储能相变材料

合集下载

相变储能材料在建筑节能中的应用

相变储能材料在建筑节能中的应用

相变储能材料在建筑节能中的应用相变储能材料是一种新型的建筑节能材料,它具有很高的热储能量,可以在相变的过程中吸收或释放大量的热量,从而实现节能的目的。

近年来,相变储能材料在建筑节能领域得到了越来越广泛的应用,成为了建筑节能技术的重要组成部分。

一、相变储能材料的基本原理相变储能材料是一种可以在相变过程中储存和释放大量热能的材料,它常用的原理是蓄热和释热。

相变储能材料通常采用的是固-液相变,其具有的优点是凝固时会释放出大量的潜热,对于建筑节能来说非常有用。

相变储能材料在室内环境中,通过固液相变可以实现储能和释放热量的双重作用。

当室内温度下降时,固液相变的材料会吸收室内周围的热量进行蓄热,使室内的温度保持稳定,同时也可以减少冬季供暖的能耗。

当室内温度升高时,相变储能材料会释放出储存的热量,从而降低室内温度,减少夏季空调的运行时间和能耗。

二、相变储能材料在建筑节能中的应用1、用于墙体的隔热相变储能材料可以被用于室内墙体中进行隔热,这种墙体可以在夏季蓄热并释放热量,从而减少室内温度,降低空调的运行时间和运行能耗。

