温度传感器实验报告

温度传感器实验报告
温度传感器实验报告

摘要:本次实验重点设计了实验研究部分温度传感器的温度特性,在了解了其测温原理的基础上对它们的温度变化特点进行了探究。

关键词:温度传感器,测温原理,温度特性,工作温度

金属铂(Pt)制成的铂电阻温度传感器,通常使用的铂电阻温度传感器零度阻值为100Ω(即 Pt100),电阻变化率为 0.3851Ω/℃。该种温度传感器精度高,应用温度范围广,是中低温区(-200~650℃)最常用的一种温度检测器,本实验即采用这种铂电阻作为标准测温器件来定标其他温度传感器的温度特性曲线。

按 IEC751 国际标准,铂电阻温度系数 TCR 定义为:TCR=(R100-R0)/(R0×100) 其中 R100和 R0分别是 100℃和 0℃时标准电阻值(R100=138.51Ω,R0=100.00Ω),代入上式可得到 Pt100 的 TCR 为 0.003851。

Pt100 铂电阻的阻值随温度变化的计算公式如下: Rt=R0[1+At+Bt2+C(t-100)t3] (-200℃

式中 Rt 在 t ℃时的电阻值,系数 A 、B 、C 为:A=3.908×10-3℃-1;B=-5.802×10-7℃-2;

C=-4.274×10-12℃-4。

为了减小导线电阻带来的附加误差,在本实验中,对用作标准测温器件的 Pt100 采用三线制接法。另外,对外电路接入引起的温度读数偏移也要注意在使用前进行校准。

热敏电阻温度传感器,

热敏电阻是一种半导体电阻,有正温度系数和负温度系数两种,对温度的变化非常敏感,本次实验中用NTC 和PTC 两种热敏电阻作为实验材料。

一定的温度范围内,半导体的电阻率 和温度 T 满足如下关系:

T

B e A /1

式中 A1和 B 是与材料物理性质有关的常数,T 为绝对温度。对于截面均匀的热敏电阻,

其阻值 RT 可用下式表示:

s l R T /ρ=

将(1.4)式代入(1.5)式,令 A=A 1l/s ,于是可得:

T

B T Ae R /=(1.6)

对一定的电阻而言,A 和 B 均为常数。对(1.6)式两边取对数,则有

A T

B R T ln 1

ln +=

即R 与1/T 成正比关系。通过观察图像可以得到验证。

热电偶温度传感器将两种不同材料的导体

或半导体 A 和 B 焊接 起来,构成一个闭合回路,当导体 A 和 B 的两个接 触点之间存在温差时,回路内便产生电动势,这种 现象称为热电效应。热电

热电偶的引线示意图

热电偶原理图

偶就是利用这一效应来工作的,热电偶温度计的优点是热容量小,灵敏度高,反应迅速,测温范围广,能直接把非电学量温度转换成电学量。

热电偶的材料一定时,温差电动势Ex 仅与两接点处的温度有关,并且与两接点的温差在一定的温度范围内有如下近似关系式:Th为工作端温度,Tc为冷端的温度。

EX=α(Th-Tc)

通常将冷端置于冰水混合物中,保持Tc=0℃,将热端置于待测温度处,即可测得相应的温差电动势,再根据事先校正好的曲线或数据来求出温度Th。

实验仪器:DH-SJ 型温度传感器实验装置,直流恒压恒流源,数字万用表,Pt100、热电偶,NTC、PTC 温度传感器,保温杯,电烧杯,冰水混合物,电阻和导线若干。

实验数据表格

室温12.4℃

Pt100在0℃下的显示值为-1.10℃,在100℃下的显示值为96.8℃

所以显示的每度为实际温度的0.979℃,则实际开尔文温度为T1=0.979*(T+1.10)+273.2

实验一,NTC温度传感器

NTC(Ω)

显示温度T (℃)实际温度(K)

1/T1(1000

/K)

升温降温平均电阻 lnR

40 313.4 3.190 2603 2616 2610 7.867

45 318.3 3.141 2176 2165 2171 7.683

50 323.2 3.094 1832 1814 1823 7.508

55 328.1 3.048 1528 1521 1525 7.329

60 333.0 3.003 1284 1285 1285 7.158

65 337.9 2.959 1085 1074 1080 6.984

70 342.8 2.917 921 911 916 6.820

75 347.7 2.876 783 782 783 6.662

80 352.6 2.836 672 672 672 6.510

85 357.5 2.797 576 579 578 6.359

90 362.4 2.759 495 499 497 6.209

95 367.3 2.723 423 430 427 6.056

PTC温度传感器

PTC(Ω)

显示温度T(℃)实际温度T1(K) 1/T1(1000/K) 升温降温平均lnR

42 315.4 3.170 432.5 433.3 432.9 6.071

47 320.3 3.122 455.8 455.5 455.7 6.122

52 325.2 3.075 489.5 487.0 488.3 6.191

57 330.1 3.029 538.6 532.7 535.7 6.283

62 335.0 2.985 613.2 613.5 613.4 6.419

67 339.9 2.942 722.6 712.0 717.3 6.575

72 344.8 2.900 893.0 866.0 879.5 6.779

77 349.7 2.860 1171 1090 1130.5 7.030

82 354.6 2.820 1569 1410 1489.5 7.306

87 359.5 2.782 2732 2232 2482.0 7.817

92 364.4 2.744 5965 4738 5351.5 8.585

97 369.3 2.708 14560 11850 13205.0 9.488

电阻Cu50

Cu50(Ω)

显示温度

T(℃)

实际温度T1(K) 升温降温R平均

40 313.4 58.3 58.5 58.40

45 318.3 59.4 59.7 59.55

50 323.2 60.4 60.7 60.55

55 328.1 61.5 61.7 61.60

60 333.0 62.5 62.7 62.60

65 337.9 63.6 63.6 63.60

70 342.8 64.6 64.7 64.65

75 347.7 65.7 65.8 65.75

80 352.6 66.8 67.1 66.95

85 357.5 67.8 68.1 67.95

90 362.4 68.9 69.1 69.00

95 367.3 70.0 70.1 70.05

实验二,热电偶温度传感器

热电偶(mv)

显示温度T(℃)实际温度

T1(K)

