北师大版七年级数学下册第6章《概率初步》单元测试试卷及答案(2)-精编

合集下载

北师大版七年级数学下册第六章单元测试题(含答案)

北师大版七年级数学下册第六章单元测试题(含答案)

第六章概率初步一、填空题(本大题共6小题,每小题4分,共24分)1.一个在不透明的盒子中装有除颜色外其他都一样的5个红球,3个蓝球和2个白球,它们已经被搅匀了,下列三种事件是必然事件、随机事件,还是不可能事件、(1)从盒子中任取4个球,全是蓝球。

(2)从盒子中任取3个球,只有蓝球和白球,没有红球。

(3)从盒子中任取9个球,恰好红、蓝、白三种颜色的球都有。

2.初一(3)班共有学生50人,其中男生有21人,女生29人,若在此班上任意找一名学生,找到男生的可能性比找到女生的可能性(填“大”或“小”).3.如图,在两个同心圆中,四条直径把大圆分成八等份,若往圆面投掷飞镖,则飞镖落在黑色区域的概率是.4.在一个不透明的盒子中装有n个球,它们除了颜色之外其它都没有区别,其中含有3个红球,每次摸球前,将盒中所有的球摇匀,然后随机摸出一个球,记下颜色后再放回盒中.通过大量重复试验,发现摸到红球的频率稳定在0.03,那么可以推算出n的值大约是.5.某十字路口设有交通信号灯,东西向信号灯的开启规律如下:红灯开启30秒后关闭,紧接着黄灯开启3秒后关闭,再紧接着绿灯开启42秒,按此规律循环下去.如果不考虑其他因素,当一辆汽车沿东西方向随机地行驶到该路口时,遇到绿灯的概率是.6.有一个质地均匀的正二十面体形状的骰子,其中1个面标有“1”,2个面标有“2”,3个面标有“3”,4个面标有“4”,5个面标有“5”,其余的面标有“6”,将这个骰子掷出后,朝正上方的数字为“6”的概率是________,数字________朝正上方的可能性最大.二、选择题(本大题共12小题,共36分,每小题只有一个正确选项)7.如图,一个游戏转盘中,红、黄、蓝三个扇形的圆心角度数分别为60°,90°,210°.让转盘自由转动,指针停止后落在黄色区域的概率是().A.B.C.D.8.在围棋盒中有x颗白色棋子和y颗黑色棋子,从盒中随机取出一颗棋子,取得白色棋子的概率是,如再往盒中放进3颗黑色棋子,取得白色棋子的概率变为,则原来盒里有白色棋子()A.1颗B.2颗C.3颗D.4颗9.如图,从A地到C地,可供选择的方案是走水路、走陆路、走空中,从A地到B地有两条水路、两条陆路,从B 地到C地有3条陆路可供选择,走空中,从A地不经B地直线到C地,则从A地到C地可供选择的方案有()A.20种B.8种C.5种D.13种10.袋子中装有4个黑球和2个白球,这些球的形状、大小、质地等完全相同,在看不到球的条件下,随机地从袋子中摸出三个球,下列事件是必然事件的是()A.摸出的三个球中至少有一个球是黑球B.摸出的三个球中至少有一个球是白球C.摸出的三个球中至少有两个球是黑球D.摸出的三个球中至少有两个球是白球11.如图,转动转盘,指向阴影部分的可能性为a,指向空白部分的可能性为b,则()A.a>bB.a<bC.a=bD.无法确定12.下列事件中,随机事件是()A.没有水分,种子仍能发芽B.等腰三角形两个底角相等C.从13张红桃扑克牌中任抽一张,是红桃AD.从13张方块扑克牌中任抽一张,是红桃1013.从一副扑克牌中则下列事件中可能性最大的是()A.抽出一张红心B.抽出一张红色老KC.抽出一张梅花JD.抽出一张不是Q的牌14.在相同条件下重复试验,若事件A发生的概率是,下列陈述中,正确的是()A.事件A 发生的频率是B.反复大量做这种试验,事件A 只发生了7次C.做100次这种试验,事件A 一定发生7次D.做100次这种试验,事件A 可能发生7次15.下列说法正确的是()A.任意掷一枚质地均匀的硬币10次,一定有5次正面向上B.天气预报说“明天的降水概率为40%”,表示明天有40%的时间都在降雨C.“篮球队员在罚球线上投篮一次,投中”为随机事件D.“a 是实数,|a|≥0”是不可能事件16.2019年枣庄市初中学业水平实验操作考试.要求每名学生从物理.化学.生物三个学科中随机抽取一科参加测试,小华和小强都抽到物理学科的概率是()A .B .C .D .17.如图,正方形网格中,5个阴影小正方形是一个正方体表面展开图的一部分.现从其余空白小正方形中任取一个涂上阴影,则图中六个阴影小正方形能构成这个正方体的表面展开图的概率是()A.47B.37C.27D.1718.以下有四个事件:①抛一枚匀质硬币,正面朝上;②掷一枚匀质骰子,所得的点数为3;③从一副54张扑克牌中任意抽出一张恰好为红桃;④从装有1个红球,2个黄球的袋中随意摸出一个球,这两种球除颜色外其他都相同,结果恰好是红球.按概率从小到大顺序排列的结果是()A .①<②<③<④B .②<③<④<①C .②<①<③<④D .③<②<①<④三.解答题(共7小题共60分)19.(6分)小明购买双色球福利彩票时,两次分别购买了1张和100张,均未获奖,于是他说:“购买1张和100张中奖的可能性相等。

(必考题)初中数学七年级数学下册第六单元《概率初步》检测题(含答案解析)(2)

(必考题)初中数学七年级数学下册第六单元《概率初步》检测题(含答案解析)(2)

