,连接OH, ∵FG∥AD, ∴∠FGD+∠D=180°, ∵∠D=90°, ∴∠FGD=90°, ∵AB为⊙O的直径, ∴∠BEA=90°, ∴∠BED=90°, ∴∠D=∠HGD=∠BED=90°, ∴四边形HGDE是矩形, ∴DE=GH,DG=HE,∠GHE=90°, ∵?? BF AF =, ∴∠HEF=∠FEA=1 2 ∠BEA=190 2 o ?=45°, ∴∠HFE=90°﹣∠HEF=45°, ∴∠HEF=∠HFE, ∴FH=EH, ∴FG=FH+GH=DE+DG; (3)解:设OC交HE于M,连接OE、OF, ∵EH=HF,OE=OF,HO=HO, ∴△FHO≌△EHO, ∴∠FHO=∠EHO=45°,

初三数学中考复习专题 几何综合复习

京华中学初三辅导班资料9 初中几何综合复习 学校__________ 姓名__________ 一、典型例题 例1(2005重庆)如图,在△ABC 中,点E 在BC 上,点D 在AE 上,已知∠ABD =∠ACD ,∠BDE =∠CDE .求证:BD =CD . 例2(2005南充)如图2-4-1,⊿ABC 中,AB =AC ,以AC 为直径的⊙O 与AB 相交 于点E ,点F 是BE 的中点.(1)求证:DF 是⊙O 的切线.(2)若AE =14,BC =12, 求BF 的长. 例3.用剪刀将形状如图1所示的矩形纸片ABCD 沿着直线CM 剪成两部分,其中M 为AD 的中点.用这两部分纸片可以拼成一些新图形,例如图2中的Rt △BCE 就是拼成的一个图 形. (1)用这两部分纸片除了可以拼成图2中的Rt △BCE 外,还可以拼成一些四边形.请你 试一试,把拼好的四边形分别画在图3、图4的虚框内. (2)若利用这两部分纸片拼成的Rt △BCE 是等腰直角三角形,设原矩形纸片中的边AB 和BC 的长分别为a 厘米、b 厘米,且a 、b 恰好是关于x 的方程 01)1(2=++--m x m x 的两个实数根,试求出原矩形纸片的面积. A B C D E E B A C B A M C D M 图3 图4 图1 图2

二、强化训练 练习一:填空题 1.一个三角形的两条边长分别为9和2,第三边长为奇数,则第三边长为________. 2.已知∠a =60°,∠AOB =3∠a ,OC 是∠AOB 的平分线,则∠AOC = ______. 3.直角三角形两直角边的长分别为5cm 和12cm ,则斜边上的中线长为__________ 4.等腰Rt △ABC , 斜边AB 与斜边上的高的和是12厘米, 则斜边AB =_____厘米. 5.已知:如图△ABC 中AB =AC , 且EB =BD =DC =CF , ∠A =40°, 则∠EDF 的度数 为________. 6.点O 是平行四边形ABCD 对角线的交点,若平行四边行ABCD 的面 积为8cm ,则△AOB 的面积为________. 7.如果圆的半径R 增加10% , 则圆的面积增加__________ . 8.梯形上底长为2,中位线长为5,则梯形的下底长为__________ . 9. △ABC 三边长分别为3、4、5,与其相似的△A ′B ′C ′的最大边长是10,则△A ′B ′C ′的面积 是__________. 10.在Rt △ABC 中,AD 是斜边BC 上的高,如果BC =a ,∠B =30°,那么AD 等于______ . 练习二:选择题 1.一个角的余角和它的补角互为补角,则这个角等于 [ ] A .30° B .45° C .60° D .75° 2.将一张矩形纸对折再对折(如图),然后沿着图中的虚线剪下,得到①、②两部分,将① 展开后得到的平面图形是 [ ] A .矩形 B .三角形 C .梯形 D .菱形 3.下列图形中,不是中心对称图形的是 [ ] A . B . C . D . 4.既是轴对称,又是中心对称的图形是 [ ] A .等腰三角形 B .等腰梯形 C .平行四边形 D .线段 5.依次连结等腰梯形的各边中点所得的四边形是 [ ] A .矩形 B .正方形 C .菱形 D .梯形 6.如果两个圆的半径分别为4cm 和5cm ,圆心距为1cm ,那么这两个圆的位置关系是 [ ] A .相交 B .内切 C .外切 D .外离 7.已知扇形的圆心角为120°,半径为3cm ,那么扇形的面积为 [ ] 8.A .B . C

相关文档
最新文档