数控加工零件工艺设计
数控车床零件加工及工艺设计

毕业设计(论文)任务书学生姓名学号专业机械制造与自动化院(系)机电工程系毕业设计(论文)题目数控车床零件加工及工艺计任务与要求本设计要求在车床上,利用工件的旋转和刀具的直线运动或曲线运动来改变毛胚的形状和尺寸,把它加工成符合图纸要求的产品。
为了使数控车床上加工出合格的零件,首先需根据零件图纸的精度和计算要求等,分析确定零件的工艺过程、工艺参数等内容。
用规定的数控编程代码和格式编制出合适的数控加工程序。
编程必须注意数控系统或机床,应该严格按机床编程手册中的规定进行程序编程。
但从数控加工内容的本质上讲,各数控系统的各项指令都是应实际加工工艺要求而设定的。
完成时间段20 年12月15日至20 年3月15日共13周指导教师单位重庆科创职业学院职称讲师院(系)审核意见摘要随着数控技术的不断发展和应用领域的扩大,数控加工技术对国计民生的一些重要行业(IT、汽车、轻工、医疗等)的发展起着越来越重要的作用,因为效率、质量是先进制造技术的主体。
高速、高精加工技术可极大地提高效率,提高产品的质量和档次,缩短生产周期和提高市场竞争能力。
而对于数控加工,无论是手工编程还是自动编程,在编程前都要对所加工的零件进行工艺分析,拟定加工方案,选择合适的刀具,确定切削用量,对一些工艺问题(如对刀点、加工路线等)也需做一些处理。
并在加工过程掌握控制精度的方法,才能加工出合格的产品。
本文根据数控机床的特点,针对具体的零件,进行了工艺方案的分析,工装方案的确定,刀具和切削用量的选择,确定加工顺序和加工路线,数控加工程序编制。
通过整个工艺的过程的制定,充分体现了数控设备在保证加工精度,加工效率,简化工序等方面的优势。
关键词工艺分析加工方案进给路线控制尺寸AbstractWith the continuous development and expansion of application fields of numerical control technology, the development of CNC machining technology to the national economy and a number of important industries (IT, automobile, light industry, medical, etc.) play an increasingly important role, because the efficiency, quality is an advancedmanufacturing technology subjects. High-speed, high precision technology can greatly improve efficiency, improve product quality and grade, shortening the production cycle and enhance market competitiveness. CNC machining, either manual programmingor automatic programming, the processing of parts should be before the programming process analysis, the development of processing program, select the appropriate tool to determine the cutting parameters on some process issues (such as knife point, processing route, etc.) also need to do some processing. Master control precision of the method, and in the process can be processed into a qualified product.According to the characteristics of CNC machine tools for the specific parts to carry out the analysis of the process plan, tooling program to determine the tool and cutting parameters selection, to determine the processing order and processing route, CNC machining programming. Formulation process through