相变储热材料
相变储热技术研究进展

相变储热技术研究进展一、本文概述随着全球能源需求的日益增长和环保意识的逐渐加强,高效、环保的能源存储技术成为了研究热点。
相变储热技术作为一种重要的热能存储方式,因其能在特定温度下进行热能的吸收和释放,从而实现对热能的有效管理和利用,受到了广泛关注。
本文旨在全面综述相变储热技术的研究进展,包括其基本原理、材料研究进展、应用领域以及未来的发展趋势。
通过对现有文献的梳理和分析,本文旨在为相关领域的研究者提供有价值的参考,推动相变储热技术的进一步发展和应用。
二、相变储热材料的研究进展相变储热技术作为一种高效、环保的储热方式,近年来受到了广泛关注。
其核心在于相变储热材料(Phase Change Materials, PCMs),这些材料能够在特定的温度下吸收或释放大量的热能,从而实现对热能的储存和利用。
近年来,相变储热材料的研究取得了显著的进展,不仅拓宽了材料种类,还提高了储热效率和稳定性。
在材料种类方面,传统的相变储热材料主要包括无机盐类、石蜡类和脂肪酸类等。
然而,这些材料在某些应用场合下存在导热性差、易泄漏、化学稳定性不足等问题。
因此,研究人员开始探索新型相变储热材料,如高分子材料、纳米复合材料等。
这些新材料不仅具有更高的储热密度和更好的稳定性,还能通过纳米效应、界面效应等提高导热性能,从而满足更广泛的应用需求。
在储热效率方面,研究者们通过改变材料的微观结构、优化复合材料的配比、引入纳米增强剂等方法,有效提高了相变储热材料的储热效率和热稳定性。
一些研究者还将相变储热材料与其他储能技术相结合,如与太阳能、地热能等可再生能源相结合,实现了热能的高效利用和存储。
在应用方面,相变储热材料已广泛应用于建筑节能、工业余热回收、航空航天等领域。
在建筑节能领域,相变储热材料可以用于墙体、屋顶等建筑构件中,通过储存和释放热能来调节室内温度,提高建筑的保温性能。
在工业余热回收领域,相变储热材料可以回收和利用工业生产过程中产生的余热,提高能源利用效率。
相变储热材料

相变储热材料相变储热材料是一种能够在相变过程中吸收或释放大量热量的材料,广泛应用于太阳能热能储存、建筑节能、电力系统调峰等领域。
相变储热材料利用物质在相变过程中吸收或释放的潜热来实现热储存和释放,具有储热密度高、储热温差小、循环稳定性好等优点,因此备受关注。
常见的相变储热材料包括蓄热水、蓄热混凝土、相变蜡等。
其中,相变蜡因其熔点明确、热储存密度大、循环稳定性好等特点,成为相变储热材料中的热门产品。
相变蜡的主要成分是石蜡或蜂蜡,其在固态和液态之间的相变过程可以吸收或释放大量热量,因此被广泛应用于太阳能集热系统、建筑节能材料、电力系统调峰等领域。
相变储热材料的性能对其应用效果起着至关重要的作用。
首先,相变储热材料的相变温度应与应用系统的工作温度相匹配,以确保在需要释放热量时能够准确释放。
其次,相变储热材料应具有良好的循环稳定性,能够经受多次相变循环而不发生明显的性能衰减。
此外,相变储热材料的热导率也是影响其应用效果的重要因素,高热导率可以加快热量的传输速度,提高系统的热效率。
在实际应用中,相变储热材料的设计和制备也是至关重要的。
首先,需要根据具体的应用需求选择合适的相变储热材料,包括相变温度、热储存密度、循环稳定性等指标。
其次,需要设计合理的储热结构,确保相变储热材料能够充分接触传热,并且能够在相变过程中保持稳定的温度分布。
最后,制备工艺也需要精益求精,以确保相变储热材料具有良好的物理结构和热物性。