一、选择题1.下列事件中,是随机事件的是()A.从一只装有红球的袋子里摸出黄球B.抛出的蓝球会下落C.抛掷一枚质地均匀的骰子,向上一面点数是2D.抛掷一枚质地均匀的骰子,向上一面点数是102.下列事件中,是确定事件的是()A.车辆随机经过一个路口,遇到红灯B.三条线段能组成一个三角形C.将油滴入水中,油会浮在水面D.掷一枚质地均匀的骰子,掷出的点数是质数3.下列事件中,是必然事件的为()A.明天会下雨B.x是实数,x2<0C.两个奇数之和为偶数D.异号两数相加,和为负数4.下面是任意抛掷一枚质地均匀的正六面体骰子所得结果,其中发生的可能性很大的是()A.朝上的点数为2B.朝上的点数为7C.朝上的点数为3的倍数D.朝上的点数不小于25.七年级(1)班的教室里正在召开50人的座谈会,其中有3名教师,12名家长,35名学生,当李校长走到门口时听到有人在发言,那么发言人是教师或学生的概率为( )A.1925B.310C.4750D.126.九年级一班在参加学校4×100米接力赛时,安排了甲,乙,丙,丁四位选手,他们比赛的顺序由抽签随机决定,则丙跑第一棒的概率为()A.14B.18C.112D.1167.下列说法正确的是()A.“打开电视机,正在播放《新闻联播》”是必然事件B.“随机抛掷一枚质地均匀的硬币,落地后正面朝上”是随机事件C.一组数据的中位数可能有两个D.一组数据的波动越大,方差越小8.不透明的袋子中装有形状、大小、质地完全相同的5个球,其中2个黑球、3个白球,从袋子中一次摸出3个球,下列事件是不可能事件的是()A.摸出的是3个白球B.摸出的是3个黑球C.摸出的是2个白球、1个黑球D.摸出的是2个黑球、1个白球9.某校开设了文艺、体育、科技和学术四类社团,要求每位学生从中任选一类社团参加.现统计出八年级(1)班40名学生参加社团的情况,如下图:如果从该班随机选出一名学生,那么该生是体育类社团成员的可能性大小是()A.15B.25C.14D.32010.下列事件是必然事件的是().A.购买一张彩票中奖B.通常加热到100℃时,水沸腾C.明天一定是晴天D.任意一个三角形,其内角和是360°11.下列语句中描述的事件必然发生的是()A.15个人中至少有两个人同月出生B.一位同学在打篮球,投篮一次就投中C.在1,2,3,4中任取两个数,它们的和大于7D.掷一枚硬币,正面朝上12.下列事件中,是必然事件的是()A.明天太阳从西边出来B.打开电视,正在播放《云南新闻》C.昆明是云南的省会D.小明跑完800米所用的时间恰好为1分钟二、填空题13.一个不透明的袋中装有除颜色外其余均相同的1个红球和2个黄球,从中随机摸出一个,则摸到红球的概率P ______.14.一个均匀的正方体,6个面中有1个面是黄色的、2个面是红色的、3个面是绿色的.任意掷一次该正方体,则绿色面朝上的可能性是____.15.掷一枚均匀的硬币,前20次抛掷的结果都是正面朝上,那么第21次抛掷的结果正面朝上的概率为______.16.“a是实数,|a|<0”这一事件是_____事件.17.从一副扑克牌中级抽取一张,①抽到王牌;②抽到Q;③抽到梅花.上述事件,概率最大的是_____.18.小莉抛一枚质地均匀的硬币,连续抛三次,硬币落地均正面朝上,如果她第四次抛硬币,那么硬币正面朝上的概率为________.19.小明把如图所示的平行四边形纸板挂在墙上,玩飞镖游戏(每次飞镖均落在纸板上,且落在纸板的任何一个点的机会都相等),则飞镖落在阴影区域的概率是___.20.同时掷两枚标有数字1~6的正方形骰子,数字和为1的概率是______.三、解答题21.王老师、张老师、李老师(女),姚老师四位数学老师参加了滨州市教学能手评选活动,经研究通过抽签决定他(她)们上课节次,抽签时女士优先,(1)先抽取的李老师不希望上第一节课,却偏偏抽到上第一节课的概率是多少?(2)在李老师已经抽到上第一节课的条件下,求抽签结果中,王老师比姚老师先上课的概率.22.有两个一红一黄大小均匀的小正方体,每个小正方体的各个面上分别标有数字1,2,3,4,5,6.如同时掷出这两个小正方体,将它们朝上的面的数字分别组成一个两位数.(红色数字作为十位,黄色数字作为个位),请回答下列问题.(1)请分别写出一个必然事件和一个不可能事件.(2)得到的两位数可能有多少个?其中个位与十位上数字相同的有几个?(3)任写出一组两个可能性一样大的事件.23.在一个木箱中装有卡片共50张,这些卡片共有三种,它们分别标有1、2、3的字样,除此之外其他都相同,其中标有数字2卡片的张数是标有数字3卡片的张数的3倍少8张.已知从箱子中随机摸出一张标有数字1卡片的概率是.(1)求木箱中装有标1的卡片张数;(2)求从箱子中随机摸出一张标有数字3的卡片的概率.24.在一个不透明的口袋里装有分别标有数字1,2,3,4四个小球,除数字不同外,小球没有任何区别,每次实验先搅拌均匀.(1)若从中任取一球,球上的数字为偶数的概率为多少?(2)若设计一种游戏方案:若从中任取一球(不放回),再从中任取一球.两个球上的数字之差的绝对值为1为甲胜,否则为乙胜,请问这种游戏方案设计对甲、乙双方公平吗?请用画树状图或列表格的方法说明理由.25.某演艺大厅有2个入口和3个出口,其示意图如下,参观者从任意一个入口进入,参观结束后从任意一个出口离开(1)用树状图表示,小明从进入到离开,对于入口和出口的选掉有多少种不同的结果?(2)小明从入口A进入并从出口1离开的概率是多少?26.第20届世界杯足球赛正在如火如荼的进行,爸爸想通过一个游戏决定小明能否看今晚的比赛:在一个不透明的盒子中放入三张卡片,每张卡片上写着一个实数,分别为3,, 2(每张卡片除了上面的实数不同以外其余均相同),爸爸让小明从中任意取一张卡片,如果抽到的卡片上的数是有理数,就让小明看比赛,否则就不能看.(1)请你直接写出按照爸爸的规则小明能看比赛的概率;(2)小明想了想,和爸爸重新约定游戏规则:自己从盒子中随机抽取两次,每次抽取一张卡片,第一次抽取后记下卡片上的数,再将卡片放回盒中抽取第二次,如果抽取的两数之积是有理数,自己就看比赛,否则就不看.请你用列表法或树状图法求出按照此规则小明看比赛的概率.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】根据随机事件,必然事件,不可能事件的概念对各项判断即可.【详解】A.从一只装有红球的袋子里摸出黄球,是不可能事件,故选项错误;B.抛出的篮球会下落,是必然事件,故选项错误;C.抛一枚质地均匀的骰子,向上一面点数是2,是随机事件,故选项正确;D.抛一枚质地均匀的骰子,向上一面点数是10,是不可能事件,故选项错误;故选:C.【点睛】本题考查了随机事件,解题关键是正确理解随机事件,必然事件,不可能事件的概念.2.C解析:C【解析】【分析】根据事件发生的可能性大小判断相应事件的类型即可.【详解】A选项:车辆随机经过一个路口,遇到红灯,可能事件;B选项:三条线段能组成一个三角形,可能事件;C选项:将油滴入水中,油会浮在水面,确定事件;D选项:掷一枚质地均匀的骰子,掷出的点数是质数,可能事件;故选:C.考查了随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.3.C解析:C【解析】【分析】直接利用随机事件以及必然事件、不可能事件分别分析得出答案.【详解】A、明天会下雨是随机事件,故此选项错误;B、x是实数,x2<0,是不可能事件,故此选项错误;C、两个奇数之和为偶数,是必然事件,正确;D、异号两数相加,和为负数是随机事件,故此选项错误.故选C.【点睛】此题主要考查了随机事件、必然事件、不可能事件,正确把握相关时间的定义是解题关键.4.D解析:D【解析】【分析】分别求得各个选项中发生的可能性的大小,然后比较即可确定正确的选项.【详解】A、朝上点数为2的可能性为16;B、朝上点数为7的可能性为0;C、朝上点数为3的倍数的可能性为21 63 ;D、朝上点数不小于2的可能性为5 6 .故选D.【点睛】主要考查可能性大小的比较:只要总情况数目(面积)相同,谁包含的情况数目(面积)多,谁的可能性就大,反之也成立;若包含的情况(面积)相当,那么它们的可能性就相等.5.A解析:A【解析】用发言人是老师或学生的情况数除以总情况数即可求得发言人是老师或学生的概率.【详解】解:发言人是教师或学生的概率为33550=1925,故选:A.【点睛】本题考查了概率的知识.用到的知识点为:概率=所求情况数与总情况数之比.6.A解析:A【解析】【分析】根据概率公式直接进行解答即可.【详解】解:∵有甲,乙,丙,丁四位选手,∴丙跑第一棒的概率为14;故选:A.【点睛】本题考查概率公式.随机事件A的概率P(A)=事件A可能出现的结果数除以所有可能出现的结果数.7.B解析:B【解析】【分析】利用必然事件的定义,中数的定义,方差的定义即可作出判断.【详解】解:A. “打开电视机,正在播放《新闻联播》”是随机事件,错误.B. “随机抛掷一枚质地均匀的硬币,落地后正面朝上”是随机事件,正确.C. 一组数据的中位数有1个,错误.D. 一组数据的波动越大,方差越大,错误.故选B.【点睛】本题考查了必然事件的定义,中位数的定义,方差的性质,难度适中.8.B解析:B【解析】【分析】根据事件发生的可能性大小判断相应事件的类型即可.【详解】解:A、有可能三个都是白球,是随机事件,故A不符合题意;B、不可能3个都是黑球,是不可能事件,故B符合题意;C、有可能摸出的是2个白球、1个黑球,是随机事件,故C不符合题意;D、有可能是摸出的是2个黑球、1个白球,是随机事件,故D不符合题意;故选:B.【点睛】考查了随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.9.B解析:B【解析】【分析】根据条形统计图可得,选体育的学生总人数的比值,从而可以解答本题.【详解】由条形统计图可得,选体育的学生的可能性是:162=8+16+10+65,故选B.【点睛】本题考查可能性大小,解题的关键是明确题意,找出所求问题需要的条件.10.B解析:B【分析】根据随机事件的分类,对各个选项逐个分析,即可得到答案.【详解】购买一张彩票中奖,是不确定事件,故选项A错误;通常加热到100℃时,水沸腾,是必然事件,故选项B正确;明天一定是晴天,是不确定事件,故选项C错误;任意一个三角形,其内角和是360°,是不可能事件,故选项D错误;故选:B.【点睛】本题考查了随机事件的知识;解题的关键是熟练掌握随机事件的分类,从而完成求解.11.A解析:A【分析】根据事件发生的可能性的大小逐一判断即可得答案.A.∵一年只有12个月,∴15个人中至少有两个人同月出生是必然事件,故该选项符合题意,B.一位同学在打篮球,投篮一次就投中是随机事件,故该选项不符合题意,C.在1,2,3,4中任取两个数,它们的和大于7是不可能事件,故该选项不符合题意,D.掷一枚硬币,正面朝上是随机事件,故该选项不符合题意,故选:A.【点睛】本题考查随机事件和必然事件,熟练掌握概念是解题关键.12.C解析:C【分析】根据必然事件、随机事件、不可能事件的定义逐项判断即可得.【详解】A、“明天太阳从西边出来”是不可能事件,此项不符题意;B、“打开电视,正在播放《云南新闻》”是随机事件,此项不符题意;C、“昆明是云南的省会”是必然事件,此项符合题意;D、“小明跑完800米所用的时间恰好为1分钟”是随机事件,此项不符题意;故选:C.【点睛】本题考查了必然事件、随机事件、不可能事件,掌握理解各定义是解题关键.二、填空题13.【分析】根据概率的求法找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率;【详解】根据题意得:一个不透明的袋中装有除颜色外其余均相同的1个红球和2个黄球共有3个球从中随机摸解析:1 3【分析】根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率;【详解】根据题意得:一个不透明的袋中装有除颜色外其余均相同的1个红球和2个黄球,共有3个球,从中随机摸出一个,则摸到红球的概率为:13;故答案为:13.本题考查了概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现的m种结果,那么事件A的概率P(A)=mn;14.【分析】根据简单事件的概率公式计算解答【详解】6个面中有1个面是黄色的2个面是红色的3个面是绿色的任意掷一次该正方体则绿色面朝上的可能性是故答案为:【点睛】此题考查简单事件的概率理解事件中绿色发生的解析:1 2【分析】根据简单事件的概率公式计算解答.【详解】6个面中有1个面是黄色的、2个面是红色的、3个面是绿色的.任意掷一次该正方体,则绿色面朝上的可能性是31 62 ,故答案为:12.【点睛】此题考查简单事件的概率,理解事件中绿色发生的可能性大小是解题的关键.15.5【分析】根据概率的意义即可求出答案【详解】由于每一次正面朝上的概率相等∴第21次抛掷的结果正面朝上的概率为05故答案为:05【点睛】本题考查概率的意义解题的关键是正确理解概率的意义本题属于基础题型解析:5【分析】根据概率的意义即可求出答案.【详解】由于每一次正面朝上的概率相等,∴第21次抛掷的结果正面朝上的概率为0.5,故答案为:0.5【点睛】本题考查概率的意义,解题的关键是正确理解概率的意义,本题属于基础题型.16.不可能【解析】【分析】根据事件发生的可能性大小判断相应事件的类型即可【详解】解:a是实数|a|<0这一事件是不可能事件故答案为不可能【点睛】本题考查必然事件不可能事件随机事件的概念必然事件指在一定条解析:不可能【解析】【分析】根据事件发生的可能性大小判断相应事件的类型即可.解:“a是实数,|a|<0”这一事件是不可能事件.故答案为不可能.【点睛】本题考查必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.17.③抽到梅花【解析】【分析】根据概率公式先求出各自的概率再进行比较即可得出答案【详解】∵一副扑克牌有54张王牌有2张抽到王牌的可能性是;Q牌有4张抽到Q牌的可能性是;梅花有13张抽到梅花牌的可能性是;解析:③抽到梅花.【解析】【分析】根据概率公式先求出各自的概率,再进行比较,即可得出答案.【详解】∵一副扑克牌有54张,王牌有2张,抽到王牌的可能性是21=5427;Q牌有4张,抽到Q牌的可能性是42= 5427;梅花有13张,抽到梅花牌的可能性是13 54;∴概率最大的是抽到梅花;故答案为:③抽到梅花.【点睛】本题考查了概率公式,用到的知识点为:概率=所求情况数与总情况数之比.18.【分析】本题考查了概率的简单计算能力是一道列举法求概率的问题属于基础题可以直接应用求概率的公式【详解】因为一枚质地均匀的硬币只有正反两面所以不管抛多少次硬币正面朝上的概率都是故答案为【点睛】本题考查解析:1 2【分析】本题考查了概率的简单计算能力,是一道列举法求概率的问题,属于基础题,可以直接应用求概率的公式.【详解】因为一枚质地均匀的硬币只有正反两面,所以不管抛多少次,硬币正面朝上的概率都是12.故答案为12.【点睛】本题考查了概率的意义,一般地,在大量重复实验中,如果事件A发生的频率mn会稳定在某个常数p附近,那么这个常数p就叫做事件A的概率,记为P(A)=p.明确概率的意义是解答的关键,用到的知识点为:概率=所求情况数与总情况数之比.19.【解析】试题解析:1 4【解析】试题根据平行四边形的性质可得:平行四边形的对角线把平行四边形分成的四个面积相等的三角形,根据平行线的性质可得S1=S2,则阴影部分的面积占14,故飞镖落在阴影区域的概率为14;20.【解析】试题解析:【解析】试题列表得:1234561(1,1)(2,1)(3,1)(4,1)(5,1)(6,1)2(1,2)(2,2)(3,2)(4,2)(5,2)(6,2)3(1,3)(2,3)(3,3)(4,3)(5,3)(6,3)4(1,4)(2,4)(3,4)(4,4)(5,4)(6,4)5(1,5)(2,5)(3,5)(4,5)(5,5)(6,5)6(1,6)(2,6)(3,6)(4,6)(5,6)(6,6)∵共有36种等可能的结果,数字和为1的有0种情况,∴故数字和为1概率是:0036.考点:列表法与树状图法.三、解答题21.(1)李老师抽到上第一节课的概率为14;(2)王老师比姚老师先上课的概率为12.【解析】【分析】(1)直接利用概率公式求解;(2)画树状图展示所有6种等可能的结果数,再找出王老师比姚老师先上课的结果数,然后根据概率公式求解.【详解】(1)李老师抽到上第一节课的概率=14;(2)画树状图为:共有6种等可能的结果数,其中王老师比姚老师先上课的结果数为3,所以王老师比姚老师先上课的概率=36=12.【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.22.解:(1)必然事件:组成的两位数十位与个位上的数字一定是1~6的数字;不可能事件:组成的两位数是10(答案不唯一);(2)得到的两位数可能有36个;个位与十位上数字相同的有6个;(3)11与12出现的可能性一样大.【解析】【分析】(1)组成的数只要是十位与个位上的数字是1~6的就是必然事件,否则是不可能事件;(2)根据十位上出现的数字与个位上出现的数字的可能情况解答,写出十位与个位数字相同的情况即可;(3)根据任意一个数出现的可能性相同解答。