?T/K 升温降温R平均

42 315.4 42.2 1.54 1.51 1.53 47 320.3 47.1 1.75 1.74 1.75 52 325.2 52.0 1.96 1.98 1.97 57 330.1 56.9 2.18 2.20 2.19 62 335.0 61.8 2.40 2.41 2.41 67 339.9 66.7 2.61 2.57 2.59 72 344.8 71.6 2.84 2.80 2.82 77 349.7 76.5 3.06 3.04 3.05 82 354.6 81.4 3.28 3.30 3.29 87 359.5 86.3 3.51 3.52 3.52 92 364.4 91.2 3.73 3.74 3.74

97 369.3 96.1 3.96 3.96 3.96

实验三、PN 结正向压降与温度关系的研究和应用 PN 结温度传感器的工作温度一般为-50℃-150℃,测温范围的局限性较大,理想的 PN 结的正向电流 IF 和正向压降 VF 存在如下近关系式:

kT

qV S F F e

I I =

其中 q 为电子电荷;k 为玻尔兹曼常数;T 为绝对温度;IS 为反向饱和电流,是一个和 PN 结材料的禁带宽度以及温度有关的系数,可以证明:

T

qV S g e

CT I k )

0(r -=

r C g F T q

kT

T I C q k V V ln ln )0(--=

理想模型

T=T ’时

VF=VF ’

线

)'(|''T T T

V V V T T F

F F -??+===)'](')0([''T T r q k T V V V F g F ----

+ 即)'('T T S V V V

F F -=-=?

非理想模型

r F g g F T T q kT T T V V V V )'

ln(')

)0(()0('---=

实验过程

1,设计电路如图

温度传感器实验

实验二(2)温度传感器实验 实验时间 2017.01.12 实验编号 无 同组同学 邓奡 一、实验目的 1、了解各种温度传感器(热电偶、铂热电阻、PN 结温敏二极管、半导体热敏电阻、集成温度传感器)的测温原理; 2、掌握热电偶的冷端补偿原理; 3、掌握热电偶的标定过程; 4、了解各种温度传感器的性能特点并比较上述几种传感器的性能。 二、实验原理 1、热电偶测温原理 由两根不同质的导体熔接而成的,其形成的闭合回路叫做热电回路,当 两端处于不同温度时回路产生一定的电流,这表明电路中有电势产生,此电势即为热电势。 试验中使用两种热电偶:镍铬—镍硅(K 分度)、镍铬—铜镍(E 分度)。图2.3.5所示为热电偶的工作原理,图中:T 为热端,0T 为冷端,热电势为)()(0T E T E E AB AB t -=。 热电偶冷端温度不为0℃时(下式中的1T ),需对所测热电势进行修正,修正公式为:),(),(),(0110T T E T T E T T E +=,即: 实际电动势+测量所得电动势+温度修正电势 对热电偶进行标定时,以K 分度热电偶作为标准热电偶来校准E 分度热 电偶。 2、铂热电阻 铂热电阻的阻值与温度的关系近似线性,当温度在C 650T C 0?≤≤?时,

)1(20BT AT R R T ++=, 式中:T R ——铂热电阻在T ℃时的电阻值 0R ——铂热电阻在0℃时的电阻值 A ——系数(=C ??/103.96847-31) B ——系数(= C ??/105.847--71) 3、PN 结温敏二极管 半导体PN 结具有良好的温度线性,PN 结特性表达公式为: γln be e kT U =?, 式中,γ为与PN 结结构相关的常数; k 为波尔兹曼常数,K J /1038.1k 23-?=; e 为电子电荷量,C 1910602.1e -?=; T 为被测物体的热力学温度(K )。 当一个PN 结制成后,当其正向电流保持不变时,PN 结正向压降随温度 的变化近似于线性,大约以2mV/℃的斜率随温度下降,利用PN 结的这一特性可以进行温度的测量。 4、热敏电阻 热敏电阻是利用半导体的电阻值随温度升高而急剧下降这一特性制成的 热敏元件,灵敏度高,可以测量小于0.01℃的温差变化。 热敏电阻分为正温度系数热敏电阻PTC 、负温度系数热敏电阻NTC 和在 某一特定温度下电阻值发生突然变化的临界温度电阻器CTR 。 实验中使用NTC ,热敏电阻的阻值与温度的关系近似符合指数规律,为:)11(00e T T B t R R -=。式中: T 为被测温度(K),16.273t +=T 0T 为参考温度(K),16.27300+=t T T R 为温度T 时热敏电阻的阻值 0R 为温度0T 时热敏电阻的阻值 B 为热敏电阻的材料常数,由实验获得,一般为2000~6000K 5、集成温度传感器 用集成工艺制成的双端电流型温度传感器,在一定温度范围内按1uA/K 的恒定比值输出与温度成正比的电流,通过对电流的测量即可知道温度值(K 氏温度),经K 氏-摄氏转换电路直接得到摄氏温度值。

DS18B20温度传感器实验

DS18B20温度传感器实验 TEMP1 EQU 5AH ;符号位和百位公用的存放单元TEMP2 EQU 5BH ;十位存放单元 TEMP3 EQU 5CH ;个位存放单元 TEMP4 EQU 5DH ; TEMP5 EQU 5EH TEMP6 EQU 5FH ;数据临时存放单元 TEMP7 EQU 60H TEMP8 EQU 61H ORG 0000H AJMP MAIN ORG 0020H MAIN: MOV SP,#70H LCALL INT ;调用DS18B20初始化函数MAIN1: LCALL GET_TEMP ;调用温度转换函数 LCALL CHULI ;调用温度计算函数 LCALL DISP ;调用温度显示函数 AJMP MAIN1 ;循环 INT: L0:

SETB P3.7 ;先释放DQ总线 MOV R2,#250 ;给R2赋延时初值,同时可让DQ保持高电平2us L1: CLR P3.7 ;给DQ一个复位低电平 DJNZ R2,L1 ;保持低电平的时间至少为480us SETB P3.7 ;再次拉高DQ释放总线 MOV R2,#25 L2: DJNZ R2,L2 ;保持15us-60us CLR C ORL C,P3.7 ;判断是否收到低脉冲 JC L0 MOV R6,#100 L3: ORL C,P3.7 DJNZ R6,L3 ;存在低脉冲保持保持60us-240us ; JC L0 ;否则继续从头开始,继续判断 SETB P3.7 RET ;调用温度转换函数 GET_TEMP: CLR PSW.4 SETB PSW.3 ;设置工作寄存器当前所在的区域 CLR EA ;使用DS18B20前一定要禁止任何中断 LCALL INT ;初始化DS18B20 MOV A,#0CCH ;送入跳过ROM命令 LCALL WRITE MOV A,#44H ;送入温度转换命令 LCALL WRITE LCALL INT ;温度转换完成,再次初始化18b20 MOV A,#0CCH ;送入跳过ROM命令 LCALL WRITE MOV A,#0BEH ;送入读温度暂存器命令 LCALL WRITE LCALL READ MOV TEMP4,A ;读出温度的低字节存在TEMP4 LCALL READ MOV TEMP5,A ;读出温度的高字节存在TEMP5 SETB EA RET CHULI : MOV A,TEMP5 ;将温度的高字节取出 JNB ACC.7,ZHENG ;判断最高位是否为0,为0则表示温度为正,则转到ZHENG MOV A,TEMP4 ;否则温度为负,将温度的低字节取出

各种温度传感器分类及其原理.