总的来说,相变储热材料作为一种高效的热能储存和释放方式,在太阳能热能储存、建筑节能、电力系统调峰等领域具有广阔的应用前景。
随着科技的不断进步,相变储热材料的性能和制备工艺也在不断提升,相信其在未来会有更加广泛的应用。
相变储热材料的发展将为推动清洁能源利用和建筑节能领域的发展做出重要贡献。
相变储热材料的制备与应用

相变储热材料的制备与应用摘要:热能储存可以通过蓄热材料的冷却、加热、熔化、凝固。
气化、化学反应等方式实现。
它是一种平衡热能供需和使用的手段。
热能储存按储热方式可分为三类,即显热储能、潜热储能和化学反应储热。
关键词:相变;储热;复合材料一、相变材料在国内外的发展状况国外对相变储能材料的研究工作始于20世纪60年代。
最早是以节能为目的,从太阳能和风能的利用及废热回收,经过不断的发展,逐渐扩展到化工、航天、电子等领域。
近年来最主要的研究和应用集中在建筑物的集中空调、采暖及被动式太阳房等领域。
国外研究机构和科研人员对蓄热材料的理论研究工作,尤其是对蓄热材料的组成、蓄热容量随热循环变化情况、相变寿命、储存设备等进行了详细的研究,在实际应用上也取得了很大进展。
相对于已经进入实用阶段的发达国家,我国在20世纪70年代末80年代初才开始对蓄热材料进行研究,所以国内相变储能材料的理论和应用研究还比较薄弱。
上世纪90年代中期以来,国内研究重点开始转向有机相变材料和复合定形相变材料的研究开发。
二、相变储热材料的分类(1)从材料的化学组成来看,主要分为无机类相变材料和有机类相变材料,而在课堂上我们主要讲解的是有机类相变材料。
无机相变材料包括结晶水合盐、熔融盐和金属合金等无机物。
与无机类相变储能材料相比,有机类相变储能材料具有无过冷及析出,性能稳定,无毒,腐蚀等优点。
其中石蜡类相变潜热量大、相变温度范围广、价格低,所以在相变储能材料的研究使用中受到广泛的重视。
但石蜡类相变储能材料热导率较低,也限制了其应用范围。
为有效克服石蜡类有机化合物相变储能材料的缺点,同时改善相变材料的应用效果及拓展其应用范围,复合相变储能材料应运而生。
复合相变材料由较稳定的有机化合物和具有较高导热系数的无机物颗粒制备而得,因而复合相变材料具有稳定的化学性质,无毒无腐蚀性或毒性和腐蚀性小。
同时它的导热能力较有机物有较大的改善。
(2)根据使用的温度不同又可以分为高、中、低温相变储热材料。
相变材料及其在温室中的应用

CaCl2·6H2O
Na2SO4·10H2O
2.2有机相变蓄热材料
有机相变蓄热材料主要包括:高分子类相变材料、 脂肪酸、醇类相变材料。
石蜡
作为相变蓄热材料的工业级石蜡是很多碳氢化合物的混合 体,其相变温度可调,且温度范围宽泛,熔点从23~67℃不等, 是有机储热材料中应用最广的相变材料。石蜡相变潜热高,几 乎没有过冷现象、自成核、熔化时蒸汽压力低、不易发生化学 反应且化学稳定性较好、没有相分离和腐蚀性(可以用金属容 器封装);它还可与支撑材料形成定形相变材料,使其在围护 结构中的应用具有广阔的前景。石蜡的缺点主要是导热系数低, 可能有渗出现象。
相变材料按相变形式分为液-气、固-气、液-液、固-液、 固-固 5种,固-气或液-气变化材料由于相变时体积变化过 大而难以应用于实际,只有固-液、固-固有应用价值 。美 国 Dow化学公司对近两万种相变材料进行了测试,发现 只有1%的相变材料可进一步研究。适合作为温室储热的 相变材料更是少之又少。(?)