(北师大版)南京市七年级数学下册第六单元《概率初步》测试(答案解析)

(北师大版)南京市七年级数学下册第六单元《概率初步》测试(答案解析)

一、选择题1.投掷一枚质地均匀的硬币4次,其中3次正面向上,1次反面向上,则第5次掷出反面向上的概率为()A.12B.13C.14D.152.下列说法正确的是()A.一颗质地硬币已连续抛掷了5次,其中抛掷出正面的次数为1次,则第6次一定抛掷出为正面B.某种彩票中奖的概率是2%,因此买100张该种彩票一定会中奖C.天气预报说2020年元旦节紫云下雨的概率是50%,所以紫云2020年元旦节这天将有一半时间在下雨D.某口袋中有红球3个,每次摸出一个球是红球的概率为100%3.下列事件中,是必然事件的为()A.明天会下雨B.x是实数,x2<0C.两个奇数之和为偶数D.异号两数相加,和为负数4.下列说法正确的是()A.明天会下雨是必然事件B.不可能事件发生的概率是0C.在水平的桌面上任意抛掷一枚图钉,一定针尖向下D.投掷一枚之地近月的硬币1000次,正面朝下的次数一定是500次5.下列事件中,是必然事件的是( )A.任意掷一枚质地均匀的骰子,掷出的点数是奇数B.操场上小明抛出的篮球会下落C.车辆随机到达一个路口,刚好遇到红灯D.明天气温高达30C ,一定能见到明媚的阳光6.下列说法正确的是()A.要了解我市居民的低碳生活状况,适宜采用抽样调查的方法B.一组数据2,2,3,6的众数和中位数都是2C.“掷一枚硬币正面朝上的概率是12”,表示每抛硬币2次就有1次正面朝上D.随机抽取甲乙两名同学的5次数学成绩,平均分都是90分,方差分别是S甲2=5,S乙2=10,说明乙的成绩较为稳定7.下列事件中,是必然事件的是()A.任意掷一枚骰子一定出现奇数点 B.彩票中奖率20%,买5张一定中奖C.晚间天气预报说明天有小到中雪 D.在13同学中至少有2人生肖相同8.气象台预报“本市明天降水概率是83%”。