各种温度传感器分类及其原理

各种温度传感器分类及其原理 温度传感器是检测温度的器件,其种类最多,应用最广,发展最快。众所周知,日常使用的材料及电子元件大部分特性都随温度而变化,在此我们暂时介绍最常用的热电阻和热电偶两类产品。 1.热电偶的工作原理 当有两种不同的导体和半导体A和B 组成一个回路,其两端相互连接时,只要两结点处的温度不同,一端温度为T,称为工作端或热端,另一端温度为TO,称为自由端(也称参考端或冷端,则回路中就有电流产生,如图2-1(a所示,即回路中存在的电动势称为热电动势。这种由于温度不同而产生电动势的现象称为塞贝克效应。 与塞贝克有关的效应有两个:其一,当有电流流过两个不同导体的连接处时,此处便吸收或放出热量(取决于电流的方向, 称为珀尔帖效应;其二,当有电流流过存在温度梯度的导体时,导体吸收或放出热量(取决 于电流相对于温度梯度的方向,称为汤姆逊效应。两种不同导体或半导体的组合称为热电偶。热电偶的热电势EAB(T,T0 是由接触电势和温差电势合成的。接触电势是指两种不同 的导体或半导体在接触处产生的电势,此电势与两种导体或半导体的性质及在接触点的温度有关。 温差电势是指同一导体或半导体在温度不同的两端产生的电势, 此电势只与导体或半导体的性质和两端的温度有关,而与导体的长度、截面大小、沿其长度方向的温度分布无关。 无论接触电势或温差电势都是由于集中于接触处端点的电子数不同而产生的电势:热电偶测量的热电势是二者的合成。当回路断开时,在断开处a,b 之间便有一电动势差△ V,其极性和大小与回路中的热电势一致,如图 2-1(b所示。并规定在冷端,当电流由A流向B时,称A为正极,B 为负极。实验表明,当△ V很小时,△ V与厶T成正比关系。定义△ V对厶T 的微分热电势为热电势率,又称塞贝克系数。

温度传感器实验设计概要

成都理工大学工程 技术学院 单片机课程设计报告 数字温度计设计

摘要 在这个信息化高速发展的时代,单片机作为一种最经典的微控制器,单片机技术已经普及到我们生活,工作,科研,各个领域,已经成为一种比较成熟的技术,作为自动化专业的学生,我们学习了单片机,就应该把它熟练应用到生活之中来。本文将介绍一种基于单片机控制的数字温度计,本温度计属于多功能温度计,可以设置上下报警温度,当温度不在设置范围内时,可以报警。本文设计的数字温度计具有读数方便,测温范围广,测温精确,数字显示,适用范围宽等特点。 关键词:单片机,数字控制,数码管显示,温度计,DS18B20,AT89S52。

目录 1概述 (4) 1.1设计目的 (4) 1.2设计原理 (4) 1.3设计难点 (4) 2 系统总体方案及硬件设计...................................................... 错误!未定义书签。 2.1数字温度计设计方案论证 (4) 2.2.1 主控制器 (5) 2.4 系统整体硬件电路设计 (7) 3系统软件设计 (8) 3.1初始化程序 (8) 3.2读出温度子程序 (9) 3.3读、写时序子程序 (10) 3.4 温度处理子程序 (11) 3.5 显示程序 (12) 4 Proteus软件仿真 (13) 5硬件实物 (14) 6课程设计体会 (15) 附录1: (14) 附录2: (21)

1概述 1.1设计目的 随着人们生活水平的不断提高,单片机控制无疑是人们追求的目标之一,它所给人带来的方便也是不可否定的,其中数字温度计就是一个典型的例子,但人们对它的要求越来越高,要为现代人工作、科研、生活、提供更好的更方便的设施就需要从数单片机技术入手,一切向着数字化控制,智能化控制方向发展。 本设计所介绍的数字温度计与传统的温度计相比,具有读数方便,测温范围广,测温准确,其输出温度采用数字显示,主要用于对测温比较准确的场所,或科研实验室使用,可广泛用于食品库、冷库、粮库、温室大棚等需要控制温度的地方。目前,该产品已在温控系统中得到广泛的应用。 1.2设计原理 本系统是一个基于单片机AT89S52的数字温度计的设计,用来测量环境温度,测量范围为-50℃—110℃度。整个设计系统分为4部分:单片机控制、温度传感器、数码显示以及键盘控制电路。整个设计是以AT89S52为核心,通过数字温度传感器DS18B20来实现环境温度的采集和A/D转换,同时因其输出为数字形式,且为串行输出,这就方便了单片机进行数据处理,但同时也对编程提出了更高的要求。单片机把采集到的温度进行相应的转换后,使之能够方便地在数码管上输出。LED采用三位一体共阳的数码管。 1.3设计难点此设计的重点在于编程,程序要实现温度的采集、转换、显示和上下限温度报警,其外围电路所用器件较少,相对简单,实现容易。 2 系统总体方案及硬件设计 2.1数字温度计设计方案论证 由于本设计是测温电路,可以使用热敏电阻之类的器件利用其感温效应,在将随被测温度变化的电压或电流采集过来,进行A/D转换后,就可以用单片机进行数据的处理,在显示电路上,就可以将被测温度显示出来,这种设计需要用到A/D 转换电路,感温电路比较麻烦。进而考虑到用温度传感器,在单片机电路设计中,大多都是使用传感器,所以这是非常容易想到的,所以可以采用一只温度传感器DS18B20,此传感器,可以很容易直接读取被测温度值,进行转换,就可以满足设计要求。 2.2总体设计框图 温度计电路设计总体设计方框图如图1所示,控制器采用单片机AT89S52,温度传感器采用DS18B20,用3位共阴LED数码管以串口传送数据实现温度显示。