the entire process, fully embodies the advantages of numerical control equipment to ensure accuracy, processing efficiency, streamline processesKEY WORD:Process Analysis Processing program Feed line Control the size目录第一章绪言 (1)第一节数控的历史和发展 (1)第二节数控车床特点 (1)第二章工艺方案分析 (2)第一节零件图 (2)第二节零件图分析 (2)第三节确定加工方法 (3)第四节确定加工方案 (3)第五节确定加工路线的原则.......................... 错误!未定义书签。
数控加工中工艺路线设计原则及方法

数控加工中工艺路线设计原则及方法数控加工工艺设计是对工件进行数控加工的前期的工艺准备工作,无论是手工编程还是自动编程,这项工作必须在程序编制工作以前就完成。
若数控加工的工艺设计方案不合理,往往要成倍增加工作量,造成一些不必要的损失。
为了优化数控程序设计、提高编程效率、合理使用数控机床,有必要对数控加工工艺设计等技术问题加以分析、研究,以做好数控机床加工前的技术准备工作。
一、数控加工工艺的特点数控机床加工工艺与普通机床加工工艺相比较,数控加工工艺设计的原则和内容在许多方面与普通机床加工工艺相同。
由于采用数控机床加工具有加工工序少,所需专用工装数量少等特点,克服了普通传动工艺方法的弱点,使数控加工工艺相应形成了自身的加工特点。
一般说来,数控加工的工序内容要比普通机床加工的工序内容复杂。
(1)数控加工工艺的内容十分具体、工艺设计工作相当严密。
在普通机床加工时,许多具体的工艺问题如:工艺中各工步的划分与安排、刀具的几何形状、走刀路线、切削用量选择等,在很大程度上都是由操作工人根据自己的实践经验和习惯自行考虑和决定的,一般无须工艺人员在设计工艺规程时进行过多的规定。
而在数控加工时,上述这些具体工艺问题,不仅成为数控工艺设计时必须认真考虑的内容,而且还必须作出正确的选择并编入加工程序中。
(2)数控加工的工艺“复合性”。
采用数控加工后,工件在一次装夹下能完成镗、铣、铰、攻丝等多种加工,而这些加工在传统工艺方法下需分多道工序才能完成。
因此,数控加工工艺具有复合性特点,传统加工工艺下的一道工序在数控加工工艺中已转变为一个或几个工步,这使得零件加工所需的专用夹具数量大为减少,零件装夹次数及周转时间也大大减少了,从而使零件的加工精度和生产效率有了较大的提高。
二、数控加工的工艺设计原则1、工序的划分方法设计零件的工艺过程,就是确定零件的哪些表面需要数控加工,经过哪些工序以及怎么安排这些工序顺序等等。
一般在数控机床上划分零件加工工序有以下几种方法:按所用刀具划分工序。
轴套类零件数控车削加工工艺01图

短锥面配合零件根据图1、图2所示的短锥面配合零件,制定数控车削加工工艺(单件小批量生产),所用机床为CK6136S数控车床(FANUC 0i-TD数控系统)。
图1短锥面配合件—锥面套、短锥轴图2短锥面配合件—组合体1.工艺分析该组合件由轴类和套类两个零件组成,由一根毛坯料通过切断的方式来加工。
组合件表面由内外圆柱面、内外圆锥面、圆弧及外螺纹等表面组成,其中多个直径尺寸与轴向尺寸有较高的尺寸精度和表面粗糙度要求。
零件图尺寸标注完整,符合数控加工尺寸标注要求;轮廓描述清楚完整;零件材料为45钢,切削加工性能较好,无热处理和硬度要求。
通过上述分析,采取以下几点工艺措施:1)零件图上带公差的尺寸,因公差值较小,故编程时不必取其平均值,而取基本尺寸即可(其公差尺寸的保证主要是通过修改刀具半径值的方法来完成)。
2)该轴类零件左、右端面均为多个尺寸的设计基准,相应工序加工前,应该先将轴类零件的左、右端面车出来。
3)两个零件在加工时需左右掉头各装夹一次。
2.确定加工装备选用浙江凯达机床股份有限公司生产的SK6136S数控车,配置系统为FANUC 0imate-TD系统,配置标准三爪卡盘及卡盘钥匙,如图3所示。
图3 加工装备3.确定装夹方案1)采用三爪自动定心卡盘夹紧。
先加工套类零件,用三爪卡盘夹持长毛坯零件的一端,加工另一端端面,钻底孔,车φ48外圆,切断该套类零件。
掉头用三爪卡盘夹套类零件的φ48外圆,车内孔及内锥。
2)在加工轴类零件时,用三爪卡盘夹持毛坯零件左端,加工右端端面,外圆锥及φ40、φ48外圆。
掉头用三爪卡盘夹持零件右端φ40外圆,加工出左端φ48外圆,螺纹外圆及圆弧尺寸。
4.确定加工顺序及走刀路线加工顺序的确定按由外到内、由粗到精、由近到远的原则确定,在一次装夹中尽可能加工出较多的工件表面。
由于该零件为单件生产,走刀路线设计不必考虑最短进给路线或最短空行程路线,编程时车削走刀路线沿零件轮廓顺序进行。