对此信息,下列说法正确的是()A.本市明天将有83%的时间降水 B.本市明天将有83%的地区降水C.本市明天肯定下雨 D.本市明天降水的可能性比较大9.下列关于事件发生可能性的表述,正确的是()A.事件:“在地面,向上抛石子后落在地上”,该事件是随机事件; B.体育彩票的中奖率为10%,则买100张彩票必有10张中奖;C.掷两枚硬币,朝上的一面是一正面一反面的概率为1 3 ;D.在同批次10000件产品中抽取100件发现有5件次品,则这批产品中大约有500件左右的次品.10.抛掷一枚质地均匀的硬币,“反面朝上”的概率为12,那么抛掷一枚质地均匀的硬币100次,下列理解正确的是()A.每两次必有1次反面朝上B.可能有50次反面朝上C.必有50次反面朝上D.不可能有100次反面朝上11.下列事件中,是必然事件的是()A.明天太阳从西边出来B.打开电视,正在播放《云南新闻》C.昆明是云南的省会D.小明跑完800米所用的时间恰好为1分钟12.如图,在3×3的正方形网格中,有三个小正方形己经涂成灰色,若再任意涂灰1个白色的小正方形(每个白色的小正方形被涂成灰色的可能性相同),使新构成灰色部分的图形是轴对称图形的概率是()A.19B.16C.29D.13二、填空题13.在不透明的口袋里装有4个黑色棋子和若干白色棋子,每个棋子除颜色外完全相同.从口袋里随机摸出一个棋子,摸到黑球的概率是25,则白色棋子个数为________________________.14.必然事件发生的概率是____.15.一个袋中装有m个红球,10个黄球,n个白球,每个球除颜色外都相同,任意摸出一个球,摸到黄球的概率与不是黄球的概率相同,那么m与n的关系是________.16.如图是一个可以自由转动的转盘,被等分成六个扇形.请在转盘适当的扇形区域内涂上阴影,使自由转动的该转盘停止转动时,指针指向阴影区域的概率是_____.17.一个口袋里有相同的红、绿、黄三种颜色的小球,其中有6个红球,5个绿球.若任意摸出一个绿球的概率是14,则任意摸出一个黄球的概率是_____.18.“a是实数,|a|<0”这一事件是_____事件.19.已知一包糖果共有5种颜色(糖果只有颜色差别),如图是这包糖果分布百分比的统计图,在这包糖果中任意取一粒,则取出糖果的颜色为绿色或棕色的概率是_________.20.一袋中装有5个红球、4个白球和3个黄球,每个球除颜色外都相同.从中任意摸出一个球,则:P(摸到红球)=______,P(摸到白球)=_______.三、解答题21.一个口袋中放有290个涂有红、黑、白三种色的质地相同的小球,若红球个数是黑球个数的2倍多3个,从袋中任取一个球是白球的概率是1 10.(1)求袋中红球的个数.(2)求从袋中任取一个球是黑球的概率.22.如图,有一个转盘被分成6个相等的扇形,颜色分为红、绿、黄三种,指针的位置固定,转动转盘后任其自由停止,其中的某个扇形会恰好停在指针所指的位置(指针指向两个扇形的交线时,重新转动).下列事件:①指针指向红色;②指针指向绿色;(③指针指向黄色;④指针不指向黄色,估计各事件的可能性大小,完成下列问题.(1)④事件发生的可能性大小是;(2)多次实验,指针指向绿色的频率的估计值是;(3)将这些事件的序号按发生的可能性从小到大的顺序排列为: <<< .23.一个不透明袋中装有红、黄、绿三种颜色的球共36个,它们除颜色外都相同,其中黄球个数是绿球个数的2倍,已知从袋中摸出一个球是红球的概率为13.(1)分别求红球和绿球的个数.(2)求从袋中随机摸出一球是绿球的概率.24.如图,一个可以自由转动的转盘被均匀的分成了20个扇形区域,其中一部分被阴影覆盖.(1)转动转盘,当转盘停止时,指针落在阴影部分的概率是多少?(2)试再选一部分扇形涂上阴影,使得转动转盘,当转盘停止时,指针落在阴影部分的概率变为12.25.盒子里装有12张红色卡片,16张黄色卡片,4张黑色卡片和若干张蓝色卡片,每张卡片除颜色外都相同,从中任意摸出一张卡片,摸到红色卡片的概率是0.24.(1)从中任意摸出一张卡片,摸到黑色卡片的概率是多少?(2)求盒子里蓝色卡片的个数.26.摆棋子游戏:现有4个棋子A,B,C,D,要求棋子A必须摆放在第一位置,其余3个随机摆放在第二、三、四的位置.(1)请你列举出所有摆放的可能情况;(2)求出棋子C摆放在偶数位置的概率.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】先确定掷硬币共有正面和反面两种可能性,后根据概率计算公式计算即可.【详解】∵掷硬币共有正面和反面两种可能性,∴第5次掷出反面向上的概率为:12;故选A.【点睛】本题考查了简单概率的计算,准确计算事件的所有等可能性和事件A的等可能性是解题的关键.2.D解析:D【分析】概率是反映事件发生机会的大小的概念,只是表示发生的机会的大小,机会大也不一定发生.【详解】解:A、一颗质地硬币已连续抛掷了5次,其中抛掷出正面的次数为1次,则第6次一定抛掷出为正面,是随机事件,错误;B、某种彩票中奖的概率是2%,因此买100张该种彩票不一定会中奖,错误;C、下雨的概率是50%,是说明天下雨的可能性是50%,而不是明天将有一半时间在下雨,错误;D、正确.故选:D.【点睛】正确理解概率的含义是解决本题的关键.注意随机事件的条件不同,发生的可能性也不等.3.C解析:C【解析】【分析】直接利用随机事件以及必然事件、不可能事件分别分析得出答案.【详解】A、明天会下雨是随机事件,故此选项错误;B、x是实数,x2<0,是不可能事件,故此选项错误;C、两个奇数之和为偶数,是必然事件,正确;D、异号两数相加,和为负数是随机事件,故此选项错误.故选C.【点睛】此题主要考查了随机事件、必然事件、不可能事件,正确把握相关时间的定义是解题关键.4.B解析:B【解析】【分析】根据确定事件,不确定事件的定义;随机事件概率的意义;找到正确选项即可.【详解】A.每天可能下雨,也可能不下雨,是不确定事件,故该选项不符合题意,B.不可能事件发生的概率是0,正确,故该选项符合题意,C.在水平的桌面上任意抛掷一枚图钉,一定针尖向上,故该选项不符合题意,D.投掷一枚之地近月的硬币1000次,正面朝下的次数不一定是500次,故该选项不符合题意,故选B.【点睛】本题主要考查了事件的可能性的大小,掌握事件的类型及发生的概率是解题的关键.5.B解析:B【分析】根据必然事件的概念作出判断即可解答.【详解】解:A、抛任意掷一枚质地均匀的骰子,掷出的点数是奇数是随机事件,故A错误;B、操场上小明抛出的篮球会下落是必然事件,故B正确;C、车辆随机到达一个路口,刚好遇到红灯是随机事件,故C错误;D、明天气温高达30C ,一定能见到明媚的阳光是随机事件,故D错误;故选B.【点睛】本题考查了必然事件的定义,必然事件指在一定条件下一定发生的事件,熟练掌握是解题的关键.6.A解析:A【解析】【分析】根据抽样调查的可靠性和适用情况、众数和中位数的定义、概率的意义及方差的意义逐一判断即可得.【详解】A.要了解我市居民的低碳生活状况,适宜采用抽样调查的方法,此选项正确;B.一组数据2,2,3,6的众数是2,中位数是2.5,此选项错误;C.“掷一枚硬币正面朝上的概率是”,表示每抛硬币2次可能有1次正面朝上,此选项错误;D.随机抽取甲乙两名同学的5次数学成绩,平均分都是90分,方差分别是S甲2=5,S乙2=10,说明甲的成绩较为稳定;故选A.【点睛】本题主要考查概率的意义,解题的关键是掌握抽样调查的可靠性和适用情况、众数和中位数的定义、概率的意义及方差的意义.7.D解析:D【解析】【分析】根据概率的相关知识,判断出一定会发生的事情即可解出本题答案.【详解】A. 任意掷一枚骰子一定出现奇数点,可能出现偶数点,错误;B. 彩票中奖率20%,买5张一定中奖,是总票数的20%,那五张有可能在80%不中奖的里面,错误;C. 晚间天气预报说明天有小到中雪,天气预报预测的是可能的天气,并不确定,错误;D. 在13同学中至少有2人生肖相同,生肖一共十二个,正确.故答案为:D.【点睛】本题考查了概率的相关知识,熟练掌握该知识点是本题解题的关键.8.D解析:D【解析】【分析】根据概率的意义找到正确选项即可.【详解】解:本市明天降水概率是83%,只说明明天降水的可能性比较大,是随机事件,A,B,C 属于对题意的误解,只有D正确.故选:D.【点睛】关键是理解概率表示随机事件发生的可能性大小:可能发生,也可能不发生.9.D解析:D【解析】【分析】根据必然事件、不可能事件、随机事件的概念可区别各类事件.【详解】A. 事件:“在地面,向上抛石子后落在地上”,该事件是必然事件,所以A错误;B. 体育彩票的中奖率为10%,则买100张彩票不一定10张中奖,所以B错误;C. 掷两枚硬币,朝上的一面是一正面一反面的概率为1,2C所以错误;D. 在同批次10000件产品中抽取100件发现有5件次品,则这批产品中大约有500件左右的次品,所以D正确.故选D.【点睛】本题考查的是概率,熟练掌握概率的计算方法是解题的关键.10.B 解析:B 【分析】“反面朝上”的概率为12,实验问题指的是大数次的实验,实验的结果会稳定于某个值,利用概率公式,总实验100次,概率只是一种可能性由公式可能有50次反面出现即可.【详解】抛掷一枚质地均匀的硬币,“反面朝上”的概率为12,如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=mn=12.m=12n,n=抛掷一枚质地均匀的硬币100次,m=12×100=50.故选:B.【点睛】本题考查了等可能事件的概率的求解,概率是随机事件的概率,反应是一种可能性,掌握概率意义,会用公式解决问题.11.C解析:C【分析】根据必然事件、随机事件、不可能事件的定义逐项判断即可得.【详解】A、“明天太阳从西边出来”是不可能事件,此项不符题意;B、“打开电视,正在播放《云南新闻》”是随机事件,此项不符题意;C、“昆明是云南的省会”是必然事件,此项符合题意;D、“小明跑完800米所用的时间恰好为1分钟”是随机事件,此项不符题意;故选:C.【点睛】本题考查了必然事件、随机事件、不可能事件,掌握理解各定义是解题关键.12.D解析:D【分析】直接利用轴对称图形的性质分析得出答案.【详解】如图所示:当1,2两个分别涂成灰色,新构成灰色部分的图形是轴对称图形,故新构成灰色部分的图形是轴对称图形的概率是:21 63 .故选D.【点睛】此题主要考查了利用轴对称设计图案,正确掌握轴对称图形的性质是解题关键.二、填空题13.【分析】设白色棋子的个数为x利用概率公式得到然后求出x即可【详解】解:设白色棋子的个数为x根据题意得解得x=6即白色棋子的个数为6故答案为6【点睛】本题考查了概率公式:随机事件A的概率P(A)=事件解析:6【分析】设白色棋子的个数为x,利用概率公式得到4245x,然后求出x即可.【详解】解:设白色棋子的个数为x,根据题意得4245x,解得x=6,即白色棋子的个数为6.故答案为6.【点睛】本题考查了概率公式:随机事件A的概率P(A)=事件A可能出现的结果数除以所有可能出现的结果数.14.1【分析】必然事件就是一定会发生的事件它的概率为1【详解】必然事件发生的概率是1即P(必然事件)=1故答案为1【点睛】本题考查了随机事件解决本题需要正确理解必然事件不可能事件随机事件的概念必然事件指解析:1【分析】必然事件就是一定会发生的事件,它的概率为1.【详解】必然事件发生的概率是1,即P(必然事件)=1.故答案为1.【点睛】本题考查了随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.15.m+n=10【分析】直接利用概率相同的频数相同进而得出答案【详解】∵一个袋中装有m个红球10个黄球n个白球摸到黄球的概率与不是黄球的概率相同∴m与n的关系是:m+n=10故答案为m+n=10【点睛】解析:m+n=10.【分析】直接利用概率相同的频数相同进而得出答案.【详解】∵一个袋中装有m个红球,10个黄球,n个白球,摸到黄球的概率与不是黄球的概率相同,∴m与n的关系是:m+n=10.故答案为m+n=10.【点睛】此题主要考查了概率公式,正确理解概率求法是解题关键.16.【解析】【分析】根据几何概率的求法:指针落在阴影区域的概率就是阴影区域的面积与总面积的比值【详解】如图所示:因为整个圆面被平均分成6个部分其中阴影部分占3份时指针落在阴影区域的概率为:【点睛】本题考解析:1 2【解析】【分析】根据几何概率的求法:指针落在阴影区域的概率就是阴影区域的面积与总面积的比值.【详解】如图所示:因为整个圆面被平均分成6个部分,其中阴影部分占3份时,指针落在阴影区域的概率为: 3162,【点睛】本题考查了几何概率的求法:首先根据题意将代数关系用面积表示出来,一般用阴影区域表示所求事件(A);然后计算阴影区域的面积在总面积中占的比例,这个比例即事件(A)发生的概率. 17.【解析】【分析】由一个口袋里有相同的红绿黄三种颜色的小球其中有6个红球5个绿球若任意摸出一个绿球的概率是可求得球的总个数继而求得黄球的个数然后利用概率公式求解即可求得答案【详解】解:∵一个口袋里有相20【解析】【分析】由一个口袋里有相同的红、绿、黄三种颜色的小球,其中有6个红球,5个绿球.若任意摸出一个绿球的概率是14,可求得球的总个数,继而求得黄球的个数,然后利用概率公式求解即可求得答案.【详解】解:∵一个口袋里有相同的红、绿、黄三种颜色的小球,其中有6个红球,5个绿球.任意摸出一个绿球的概率是14,∴共有球:5÷14=20(个),∴黄球有:20﹣6﹣5=9(个),∴任意摸出一个黄球的概率是:920.故答案为:9 20.【点睛】此题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.18.不可能【解析】【分析】根据事件发生的可能性大小判断相应事件的类型即可【详解】解:a是实数|a|<0这一事件是不可能事件故答案为不可能【点睛】本题考查必然事件不可能事件随机事件的概念必然事件指在一定条解析:不可能【解析】【分析】根据事件发生的可能性大小判断相应事件的类型即可.【详解】解:“a是实数,|a|<0”这一事件是不可能事件.故答案为不可能.【点睛】本题考查必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.19.【解析】试题分析:先求出棕色所占的百分比再根据概率公式列式计算即可得解棕色所占的百分比为:1﹣20﹣15﹣30﹣15=1﹣80=20所以P(绿色或棕色)=30+20=50=考点:(1)概率公式;(22【解析】试题分析:先求出棕色所占的百分比,再根据概率公式列式计算即可得解.棕色所占的百分比为:1﹣20%﹣15%﹣30%﹣15%=1﹣80%=20%,所以,P(绿色或棕色)=30%+20%=50%=.考点:(1)、概率公式;(2)、扇形统计图20.【解析】∵有5个红球4个白球和3个黄球∴总球数是:5+4+3=12(个)∴P(摸到红球)=;P(摸到白球)==;故答案为:解析:51213【解析】∵有5个红球、4个白球和3个黄球,∴总球数是:5+4+3=12(个),∴P(摸到红球)= 512;P(摸到白球)=412=13;故答案为:512,13.三、解答题21.(1)袋中红球的个数为175个;(2)从袋中任取一个球是黑球的概率为43 145.【解析】【分析】先求得白球的数量,再设黑球数量为x则可得2x+3+x=290﹣29,解得x=86,即可求得红球的数量.由(1)得出黑球的数量再除以总数量即可.【详解】(1)∵一个口袋中放有290个涂有红、黑、白三种色的质地相同的小球,从袋中任取一个球是白球的概率是110,∴白球的个数为:290×110=29(个),设黑球的个数为x个,则2x+3+x=290﹣29,解得:x=86,则2x+3=175,答:袋中红球的个数为175个;(2)由(1)得:从袋中任取一个球是黑球的概率为:86290=43145.【点睛】本题考查概率公式,熟练掌握概率的计算法则是解题关键.22.(1)23;(2)16;(3)②、③、①、④.【解析】【分析】(1)共3红2黄1绿相等的六部分,④指针不指向黄色的可能性大小为42 63 =;(2)共3红2黄1绿相等的六部分,②指针指向绿色的概率为16;(3)分别求出摸出各种颜色球的概率,即可比较出摸出何种颜色球的可能性大.【详解】解:(1) ∵共3红2黄1绿相等的六部分,∴④指针不指向黄色的可能性大小为4263=,则④事件发生的可能性大小是23;(2) ∵共3红2黄1绿相等的六部分,∴②指针指向绿色的概率为16,则多次实验,指针指向绿色的频率的估计值是16;(3) ∵共3红2黄1绿相等的六部分,∴①指针指向红色的概率为31=62,③指针指向黄色的概率为21=63,将这些事件的序号按发生的可能性从小到大的顺序排列为:②<③<①<④ .【点睛】本题考查的是可能性大小的判断,解决这类题目要注意具体情况具体对待.用到的知识点为:可能性等于所求情况数与总情况数之比.23.(1)红球有16个,绿球有8个;(2)2 9【解析】【分析】(1)根据红、黄、白三种颜色球共有的个数乘以红球的概率即可求得红球的个数,设绿球有x个,则黄球有2x个,根据球的总个数列出方程求出x的值即可得;(2)用绿球的个数除以总的球数即可.【详解】(1)红球个数:3613⨯=12(个),设绿球有x个,则黄球有2x个,根据题意,得:x+2x+12=36,解得:x=8,所以红球有16个,绿球有8个.(2)从袋中随机摸出一球,共有36种等可能的结果,其中摸出绿球的结果有8种,所以从袋中随机摸出一球是绿球的概率为82 369=.【点睛】本题考查了概率公式:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)mn =.24.(1)310;(2)12【解析】【分析】(1)利用概率公式进行计算即可(2)利用概率公式计算出当有10个阴影时指针落在阴影部分的概率变为12,即可解答【详解】解:(1)指针落在阴影部分的概率是63= 2010;(2)当转盘停止时,指针落在阴影部分的概率变为12.如图所示:【点睛】此题考查概率公式,难度不大25.(1)摸到黑色卡片的概率是0.08;(2)盒子里蓝色卡片的个数是18.【解析】【分析】(1)根据概率的定义和任意抽出一张是红色卡片的概率为0.24求出卡片的总张数,再根据概率公式求出摸到黑色卡片的概率;(2)用卡片的总张数分别减去红色卡片,黄色卡片,黑色卡片的张数,即可得出蓝色卡片张数.【详解】(1)由题意得卡片的总张数为120.24=50,则任意摸出一张卡片,摸到黑色卡片的概率是450=0.08;(2)盒子里蓝色卡片的个数是:50﹣12﹣16﹣4=18.【点睛】本题考查了概率公式:概率=所求情况数与总情况数之比.26.(1)所有的可能为:1.ABCD;2.ABDC;3.ACBD;4.ACDB;5.ADBC;6.ADCB;(2)由(1)可知棋子C摆放在偶数位置的概率为23.【解析】试题分析:(1)由题意要求利用列举法即可得所有摆放的可能情况;(2)由(1)中情况,很容易得棋子C摆放在偶数位置的概率.试题(1)所有的可能为:1.ABCD;2.ABDC;3.ACBD;4.ACDB;5.ADBC;6.ADCB.(2)由(1)可知棋子C摆放在偶数位置的概率为42 63 .考点:列表法与树状图法.。

北师大版数学七下第六章《概率初步》单元测试卷(精)

北师大版数学七下第六章《概率初步》单元测试卷(精)

新街中学七(下)数学 第六章(概率初步)检测题一、填空题1游戏的公平性是指双方获胜的概率 __________________________。

2、 一般地,就事件发生的可能性而言,可将事件分为 ________________ 、 _________ 和 ________3、 有一组卡片,制作的颜色,大小相同,分别标有 0~10这11个数字,现在将 它们背面向上任意颠倒次序,然后放好后任取一组,则:(1) _____________________________ P (抽到两位数)= ; (2)P (抽到一位数)=_;(3) ______________________________________ P (抽到的数是 2的倍数)= ; (4) __________________________________ P (抽到的数大于 10)= ; 4、 学校升旗要求学生穿校服,但有一些粗心大意的学生忘记了,若 500名学生中没有穿校服的学生为 25名,则任意叫出一名学生,没穿校服的概率 为 __________ ;穿校服的概率为 _____________ 。