大学物理实验-温度传感器实验报告

关于温度传感器特性的实验研究 摘要:温度传感器在人们的生活中有重要应用,是现代社会必不可少的东西。本文通过控制变量法,具体研究了三种温度传感器关于温度的特性,发现NTC电阻随温度升高而减小;PTC电阻随温度升高而增大;但两者的线性性都不好。热电偶的温差电动势关于温度有很好的线性性质。PN节作为常用的测温元件,线性性质也较好。本实验还利用PN节测出了波 尔兹曼常量和禁带宽度,与标准值符合的较好。 关键词:定标转化拟合数学软件 EXPERIMENTAL RESEARCH ON THE NATURE OF TEMPERATURE SENSOR 1.引言 温度是一个历史很长的物理量,为了测量它,人们发明了许多方法。温度传感器通过测温元件将温度转化为电学量进行测量,具有反应时间快、可连续测量等优点,因此有必要对其进行一定的研究。作者对三类测温元件进行了研究,分别得出了电阻率、电动势、正向压降随温度变化的关系。 2.热电阻的特性 2.1实验原理 2.1.1Pt100铂电阻的测温原理 和其他金属一样,铂(Pt)的电阻值随温度变化而变化,并且具有很好的重现性和稳定性。利用铂的此种物理特性制成的传感器称为铂电阻温度传感器,通常使用的铂电阻温度传感器零度阻值为100Ω(即Pt100)。铂电阻温度传感器精度高,应用温度范围广,是中低温区(-200℃~650℃)最常用的一种温度检测器,本实验即采用这种铂电阻作为标准测温器件来定标其他温度传感器的温度特性曲线,为此,首先要对铂电阻本身进行定标。 按IEC751国际标准,铂电阻温度系数TCR定义如下: TCR=(R100-R0)/(R0×100) (1.1) 其中R100和R0分别是100℃和0℃时标准电阻值(R100=138.51Ω,R0=100.00Ω),代入上式可得到Pt100的TCR为0.003851。 Pt100铂电阻的阻值随温度变化的计算公式如下: Rt=R0[1+At+B t2+C(t-100)t3] (-200℃

温度传感器的常见分类 温度传感器应用大全

温度传感器的常见分类温度传感器应用大全 温度传感器在我们的日常生活中扮演着十分重要的角色,同时它也是使用范围最广,数量最多的传感器。关于它你了解多少呢?本文主要介绍的就是各种温度传感器的分类及其原理,温度传感器的应用电路。 温度传感器从17世纪温度传感器首次应用以来,依次诞生了接触式温度传感器,非接触式温度传感器,集成温度传感器,近年来在智能温度传感器在半导体技术,材料技术等新技术的支持下,温度传感器发展迅速,由于智能温度传感器的软件和硬件的合理配合既可以大大增强传感器的功能、提高传感器的精度,又可以使温度传感器的结构更为简单和紧凑,使用也更加方便。 1、热电偶传感器: 两种不同导体或半导体的组合称为热电偶。热电势EAB(T,T0)是由接触电势和温差电势合成的,接触电势是指两种不同的导体或半导体在接触处产生的电势,此电势与两种导体或半导体的性质及在接触点的温度有关,当有两种不同的导体和半导体A和B组成一个回路,其相互连接时,只要两结点处的温度不同,一端温度为T,称为工作端,另一端温度为TO,称为自由端,则回路中就有电流产生,即回路中存在的电动势称为热电动势,这种由于温度不同而产生电动势的现象称为塞贝克效应。 2、热敏电阻传感器: 热敏电阻是敏感元件的一类,热敏电阻的电阻值会随着温度的变化而改变,与一般的固定电阻不同,属于可变电阻的一类,广泛应用于各种电子元器件中,不同于电阻温度计使用纯金属,在热敏电阻器中使用的材料通常是陶瓷或聚合物,正温度系数热敏电阻器在温度越高时电阻值越大,负温度系数热敏电阻器在温度越高时电阻值越低,它们同属于半导体器件,热敏电阻通常在有限的温度范围内实现较高的精度,通常是-90℃?130℃。 3、模拟温度传感器: HTG3515CH是一款电压输出型温度传感器,输出电流1~3.6V,精度为±3%RH,0~100%RH相对湿度范围,工作温度范围-40~110℃,5s响应时间,0±1%RH迟滞,是一个带

DS18B20温度传感器实验

DS18B20温度传感器实验Proteus仿真原理图: DS18B20内部结构:

/************************* 源程序 ****************************/ #include #include #define uint unsigned int #define uchar unsigned char #define delayNOP() {_nop_();_nop_();_nop_();_nop_();} sbit DQ = P3^3; sbit LCD_RS = P2^0; sbit LCD_RW = P2^1; sbit LCD_EN = P2^2; uchar code Temp_Disp_Title[]={"Current Temp : "}; uchar Current_Temp_Display_Buffer[]={" TEMP: "}; uchar code Temperature_Char[8] = { 0x0c,0x12,0x12,0x0c,0x00,0x00,0x00,0x0 0 }; uchar code df_Table[]= { 0,1,1,2,3,3,4,4,5,6,6,7,8,8,9,9 }; uchar CurrentT = 0; uchar Temp_Value[]={0x00,0x00}; uchar Display_Digit[]={0,0,0,0}; bit DS18B20_IS_OK = 1; void DelayXus(uint x) { uchar i; while(x--) { for(i=0;i<200;i++); } } bit LCD_Busy_Check(){ bit result; LCD_RS = 0; LCD_RW = 1; LCD_EN = 1; delayNOP(); result = (bit)(P0&0x80); LCD_EN=0; return result; } void Write_LCD_Command(uchar cmd) { while(LCD_Busy_Check()); LCD_RS = 0; LCD_RW = 0; LCD_EN = 0; _nop_(); _nop_(); P0 = cmd; delayNOP(); LCD_EN = 1; delayNOP(); LCD_EN = 0; }

各种温度传感器分类及其原理.

各种温度传感器分类及其原理.