星轮零件的数控加工工艺设计

摘要机械工艺设计运用了“机械制造技术”、“金属工艺学”、“互换性与测量技术”以及“机械加工手册”等课程。
本次设计注重理论和实践相结合,通过假期生产实习积累的经验与先前所修课程理论知识结合在一起来完成减速器中星轮的设计,再将设计成果和过程细细地记录下来。
本次设计通过分析课程设计存在的问题,然后经过各种途径解决,从中锻炼自己。
工艺设计中要首先对零件进行分析,了解零件的工艺再设计出毛坯的结构,并选择好零件的加工基准,设计出零件的工艺路线;接着对零件各个工步的工序进行尺寸计算,关键是决定出各个工序的工艺装备及切削用量本次星轮设计的加工工艺方法和装备部分包括机床、夹具、车、铣、钻、镗、扩、铰等装配和加工方法。
零件的工艺性分析包括零件表面粗糙度、零件加工工艺规程设计等。
关键词:工艺;工序;切削用量;星轮潘野:星轮零件的数控加工工艺设计及程序的编制abstractMechanical design process using the "mechanical manufacturing technology", "metal", "interchangeability and measuring technology" and "machine manual" and so on. The design focus on the combination of theory and practice, through the accumulation of production practice for holiday experience in conjunction with the preceding the course theoretical knowledge to complete the star wheel in reducer design, design and carefully record the outcome. This design through analysis of problems in curriculum design, and then through a variety of means, to exercise myself.To first analyze your parts in process design, understand the technology and design of parts out of the rough structure, and choose the good parts processing base, design a part of the route, then on each step of the process size calculation of the part, the key is to determine individual operations equipment and cuttingThe star wheel design of the processing technology and equipment, including machine tools, jigs, turning, milling, drilling, boring, spread, the hinge Assembly and processing methods. Process analysis includes part of the part surface roughness and part machining process planning design.Keyword: process; processes; cutting; star wheel目录摘要0 前言 (4)1 绘制零件图 (5)2 零件的工艺分析 (5)3 确定毛坯的类型 (6)4 基面的选择 (7)5 制定工艺路线 (8)6 机械加工余量、工序尺寸及毛坯尺寸的确定 (10)7 确定切削用量及基本工时 (11)8 填写加工工艺卡片 (25)9 实体设计 (25)10 数控编程 (26)11 附图 (28)11.1 实体图(见附图10—1) (28)11.2 零件图(见附图10—2) (28)11.3 毛坯图(见附图10—3) (28)12 结束语 (29)13 致谢 (30)14 参考文献 (31)附图和附表潘野:星轮零件的数控加工工艺设计及程序的编制0前言机械制造工艺及数控编程毕业设计是在我们学完了大学的全部课程之后进行的,这是对我们大学所学知识和技能的一次综合性的检验,也是一次理论联系实际的训练。
铣削零件的数控加工工艺及编程设计