5、 轰炸机练习空中投靶,靶子是在空地上的一个巨型正方形铁板,板上画有大 小相同的36个小正方形,其中 6个红色,30个黑色,那么投中红色小正方形的 概率为 ___________ 。

6、某中学学生情况如右表:若任意抽取一名该校的学生,是高中生的概率 是 __________ ;是女生的概率是 ______________ 。

P (抽到红球) P (抽到白球)(填“ >”或“ <”)。

8、小明和爸爸进行射击比赛,他们每人都射击10次。

小明击中靶心的概率为0.6,则他击不中靶心的次数为 ______________ ;爸爸击中靶心 8次,则他击不中 革巴心的概率为 ____________二、选择题9、如图所示的圆盘中三个扇形大小相同,则指针落在黄区域的 概率是()高中(人)初中(人)女生 200 450 男生5008507、一只口袋中 有4只红 球和5个白球,从袋中任摸出一个球,则1 1B.2712 2710、某电视综艺节目接到热线电话3000个。

北师大版数学七下第六章《概率初步》单元测试卷(精)

北师大版数学七下第六章《概率初步》单元测试卷(精)

新街中学七(下)数学 第六章(概率初步)检测题一、填空题1、游戏的公平性是指双方获胜的概率 。

2、一般地,就事件发生的可能性而言,可将事件分为 、 和 。

3、有一组卡片,制作的颜色,大小相同,分别标有0~10这11个数字,现在将 它们背面向上任意颠倒次序,然后放好后任取一组,则: (1)P (抽到两位数)= ; (2)P (抽到一位数)= ; (3)P (抽到的数是2的倍数)= ; (4)P (抽到的数大于10)= ;4、学校升旗要求学生穿校服,但有一些粗心大意的学生忘记了,若500名学生 中没有穿校服的学生为25名,则任意叫出一名学生,没穿校服的概率 为 ;穿校服的概率为 。

5、轰炸机练习空中投靶,靶子是在空地上的一个巨型正方形铁板,板上画有大 小相同的36个小正方形,其中6个红色,30个黑色,那么投中红色小正方形的 概率为 。

6、某中学学生情况如右表:若任意抽取一名该校的学生,是高中生的概率 是 ;是女生的概率是 。

7、一只口袋中有4只红球和5个白球,从袋中任摸出一个球,则P (抽到红球) P (抽到白球)(填“>”或“<”)。

8、小明和爸爸进行射击比赛,他们每人都射击10次。

小明击中靶心的概率为 0.6,则他击不中靶心的次数为 ;爸爸击中靶心8次,则他击不中 靶心的概率为 。

二、选择题9、如图所示的圆盘中三个扇形大小相同,则指针落在黄区域的 概率是( )A 、21 B 、31 C 、41 D 、6110、某电视综艺节目接到热线电话3000个。

现要从中抽取“幸运观众”10名, 张华同学打通了一次热线电话,那么他成为“幸运观众”的概率为( )A 、B 、C 、D 、0 11、下列各事件中,发生概率为0的是( )A 、掷一枚骰子,出现6点朝上B 、太阳从东方升起C 、若干年后,地球会发生大爆炸D 、全学校共有1500人,从中任意抽出两人,他们的生日完全不同 12、转动下列各转盘,指针指向红色区域的概率最大的是( )13、小明和三名女生、四名男生一起玩丢手帕游戏,小明随意将手帕丢在一名同 学的后面,那么这名同学是女生的概率为( )A 、0B 、83 C 、73D 、无法确定 14、一箱灯泡有24个,合格率为80%,从中任意拿一个是次品的概率为( )A 、51 B 、80% C 、2420D 、1 15.黑暗中小明从他的一大串钥匙中,随便选择一把,用它开门,下列叙述正确的是( ) A.能开门的可能性大于不能开门的可能性 B.不能开门的可能性大于能开门的可能性 C.能开门的可能性与不能开门的可能性相等 D.无法确定16.一个口袋内装有大小和形状相同的一个白球和两个红球,“从中任取一球,得到白球”这个事件是( )A.必然事件B.不能确定事件C.不可能事件D.不能确定17.将一个各面涂有颜色的正方体,分割成同样大小的27个小正方体,从这些正方体中任取一个,恰有3个面涂有颜色的概率是 ( )A.2719 B.2712 C.32D.278 三、解答题18、用自己的语言解释下列问题: A B C D(1)一种彩票的中奖率为10001,你买1000张,一定中奖吗? (2)一种彩票的中奖率为五百万分之一,你买一张一定不能中奖吗?21、如图是芳芳设计的自由转动的转盘,上面写有10个有理数。

2023年北师大版七年级数学下册第六章《概率初步》试题卷附答案解析

2023年北师大版七年级数学下册第六章《概率初步》试题卷附答案解析

2023年北师大版七年级数学下册第六章《概率初步》试题卷一、单选题1.下列事件中,是确定事件的是()A.掷一枚硬币,正面朝上B.三角形的内角和是180C.明天会下雨D.明天的数学测验,小明会得满分2.下列语句所描述的事件是随机事件的是()A.两点决定一直线B.清明时节雨纷纷C.没有水分,种子发芽D.太阳从东方升起3.小明过马路时,恰好是红灯.这个事件是()A.必然事件B.随机事件C.不可能事件D.不确定事件4.在“石头、剪刀、布”游戏中,对方出“剪刀”.这个事件是()A.必然事件B.随机事件C.不可能事件D.确定性事件5.一个不透明的袋子里装有3个红球,2个黄球,1个白球,这些球除颜色外无其他差别,从袋子中随机取出一个球,取出球的颜色可能性最大的是()A.红色B.黄色C.白色D.可能性一样大6.一个不透明的袋子中只装有8个除颜色外完全相同的小球,其中4个红球,3个黄球,1个黑球.从中随机摸出一个小球,摸到红球的概率是()A.12B.14C.18D.387.不透明的袋子中装有3个红球和2个白球,这些球除了颜色外都相同,从袋子中随机地摸出1个球,则这个球都是红球..的概率是()A.15B.35C.23D.138.有20瓶饮料,其中有2瓶已过保质期,小明从20瓶饮料中任取1瓶,那么他取到没有过保质期的饮料的概率是()A.910 B.110 C.118 D.1209.某小组在“用频率估计概率”的实验中,统计了某种结果出现的频率,绘制了如图所示的折线图,那么符合这一结果的实验最有可能的是()A.袋子中有1个红球和2个黄球,它们只有颜色上的区别,从中随机地取出一个球是黄球B.掷一枚质地均匀的硬币,落地时结果是“正面向上”C.掷一个质地均匀的正六面体骰子,落地时面朝上的点数是2D.从一副扑克牌中随机抽取一张,抽到的牌是梅花10.一个布袋里装有2个红球,3个白球和a个黄球,这些球除颜色外其余都相同,若从布袋里任意摸出1个球是红球的概率为14,则a等于()A.1B.2C.3D.4二、填空题11.一只不透明的袋子中有1个白球,100个黄球,这些球除颜色外都相同,将球搅匀,从中任意摸出一个球是白球;这一事件是___________事件.(填“必然”、“随机”、“不可能”)12.一个不透明的布袋里装有6个只有颜色不同的球,其中有1个黑球、2个白球、3个红球,从布袋里随机摸出1个球,摸出白球的概率为_________.13.现分别有长2cm和5cm的两条线段,再从下列长度:1cm、2cm、3cm、4cm、5cm、6cm、7cm、8cm的线段中随机选取一条组成一个三角形,那么能组成三角形的概率是_____.14.在一个不透明的箱子中有黄球和红球共6个,它们除颜色外都相同,若任意摸出一个球,摸到红球的概率为23,则这个箱子中红球的个数为________个.15.某公司组织内部抽奖活动,共准备了100张奖券,设一等奖10个,二等奖20个,三等奖30个.若每张奖券获奖的可能性相同,则随机抽一张奖券中一等奖的概率为______.16.如图,一块飞镖游戏板由大小相等的小正方形格子构成.向游戏板随机投掷一枚飞镖(每次飞镖均落在纸板上),则击中阴影区域的概率是___________.17.一个不透明的口袋中装有红色、黄色、蓝色玻璃球共200个,这些球除颜色外都相同.小明通过大量随机摸球试验后,发现摸到红球的频率稳定在30%左右,则可估计红球的个数约为_______.18.不透明的布袋中装有除颜色外完全相同的10个球,其中红色球有m个,如果从布袋中任意摸出一个球恰好为红色球的概率是15,那么m ________.19.不透明袋子中装有7个球,其中有4个红球,3个白球,这些球除颜色外无其他差别,从袋子中随机取出1个球,则它是红球的概率是_____.20.因疫情原因,杭州亚运会定于2023年9月23日至10月8日举行,名称仍为杭州2022年第19届亚运会.莲莲从网上购买杭州2022年第19届亚运会吉祥物(如图)一件,则物流配送的恰好是“莲莲”的概率为________.三、解答题21.在一个不透明的盒子里装有除颜色外完全相同的红、白、黑三种颜色的球.其中红球3个,白球5个,黑球若干个,若从中任意摸出一个白球的概率是1 3.(1)求任意摸出一个球是黑球的概率;(2)能否通过只改变盒子中白球的数量,使得任意摸出一个球是红球的概率1 4若能,请写出如何调整白球数量;若不能,请说明理由.21.如图,转盘被分成六个相同的扇形,并在上面依次写上数字:2,3,4,5,6,7.指针的位置固定,转动转盘后任其自由停止.(1)当转盘停止时,指针指向奇数区域的概率是多少?(2)当转盘停止时,指针指向的数小于或等于5的概率是多少?23.“十一”黄金周期间,某购物广场举办迎国庆有奖销售活动,每购物满100元,就会有一次转动大转盘的机会,请你根据大转盘(如图)来计算:(1)享受七折优惠的概率;(2)得20元的概率;(3)得10元的概率;(4)中奖得钱的概率是多少?24.如图,转盘被分成六个相同的扇形,并在上面依次写上数字:2,3,4,5,6,7.指针的位置固定,转动转盘后任其自由停止.(1)当转盘停止时,指针指向奇数区域的概率是多少?(2)当转盘停止时,指针指向的数小于或等于5的概率是多少?25.如图,有一个可以自由转动的转盘,被均匀分成5等份,分别标上1、2、3、4、5五个数字,转动转盘一次,当转盘停止后,指针指向的数字即为转出的数字.(1)转出的数字是3的概率是多少?(2)转出的数字小于4的概率是多少?(3)转出的数字是偶数的概率是多少?(4)甲乙两人玩一个游戏,其规则如下:任意转动转盘一次,如果转出的数字是偶数,则甲胜;如果转出的数字是奇数,则乙胜.你认为这样的游戏规则对甲、乙两人是否公平?为什么?26如图,转盘被分成六个相同的扇形,并在上面依次写上数字:2,3,4,5,6,7.指针的位置固定,转动转盘后任其自由停止.(1)当转盘停止时,指针指向奇数区域的概率是多少?(2)当转盘停止时,指针指向的数小于或等于5的概率是多少?解答1.B2.B3.B4.B5.A6.A7.B8.A9.C10.C11.随机12.1313.3814.415.0.116.5917.6018.2194720.1321.在一个不透明的盒子里装有除颜色外完全相同的红、白、黑三种颜色的球.其中红球3个,白球5个,黑球若干个,若从中任意摸出一个白球的概率是1 3.(1)求任意摸出一个球是黑球的概率;(2)能否通过只改变盒子中白球的数量,使得任意摸出一个球是红球的概率1 4若能,请写出如何调整白球数量;若不能,请说明理由.(1)解:∵红球3个,白球5个,黑球若干个,从中任意摸出一个白球的概率是1 3,∴盒子中球的总数为:15153÷=(个),∴盒子中黑球的个数为:15357--=(个);∴任意摸出一个球是黑球的概率为:7 15;(2)解:∵任意摸出一个球是红球的概率为1 4∴盒子中球的总量为:13124÷=,∴可以将盒子中的白球拿出3个.14.如图,转盘被分成六个相同的扇形,并在上面依次写上数字:2,3,4,5,6,7.指针的位置固定,转动转盘后任其自由停止.(1)当转盘停止时,指针指向奇数区域的概率是多少?(2)当转盘停止时,指针指向的数小于或等于5的概率是多少?(1)解:当转盘停止转动时,指针指向数字区域2,3,4,5,6,7的机会是均等的,故共有6种均等的结果,其中指针指向奇数区域3,5,7有3种结果,所以指针指向奇数区域的概率是31 62 =;(2)解:当转盘停止转动时,指针指向数字区域2,3,4,5,6,7的机会是均等的,故共有6种均等的结果,其中指针指向的数小于或等于5区域2,3,4,5有4种结果,所以指针指向的数小于或等于5的概率是42 63 =.23.“十一”黄金周期间,某购物广场举办迎国庆有奖销售活动,每购物满100元,就会有一次转动大转盘的机会,请你根据大转盘(如图)来计算:(1)享受七折优惠的概率;(2)得20元的概率;(3)得10元的概率;(4)中奖得钱的概率是多少?解:(1)享受七折优惠的概率为802 3609=;(2)得20元的概率为901 3604=;(3)得10元的概率为1201 3603=;(4)中奖得钱的概率是906060736012++=.24.如图,转盘被分成六个相同的扇形,并在上面依次写上数字:2,3,4,5,6,7.指针的位置固定,转动转盘后任其自由停止.(1)当转盘停止时,指针指向奇数区域的概率是多少?(2)当转盘停止时,指针指向的数小于或等于5的概率是多少?(1)解:当转盘停止转动时,指针指向数字区域2,3,4,5,6,7的机会是均等的,故共有6种均等的结果,其中指针指向奇数区域3,5,7有3种结果,所以指针指向奇数区域的概率是3162=;(3)解:当转盘停止转动时,指针指向数字区域2,3,4,5,6,7的机会是均等的,故共有6种均等的结果,其中指针指向的数小于或等于5区域2,3,4,5有4种结果,所以指针指向的数小于或等于5的概率是4263=.25.如图,有一个可以自由转动的转盘,被均匀分成5等份,分别标上1、2、3、4、5五个数字,转动转盘一次,当转盘停止后,指针指向的数字即为转出的数字.(1)转出的数字是3的概率是多少?(2)转出的数字小于4的概率是多少?(3)转出的数字是偶数的概率是多少?(4)甲乙两人玩一个游戏,其规则如下:任意转动转盘一次,如果转出的数字是偶数,则甲胜;如果转出的数字是奇数,则乙胜.你认为这样的游戏规则对甲、乙两人是否公平?为什么?解:(1)转盘共分为5份,数字3占其中一份,故转出的数字是3的概率为15(2)共有5种等可能结果,转出的数字小于4的有1、2、3共3个,所以转出的数字小于4的概率为35(3)共有5种等可能结果,转出的数字是偶数的有2、4两个数字,所以转出的数字是偶数的概率为25(4)不公平,转出的数字是偶数的概率为5转出的数字是奇数的概率为35.2355<,所以这样的游戏规则对甲、乙两人不公平26.如图,转盘被分成六个相同的扇形,并在上面依次写上数字:2,3,4,5,6,7.指针的位置固定,转动转盘后任其自由停止.(1)当转盘停止时,指针指向奇数区域的概率是多少?(2)当转盘停止时,指针指向的数小于或等于5的概率是多少?(1)解:当转盘停止转动时,指针指向数字区域2,3,4,5,6,7的机会是均等的,故共有6种均等的结果,其中指针指向奇数区域3,5,7有3种结果,所以指针指向奇数区域的概率是31 62 =;(2)解:当转盘停止转动时,指针指向数字区域2,3,4,5,6,7的机会是均等的,故共有6种均等的结果,其中指针指向的数小于或等于5区域2,3,4,5有4种结果,所以指针指向的数小于或等于5的概率是42 63 =.。