各种温度传感器分类及其原理 温度传感器是检测温度的器件,其种类最多,应用最广,发展最快。众所周知,日常使用的材料及电子元件大部分特性都随温度而变化, 在此我们暂时介绍最常用的热电阻和热电偶两类产品。 1. 热电偶的工作原理 当有两种不同的导体和半导体 A 和 B 组成一个回路,其两端相互连接时,只要两结点处的温度不同,一端温度为 T ,称为工作端或热端,另一端温度为 TO ,称为自由端 (也称参考端 或冷端,则回路中就有电流产生,如图 2-1(a所示,即回路中存在的电动势称为热电 动势。这种由于温度不同而产生电动势的现象称为塞贝克效应。 与塞贝克有关的效应有两个:其一, 当有电流流过两个不同导体的连接处时, 此处便吸收或放出热量 (取决于电流的方向 , 称为珀尔帖效应;其二,当有电流流过存在温度梯度的导体时,导体吸收或放出热量(取决 于电流相对于温度梯度的方向 ,称为汤姆逊效应。两种不同导体或半导体的组合称为热电偶。热电偶的热电势 EAB(T, T0 是由接触电势和温差电势合成的。接触电势是指两种不同 的导体或半导体在接触处产生的电势, 此电势与两种导体或半导体的性质及在接触点的温度有关。 温差电势是指同一导体或半导体在温度不同的两端产生的电势, 此电势只与导体或半导体的性质和两端的温度有关, 而与导体的长度、截面大小、沿其长度方向的温度分布无关。 无论接触电势或温差电势都是由于集中于接触处端点的电子数不同而产生的电势, 热电偶测量的热电势是二者的合成。当回路断开时,在断开处 a , b 之间便有一电动势差△ V ,其极性和大小与回路中的热电势一致,如图 2-1(b所示。并规定在冷端,当电流由 A 流向 B 时, 称 A 为正极, B 为负极。实验表明,当△ V 很小时,△ V 与△ T 成正比关系。定义△ V 对△ T

温度传感器实验

DH-SJ5温度传感器设计性实验装置 使 用 说 明 书 杭州大华科教仪器研究所 杭州大华仪器制造有限公司

一、温度传感器概述 温度是表征物体冷热程度的物理量。温度只能通过物体随温度变化的某些特性来间接测量。测温传感器就是将温度信息转换成易于传递和处理的电信号的传感器。 一、测温传感器的分类 1.1电阻式传感器 热电阻式传感器是利用导电物体的电阻率随温度而变化的效应制成的传感器。热电阻是中低温区最常用的一种温度检测器。它的主要特点是测量精度高,性能稳定。它分为金属热电阻和半导体热电阻两大类。金属热电阻的电阻值和温度一般可以用以下的近似关系式表示,即 R t =R t0[1+α (t-t 0)] 式中,R t 为温度t 时的阻值;R t0为温度t 0(通常t 0=0℃)时对应电阻值;α为温度系数。 半导体热敏电阻的阻值和温度关系为 t B t Ae R = 式中R t 为温度为t 时的阻值;A 、B 取决于半导体材料的结构的常数。 常用的热电阻有铂热电阻、热敏电阻和铜热电阻。其中铂电阻的测量精确度是最高的,它不仅广泛应用于工业测温,而且被制成标准的基准仪。 金属铂具有电阻温度系数大,感应灵敏;电阻率高,元件尺寸小;电阻值随温度变化而变化基本呈线性关系;在测温范围内,物理、化学性能稳定,长期复现性好,测量精度高,是目前公认制造热电阻的最好材料。但铂在高温下,易受还原性介质的污染,使铂丝变脆并改变电阻与温度之间的线性关系,因此使用时应装在保护套管中。用铂的此种物理特性制成的传感器称为铂电阻温度传感器,利用铂的此种物理特性制成的传感器称为铂电阻温度传感器,通常使用的铂电阻温度传感器零度阻值为100Ω,电阻变化率为0.3851Ω/℃,TCR=(R 100-R 0)/(R 0×100) ,R 0为0℃的阻值,R 100为100℃的阻值,按IEC751国际标准,温度系数TCR=0.003851,Pt100(R 0=100Ω)、Pt1000(R 0=1000Ω)为统一设计型铂电阻。铂热电阻的特点是物理化学性能稳定。尤其是耐氧化能力强、测量精度高、应用温度范围广,有很好的重现性,是中低温区(-200℃~650℃)最常用的一种温度检测器。 热敏电阻(Thermally Sensitive Resistor,简称为Thermistor),是对温度敏感的电阻的总称,是一种电阻元件,即电阻值随温度变化的电阻。一般分为两种基本类型:负温度系数热敏电阻NTC (Negative Temperature Coefficient )和正温度系数热敏电阻PTC (Positive Temperature Coefficient )。NTC 热敏电阻表现为随温度的上升,其电阻值下降;而PTC 热敏电阻正好相反。 NTC 热敏热电阻大多数是由Mn(锰)、Ni(镍)、Co(钴)、Fe(铁)、Cu(铜)等金属的氧化物经过烧结而成的半导体材料制成。因此,不能在太高的温度场合下使用。不竟然,其使用范围有的也可以达到了-200℃~700℃,但一般的情况下,其通常的使用范围在-100℃~300℃。 NTC 热敏热电阻热响应时间一般跟封装形式、阻值、材料常数(热敏指数)、热时间常数有关。材料常数(热敏指数)B 值反映了两个温度之间的电阻变化,热敏电阻的特性就是由它的大小决定的,B 值(K )被定义为:2 12 1212111lg lg 3026.211ln ln T T R R T T R R B --?=--= ; R T1:温度 T 1(K )时的零功率电阻值;R T2 :温度 T 2(K )时的零功率电阻值;T 1,T 2 :

各种温度传感器分类及其原理.