右图为采用原位聚合法用三聚氰胺甲醛树脂包覆一种相 变点为24℃相变材料A制得的相变储热微胶囊。
1、对温室相变储热材料的要求:
PCMs 的相变温度必须在植物生长的适宜温;
潜热值大、体积膨胀率小;
PCMs 不能从容器中外泄、长期循环不变质、与建材要相
容;
能在恒定温度下融化及固化,不发生过冷和相分离现象; 具有化学稳定性和低降解性质; 不腐蚀、无毒、非燃、不爆炸; 经济性好。
2、相变材料分类
CaCl2·6H2O的相变温度约在 26~29℃,熔解热为190 kJ/kg,不易分解,价格低,易得,安全无毒。 CaCl2·6H2O 有严重的过冷问题(其过冷度达 20℃)和对湿度的敏感性, 对应用不利。
相变储热材料的制备与应用

相变储热材料的制备与应用摘要:热能储存可以通过蓄热材料的冷却、加热、熔化、凝固。
气化、化学反应等方式实现。
它是一种平衡热能供需和使用的手段。
热能储存按储热方式可分为三类,即显热储能、潜热储能和化学反应储热。
关键词:相变;储热;复合材料一、相变材料在国内外的发展状况国外对相变储能材料的研究工作始于20世纪60年代。
最早是以节能为目的,从太阳能和风能的利用及废热回收,经过不断的发展,逐渐扩展到化工、航天、电子等领域。
近年来最主要的研究和应用集中在建筑物的集中空调、采暖及被动式太阳房等领域。
国外研究机构和科研人员对蓄热材料的理论研究工作,尤其是对蓄热材料的组成、蓄热容量随热循环变化情况、相变寿命、储存设备等进行了详细的研究,在实际应用上也取得了很大进展。
相对于已经进入实用阶段的发达国家,我国在20世纪70年代末80年代初才开始对蓄热材料进行研究,所以国内相变储能材料的理论和应用研究还比较薄弱。
上世纪90年代中期以来,国内研究重点开始转向有机相变材料和复合定形相变材料的研究开发。
二、相变储热材料的分类(1)从材料的化学组成来看,主要分为无机类相变材料和有机类相变材料,而在课堂上我们主要讲解的是有机类相变材料。
无机相变材料包括结晶水合盐、熔融盐和金属合金等无机物。
与无机类相变储能材料相比,有机类相变储能材料具有无过冷及析出,性能稳定,无毒,腐蚀等优点。
其中石蜡类相变潜热量大、相变温度范围广、价格低,所以在相变储能材料的研究使用中受到广泛的重视。
但石蜡类相变储能材料热导率较低,也限制了其应用范围。
为有效克服石蜡类有机化合物相变储能材料的缺点,同时改善相变材料的应用效果及拓展其应用范围,复合相变储能材料应运而生。
复合相变材料由较稳定的有机化合物和具有较高导热系数的无机物颗粒制备而得,因而复合相变材料具有稳定的化学性质,无毒无腐蚀性或毒性和腐蚀性小。
同时它的导热能力较有机物有较大的改善。
(2)根据使用的温度不同又可以分为高、中、低温相变储热材料。
相变储热材料的种类_应用及展望

目前对国内外相变材料(!"#$%&’"()*%+,(-%./(0,!’,)储热性能的研究越来越多,相变材料有独特的潜热性能:它在其物相变化过程中,可以从环境吸收热(冷)量或向环境放出热(冷)量从而达到热量储存和释放的目的。
利用此特性不仅可制造出各种提高能源利用率的设施,同时由于其相变时温度近似恒定,可以用于调整控制周围环境的温度,并且可以多次重复使用123。
从现在应用普遍程度来看,相变储热材料主要使用的是固液相变储热材料和固固相变储热材料。
固液相变材料主要优点是价廉易得。
但是固液相变储热材料存在过冷和相分离现象,会导致储热性能恶化,易产生泄露、污染环境、腐蚀物品、封装容器价格高等缺点。