(好题)初中数学七年级数学下册第六单元《概率初步》测试题(有答案解析)

一、选择题1.学完《概率初步》这一章后,老师让同学结合实例说一说自己的认识,请你判断以下四位同学说法正确的是()A.小智说,做3次掷图钉试验,发现2次钉尖朝上,因此钉尖朝上的概率是2 3B.小慧说,某彩票的中奖概率是5%,那么如果买100张彩票一定会有5张中奖C.小通说,射击运动员射击一次只有两种结果:中靶与不中靶,所以它们发生的概率都是12D.小达做了20次抛掷均匀硬币的试验,其中有5次正面朝上,15次正面朝下,他认为再做一次,正面朝上的概率是二分之一2.下列事件是必然事件的是()A.太阳从西方升起B.若a<0,则|a|=﹣aC.打开电视正在播放动画片《喜羊羊与灰太狼》D.某运动员投篮时连续3次全中3.抛掷一枚质地均匀的硬币,正面朝上的概率为0.5,下列说法正确的是()A.大量反复抛掷每100次出现正面朝上50次B.连续抛掷10次不可能都正面朝上C.抛掷硬币确定谁先发球的规则是公平的D.连续抛掷2次必有1次正面朝上4.下列说法正确的是()A.抛掷一枚硬币10次,正面朝上必有5次;B.掷一颗骰子,点数一定不大于6;C.为了解某种灯光的使用寿命,宜采用普查的方法;D.“明天的降水概率为90%”,表示明天会有90%的地方下雨.5.在抛掷硬币的试验中,下列结论正确的是()A.经过大量重复的抛掷硬币试验,可发现“正面向上”的频率越来越稳定B.抛掷10000次硬币与抛掷12000次硬币“正面向上”的频率相同C.抛掷50000次硬币,可得“正面向上”的频率为0.5D.若抛掷2000次硬币“正面向上”的频率是0.518,则“正面向下”的频率也为0.5186.九年级一班在参加学校4×100米接力赛时,安排了甲,乙,丙,丁四位选手,他们比赛的顺序由抽签随机决定,则丙跑第一棒的概率为()A.14B.18C.112D.1167.下列事件中,是必然事件的是()A.任意掷一枚骰子一定出现奇数点 B.彩票中奖率20%,买5张一定中奖C.晚间天气预报说明天有小到中雪 D.在13同学中至少有2人生肖相同8.下列事件中,不可能事件是()A.今年的除夕夜会下雪B.在只装有红球的袋子里摸出一个黑球C.射击运动员射击一次,命中10环D.任意掷一枚硬币,正面朝上9.掷一枚质地均匀的硬币,前6次都是正面朝上,则掷第7次时正面朝上的概率是()A.1 B.67C.12D.010.某校开设了文艺、体育、科技和学术四类社团,要求每位学生从中任选一类社团参加.现统计出八年级(1)班40名学生参加社团的情况,如下图:如果从该班随机选出一名学生,那么该生是体育类社团成员的可能性大小是()A.15B.25C.14D.32011.抛掷一枚质地均匀的硬币,“反面朝上”的概率为12,那么抛掷一枚质地均匀的硬币100次,下列理解正确的是()A.每两次必有1次反面朝上B.可能有50次反面朝上C.必有50次反面朝上D.不可能有100次反面朝上12.下列成语描述的事件是必然事件的是()A.守株待兔B.翁中捉鳖C.画饼充饥D.水中捞月二、填空题13.掷一枚均匀的硬币,前20次抛掷的结果都是正面朝上,那么第21次抛掷的结果正面朝上的概率为______.14.图中有四个可以自由转动的转盘,每个转盘被分成若干等分,转动转盘,当转盘停止后,指针指向白色区域的概率相同的是()A.转盘②与转盘③B.转盘②与转盘④C.转盘③与转盘④D.转盘①与转盘④15.同时抛掷两个质地均匀的正方形骰子,骰子的六个面上分别刻有1到6的点数,则两个骰子向上的一面的点数和为6的概率为______.16.如图,一个圆形飞镖板被等分为四个圆心角相等的扇形.假设飞镖投中游戏板上的每一个点都是等可能的(若投中圆的边界、图中的分割线或没有投中,则重投1次),则任意投掷一次,飞镖投中阴影部分的概率是_______.17.从一副扑克牌中级抽取一张,①抽到王牌;②抽到Q;③抽到梅花.上述事件,概率最大的是_____.18.在不透明的袋子中有黑棋子10枚和白棋子若干(它们除颜色外都相同),现随机从中摸出10枚记下颜色后放回,这样连续做了10次,记录了如下的数据:次数12345678910黑棋数1302342113根据以上数据,估算袋中的白棋子数量为_______枚.19.盒中有6枚黑棋和n枚白棋,从中随机取一枚棋子,恰好是白棋的概率为14,则n的值为______.20.在围棋盒中有x颗白色棋子和y颗黑色棋子,从盒中随机取出一颗棋子,取得白色棋子的概率是25。