各种温度传感器分类及其原理 温度传感器是检测温度的器件,其种类最多,应用最广,发展最快。众所周知,日常使用的材料及电子元件大部分特性都随温度而变化, 在此我们暂时介绍最常用的热电阻和热电偶两类产品。 1. 热电偶的工作原理 当有两种不同的导体和半导体 A 和 B 组成一个回路,其两端相互连接时,只要两结点处的温度不同,一端温度为 T ,称为工作端或热端,另一端温度为 TO ,称为自由端 (也称参考端或冷端,则回路中就有电流产生,如图 2-1(a所示,即回路中存在的电动势称为热电动势。这种由于温度不同而产生电动势的现象称为塞贝克效应。与塞贝克有关的效应有两个:其一, 当有电流流过两个不同导体的连接处时, 此处便吸收或放出热量 (取决于电流的方向 , 称为珀尔帖效应;其二,当有电流流过存在温度梯度的导体时,导体吸收或放出热量 (取决于电流相对于温度梯度的方向 ,称为汤姆逊效应。两种不同导体或半导体的组合称为热电偶。热电偶的热电势 EAB(T, T0 是由接触电势和温差电势合成的。接触电势是指两种不同的导体或半导体在接触处产生的电势, 此电势与两种导体或半导体的性质及在接触点的温度有关。温差电势是指同一导体或半导体在温度不同的两端产生的电势, 此电势只与导体或半导体的性质和两端的温度有关, 而与导体的长度、截面大小、沿其长度方向的温度分布无关。无论接触电势或温差电势都是由于集中于接触处端点的电子数不同而产生的电势, 热电偶测量的热电势是二者的合成。当回路断开时,在断开处 a , b 之间便有一电动势差△ V ,其极性和大小与回路中的热电势一致,如图 2-1(b所示。并规定在冷端,当电流由 A 流向 B 时, 称 A 为正极, B 为负极。实验表明,当△ V 很小时,△ V 与△ T 成正比关系。定义△ V 对△ T 的微分热电势为热电势率, 又称塞贝克系数。塞贝克系数的符号和大小取决于组成热电偶的两种导体的热电特性和结点的温度差。 2. 热电偶的种类

温度传感器实验

温度传感器实验 传感器是将非电信号转换为电信号的装置,因为电信号容易传递和处理。温度是物体冷热程度的标志,温度传感器就是将温度转换成电信号的传感器。 一.测温传感器的分类 电阻式传感器。常用的有铂热电阻、热敏电阻和铜热电阻。其中铂电阻(Pt100)精确度最高,重现性和稳定性很好,不仅应用广泛,而且被制成标准的基准仪。热敏电阻(Thermally Sensitive Resistor,简称Thermistor),是温度敏感的电阻的总称,是属于热电阻的一部分,一般分为负温度系数热敏电阻NTC(Negative Temperature Coefficient)和正温度系数热敏电阻PTC(Positive Temperature Coefficient)。NTC的电阻值随温度的上升而下降;PTC正好相反。 其它传感器。半导体PN结温度传感器,晶体温度传感器,非接触型温度传感器,热电偶温度传感器,光纤温度传感器,液压温度传感器,智能温度传感器。 二.DH-SJ5温度传感器实验装置 DH-SJ5型温度传感实验装置以九孔板为实验平台,包括铂电阻Pt100、热敏电阻(NTC 和PTC)、铜电阻Cu50、铜-康铜热电偶、PN结、AD590和LM35等分离的温度传感器探头,各种电子元件。能提供了多种测温电路和方法。 本装置采用Pt100铂电阻测温,智能温度控制器控温,控温精度高、范围广、可自由设定所需的温度,数字显示;用低电压恒流加热、安全可靠、无污染,加热电流连续可调;分离的温度传感器,形象直观,组合方便,可比较不同传感器的温度特性;降温实验可采用风扇快速降温;整体结构设计新颖,紧凑合理,外型美观大方。 主要技术指标:电源:AC220V±10%(50/60Hz),工作温度0~40℃,相对湿度<80%,无腐蚀性场合,控温范围:室温~120℃,控温精度:±0.2℃,分辨率:0.1℃。 温控仪与恒温炉的连线如图1,Pt100的插头与温控仪上的插座颜色应当对应连接。 图1DH-SJ5温度传感器实验装置 恒温炉上方有六个插孔,可以插一个测温的Pt100和五个待测量的温度传感器。 警告:在做实验中或做完实验后,禁止手触传感器的钢护套,防止烫伤!

MSP430内部温度传感器测试程序

MSP430内部温度传感器测试程序 //MSP430基础实验开发组件 - ADC12内部模块演示程序之内部温度传感器 //时钟设置: ////ACLK = n/a, MCLK = SMCLK = default DCO ~ 800kHz, ADC12CLK = ADC12OSC //当前演示程序功能描述: ////利用MSP430F14X内部的温度传感器,通过ADC12的通道10进行AD转换 ////计算取得摄氏温度和华氏温度,通过断点在View->Watch中观察温度值 ////由于定标问题, 可能会存在温度的误差 #include unsigned int long temp; unsigned int long TemperF; //华氏温度 unsigned int long TemperC; //摄氏温度 void main(void) { WDTCTL = WDTPW + WDTHOLD; //关闭系统看门狗 ADC12CTL0 = SHT0_8 + REFON + ADC12ON; //内部1.5V参考电压,打开ADC12模块,设置采样保持定时器 ADC12CTL1 = SHP; //采使用采样定时器 ADC12MCTL0 = SREF_1 + INCH_10; //参考电压和通道选择 ADC12IE = BIT0; //ADC12MEM0 ADC12CTL0 |= ENC; //允许转换 _BIS_SR(GIE); //开启系统中断 while(1) { ADC12CTL0 |= ADC12SC; //开始采样并AD转换 //oF = ((x/4096)*1500mV)-923mV)*1/1.97mV = x*761/4096 - 468 //IntDegF = (ADC12MEM0 - 2519)* 761/4096 TemperF = (temp - 2519) * 761; TemperF = TemperF / 4096; //简化的华氏温度转换公式