毕业设计说明书题目典型铣削零件的数控加工工艺及编程专业班级学生姓名指导教师年月日此零件为一平面槽形零件,本文主要通过分析零件图纸,找出所需的数据,确定零件形状;然后确定加工的装夹方案,设计合理的夹具;接着就是根据分析图纸所得的数据,以及装夹的方法,编写加工工艺路线及设定铣削参数与铣削用量;最后就是根据前面的分析,编写加工程序,进行零件加工。
关键词:工艺路线切削用量数控编程1 零件图 (5)1.1 零件图的分析 (6)1.2 技术要求分析 (6)2 设备的选择 (6)3 工件的装夹 (7)3.1 毛坯的选择 (7)3.2 零件的装夹 (7)4 工艺路线 (7)4.1 表面加工方法的选择 (8)4.2 加工阶段的划分 (8)4.3 加工顺序的安排 (8)4.4 工序的集中和分散 (9)5 合理的选择刀具 (10)5.1 刀具的选择原则 (10)5.2 数控铣削刀具的选择 (10)6 切削用量的选择 (11)6.1 切削用量的具体参数 (12)6.2 切削用量的选取 (13)7 拟定数控加工工艺卡 (14)8 数控编程 (14)8.1 数控编程的分类 (14)8.2 加工程序清单 (14)9 走刀路线图 (21)设计总结 (22)参考文献 (23)致谢 (24)附录 (25)典型铣削零件的数控加工工艺及编程前言数控技术和数控装备是制造工业现代化的重要基础。
这个基础是否牢固直接影响到一个国家的经济发展和综合国力,关系到一个国家的战略地位。
因此,世界上各工业发达国家均采取重大措施来发展自己的数控技术及其产业。
在我国,数控技术与装备的发展亦得到了高度重视,近年来取得了相当大的进步。
特别是在通用微机数控领域,以PC平台为基础的国产数控系统,已经走在了世界前列。
但是,我国在数控技术研究和产业发展方面亦存在不少问题,特别是在技术创新能力、商品化进程、市场占有率等方面情况尤为突出。
在新世纪到来时,如何有效解决这些问题,使我国数控领域沿着可持续发展的道路,从整体上全面迈入世界先进行列,使我们在国际竞争中有举足轻重的地位,将是数控研究开发部门和生产厂家所面临的重要任务。
传动轴的数控加工工艺与编程设计

传动轴的数控加工工艺与编程设计传动轴是机械传动中常用的零部件,主要用于将动力从发动机传输到车轮、飞机螺旋桨或其他设备中。
在传动轴的制作过程中,数控加工是一种常见的工艺方法。
本文将介绍传动轴数控加工的工艺步骤和编程设计,以及注意事项和优缺点。
一、传动轴数控加工的工艺步骤1. 设计绘图:根据传动轴的应用需求和制造标准,通过CAD软件进行设计绘图。
通常,传动轴需要细致的外观设计和精确尺寸的计算,以确保其精准度和可靠性。
2. 材料准备:选择合适的材料,根据传动轴的长度和直径进行切割、开槽、车削等工艺步骤。
常用的材料有碳钢、合金钢、不锈钢等。
3. 电极加工:在数控机床上制作电极,通过放电加工、加热等方式处理工件,使其具备所需形状和尺寸,并确保工件表面平整光滑。
4. 雕刻和蚀刻:使用雕刻和蚀刻工艺,将必要的标志、槽口和孔洞制成,以满足传动轴的规格和总装安装的需要。
5. 车削和打孔:通过数控车床和数控铣床进行车削和打孔操作,以确保传动轴的精度和质量。
6. 淬火及抛光:将车削和打孔的部件进行淬火处理,使其具备良好的硬度和耐磨性能。
最后,根据传动轴的表面光洁度要求进行抛光处理。
二、传动轴数控加工的编程设计数控加工需要用编程来指挥计算机完成精密操作。
传动轴数控加工的编程设计包括以下步骤:1. 确定加工对象的空间坐标系,以及数控机床的坐标系。
根据加工对象和数控机床不同的坐标系统,确定程序格式。
2. 对加工对象进行CAD绘图,生成CAD文件,进行几何误差检查和纠正。
将CAD文件导入编程软件中。
3. 根据加工要求,设计加工工艺,设置切削速度、进给速度和切削深度等切削参数,并根据机床系统特点,优化程序代码。
4. 根据预设加工轨迹,生成相应的G代码,并设置程序开始和停止操作指令。
5. 在数控机床上安装工件,调试程序之前的加工参数,然后运行程序进行加工。
三、传动轴数控加工的注意事项1. 保持机床和工件清洁整洁,以确保加工质量和机床寿命。
毕业设计----凸台零件的数控加工工艺分析
题目:凸台零件的数控加工工艺分析摘要【摘要】此次设计是基于SEMENS802C/802S的典型零件的编程与加工。
数控技术及数控机床在当今机械制造业中的重要地位和巨大效益,显示了其在国家基础工业现代化中的战略性作用,并已成为传统机械制造工业提升改造和实现自动化、柔性化、集成化生产的重要手段和标志。
数控技术及数控机床的广泛应用,给机械制造业的产业结构、产品种类和档次以及生产方式带来了革命性的变化。
数控机床是现代加工车间最重要的装备。
它的发展是信息技术(1T)与制造技术(MT)结合发展的结果。
现代的CAD/CAM敏捷制造和智能制造技术,都是建立在数控技术之上的。
掌握现代数控技术知识是现代机电类专业学生必不可少的。