北师大版七年级下册数学第六章 概率初步含答案

北师大版七年级下册数学第六章概率初步含答案一、单选题(共15题,共计45分)1、小华做了一个试验:从反扣在桌面上牌面数字分别为6和8的牌中,抽出一张再放回去算一次试验,如果小华做了三次试验,那么所有的不同结果为()A.3种B.4种C.8种D.9种2、下列说法中,正确的是()A.为检测我市正在销售的酸奶质量,应该采用抽样调查的方式B.两名同学连续五次数学测试的平均分相同,方差较大的同学数学成绩更稳定C.抛掷一个正方体骰子,点数为奇数的概率是D.“打开电视,正在播放广告”是必然事件3、如图所示,在平行四边形纸片上作随机扎针实验,针头扎在阴影区域内的概率为()A. B. C. D.4、小江玩投掷飞镖的游戏,他设计了一个如图所示的靶子,E,F分别是矩形ABCD的边AB,CD的中点,连接DE和BF,分别取DE,BF的中点M,N.连接AM,CN,MN,则投掷一次,飞镖落在阴影部分的概率是()A. B. C. D.5、有一枚质地均匀的骰子,筛子的六个面上分别刻有1到6的点数,小刚同学掷一次骰子骰子,向上的一面出现的点数是偶数概率是( )A. B. C. D.6、某路口人行横道的信号灯为红灯和绿灯交替出现,红灯持续时间为40秒,绿灯持续时间为60秒.若小明同学来到该路口遇到红灯,则至少需要等待15秒才会出现绿灯的概率为()A. B. C. D.7、在六张卡片上分别写有,π,1.5,5,0,六个数,从中任意抽取一张,卡片上的数为无理数的概率是()A. B. C. D.8、一个质地均匀的小正方体,六个面分别标有数字“1”、“2”、“3”、“4”、“5”、“6”,掷小正方体后,观察朝上一面的数字出现偶数的概率是()A. B. C. D.9、掷一枚质地均匀的正方体骰子,朝上一面的点数大于2且小于5的概率为,抛两枚质地均匀的硬币,正面均朝上的概率为,则下列正确的是()A. B. C. D.不能确定10、下列随机事件:①在一副扑g牌中,抽一张是红桃;②抛掷一枚质地均匀的骰子,朝上一面是偶数;③抛一枚质地均匀的硬币,正面朝上;④不透明的袋子中有除颜色外完全相同的红球和白球各2个,摸出一个是白球,其中,概率为的是()A.①③B.①②③C.②③④D.①②③④11、一个不透明的袋子中有3个白球、2个黄球和1个红球,这些球除颜色可以不同外其他完全相同,则从袋子中随机摸出一个球是黄球的概率()A. B. C. D.12、掷一枚质地均匀的正方体骰子,骰子的六个面上分别标有1,2,3,4,5,6,的点数,掷得面朝上的点数为奇数的概率为()A. B. C. D.13、掷一枚六个面分别标有1,2,3,4,5,6的正方体骰子,则向上一面的数不大于4的概率是()A. B. C. D.14、如图,正方形ABCD内接于⊙O,⊙O的直径为分米,若在这个圆面上随意抛一粒豆子,则豆子落在正方形ABCD内的概率是().A. B. C. D.15、下列说法正确的是( )A.买一张福利彩票一定中奖,是必然事件.B.买一张福利彩票一定中奖,是不可能事件.C.抛掷一个正方体骰子,点数为奇数的概率是. D.一组数据:1,7,3,5,3的众数是3.二、填空题(共10题,共计30分)16、有一箱规格相同的红、黄两种颜色的小塑料球共1000个.为了估计这两种颜色的球各有多少个,小明将箱子里面的球搅匀后从中随机摸出一个球记下颜色,再把它放回箱子中,多次重复上述过程后.发现摸到红球的频率约为0.6,据此可以估计红球的个数约为________.17、如图,是某射手在相同条件下进行射击训练的结果统计图,该射手击中靶心的概率的估计值为________.18、如图,△ABC中,D、E、F分别是各边的中点,随机地向△ABC中内掷一粒米,则米粒落到阴影区域内的概率是________.19、在一个不透明的盒子中装有a个除颜色外完全相同的球,其中只有6个白球.若每次将球充分搅匀后,任意摸出1个球记下颜色后再放回盒子,通过大量重复试验后,发现摸到白球的频率稳定在20%左右,则a的值约为________.20、某校九年级(1)班计划开展“讲中国好故事”主题活动.第一小组的同学推荐了“北大红楼、脱贫攻坚、全面小康、南湖红船、抗疫精神、致敬英雄”六个主题,并将这六个主题分别写在六张完全相同的卡片上,然后将卡片放入不透明的口袋中.组长小东从口袋中随机抽取一张卡片,抽到含“红”字的主题卡片的概率是________.21、在一个不透明的袋子里有若干个白球,为估计白球个数,小东向其中投入10个黑球(与白球除颜色外均相同),搅拌均匀后随机摸出一个球,记下颜色,再把它放入袋中,不断重复这一过程,共摸球100次,发现有25次摸到黑球.请你估计这个袋中有________个白球.22、林业部门要考察某种幼树在一定条件下的移植成活率,下图是这种幼树在移植过程中幼树成活率的统计图:估计该种幼树在此条件下移植成活的概率为________(结果精确到0.01).23、从3,0,-1,-2,-3这五个数中.随机抽取一个数,作为函数和关于x的方程中m的值,恰好使函数的图象经过第一、三象限,且方程有实数根的概率是________.24、某水果公司新购进10000kg柑橘,每kg柑橘的成本为9元.柑橘在运输、存储过程中会有损坏,销售人员从所有的柑橘中随机抽取若干柑橘,进行“柑橘损坏率”统计,并把获得的数据记录如表所示:柑橘总重50 100 150 200 250 300 350 400 450 500 量n/kg5.50 10.50 15.15 19.42 24.25 30.93 35.32 39.24 44.57 51.54 损坏柑橘重量m/kg柑橘损坏0.110 0.105 0.101 0.097 0.097 0.103 0.101 0.098 0.099 0.103 的频率根据表中数据,估计柑橘损坏的概率为________(结果保留小数点后一位);由此可知,去掉损坏的柑橘后,水果公司为了不亏本,完好柑橘每kg的售价至少为________元.25、一个不透明的盒子中装有除颜色外部相同的20个小球.从中每次摸出一个球,记下颜色,再放回,如此反复,经多次摸取后,发现摸出红色小球的频率大约为40%,则盒子中红球的个数应为________ 个.三、解答题(共6题,共计25分)26、经过校园某路口的行人,可能左转,也可能直行或右转.假设这三种可能性相同,现有小明和小亮两人经过该路口,请用列表法或画树状图法,求两人之中至少有一人直行的概率.27、甲口袋中装有红色、绿色两把扇子,这两把扇子除颜色外无其他差别;乙口袋中装有红色、绿色两条手绢,这两条手绢除颜色外无其他差别.从甲口袋中随机取出一把扇子,从乙口袋中随机取出一条手绢,用画树状图或列表的方法,求取出的扇子和手绢都是红色的概率.28、某人承包了一池塘养鱼,他想估计一下收入情况.于是让他上初三的儿子帮忙.他儿子先让他从鱼塘里随意打捞上了60条鱼,把每条鱼都作上标记,放回鱼塘;过了2天,他让他父亲从鱼塘内打捞上了50条鱼,结果里面有2条带标记的.假设当时这种鱼的市面价为2.8元/斤,平均每条鱼估计2.3斤,你能帮助他估计一下今年的收入情况吗?29、某校九年级举行毕业典礼,需要从九年级(1)班的2名男生、1名女生(男生用A,B表示,女生用a表示)和九年级(2)班的1名男生、1名女生(男生用C表示,女生用b表示)共5人中随机选出2名主持人,用树状图或列表法求出2名主持人来自不同班级的概率.30、在一个不透明的盒子中,装有“两黑一白”共3枚围棋子,它们除颜色外其余均相同.小致随机地从盒中拿出1枚棋子,记下颜色后放回,搅匀后小致再随机拿出1枚棋子记下颜色.请用画树状图(或列表)的方法,求小致两次拿出的棋子颜色相同的概率.参考答案一、单选题(共15题,共计45分)1、C2、A3、B4、A5、C6、B7、B8、A9、B10、C11、B12、D13、C14、A15、D二、填空题(共10题,共计30分)16、18、19、20、21、22、23、24、25、三、解答题(共6题,共计25分)26、28、29、30、。

北师大版七年级下册第六章《概率初步》单元测试卷

B TB五■■W4KI."F*FRUH-.ΠMI-lb->n≠fla∣⅝nrill<IaIE-bHin.ιτ⅞■⅛F⅛r4MM.-y∣r⅛≡1∣ifib<B-4<Um:U34^i<41IUE-IW→下列事件发生的概率为O的是()A.射击运动员只射击一次就命中靶心E.任取一个实数α,都有∣α∣>OC.画一个三角形,使其三边的长分别为8cm,6cm,2cmD・抛掷一枚质地均匀且六个面分别刻有1到6的点数的正方体骰子,朝上一面的点数为6小亮每天骑自行车上学时都要经过一个十字路口,十字路□有红、3.黄、绿三色交通信号灯,他在路□遇到红灯的概率为丄,遇到绿灯的概率为那么39他遇到黄灯的概率为()4 _ 9 1 _ 3 1 _ 9D.如图,在方格纸中,随机选择标有序号①②③④⑤的一个小正方形涂黑,与图中阴影部分构成轴对称图形的概率是()1 2 3A. —B・—C・—5 5 55.抛掷一枚均匀的硬币,前2次都正面朝上,第3次正面朝上的概率是()lɔ.BBlI II"J B ^B T ⅛B ≡二ψl IHi■η■■■l ≡⅞PnmηI∣⅝Bi B lB ■IIPIF■FWkMiVl l ■■FVWaHUVIMhBL≡i&如图,直线a//b,直线C 与α,b 都相交,从所标识的Zl,Z2,Z3,Z4,9.如图,A 9£是边长为1的小正方形组成的网格上的两个格点,在格□ □ □ □ Q □ □ □ □ □ □ □ □ U 5UA. B. C. D ・第7题图 第8题图第9题图点中任意放置一点C,恰好能使5C的面积为1的概率是()6 14 7ʌ.—B・— C.—D・—25 5 25 2510.甲、乙、丙三个箱子原本各装有相同数量的球,已知甲箱内的红球占甲箱内1 7球数的丄,乙箱内没有红球,丙箱内的红球占丙箱内球数的上.小荣将乙、412丙两箱内的球全倒入甲箱后,要从甲箱内取出一球,若甲箱内每球被取出的机会相等,则小荣取出的球是红球的概率为()5 5 5 7A・—B・—C・—D・—612 18 48■hn ■L i∣MMιS M AI V■■■!∣MHH≡I U■■■■"■■■-Lnl≡fi≡i≠⅛β⅛lllιr*<hιI B IinMW■■E B WZABr.Rm■■EɪMA⅞ιHB-I■IFPFml RHB*Iιr.16.—个不透明的布袋里装有5个球,其中4个红球和1个白球,它们除颜色外其余都相同,现将n个白球放入布袋,搅匀后,使摸出1个球是红球的概率为3,则H=317.将一质地均匀的正方体骰子投掷一次,观察向上一面的点数,与点数3相差2的概率是 _____ ・1&若我们把十位上的数字比个位和百位上的数字都大的三位数称为凸数,如:786,465.则不重复的3个数字组成的三位数中是"凸数”的概率是____________________________________________________________・三、解答题(本大题共2小题,满分28分)19.(12分)在一个不透明的袋子中装有仅颜色不同的10个小球,其中红球4个,黑球6个.(1)先从袋子中取出m(m>l)个红球,再从袋子中随机摸出1个球,将"摸出黑球”记为事件A,请完成下列表格^(2)先从袋子中取出加个红球,再放入加个一样的黑球并摇匀,随机摸出1个黑球的概率等于电,求加的值.5参考答案:1-5DCDCB6-10 ABAAC11.下列事件:①餉意翻到一本书的某页,这页的页码長奇数:⑥测得某夭的最高气温为100∙C;◎紅掷一次骰子,向上一而的数字是2;④築奥运射击冠军射击一次,命中祀心:触种彩票的中奖率为5%,小明买•张彩票淀屮奖.其中是歸机爭件的是①9® .(填序号) 如图,转盘中8个厢形的面积都相等,任虑转动转盘I 次,当转盘停止转动16.一个不透明的布袋里装冇5个球,貝中4个红球和】个fl 球,它们除颜色外其余都相同,现将”个白球放入布袋,搅匀后,使換出1个球是红球的概率为扌,则kI.17.将一质地均匀的正方体骰子投掷一次,观察12.13.从I, 2, 3. 4, 5. 6, 7, 8. 9这九个自然数中,任取一个数是奇数的概率 事件A 发生的概率为 120 大量重复做这种试验,爭件A 平均毎100次发生 的次数⅛ S .14.甲、乙、丙三人站成•排合彩留念,则甲、乙二人相邻的概率是 令 .向上一面的点数,与点数3相差2的槪率是土.18.若我们把十位上的数字比个位和百位上的数字都大的二位数称为凸数,786,465.则不章复的3个数字组成的二位数中込“凸数”的概率是芳.三、解答題(本大题共2小題,满分28分)19.(12分)在一个不透明的袋子中装有仅颜色不同的10个小球,其中红球4个,黑球6个.(1)先从袋了中取lβm(m>l)个红球,再从袋了中随机摸出I个球,将“換IB黑球”记为事件A,请完成下列表格:«4(2)先从袋子中取出M个红球,再放入加个一样的黑球并摇匀,Kl机模岀】个需球的概率等于右,求加的偵.磋5的1B L⅛2- 20、瞇2链快侣的佻緋:4。

2020春北师大版七年级下册数学习题课件:第六章《概率初步》单元测试卷 (共26张PPT) (2)