同时,该种建筑节能材料也可以在冬季吸收室内的热量,使墙体从外部保持温暖。

2、用于地面和屋顶的隔热相变储能材料可以用于地面和屋面的隔热,抑制室内温度波动,并且可以缓解室外温度和室内温度之间的差异。

使用这种建筑节能材料可以大大减少空调和供暖的运行成本。

3、用于建筑外墙的隔热相变储能材料也可以被用于建筑外墙中,实现墙面隔热、保温的功能,该建筑节能材料还可以降低外部环境温度对室内环境的影响。

三、相变储能材料的优势与不足相变储能材料具有以下优势:1、高热量储存能力:相变储能材料在相变过程中吸收或释放大量的热量,储存能力较高。

2、减少空调和供暖的耗能:使用相变储能材料可以在夏季减少空调的运行时间,降低室内温度;在冬季吸收室内热量,保持室内温暖,缩短供暖时间。

3、潜在的大规模应用:相变储能材料已经得到广泛的研究,可以在大规模的建筑中使用。

聚乙二醇相变储能

聚乙二醇相变储能

聚乙二醇相变储能一、引言相变储能是一种新型的储能技术,可以将能量以相变的形式存储和释放。

聚乙二醇(Polyethylene Glycol,简称PEG)是一种常用的相变储能材料。

本文将详细探讨聚乙二醇相变储能的原理、应用以及未来发展方向。

二、聚乙二醇相变储能的原理聚乙二醇是一种具有相变特性的有机化合物,其在特定温度范围内可以发生相变,从固态转变为液态或从液态转变为固态。

在相变过程中,聚乙二醇会吸收或释放大量的热量,实现能量的存储和释放。

聚乙二醇相变储能的原理可以归结为以下几点:1.热量吸收:当聚乙二醇从固态转变为液态时,吸收的热量可以被储存起来。

这是因为相变过程中,聚乙二醇的分子结构发生改变,需要吸收热量来克服分子间的相互作用力。

2.热量释放:当聚乙二醇从液态转变为固态时,释放的热量可以被提取出来供给外部使用。

相变过程中,聚乙二醇的分子结构再次发生改变,释放出之前吸收的热量。

三、聚乙二醇相变储能的应用聚乙二醇相变储能具有广泛的应用前景,以下是几个典型的应用领域:3.1 热能储存聚乙二醇相变储能可以用于热能的储存。

在太阳能发电系统中,可以利用聚乙二醇相变储能来存储白天收集到的太阳能,然后在夜间释放热能供给家庭供暖或热水使用。

3.2 温度调节聚乙二醇相变储能可以用于温度调节。

在建筑领域,可以利用聚乙二醇相变储能来调节室内温度,提高能源利用效率。

通过将聚乙二醇相变材料应用于墙体或地板,可以吸收室内过剩热量,并在需要时释放热量,实现室内温度的自动调节。

3.3 热能回收聚乙二醇相变储能可以用于热能回收。

在工业生产过程中,很多热能以废热的形式被排放掉。

利用聚乙二醇相变储能技术,可以将废热吸收并存储起来,然后在需要时释放热能供给其他工业过程使用,提高能源利用效率。

四、聚乙二醇相变储能的未来发展方向聚乙二醇相变储能作为一种新兴技术,还有很大的发展空间。

以下是几个聚乙二醇相变储能的未来发展方向:4.1 材料改良目前使用的聚乙二醇相变储能材料的相变温度范围较窄,需要进一步改良材料的性能,使其适用于更广泛的温度范围。

科技成果——相变储能材料

科技成果——相变储能材料

科技成果——相变储能材料项目简介相变储能材料(Phase Change Materials,PCMs)是一类利用在某一特定温度下发生物理相态变化以实现能量的存储和释放的储能材料,一般有固-液、液-气和固-固相变三种形式。

目前固-液相变储能材料的研究和应用最为广泛,其工作原理为:当环境温度高于相变温度时,材料由固态转变为液态并吸收热量;而当环境温度低于相变点时,材料由液态转变为固态释放热量,从而维持环境温度在适宜水平。

在相变过程中材料吸收或释放的热量,是材料单一相态温度变化时吸收或释放热量的几十倍甚至几百倍。

相变储能材料储能原理应用范围相变储能材料响应温度变化所吸收和释放的是热能,在能源高效利用和节能保温领域有着重要的应用价值。

如在建筑节能、太阳能利用、电力调峰、可再生能源消纳、工业余热回收、纺织品、冷链运输、医疗健康等方面拥有广阔的市场前景。

项目阶段目前主要的有机相变储能材料产品来源于石油工业的副产物,具有毒性,同时因其不会被生物降解,所以会持续产生污染。

研发团队以国家“973”计划——“节能领域纳米材料机敏特性关键科学问题研究”课题的研究成果为基础,制备出基于天然可再生油脂的相变储能材料,具有绿色无毒、可降解、储能密度高等优点。

通过对相变储能材料进行功能化处理,使其进一步具备了高光热转换效率及良好的储热特性,可高效利用太阳能及环境余热。

知识产权已申请相关专利。

调配出的不同温度的相变材料合作方式1.可根据实际情况研制具有不同相变温度的相变储能材料,满足各类需求。

2.完成建筑用相变储能材料产品的中试生产,实现了相变储能产品的规模化制备,如相变储能地板产品、相变储能板材产品、相变储能粉体(60-80目)与颗粒产品(5-8mm)等。

其中,地板和板材产品可用于室内装修,粉体和颗粒产品可作为其他建材,如涂料、砂浆、水泥、混凝土等的添加物。

3.将制备的相变储能板材应用于实际建筑中,取得了很好的控温节能效果:在北京冬季时,白天室内最多可少升温6-7℃,且温度峰值延后近2小时;夜晚温度降低时间最多可延迟近6小时(以降至18℃为限),有效减小了室内温度波动,并减少约18%的采暖电能能耗。