固固相变材料在发生相变前后固体的晶格结构改变而放热吸热143,与固液相变材料相比,固固相变材料具有更多优点:可以直接加工成型,不需容器盛放。
固固相变材料膨胀系数较小,不存在过冷和相分离现象,毒性腐蚀性小,无泄露问题。
同时组成稳定,相变可逆性好,使用寿命长,装置简单。
固固相变材料主要缺点是相变潜热较低,价格较高153&。
67&相变储热材料的分类686&固—液相变储热材料68686硫酸钠类硫酸钠水合盐(9(:;<=>?:<)的熔点5:8=’,溶解潜热:@A8BCD*,它具有相变温度不高、潜热值较大两个优点。
硫酸钠类储热剂不仅储热量大,而且成本较低,温度适宜,常用于余热利用的场合。
然而十水硫酸钠在经多次熔化—结晶的贮放热过程后,会发生相分离,为了解决这个问题,可加入防相分离剂1=3。
6868:醋酸钠类三水醋酸钠的熔点是@B8:’,熔解热:@A8BCE*,属于中低温储热材料。
三水醋酸钠作为储热材料,其最大的缺点是易产生过冷,使释热温度发生变动,通常要加入防过冷剂1=3。
为防止无水醋酸钠在反复熔化—凝固可逆相变操作中析出,还要加入明胶、树胶或阳离子表面活性剂等防相分离剂。
相变储热材料的发展概况及展望-精选资料

相变储热材料的发展概况及展望能源是人类赖以生存的基础。
随着现代工业的迅速发展,人们对能源的需求量越来越大,迫切需要全球各国不断开发和利用新能源。
在此过程中,虽然新能源在不断被开发,但是我们对能源的利用在许多情况下都未达到合理化,致使大量能源被浪费。
因此,提高能源的利用率很有必要。
储热技术可用于解决热能供给和需求失配的矛盾,是提高能源利用效率和保护环境的重要技术。
储热技术主要包括显热、潜热和反应热3种储热方式。
其中,以相变材料(Phase Change Material, PCM)的固-固、固-液相变潜热来储存热量的潜热型热能储存方式最为普遍,也最为重要。
其优点为:储热密度大、储放热过程近似等温和过程容易控制等[1]。
固-固相变储热材料和固-液相变储热材料是目前应用较为广泛的相变储热材料。
固-液相变材料存在过冷和相分离现象,从而导致储热性能恶化,具有腐蚀性等缺点。
固-固相变材料在发生相变前后固体的晶格结构改变而放热吸热,与固-液相变储热材料相比,固-固相变储热材料具有稳定性好、腐蚀性小、装置简单等特点[2]。
一、相变储热材料分类及应用1.相变储热材料分类相变储热材料主要有固-固和固-液型两类,其中固-液相变储热材料根据使用温度范围,又可分为高温型和低温型储热材料,或者根据材料类型,又可分为有机型和无机型储热材料;固-固相变储热材料主要有3大类,分别是高分子类、多元醇类和层状钙钛矿类。
1.1固-固相变储热材料高分子类相变储热材料主要是一些高分子的聚合物。
如聚烯烃类、聚缩醛类等。
目前最常见的是聚乙烯。
这种材料一般不产生过冷或相分离现象,结晶度高,导热率高,物美价廉。
多元醇类相变储热材料主要有季戊四醇(PE)、2,2-二羟甲基-丙醇(PG)、新戊二醇(NPG)、三羟甲基乙烷(TMP)等。
这类材料具有寿命长、焓变大、性能稳定等优点。
多元醇的相变温度较高,在很大程度上限制了其应用[3],可通过混合多元醇,调节相变温度。
相变储能材料

微胶囊相变材料
制备工艺
物理化学 法
复凝聚法、单凝聚法、 溶剂一非溶剂法
界面聚合法、原位 聚合法
化学法 Diagram Diagram 2 2
机械加工 喷雾法、空气悬浮 o
PCM在建筑节能中的应用
1 2