温度传感器报告

温度传感器是指能感受温度并能转换成可用输出信号的传感器。温度是和人类生活环境有着密切关系的一个物理量,是工业过程三大参量(流量、压力、温度)之一,也是国际单位制(SI)中七个基本物理量之一。温度测量是一个经典而又古老的话题,很久以来,这方面己有多种测温元件和传感器得到普及,但是直到今天,为了适应各工业部门、科学研究、医疗、家用电器等方面的广泛要求,仍在不断研发新型测温元件和传感器、新的测温方法、新的测温材料、新的市场应用。要准确地测量温度也非易事,如测温元件选择不当、测量方法不宜,均不能得到满意结果。 据有关部门统计,2009年我国传感器的销售额为327亿元人民币,其中温度传感器占整个传感器市场的14%,主要应用于通信电子产品、家用电器、楼宇自动化、医疗设备、仪器仪表、汽车电子等领域。 温度传感器的特点 作为一个理想的温度传感器,应该具备以下要求:测量围广、精度高、可靠性好、时漂小、重量轻、响应快、价格低、能批量生产等。但同时满足上述条件的温度传感器是不存在的,应根据应用现场灵活使用各种温度传感器。这是因为不同的温度传感器具有不同的特点。 ● 不同的温度传感器测量围和特点是不同的。 几种重要类型的温度传感器的温度测量围和特点,如表1所示。 ● 测温的准确度与测量方法有关。 根据温度传感器的使用方法,通常分为接触测量和非接触测量两类,两种测量方法的特点如 ● 不同的测温元件应采用不同的测量电路。 通常采用的测量电路有三种。“电阻式测温元件测量电路”,该测量电路要考虑消除非线性误差和热电阻导线对测量准确度的影响。“电势型测温元件测量电路”,该电路需考虑线性化和冷端补偿,信号处理电路较热电阻的复杂。“电流型测温元件测量电路”,半导体集成温度传感器是最典型的电流型温度测量元件,当电源电压变化、外接导线变化时,该电路输出电流基本不受影响,非常适合远距离测温。 温度测量的最新进展 ● 研制适应各种工业应用的测温元件和温度传感器。 铂薄膜温度传感器膜厚1μm,可置于极小的测量空间,作温度场分布测量,响应时间不超过1ms,偶丝最小直径25μm,热偶体积小于1×10-4mm3,质量小于1μg。 多色比色温度传感器能实时求出被测物体发射率的近似值,提高辐射测温的精

常用温度传感器的对比分析及选择

常用温度传感器的对比分析及选择 大致的要点: 1.温度传感器概述:应用领域,重要性; 2.四种主要的温度传感器类型的横向比较 3.热电偶传感器 4.热电阻传感器 5.热敏电阻传感器 6.集成电路温度传感器以及典型产品举例 7.温度传感器的正确选择及应用 在各种各样的测量技术中,温度的测量可能是最为常见的一种,因为任何的应用领域,掌握温度的确切数值,了解温度与实际状态之间的差异等,都具有极为重要的意义。就以测量为例,在力的测量,压力,流量,位置及电平高低等测量的过程中,为了提高测量精度,通常都会要求对温度进行监视,如压力或力的测量,往往是使用惠斯登电阻电桥,但组成电桥的电阻随温度变化引起的误差,往往会大大超过待测力引起的电阻值变化,如不对温度进行监控并据此校正测量结果,则测量完全不可能进行或者毫无效果。其他参数测量也有类似问题,可以说,各种的物理量都是温度的函数,要得到精确的测定结果,必须针对温度的变化,作出精确的校正。本文就是帮助读者针对特定的用途,选择最为合适的温度传感器,并进行精确的温度测量。 工业上常用的温度传感器有四类:即热电偶、热电阻RTD、热敏电阻及集成电路温度传感器;每一类温度传感器有自己独特的温度测量范围,有自己适用的温度环境;没有一种温度传感器可以通用于所有的用途:热电偶的可测温度范围最宽,而热电阻的测量线性度最优,热敏电阻的测量精度最高。表1是四类传感器的各自独特的性能特性及相互比较。表2是四类传感器的典型应用领域。

热电偶--通用而经济 热电偶由二根不同的金属线材,将它们一端焊接在一起构成,如图1所示;参考端温度(也称冷补偿端)用来消除铁-铜相联及康铜-铜联接端所贡献的误差;而两种不同金属的焊接端放置于需要测量温度的目标上。 两种材料这样联接后会在未焊接的一端产生一个电压,电压数值是所有联接端温度的函数,热电偶无需电压或电流激励。实际应用时,如果试图提供电压或电流激励反而会将误差引进系统。 鉴于热电偶的电压产生于两种不同线材的开路端,其与外界的接口似乎可通过直接测量两导线之间的电压实现;如果热电偶的的两端头不是联接至另外金属,通常是铜,那末事情真会简单至此。 但热电偶需与另外一种金属联接这一事实,实际上又建立了新的一对热电偶,在系统中引入了极大的误差,消除此误差的唯一办法是检测参考端的温度(参见图1),以硬件或硬件-软件相结合的方式将这一联接所贡献的误差减掉,纯硬件消除技术由于线性化校正的因素,比软件-硬件相结合技术受限制更大。一般情况下,参考端温度的精确检测用热电阻RTD,热敏电阻或是集成电路温度传感器进行。原则上说,热电偶可由任意的两种不同金属构建而成,但在实践中,构成热电偶的两种金属组合已经标准化,因为标准组合的线性度及所产生的电压与温度的关系更趋理想。 表3与图2是常用的热电偶E,J,T,K,N,S,B R的特性。

DS1621温度传感器实验

/*************** writer:shopping.w ******************/ #include #include #define uint unsigned int #define uchar unsigned char bit I2C_Busy, NO_Ack,Bus_Fault,point; uchar bdata a; sbit LSB = a^0; sbit MSB = a^7; sbit SDA = P3^3; sbit SCL = P3^2; uchar Array[] = {'0','1','2','3','4','5','6','7','8','9'}; uchar command_data[]= { 0xac,0x00,0xee,0xa1,0x00,0x00,0xa2,0x00,0x00,0xaa }; uchar Prompt[]="Waiting for a while...\r"; uchar i; void DelayMS(uint ms) { uchar i; while(ms--) { for(i=0;i<120;i++); } } void SendStop() { SDA = 0; SCL = 1; _nop_(); SDA = 1; I2C_Busy = 0; } void SendByte(uchar wd) { uchar i; a = wd; for(i=0;i<8;i++) { SCL = 0; _nop_(); _nop_(); SDA = MSB;

常用温度传感器比较(2)