相变材料与相变储能技术

相变材料与相变储能技术

1980年
1989年
1991年
德国利用Na2SO4/SiO2制成高温蓄热砖, 并建立太阳能中央接收塔的储热系统。
1995年
Feldman等采用两种方法制备了相变储能 石膏板;日本利用不同含Si量的Al—Si合金 相变储能材料进行工业余热回收应用研究
Neeper对注入了脂肪酸和石蜡相变材料 的石膏墙板的热动态特性进行了测试 Hammou等设计了一个含相变材料的 混合热能储存系统
加,目前的纳米保温材料虽然给良好的保温增加 了希望,但如何在材料上加强研究,减少成本仍 然是相变储能技术研究的方向之一。 在相变机理方面的研究,一直进行得较缓慢。 热物性是相变材料应用的主要参数,而目前一些 相变材料的热物性(如比热容等)的测试数据较少, 尤其是相变材料经过多次熔化一凝固循环前后的 比热容等的热物性的变化情况几乎没有报道,在 这方面也是相变储能技术需要强化的环节。
但其存在两方面的不足一是过冷现象即物质冷凝到冷凝点时并不结晶而需到冷凝点以下的一定温度时才开始结晶同时使温度迅速上升到冷凝点导致物质不能及时发生相变从而影响热量的及时释放和利用二是出现相分离现象即当温度上升时它所释放出来的结晶水的数量不足以溶解所有的非晶态固体脱水盐或低水合物盐由于密度的差异这些未溶脱水盐沉降到容器的底部在逆相变过程中即温度下降时沉降到底部的脱水盐无法和结晶水结合而不能重新结晶使得相变过程不可逆形成相分层导致溶解的不均匀性从而造成该储能材料的储能能力逐渐下降
因此,可以看出,固—液相变是目前具有最大 实用价值的相变储能方式。对于相变储能来说, 这种固—液相变的熔化过程包括了共熔和转熔相 变和溶解。相变材料在熔化温度范围的熔化热是 可以利用的。在实际的系统中,由于没有达到热 动力学平衡,熔化和固化温度并不是恒定的。同 化温度与传热率、反应动能以及存在的杂质有关。 因此,相变储热(冷)能技术的基本原理是, 由于物质在物态转变(相变)过程中,等温释放的 相变潜热通过盛装相变材料的元件,将能量储存 起来,待需要时再把热(冷)能通过一定的方式释 放出来供用户使用。

相变储能材料和相变储能技术

相变储能材料和相变储能技术

相变储能材料及其应用物质的存在通常认为有三态,物质从一种状态变到另一种状态叫相变。

相变的形式有以下四种:(1)固—液相变;(2)液—汽相变;(3)固—汽(4)固-固相变。

相变过程个伴有能量的吸收或释放,我们就可以利用相变过程中有能量的吸收和释放的现象,利用相变材料来存储能量。

比如用冰贮冷,冬天,在寒冷的地区,人们从湖面、河面冻结的厚冰层中获取冰块,贮存于“冰屋”中,利月锯末隔热、冰块可存放到夏季结束。

这是冰块就可以起到现在冰箱的效果了。

储能想变成材料一般而言,储热相变材料可以这么进行分类下面我们对相变储能材料进行逐一分析:1、固-液相变材料:(1)结晶水合盐:结晶水合盐种类繁多,其熔点也从几度到几百度可供选择,其通式可以表达为AB?nH 2O 。

结晶水合盐通常是中、低温贮能相变材料中重要的一类,其特点是:使用范围广,价格较便宜、导热系数较大(与有机类相变材料相比)、溶解热较大、密度较大、体积贮热密度较大、一般呈中性。

但此类相变材料通常存在过冷和析出两大问题。

所谓过冷是指当液态物质冷却到“凝固点”时并不结晶,而须冷却到“凝固点”以下一定温度时方开始结晶;而析出现象指在加热过程中,结晶水融化,此时盐溶解在水结晶水合盐(如Na 2 SO 4?10H 2O ) 熔融盐金属(包括合金) 其他无机类相变材料(如水) 无机物 有机物 石蜡酯酸类其他有机混合类 有机类与无机类相变材料的混合 相变材料中形成溶液。

结晶水合盐的代表有芒硝、六水氯化钙、六水氯化镁、镁硝石等(2)石蜡:石蜡主要由直链院烃混合而成,可用通式C n H2n+2表示,短链烷烃熔点较低,但链增长熔点开始增长较快,而后逐渐减慢。

随着链的增长,烷烃的熔解热也增大,由于空间的影响,奇数和偶数碳原子的烷烃有所不同,偶数碳原子烷烃的同系物有较高的熔解热,链更长时熔解热趋于相等。

在C7H16以上的奇数烷烃和在C20H44以上的偶数烷烃在7℃一22℃范围内会产生两次相变:(1)低温的固-固转变,它是链围绕长轴旋转形成的;(2)高温的固-液相变,总潜热接近溶解热,它被看作贮热中可利用的热能。