本次设计内容介绍了数控加工的特点、加工工艺分析以及数控编程的一般步骤。
并利用Mastercam制造工程师软件完成零件的三维造型,进行加工轨迹设计,实现加工仿真。
利用斯沃仿真软件完成仿真加工。
利用CAD/CAM软件及G代码指令进行手工编程。
【关键词】:数控技术Mastercam制造工程师三维造型仿真加工手工编程自动编程目录摘要 (2)目录 (3)前言 (7)第一章概述 (8)1.1 数控加工的特点 (8)1.2 数控机床 (9)1.3 数控加工 (9)1.4 数控编程系统 (10)1.5 CAD/CAM系统 (11)1.6利用Mastrecam制造工程师CAD/CAM系统进行自动编程的基本步骤 (12)1.6.1 CAM系统的编程基本步骤如下: (13)1.6.2 加工工艺的确定 (13)1.6.3 加工模型建立 (13)1.6.4 刀具轨迹生成 (14)1.6.5 后期G代码生成 (14)1.6.6 加工代码输出 (14)第二章工艺分析 (16)2.1数控车工工艺分析 (16)2.1.1 分析图样 (16)2.1.2 分析加工方式 (17)2.1.3毛坯得选择 (17)2.1.4分析加工路线 (17)2.15 工序卡片 (18)2.2程序 (19)2.2.1坐标计算 (19)2.2.2程序编制 (19)1.2.3程序校验、仿真 (22)2.3加工 (22)2.3.1材料选择 (22)2.3.2机床配置 (22)2.3.3夹具刀具选择 (23)第三章数控铣工工艺分析 (24)3.1 工艺分析 (24)31.1 分析图样 (24)31.2分析加工方式 (24)3.1.3毛坯得选择 (24)3.1.4分析加工路线 (25)3.1.5工艺卡片的制作 (26)3.2程序 (27)3.2.1坐标计算 (27)3.2.2程序编制 (27)3.2.3程序校验、仿真 (29)3.3加工 (29)3.3.1材料选择 (29)3.3.2机床配置 (29)3.3.3夹具,刀具选择 (29)3.4 机床的调试 (29)3.4.4 机床试运行 (30)3.5程序传输 (30)3.6程序加工 (30)第四章数控车车中出现的问题及解决方法。
数控铣床零件加工工艺分析与程序设计毕业论文
数控铣床零件加工工艺分析与程序设计毕业论文数控铣床是一种用数控技术控制刀具在工件上进行铣削加工的设备。
在数控铣床零件加工过程中,合理的工艺分析和程序设计对于保证加工精度和提高加工效率至关重要。
本文将以数控铣床零件加工工艺分析与程序设计为研究内容,分析其重要性并提出相应的设计方法。
首先,工艺分析对于数控铣床零件加工至关重要。
工艺分析是指通过对零件特点、材料性能等进行分析,确定合理的加工方法和加工工艺参数。
在数控铣床零件加工过程中,不同的零件要求不同的加工方法和参数,只有通过工艺分析才能确定最佳的加工工艺路线和参数,以保证零件的加工质量和效率。
工艺分析还可以提前预测可能出现的问题,如加工难度较大的区域、切削力较大的位置等,从而采取相应的措施,保证加工的顺利进行。
其次,程序设计是数控铣床零件加工的核心环节。
程序设计是指根据工艺分析的结果,编写数控程序,以实现对数控铣床的控制。
程序设计的质量直接影响加工结果,良好的程序设计可以提高加工精度和效率。
在程序设计过程中,需要根据零件的几何形状、尺寸和加工要求,确定数控刀具的刀补和补偿方案,编写合理的切削路径和切削轨迹,以保证零件的尺寸精度和表面质量。
此外,程序设计还需要考虑加工过程中可能出现的问题,如加工力的控制、材料的选择等,以提高加工的效率和稳定性。
在数控铣床零件加工工艺分析与程序设计过程中,可以采取以下方法:1.对零件进行全面的分析。
包括几何形状、尺寸、材料特性等方面的分析,确定加工目标和要求。
2.根据零件的特点和加工目标,选择合适的加工方法和加工工艺参数。
如铣床的进给速度、主轴转速、切削进给量等。
3.根据工艺分析结果,编写数控程序。
程序要考虑到零件的几何形状、加工道具的特点和刀具的路径。
4.在程序设计过程中,需要进行模拟实验和试加工。
通过试验和实际加工,检验程序的准确性和可行性。
5.对程序进行评估和调整。
根据试加工和实际情况,对程序进行调整和改进,以提高加工效率和质量。
数控铣床零件加工工艺分析与程序设计毕业论文
目录一、摘要……………………………………………………二、配合件设计的内容及步骤……………………………1、零件加工工艺的分析……………………………1.1 零件的技术要求分析……………………………1.2 零件的结构工艺分析…………………………2、编程尺寸的确定…………………………………2.1 计算各节点的坐标尺寸………………………3、毛坯的选择……………………………………4、工艺过程设计……………………………………4.1 板料凸件加工工步顺序的安排………………4.2 板料凹件加工工步顺序的安排………………5、选择机床、工艺装备等…………………………5.1 刀具的选择方案………………………………5.2 铣削用量的确定………………………………6、确定切削用量……………………………………7、工艺文件…………………………………………7.1 工序卡片………………………………………7.2 刀具卡……………………………………………8、编制加工程序单…………………………………三、小结…………………………………………………四、参考文献……………………………………………摘要数控机床的出现以及带来的巨大利益,引起世界各国科技界和工业界的普遍重视。