常用温度传感器比较 一.接触式温度传感器 1. 热电偶: (1)测温原理: 两种不同成分的导体(称为热电偶丝或热电极)两端接合成回路,当接合点的温度不同时,在回路中就会产生电动势,这种现象称为热电效应,而这种电动势称为热电动势。热电偶就是利用这种原理进行温度测量的,其中,直接用作测 量介质温度的一端叫做工作端(也称为测量端),另一端叫做冷端(也称为补偿端);冷端与显示仪表连接,显示出热电偶所产生的热电动势,通过查询热电偶分度表,即可得到被测介质温度。 (2)测温范围: 常用的热电偶从-50~+1600C均可连续测量,某些特殊热电偶最低可测到- 269C(如金铁镍铬),最高可达+28000(如钨-铼)。 (3)常用热电偶型号: (4)实例: T型热电偶,测温范围-40~350C,详细信息见T型热电偶实例。 2. 热电阻: (1)测温原理: 热电阻是基于电阻的热效应进行温度测量的,即电阻体的阻值随温度的变化 而变化的特性。因此,只要测量出感温热电阻的阻值变化,就可以测量出温度。 目前主要有金属热电阻和半导体热敏电阻两类。 金属热电阻的电阻值和温度一般可以用以下的近似关系式表示,即: R=R o [1+ a(t-t 0)] 式中,R为温度t时的阻值;R o为温度t o (通常10=00 )时对应电阻值;a为温度系数。半导体热敏电阻的阻值和温度关系为: R =Ae B/t 式中R为温度为t时的阻值;A、B取决于半导体材料的结构的常数。 (2)测温范围:

金属热电阻一般适用于-200~5000范围内的温度测量,其特点是测量准确、 稳定性好、性能可靠。 半导体热敏电阻测温范围只有-50~300C左右,且互换性较差,非线性严重,但温度系数更大,常温下的电阻值更高(通常在数千欧以上) 。 (3)常用热电阻: 目前应用最广泛的热电阻材料是铂和铜:铂电阻精度高,适用于中性和氧化性介质,稳定性好,具有一定的非线性,温度越高电阻变化率越小;铜电阻在测温范围内电阻值和温度呈线性关系,温度线数大,适用于无腐蚀介质,超过150C 易被氧化。 中国最常用的有R°=10Q、R°=100Q和R°=1000Q等几种,它们的分度号分别为Pt10、Pt100、Pt1000;铜电阻有R o=50Q和R o=100Q两种,它们的分度号为Cu50和Cu100。其中Pt100和Cu50的应用最为广泛。 (4)实例: Pt100为正温度系数热敏电阻传感器,测量范围-200 C ~850C,允许温度偏差值0.15+0.002|t| ,最小置入深度200mm最大允许电流5mA详细信息见Pt100 实例。 3. 集成温度传感器: <1>模拟式温度传感器: (1)原理: 将驱动电路、信号处理电路以及必要的逻辑控制电路集成在单片IC上,具 有实际尺寸小、使用方便、灵敏度高、线性度好、响应速度快等优点。 (2)常见模拟式温度传感器: 电压输出型: LM3911、LM335 LM45 AD22103 电流输出型: AD590。 (3)实例: LM135\235\335系列是美国国家半导体公司(NS)生产的一种高精度易校正的集成温度传感器,是电压输出型温度传感器,工作特性类似于齐纳稳压管。该系列器件灵敏度为10mV/K,具有小于1Q的动态阻抗,工作电流范围从400^A 到5mA,精度为1C,LM135的温度范围为-55 C?+150C,LM235的温度范围为-40 C ?+125C,LM335 为-40C ~+100°C。封装形式有TO-46、TO-92、SO-8。该器件广泛应用于温度测量、温差测量以及温度补偿系统中。详细信息见 LM135,235,335.pdf。 AD590是美国模拟器件公司的电流输出型温度传感器,供电电压范围为3~30V,可以承受44V正向电压和20V反向电压,测温范围为-55 C?+150C,输出电流为223卩 A~423卩A,输出电流变化1卩A相当于温度变化1 C,最大非线性误差为土03C,响应时间仅为20卩s,重复性误差低至土0.05C,功耗约为2mW, 输出电流信号的传输距离可达到1km以上,作为一种高阻电流源,最高可达 20血,所以它不必考虑选择开关或CMO多路转换器所引入的附加电阻造成的误差,适用于多点温度测量和远距离温度测量的控制。详细信息见AD590.pdf。 <2>数字式温度传感器: (1)原理: 将敏感元件、A/D转换单元、存储器等集成在一个芯片上,直接输出反应被测温度的

温度传感器报告

温度传感器报告

温度传感器是指能感受温度并能转换成可用输出信号的传感器。温度是和人类生活环境有着密切关系的一个物理量,是工业过程三大参量(流量、压力、温度)之一,也是国际单位制(SI)中七个基本物理量之一。温度测量是一个经典而又古老的话题,很久以来,这方面己有多种测温元件和传感器得到普及,但是直到今天,为了适应各工业部门、科学研究、医疗、家用电器等方面的广泛要求,仍在不断研发新型测温元件和传感器、新的测温方法、新的测温材料、新的市场应用。要准确地测量温度也非易事,如测温元件选择不当、测量方法不宜,均不能得到满意结果。 据有关部门统计,2009年我国传感器的销售额为327亿元人民币,其中温度传感器占整个传感器市场的14%,主要应用于通信电子产品、家用电器、楼宇自动化、医疗设备、仪器仪表、汽车电子等领域。 温度传感器的特点 作为一个理想的温度传感器,应该具备以下要求:测量范围广、精度高、可靠性好、时漂小、重量轻、响应快、价格低、能批量生产等。但同时满足上述条件的温度传感器是不存在的,应根据应用现场灵活使用各种温度传感器。这是因为不同的温度传感器具有不同的特点。 ● 不同的温度传感器测量范围和特点是不同的。 几种重要类型的温度传感器的温度测量范围和特点,如表1所示。 ● 测温的准确度与测量方法有关。 根据温度传感器的使用方法,通常分为接触测量和非接触测量两类,两种测量方法的特点如 ● 不同的测温元件应采用不同的测量电路。 通常采用的测量电路有三种。“电阻式测温元件测量电路”,该测量电路要考虑消除非线性误差和热电阻导线对测量准确度的影响。“电势型测温元件测量电路”,该电路需考虑线性化和冷端补偿,信号处理电路较热电阻的复杂。“电流型测温元件测量电路”,半导体集成温度传感器是最典型的电流型温度测量元件,当电源电压变化、外接导线变化时,该电路输出电流基本不受影响,非常适合远距离测温。 温度测量的最新进展 ● 研制适应各种工业应用的测温元件和温度传感器。 铂薄膜温度传感器膜厚1μm,可置于极小的测量空间,作温度场分布测量,响应时间不超过1ms,偶丝最小直径25μm,热偶体积小于1×10-4mm3,质量小于1μg。 多色比色温度传感器能实时求出被测物体发射率的近似值,提高辐射测温的精

相关文档
最新文档