相变储能材料在建筑节能领域的研究进展

相变储能材料在建筑节能领域的研究进展

相变储能材料在建筑节能领域中的应用已经取得了显著的进展,未来发展的 趋势和挑战主要包括以下几个方面:
1、进一步研究和开发新型的相变储能材料,以提高其能量密度、循环寿命 和稳定性等性能指标;
2、加强相变储能材料在可再生能源领域中的应用研究,如太阳能、地热能 等;
3、推动相变储能材料的生产和使用标准化、规模化,降低生产成本,提高 经济效益;
1、有机PCM:有机PCM具有较高的储能密度和良好的热稳定性,是目前研究 最为广泛的相变储能材料之一。其中,脂肪酸类、醇类和酯类是最常见的有机 PCM。
2、无机PCM:无机PCM具有较高的导热系数和较长的使用寿命,但是其储能 密度较低。常见的无机PCM包括结晶水合盐、熔融盐和金属合金等。
3、复合PCM:复合PCM是将有机PCM和无机PCM结合在一起的一种新型相变储 能材料,具有较高的储能密度和导热系数,同时使用寿命也较长。
4、加强国际合作与交流,共同应对全球能源危机和环境污染问题,推进建 筑节能领域的发展。
参考内容三
基本内容
随着全球能源危机和环境污染问题的日益严重,建筑节能已成为当今社会的 焦点。相变建筑材料作为一种具有潜力的节能材料,在建筑节能领域具有广泛的 应用前景。本次演示将对相变建筑材料在建筑节能领域的应用进行研究,探讨其 工作原理、技术实现及发展趋势。
相变储能材料在建筑节能领域中的应用场景主要包括建筑采暖和建筑制冷两 个方面。在建筑采暖方面,相变储能材料可以应用于地板采暖、墙体外保温等方 面,提高室内热舒适度,并降低能源消耗。在建筑制冷方面,相变储能材料可以 应用于空调系统和冷冻冷藏等领域,实现能量的合理利用和储存,达到节能减排 的目的。
相变储能材料的制备关键技术包括原材料的选择、制备工艺和性能控制等方 面。首先,原材料的选择是相变储能材料制备的关键环节,其选择应当考虑到材 料的相变温度、比热容、导热系数等参数,以及材料的环保性和经济性等因素。 其次,制备工艺也是相变储能材料制备的关键技术之一,包括熔融共混法、溶液 法、乳化法等。最后,性能控制方面,需要通过对原材料和制备工艺进行严格控 制,以获得具有优良性能的相变储能材料。

相变储能材料的分类和选择课件


寿命与维护
考虑相变储能材料的寿命以及维护成本,以确 保总体成本效益。
回收利用
评估相变储能材料的可回收性和再利用价值,以降低总体成本。
根据环境因素选择
环境温度
01
根据应用环境温度选择相变储能材料,以确保在高温或低温环
境下仍能正常工作。
安全性
02
考虑相变储能材料的安全性,包括无毒、不易燃等特性,以确
保使用安全。
相变储能材料的分类
根据相变类型,相变储能材料可分为固-固相变、固-液相变 和液-气相变等类型。
根据原材料,相变储能材料可分为无机类、有机类和复合类 等类型。
相变储能材料的应用领域
建筑节能
利用相变储能材料储存和调节建筑物的热量,提高建 筑物的能效和舒适度。
工业余热回收
利用相变储能材料回收工业过程中的余热,提高能源 利用效率。
研究具有长寿命的相变储能材料, 提高储能系统的稳定性和可靠性。
制备工艺的改进
低成本制备工艺
开发低成本、高效的相变储能材料制备工艺,降低生产成本,促 进大规模应用。
环保制备工艺
采用环保、可持续的制备工艺,减少对环境的负面影响。
定制艺。
应用领域的拓展
新能源储存
利用相变储能材料的特性,储存太阳能、地热能等新 能源,实现能源的有效利用。
02
相变储能材料的分类
按照化学性质分类
无机相变材料
无机相变材料主要包括结晶水合盐、熔融盐和金属等。这类材料具有较高的相变潜热和稳定性,但导热性能较 差,通常需要添加导热剂。
有机相变材料
有机相变材料主要包括石蜡、高分子化合物等。这类材料具有较低的相变潜热和较高的密度,但导热性能较好, 易于加工和循环使用。