发展数控机床是当前我国机械制造业技术改造的必由之路,是未来工厂自动化的基础。
数控机床的大量使用,需要大批熟练掌握现代数控技术的人员。
数控技术的应用不但给传统制造业带来了革命性的变化,使制造业成为工业化的象征,而且随着数控技术的不断发展和应用领域的扩大,它对国计民生的一些重要行业的发展起着越来越重要的作用。
随着科技的发展,数控技术也在不断的发展更新,现在数控技术也称计算机数控技术,加工软件的更新快,CAD/CAM的应用是一项实践性很强的技术。
如像UG , PRO/E , Cimitron , MasterCAM ,CAXA制造工程师等。
数控技术是技术性极强的工作,尤其在模具领域应用最为广泛,所以这要求从业人员具有很高的机械加工工艺知识,数控编程知识和数控操作技能。
数控机床轴类零件加工工艺分析的毕业设计
数控机床轴类零件加工工艺分析的毕业设计一、引言数控机床轴类零件是制造业中常见的零部件之一,其制作过程对零件的质量和性能有着至关重要的影响。
本毕业设计旨在通过对数控机床轴类零件加工工艺的分析与研究,提出一种适用于轴类零件加工的工艺方案,以提高加工效率和零件质量。
二、加工工艺分析1.材料选择:轴类零件通常采用钢材料,如45钢、40Cr钢等。
材料的选择应根据零件的使用要求、受力情况和表面要求等进行确定。
2.工艺路线:对于轴类零件的加工,一般可采用车削、切割、铣削等工艺。
具体的工艺路线应根据零件的形状特点、工艺要求和机床的能力等确定。
3.外形加工:轴类零件的外形加工一般采用车削工艺。
先进行粗加工,然后进行精加工。
车削时要注意刀具的选择、进给速度和切削深度的控制,以确保零件的精度和表面质量。
4.内孔加工:对于具有内孔的轴类零件,在加工过程中可以采用钻削、铰削、镗削等工艺。
在内孔加工时,要注意刀具的选择和冷却液的使用,以防止刀具磨损和加工过程中的热变形。
5.表面处理:轴类零件的表面处理包括磨削、抛光、镀铬等工艺。
这些工艺可以提高零件的表面质量和耐磨性,同时还可以实现美观的外观效果。
三、工艺方案设计与分析1.工艺路线设计:根据轴类零件的形状特点和工艺要求,设计合理的工艺路线,确定每道工序的加工方法和顺序。
在设计工艺路线时,要考虑到加工效率、加工精度和零件变形等因素。
2.工艺参数确定:根据材料的性质和加工要求,确定合适的切削参数,如切削速度、进给速度和切削深度等。
在确定工艺参数时,要充分考虑刀具的耐用性和加工质量的要求。
3.设备选择:根据工艺路线和工艺参数的要求,选择合适的数控机床设备。
设备的选择应考虑到加工范围、加工精度和生产效率等因素。
4.工艺试验分析:在进行实际加工前,进行工艺试验,验证设计的工艺方案的可行性和有效性。
根据试验结果,对工艺进行优化和调整,以提高加工效率和零件质量。
四、结论通过对数控机床轴类零件加工工艺的分析与研究,我们可以得出以下结论:1.合理的工艺路线设计和工艺参数确定对于零件的加工质量和生产效率具有重要影响;2.合适的设备选择能够提高零件的加工精度和生产效率;3.工艺方案设计和工艺试验分析是确保零件加工质量和提高生产效率的重要环节。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.1数控加工的特点数控加工具有如下特点:1.自动化程度高;2.加工精度高;3.对加工对象的适应性强;4.生产效率高;5.易于建立计算机通信网络。
20世纪40年代末,美国开始研究数控机床,1952年,美国麻省理工学院(MIT)伺服机构实验室成功研制出第一台数控铣床,并于1957年投入使用。
这是制造技术发展过程中的一个重大突破,标志着制造领域中数控加工时代开始。
数控加工是现代制造技术的基础,这一发明对于制造行业而言,具有划时代的意义和深远的影响。
世界上主要工业发达国家都十分重视数控加工技术的研究的发展。
我国于是1958年开始研制数控机床,成功试制出配有电子数控系统的数控机床,1965年开始批量生产配有晶体管数控系统的三坐标数控铣床。
经过几十年的发展,目前的数控机床已经在工业界得到广泛应用,在模具制造行业的应用尤为普及。
数控机床种类繁多,模具制造常用数控加工机床有:数控铣床、数控电火花成型机床、数控电火花线切割机床、数控磨床和数控车床。