相变储能石膏板 相变储能混凝土 保温隔热材料 相变涂料 相变蓄热地板
Logo
相变蓄热地板
相变材料在地板中的应用,一般都会结合电加热方式, 以组成电加热相变蓄热地板采暖系统。地板采暖使得室内水 平温度分布均匀,垂直温度梯度小,不仅符合人体“足暖头 凉”的需要,而且采暖能耗较低,接近理想的采暖方式。 有学者建立了电加热相变蓄热地板采暖系统热性能的理 想模型,并模拟了该系统在北京、上海、大连和哈尔滨等4个 地区的使用效果。结果表明,除哈尔滨室外气温太低外,其 他地区在使用相变蓄热地板的电加热方式时,冬季室内温度 可以保持在16-25 ℃ ,基本上能够满足人的热舒适要求。
材料价廉易得
材料无毒、无腐蚀性
封装法的制备工艺
微胶囊封装技术
微胶囊技术是一种用成膜材料把固体或液体包覆使形成微小粒 子的技术。得到的微小粒子称微胶囊,一般粒子大小在2-1000um范 围内。微胶囊粒子的形态多种多样。
囊心 (PCM)
Diagram 2
Logo
相变储能建筑材料
相变材料
+
建筑材料
相变储能建筑材料
前言
相变材料(PCM)
相变材料(Phase Change Materials,简称PCM)是指在一 定温度范围内,物理状态或分子结构发生转变的一类材料。
它们在物理状态或分子结构发生转变过程中,可以吸收环境
的热量,并在需要时向环境释放出热量,从而达到控制周围 环境温度的目的。 以固一液相变为例 吸收并储存热量
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相变储热材料
相变储热材料是一种新型的储热材料,具有广泛的应用前景。
相变储热材料是一种可以在物质相变时吸收或释放大量热量的材料。
相变是物质在特定条件下从一种相态转变成另一种相态的过程,如固体到液体的熔化、液体到气体的汽化等。
在相变储热材料中,当物质从低温固体相转变为高温液体相时,吸收的热量被储存起来;当物质从高温液体相转变为低温固体相时,释放的热量被释放出来。
由于相变过程释放或吸收的热量非常大,相变储热材料可以用来储存和释放大量的热能。
相变储热材料具有许多优点。
首先,相变储热材料具有高储能密度。
相变过程释放或吸收的热量很大,使得相变储热材料可以以较小的体积储存和释放大量的热能。
其次,相变储热材料具有长周期的储热能力。
相变储热材料可以多次循环地进行相变和反相变,从而实现长时间的储热和释放。
此外,相变储热材料还具有良好的稳定性和可靠性,可以在不同环境条件下进行储热和释放。
最后,相变储热材料还具有良好的环保性能。
相变储热材料不需要外部能源的输入,可以利用自身的热量储存和释放能量,不会产生二氧化碳等环境污染物。
相变储热材料可以应用于许多领域。
在建筑领域,相变储热材料可以用于建筑物的供暖和降温系统。
通过将相变储热材料嵌入到墙体、地板和天花板等建筑材料中,可以在白天吸收太阳能,并在夜间释放热量,提供舒适的室内温度。
在工业领域,相变储热材料可以用于工业生产的热能储存和回收。
通过利用相变储热材料储存冷却水的热量,在需求高峰时释放热量,可
以提高能源利用率和节约能源。
此外,相变储热材料还可以应用于太阳能热电站、电动汽车和储能设备等领域,实现可持续能源的储存和利用。
总之,相变储热材料是一种具有广泛应用前景的新型储热材料。
它具有高储能密度、长周期的储热能力、良好的稳定性和可靠性以及良好的环保性能。
未来,相变储热材料有望在建筑、工业、能源等领域发挥重要作用,实现能源的高效利用和可持续发展。