相变储能材料的原理和应用

相变储能材料的原理和应用
相变储能材料是一种能够通过相变过程吸收或释放大量热能的材料。

其原理是利用物质在相变过程中吸收或释放潜热,实现能量的储存和释放。

相变储能材料的应用主要包括以下几个方面:
1. 热能储存和释放:相变储能材料可以在低温时吸收热能,在高温时释放热能,用于供热和制冷系统。

2. 温度调节:相变储能材料可以通过自身的相变过程吸热或释热,用于调节温度,实现室温的调节和控制。

3. 热电转换:相变储能材料可以与热电材料相结合,通过温差发电的方式将热能转化为电能,实现能源的转换和利用。

4. 可调湿度材料:相变储能材料可以调节湿度,吸湿或释湿,用于调节环境湿度和保持室内舒适。

5. 储能装置:相变储能材料可以用于制备储能装置,用于存储和释放能量,实现能源的长期储存和供应。

总体来说,相变储能材料具有高储能密度、长寿命、高效能转换等优点,在能源储存和利用方面具有广泛的应用前景。

相变储能材料调研报告

相变储能材料调研报告相变储能材料是一种新型的储能材料,具有较高的储能密度和长周期的循环寿命。

本文对相变储能材料进行了调查研究,总结了其基本原理、应用领域和发展前景。

相变储能材料是一种能够通过物质相变(固液相变或液气相变)来储存和释放能量的材料。

相变过程中,物质会吸收或释放大量的潜热,使其储能密度较高。

相变储能材料分为两类:固态相变材料和液态相变材料。

固态相变材料常见的有蓄热水泥、蓄热蜡等,液态相变材料主要有相变蓄热材料、相变涂层等。

相变储能材料的应用领域很广泛。

首先,它可以用于建筑领域,用作墙体、屋顶等结构的蓄热材料,实现建筑的节能减排。

其次,相变储能材料可以用于电子产品、汽车等领域,提高电池的储能密度和循环寿命。

再次,它还可以用于太阳能热能利用,提高太阳能的利用效率。

此外,相变储能材料还可以应用于工业过程中的热能调控、冷热能的储存等。

相变储能材料在未来具有广阔的发展前景。

首先,随着节能减排的要求越来越高,相变储能材料将成为建筑领域的重要发展方向。

其次,随着新能源的快速发展,太阳能、风能等能源的不稳定性引发了储能技术的需求,相变储能材料有望成为重要的储能手段。

再次,随着电动汽车市场的逐渐兴起,相变储能材料在电池领域的应用前景广阔。

然而,相变储能材料也存在一些挑战和限制。

首先,目前相变储能材料的生产成本较高,需要进一步降低成本才能在大规模应用中具备竞争力。

其次,相变储能材料的循环稳定性和耐久性还需要进一步提高,以满足长期使用的需求。

再次,相变储能材料的热传导性能也需要改进,以提高储能和释放能量的效率。

综上所述,相变储能材料是一种具有较高储能密度和长周期循环寿命的储能材料,有着广泛的应用前景。

随着技术的不断发展和应用的推广,相变储能材料将在节能减排、新能源储存等领域发挥重要作用。

然而,相变储能材料还需要进一步解决生产成本高、循环稳定性和热传导性能等问题,以实现规模化应用。

相变储能材料的制备与应用

相变储能材料的制备与应用相变储能材料的制备主要有两种方法:物理法和化学法。

物理法主要是通过改变材料的物理结构来实现相变储能。

例如,利用相变材料的晶体结构变化来储存和释放热能。

化学法主要是通过特定的化学反应来实现相变储能。

例如,利用一些物质在反应过程中吸热或放热来实现能量的储存和释放。

在制备过程中,选择合适的相变储能材料是关键。

常见的相变储能材料包括有机相变材料和无机相变材料。

有机相变材料主要是通过有机化合物的相变来实现储能。

例如,蜡状物质可在适当温度下由固体向液体相变,释放大量的热能。

无机相变材料主要是利用一些无机化合物或盐类的相变来实现储能。

例如,利用硝酸铵的相变过程来提供高温热源或低温冷源。

相变储能材料的应用非常广泛。

在建筑领域,相变储能材料可以用于建筑物的节能和调温降噪。

例如,在夏季,利用相变储能材料的储能特性,将热量储存起来,减少空调设备的负荷,降低能源消耗。