数控机床通常由控制系统、伺服系统、检测系统、机械传动系统及其它辅助系统组成。
控制系统用于数控机床的运算、管理和控制,通过输入介质得到数据,对这些数据进行解释和运算并对机床产生作用;伺服系统根据控制系统的指令驱动机床,使刀具和零件执行数控代码规定的运动;检测系统则是用来检测机床执行件(工作台、转台、滑板等)的位移和速度变化量,并将检测结果反馈到输入端,与输入指令进行比较,根据其差别调整机床运动;机床传动系统是由进给伺服驱动元件至机床执行件之间的机械进给传动装置;辅助系统种类繁多,如:固定循环(能进行重复加工)、自动换刀(可交换指定的刀具)、传动间隙补偿(补偿机械传动系统产生的间隙误差)等等。
1.2数控实际加工中需要注意的问题一、轴类零件的功用、结构特点及技术要求轴类零件是机器中经常遇到的典型零件之一。
它主要用来支承传动零部件,传递扭矩和承受载荷。
轴类零件是旋转体零件,其长度大于直径,一般由同心轴的外圆柱面、圆锥面、内孔和螺纹及相应的端面所组成。
根据结构形状的不同,轴类零件可分为光轴、阶梯轴、空心轴和曲轴等。
轴的长径比小于5的称为短轴,大于20的称为细长轴,大多数轴介于两者之间。
轴用轴承支承,与轴承配合的轴段称为轴颈。
轴颈是轴的装配基准,它们的精度和表面质量一般要求较高,其技术要求一般根据轴的主要功用和工作条件制定,通常有以下几项:(一)尺寸精度起支承作用的轴颈为了确定轴的位置,通常对其尺寸精度要求较高(IT5~IT7)。
装配传动件的轴颈尺寸精度一般要求较低(IT6~IT9)。
(二)几何形状精度轴类零件的几何形状精度主要是指轴颈、外锥面、莫氏锥孔等的圆度、圆柱度等,一般应将其公差限制在尺寸公差范围内。
对精度要求较高的内外圆表面,应在图纸上标注其允许偏差。
(三)相互位置精度轴类零件的位置精度要求主要是由轴在机械中的位置和功用决定的。
通常应保证装配传动件的轴颈对支承轴颈的同轴度要求,否则会影响传动件(齿轮等)的传动精度,并产生噪声。
普通精度的轴,其配合轴段对支承轴颈的径向跳动一般为0.01~0.03mm,高精度轴(如主轴)通常为0.001~0.005mm。
(四)表面粗糙度一般与传动件相配合的轴径表面粗糙度为Ra2.5~0.63μm,与轴承相配合的支承轴径的表面粗糙度为Ra0.63~0.16μm。
1.3轴类零件的毛坯和材料(一)轴类零件的毛坯轴类零件可根据使用要求、生产类型、设备条件及结构,选用棒料、锻件等毛坯形式。
对于外圆直径相差不大的轴,一般以棒料为主;而对于外圆直径相差大的阶梯轴或重要的轴,常选用锻件,这样既节约材料又减少机械加工的工作量,还可改善机械性能。
根据生产规模的不同,毛坯的锻造方式有自由锻和模锻两种。
中小批生产多采用自由锻,大批大量生产时采用模锻。
(二)轴类零件的材料轴类零件应根据不同的工作条件和使用要求选用不同的材料并采用不同的热处理规范(如调质、正火、淬火等),以获得一定的强度、韧性和耐磨性。
T45钢是轴类零件的常用材料,它价格便宜经过调质(或正火)后,可得到较好的切削性能,而且能获得较高的强度和韧性等综合机械性能,淬火后表面硬度可达45~52HRC。
40Cr等合金结构钢适用于中等精度而转速较高的轴类零件,这类钢经调质和淬火后,具有较好的综合机械性能。
轴承钢GCr15和弹簧钢65Mn,经调质和表面高频淬火后,表面硬度可达50~58HRC,并具有较高的耐疲劳性能和较好的耐磨性能,可制造较高精度的轴。
精密机床的主轴(例如磨床砂轮轴、坐标镗床主轴)可选用38CrMoAIA氮化钢。
这种钢经调质和表面氮化后,不仅能获得很高的表面硬度,而且能保持较软的芯部,因此耐冲击韧性好。
与渗碳淬火钢比较,它有热处理变形很小,硬度更高的特性。
三、轴类零件的功用、结构特点及技术要求轴类零件是机器中经常遇到的典型零件之一。
它主要用来支承传动零部件,传递扭矩和承受载荷。
轴类零件是旋转体零件,其长度大于直径,一般由同心轴的外圆柱面、圆锥面、内孔和螺纹及相应的端面所组成。
根据结构形状的不同,轴类零件可分为光轴、阶梯轴、空心轴和曲轴等。
轴的长径比小于5的称为短轴,大于20的称为细长轴,大多数轴介于两者之间。
轴用轴承支承,与轴承配合的轴段称为轴颈。
轴颈是轴的装配基准,它们的精度和表面质量一般要求较高,其技术要求一般根据轴的主要功用和工作条件制定,通常有以下几项:(一)尺寸精度起支承作用的轴颈为了确定轴的位置,通常对其尺寸精度要求较高(IT5~IT7)。
装配传动件的轴颈尺寸精度一般要求较低(IT6~IT9)。
(二)几何形状精度轴类零件的几何形状精度主要是指轴颈、外锥面、莫氏锥孔等的圆度、圆柱度等,一般应将其公差限制在尺寸公差范围内。
对精度要求较高的内外圆表面,应在图纸上标注其允许偏差。
(三)相互位置精度轴类零件的位置精度要求主要是由轴在机械中的位置和功用决定的。
通常应保证装配传动件的轴颈对支承轴颈的同轴度要求,否则会影响传动件(齿轮等)的传动精度,并产生噪声。