(2)(1)(3)(5)(4).
23暑假将至,某商场为了吸引顾客,设计了可以自由转动的转 盘(如图,转盘被均匀地分为20份),并规定:顾客每 200元的商 品,就能获得一次转动转盘的机会.如果转盘停止后,指针正好 对准红色、黄色、绿色区域,那么顾客就可以分别获得 200元、100元、50元的购物券,凭购物券可以在该商场继续 购物. 若某顾客购物300元. (1)求他此时获得购物券的概率是多少? (2)他获得哪种购物券的概率最大?请说明理由.
0.670
200 500 800 1 000 145 357 552 704 0.725 0.714 0.690 0.704
2 000 1 396
0.698
(2)请估计,当n很大时,频率将会接近 0.7 (精确到0.1); (3)假如你去转动该转盘一次,你获得铅笔的概率约是
0.7 ,理由是: 用频率估计概率得到的. 是近似值, 随实验次数的增多,值越来越精确
������ ������
.
15.某城市举办了首届中学生汉字听写大会,从甲、乙、丙、
丁 4 套题中随机抽取一套训练,抽中甲的概率是
������ ������
.
16.在 x2 2xy y2 的空格“ ”中,分别填上“+”或“-”,在所
得的代数式中,能构成完全平方式的概率是
������ ������ .
解:(1)转盘停止后指针指向 1 的概率是������������. (2)转盘停止后指针指向 10 的概率是 0. (3)转盘停止后指针指向的是偶数的概率是������������ = ������������. (4)转盘停止后指针指向的不是奇数就是偶数的概率是������������=1. (5)转盘停止后指针指向的数大于 1 的概率是������������. 将这些事件的序号按发生的可能性从小到大的顺序排列为
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

北师大版七年级数学下册第6章《概率初步》单元测试试卷及答案(2) (时间:90分钟,满分:100分) 一、选择题(每小题3分,共30分) 1.下列事件是必然事件的是( ) A.某运动员投篮时连续3次全中 B.太阳从西方升起 C.打开电视正在播放动画片 D.若,则 2.下列事件:①掷一枚硬币,着地时正面向上;②在标准大气压下,水加热到会沸腾;③买一张福利彩票,开奖后会中奖;④明天会下雨.其中,必然事件有( ) A.1个 B.2个 C.3个 D.4个 3.气象台预报“本市明天降水概率是”,对此信息,下面的几种说法正确的是( ) A.本市明天将有的地区降水 B.本市明天将有的时间降水 C.明天肯定下雨 D.明天降水的可能性比较大 4.某市决定从桂花、菊花、杜鹃花中随机选取一种作为市花,选到杜鹃花的概率是( )

A.1 B.12 C.13 D.0 5.从只装有4个红球的袋中随机摸出一球,若摸到白球的概率是1p,摸到红球的概率是2p,则( )

A.1211pp, B.1201pp, C.120pp,14 D.12pp14 6.有一个正方体,6个面上分别标有1到6这6个整数,投掷这个正方体一次,则出现向上一面的数字是偶数的概率为( )

A.13 B.16 C.12 D.14 7.某市民政部门:五一期间举行“即开式福利彩票”的销售活动,发行彩票10万张(每张彩票2元),在这些彩票中,设置如下奖项: 奖金(元) 1 000 500 100 50 10 2

数量(个) 10 40 150 400 1 000 10 000

如果花2元钱购买1张彩票,那么所得奖金不少于50元的概率是( ) A.20001 B.5001 C.5003 D.200

3

8.做重复实验:抛掷同一枚啤酒瓶盖次.经过统计得“凸面向上”的频率约为,则可以由此估计抛掷这枚啤酒瓶盖出现“凹面向上”的概率约为( )

9.关于频率和概率的关系,下列说法正确的是( ) A.频率等于概率 B.当实验次数很大时,频率稳定在概率附近 C.当实验次数很大时,概率稳定在频率附近 D.实验得到的频率与概率不可能相等 10.现有游戏规则如下:第一个人先说“1”或“1、2”,第二个人要接着往下说一个或两个数,然后又轮到第一个人,再接着往下说一个或两个数,这样两人反复轮流,每次每人说一个或两个数都可以,但是不可以连说三个数,谁先抢到“38”,谁就获胜.在这个游戏中,若采取合理的策略,你认为( ) A.后报者可能胜 B.后报者必胜 C.先报者必胜 D.不分胜负 二、填空题(每小题3分,共24分) 11.下列6个事件中:(1)掷一枚硬币,正面朝上;(2)从一副没有大、小王的扑克牌中抽出一张恰为黑桃;(3)随意翻开一本有400页的书,正好翻到第100页;(4)天上下雨,马路潮湿;(5)买奖券中特等大奖;(6)掷一枚正方体骰子,得到的点数大于7.其中确定事件为___________,不确定事件为____________;不可能事件为_________,必然事件为__________;不确定事件中,发生可能性最大的是_______,发生可能性最小的 是________. 12.甲、乙两人玩扑克牌游戏,游戏规则是:从牌面数字分别为5、6、7的三张扑克牌中,随机抽取一张,放回后,再随机抽取一张,若所抽的两张牌面数字的积为奇数,则甲获胜;若所抽取的两张牌面数字的积为偶数,则乙获胜,这个游戏___________.(填“公平”或“不公平”) 13.小芳掷一枚硬币次,有次正面向上,当她掷第次时,正面向上的概率为______. 14.有五张分别印有圆、等腰三角形、矩形、菱形、正方形图案的卡片(卡片中除图案不同外,其余均相同),现将有图案的一面朝下任意摆放,从中任意抽取一张,抽到有中心对称图案的卡片的概率是________. 15.如图,小区公园里有一块圆形地面被黑白石子铺成了面积相等的八部分,阴影部分是黑色石子,小华随意向其内部抛一个小球,则小球落在黑色石子区域内的概率是________. 16.如图所示,在两个同心圆中,三条直径把大圆分成六等份,若在这个圆面上均匀地撒一把豆子,则豆子落在阴影部分的概率是_________. 17.从某玉米种子中抽取6批,在同一条件下进行发芽实验,有关数据如下:

种子粒数 100 400 800 1 000 2 000 5 000 发芽种子粒数 85 318 652 793 1 604 4 005 发芽频率 0.850 0.795 0.815 0.793 0.802 0.801 根据以上数据可以估计,该玉米种子发芽的概率约为_________(精确到0.1). 18.一个口袋里有个球,其中红球、黑球、黄球若干个,从口袋中随机摸出一球记下其颜色,再把它放回口袋中摇匀,重复上述过程,共实验次,其中有次摸到黄球,由此估计袋中的黄球约有_____个. 三、解答题(共46分) 19.(6分)一盒乒乓球中共有6只,其中2只次品,4只正品,正品和次品大小和形状完全相同,每次任取3只,出现了下列事件:(1)3只正品;(2)至少有一只次品;(3)3只次品;(4)至少有一只正品.指出这些事件分别是什么事件. 20.(6分)如图是小明家地板的部分示意图,它由大小相同的黑白两色正方形拼接而成,家中的小猫在地板上行走,请问: (1)小猫踩在白色的正方形地板上,这属于哪一类事件? (2)小猫踩在白色或黑色的正方形地板上,这属于哪一类事件? (3)小猫踩在红色的正方形地板上,这属于哪一类事件? (4)小猫踩在哪种颜色的正方形地板上可能性较大? 21.(6分)一只小狗在如图所示的方砖上走来走去,求最终停在阴影方砖上的概率是多少?

22.(6分)如图所示,有一个转盘,转盘被分成4个相同的扇形,颜色分为红、绿、黄三种,指针的位置固定,转动转盘后任其自由停止,其中的某个扇形会恰好停在指针所指的位置(指针指向两个扇形的交线时,当做指向右边的扇形),求下列事件的概率: (1)指针指向绿色;(2)指针指向红色或黄色;(3)指针不指向红色. 23.(6分)请用“一定”、“很可能”、“可能性极小”、“可能”、“不太可能”、“不可能”等语言来描述下列事件的可能性. (1)买20注彩票,获特等奖500万.

第21题图 红 红 黄 绿

第22题图

第16题图 (2)袋中有50个球,1个红的,49个白的,从中任取一球,取到红色的球. (3)掷一枚均匀的骰子,6点朝上. (4)100件产品中有2件次品,98件正品,从中任取一件,刚好是正品. (5)早晨太阳从东方升起. (6)小丽能跳高. 24.(8分)小颖和小红两名同学在学习“概率”时,做投掷骰子(质地均匀的正方体)实验,他们共做了60次实验,实验的结果如下:

(1)计算“3点朝上”的频率和“5点朝上”的频率. (2)小颖说:“根据上述实验,一次实验中出现5点朝上的概率最大”;小红说:“如果投 掷600次,那么出现6点朝上的次数正好是100次”.小颖和小红的说法正确吗?为什么? 25.(8分)一只口袋中放着若干只红球和白球,这两种球除了颜色以外没有任何其他区别,

袋中的球已经搅匀,蒙上眼睛从口袋中取出一只球,取到红球的概率是14. (1)取到白球的概率是多少? (2)如果袋中的白球有18只,那么袋中的红球有多少只?

朝上的点数 1 2 3 4 5 6 出现的次数 7 9 6 8 20 10 参考答案 1.D 解析:A项和C项可能发生也可能不发生,是随机事件;B项不可能发生,是不可能事件;D项必然发生,是必然事件. 2.A 解析:②在标准大气压下,水加热到会沸腾是必然事件. 3.D 解析:本市明天降水概率是,只能说明明天降水的可能性比较大,是随机事件,A,B,C属于对题意的误解,只有D正确. 4.C 解析:因为是随机选取的,故选取桂花、菊花、杜鹃花的可能性是相等的. 5.B 解析:因为袋中只有红球,故摸到白球是不可能事件,摸到红球是必然事件.

6.C 解析:出现向上一面的数字有6种,其中是偶数的有3种,故概率为12.

7.C 解析:因为从10万张彩票中购买一张,每张被买到的机会相同,因而有10万个结果,奖金不少于50元的共有,个)(6004001504010,元所得奖金不少于所以5003100000600)50(P故选C.

8.D 解析:在大量重复实验下,随机事件发生的频率可以作为概率的估计值,因此抛掷这枚啤酒瓶盖出现“凹面向上”的概率约为. 9.B 解析:A.利用频率只能估计概率;B正确;C.概率是定值;D.可以相等,如“抛硬币实验”,可得到正面向上的频率为,与概率相同. 10.C 解析:为了抢到,必须抢到35,那么不论另一个人报还是,你都能胜.游戏的关键是报数先后顺序,并且每次报数的个数和对方合起来是三个,即对方报个数,你就报个数.抢数游戏,它的本质是一个是否被“”整除的问题.谁先抢到,对方无论报“36”或“37”你都获胜. 11. 解析:因为一枚硬币有正、反两面,所以掷一枚硬币,正面朝上,是随机事件; 因为一副没有大小王的扑克牌中有黑桃、红桃、梅花及方块共四种花色,故随机抽出一张恰是黑桃,是随机事件; 因为一本书有400页,每页都有被翻到的可能性,正好翻到第100页,是随机事件; 天上下雨后雨水落到地上,马路就湿了,是必然事件; 买奖券可能中特等奖,也可能不中特等奖,是随机事件; 正方体骰子共有6个面,点数为得到的点数大于7,是不可能事件. 发生的概率为21,可能性最大;发生的可能性最小,概率往往为数百万分之一.

12.不公平 解析:甲获胜的概率是49,乙获胜的概率是59,两个概率值不相等,故这个游戏不公平.

相关文档
最新文档