而在冬季,利用相变储能材料释放热量,提高室内温度。

相变储能材料还可以用于电力系统的储能。

例如,利用相变储能材料的高储能密度和快速充放电特性,将其应用于电动汽车的电池中,提高电池的能量密度和工作效率。

此外,相变储能材料还可应用于生物医学、航天航空、新能源等领域。

在生物医学领域,相变储能材料可用于体外或体内的温度控制,例如体外诊断设备的高温灭菌和体内肿瘤治疗。

在航天航空领域,相变储能材料可用于航天器的温度控制和热管理,提高系统的可靠性和性能。

在新能源领域,相变储能材料可用于太阳能和风能等新能源的储能,提高能源利用效率和可持续性。

总之,相变储能材料的制备和应用是一个多学科综合的领域,涉及材料科学、化学、工程等多个领域。

通过研究相变储能材料的制备方法和应用领域,可以开发出更加高效的能源转换和储存技术,推动可持续能源的发展和利用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

储能相变材料
一、引言
储能相变材料是一种具有特殊能力的材料,能够在物理形态的变化过程中吸收和释放巨大的能量。

近年来,随着能源需求的不断增长和可再生能源的广泛应用,储能技术成为人们关注的焦点之一。

储能相变材料作为一种重要的储能材料,具有较高的能量密度和可调节的放热速率,被广泛应用于储能设备、热管理系统以及新能源领域。

二、储能相变材料的基本原理
储能相变材料利用物质在相变过程中释放或吸收的潜热来进行能量的存储和释放。

相变过程中,物质的温度保持不变,但其物态发生了变化。

常见的储能相变材料包括氧化铁、水、蜡状物质等。

当储能相变材料吸收能量时,其物态由固态转变为液态或气态,潜热被吸收并储存;当需要释放能量时,相反的过程发生,物质从液态或气态转变为固态,潜热被释放。

这种相变过程具有高能量密度、快速响应和可控性的特点,使得储能相变材料成为理想的能量储存介质。

三、储能相变材料在储能设备中的应用
1. 热管理系统:储能相变材料可以用于热管理系统中,通过吸收和释放热量来调节系统温度,提高能源利用效率。

例如,在太阳能集
热系统中,储能相变材料可以吸收太阳辐射能量并将其储存,在夜间或阴天释放热量供给设备使用,实现24小时的持续供热。

2. 太阳能电池:储能相变材料可以应用于太阳能电池中,提高太阳能电池的效率和稳定性。

太阳能电池在高温环境下容易损坏,而储能相变材料可以吸收太阳能电池产生的多余热量,保持电池温度在适宜范围内,提高其光电转换效率和寿命。

3. 储能设备:储能相变材料可以用于储能设备中,实现能量的高密度存储。

相比于传统的储能技术,储能相变材料具有更高的能量密度和更短的充放电时间,可以满足大容量储能设备的需求。

此外,储能相变材料还具有较长的循环寿命和较低的成本,使其在储能领域具有广阔的应用前景。

四、储能相变材料的发展趋势
1. 多功能化:当前的储能相变材料主要用于能量存储和释放,但随着科技的进步,人们对储能相变材料的功能要求也在不断提高。

未来的储能相变材料将具备多种功能,如温度感应、光学调节、形状记忆等,以满足不同领域的需求。

2. 高性能化:目前的储能相变材料还存在能量密度低、循环寿命短等问题,未来的发展趋势是实现储能相变材料的高性能化。

通过材料结构优化、导热性能提升等手段,提高储能相变材料的能量密度和循环寿命,以适应各种工况下的应用需求。

3. 可持续化:随着可再生能源的快速发展,储能相变材料的可持续性也成为关注的焦点。

未来的储能相变材料将更加注重材料的可再生性、环境友好性和资源利用效率,以实现可持续能源的储存和利用。

五、结论
储能相变材料作为一种重要的储能材料,在能源存储和利用方面具有巨大的潜力。

通过吸收和释放潜热,储能相变材料能够实现能量的高密度存储和快速响应,满足不同领域的能源需求。

未来,随着科技的不断进步和需求的不断增长,储能相变材料将迎来更广阔的应用前景,并成为推动能源转型和可持续发展的重要支撑。

相关文档
最新文档