普通精度的轴,其配合轴段对支承轴颈的径向跳动一般为0.01~0.03mm,高精度轴(如主轴)通常为0.001~0.005mm。
(四)表面粗糙度一般与传动件相配合的轴径表面粗糙度为Ra2.5~0.63μm,与轴承相配合的支承轴径的表面粗糙度为Ra0.63~0.16μm。
1.4 数控加工工艺内容数控加工工艺主要包括以下几方面:1.选择在数控机床上进行加工的零件,并确定加工的工序内容。
2.分析被加工零件的加工部位形状,明确加工内容与加工要求,在此基础上确定零件的加工方案,制定零件数控加工的工艺路线,如工序的划分、加工顺序的安排、与普通加工工序的衔接等。
3.设计数控加工工序。
如工步的划分、零件的定位和夹具的选择、刀具的选择、切削用量的确定等。
4.数控加工中运行轨迹各节点的计算。
5.调整数控加工工序的程序。
如对刀点、换刀点的选择、加工路线的确定、刀具的补偿等。
6.合理分配数控加工中的容差。
7.处理数控机床上的部分工艺指令。
1.5 数控加工零件工艺设计要求数控技术毕业设计应包括数控加工工艺分析、数控刀具及其选择、工件装夹方式与数控加工夹具的选择、程序编制中的数值计算、数控加工程序的编制、数控车削加工、数控铣削加工、数控加工中心编程与操作及自动编程技术等内容。
若条件允许,还可以增加数控电加工技术和数控机床的安装、调试与验收等设计内容。
一、数控技术综合设计必须遵循的一般原则(1)结合本校数控毕业实训设计基本情况,合理安排毕业实训设计内容。
也可以采用与校外的实践教学基地(企业)合作的方式共同制定并完成相关设计课题。
(2)必须保障人身和设备的安全。
在编程操作前应熟悉数控机床的操作说明书,并严格按照操作规程操作。
数控加工时精力应高度集中,出现问题应立即切断机床电源,并向指导教师报告。
(3)兼顾加工精度和加工效率,在保证加工精度的前提下,认真进行工艺分析,制定合理的工艺方案,选择合理的切削用量。
(4)注重培养学生独立获取新知识、新技术和新信息的能力,使学生初步掌握科学研究的基本方法和思路。
环启动键,对零件图形进行仿真加工,并通过图形判断程序编制是否正确。
二、数控加工工艺设计的基本内容:(1)零件图的工艺性分析。
(2)加工方法的选择。
(3)工序的划分。
(4)定位与夹紧方式的选择。
(5)加工顺序的安排。
(6)确定走刀路线和工步顺序。
(7)切削用量的选择。
(8)对刀点和换刀点的确定。
(9)数控加工刀具的选择。
(10) 工件在数控机床上的装夹与夹具的选择。
三、数控加工程序编制主要的几个方面的工作:(1)加工工艺分析。
(2)数值计算。
(3)编写零件加工程序单。
(4)制作控制介质。
(5)程序校验与首件试切。
四、数控机床操作技能的主要内容:(1)数控车削加工编程与操作。
(2)数控铣削加工编程与操作。
(3)数控加工中心的编程与操作。
(4)数控电火花加工。
(5)数控线切割加工。
(6)数控机床安装、调试与验收。
图 1.1 典型铣削加工零件 工艺分析与选择2.1典型铣削零件数控加工工艺设计一、设计要求:加工零件如图 2.1所示,材料为HT200,毛坯尺寸:长×宽×高为170mm×110mm ×50mm 。
设计任务(1)零件图工艺分析。
(2)确定装夹方案。
(3)确定加工顺序。
(4)选择加工用刀具。
(5)合理选择切削用量。
(6)拟定数控铣削加工工序卡片。
(7)根据加工工序步骤编写加工程序。
(8)完成工件的加工。
二、数控加工的工作原理数控加工就是将加工数据和工艺参数输入到机床,机床的控制系统对输入信息进行运算与控制,并不断地向直接指挥机床运动的电动机功能部件——机床的伺服机构发送脉冲信号,伺服机构对脉冲信号进行转换与放大处理,然后由传动机构驱动数控机床,从而加工零件。
所以数控加工的关键是加工数据和工艺参数的获取,即数控编程。
三、数控编程及其发展数控机床和普通机床不同,整个加工过程中不需要人的操作,而由程序来进行控制。
在数控机床上加工零件时,首先要分析零件图样的要求、确定合理的加工路线及工艺参数、计算刀具中心运动轨迹及其位置数据;然后把全部工艺过程以及其他辅助功能(主轴的正转与反转、切削液的开与关、变速、换刀等)按运动顺序,用规定的指令代码及程序格式编制成数控加工程序,经过调试后记录在控制介质(或称程序载体)上,最后输人到数控机床的数控装置中,以此控制数控机床完成工件的全部加工过程。
因此,把从分析零件图样开始到获得正确的程序载体为止的全过程称为零件加工程序的编制。
数控编程一般分为手工编程和自动编程两种。
(1)手工编程。
手工编程是指程序编制的整个步骤几乎全部是由人工来完成的。
对于几何形状不太复杂的零件,所需要的加工程序不长,计算也比较简单,出错机会较少,这时用手工编程既及时又经济,因而手工编程仍被广泛地应用于形状简单的点位加工及平面轮廓加工中。