32位DSP机器人控制系统设计与实现课程设计
DSP系统设计

INT3 有 ? 效 否
有 并 效 行 自 ? 举 否
是 传 数 输 据
是 装 代 载 码 A
A
初 化 行 始 串 口 拉 XF 低
I/O 自 举 准 行 自 标 串 口 举
McB P1 S ? 否 是 有 效 数 ? 据 否 传 输 数 据 是 是 否 否 B IO 低 ? 是 有 效 数 ? 据 传 输 数 据
W =0x--A ? A 是 8位 式 模
否
-1个 以 读 取R 字 初 始 寄 器 化 存 。 8位 式 , 个 模 下 每 字 按 节 取 要 字 读 两 。 次 读 起 地 的 取 始 址 X PC 读 起 地 的 取 始 址 PC
读 段 大 取 的 小R 是
R =0? 否 读 段 标 址 取 目 地 读 段 内 并 取 的 容 放 到 标 址 置 目 地
标准串行自举 标准串行口方式McBSP1(8位模式)
B IN R T1=1 否
D R R =0x08? 是 读 一 节 下 字
检 M SP0 测 cB 自 举
D R R =0xA ? A 是 8位 式 模 读4 个 元 哑 传 代 输 码
否
标准串行自举(续) 标准串行口方式McBSP0(16位模式)
复位周期TRP
TRP = 3.125 × CRP
看门狗周期TWP
TWP = 25 × CWP
带手动复位和电压监控 TPS3808 主要特性:
复位延迟时间可设(1.25ms~10s); 小尺寸SOT23;
上电顺序连接
带手动复位和电压监控(TPS3808)
复位过程时序(tD电容预设)
带手动复位和电压监控(TPS3808)
跳 到 始 址 转 起 地 开 运 始 行
机械臂控制系统的设计

机械臂控制系统的设计1 引言近年来;随着制造业在我国的高速发展;工业机器人技术也得到了迅速的发展..根据负载的大小可以将机械臂分为大型、中型、小型三类..大型机械臂主要用于搬运、码垛、装配等负载较重的场合;中小型机械臂主要用于焊接、喷漆、检测等负载较小的场合..随着国外工业机器人技术的不断发展;尤其是一些中小型机器人;它们具有体积小、质量轻、精度高、控制可靠的特点;甚至研发出更为轻巧的控制箱;可以在工作区域随时移动;这样大大方便了工作人员的操作..在工业机器人的应用中最常见的是六自由度的机械臂..它是由6个独立的旋转关节串联形成的一种工业机器人;每个关节都有各自独立的控制系统..2机械臂硬件系统设计2.1 机械臂构型的选择要使机器臂的抓持器能够以准确的位置和姿态移动到给定点;这就要求机器人具有一定数量的自由度..机器臂的自由度是设计的关键参数;其数目应该与所要完成的任务相匹配..为了使安装在双轮自平衡机器人上的机械臂能够具有完善的功能;能够完成复杂的任务;将其自由度数目定为6个;这样抓持器就可以达到空间中的任意位姿;并且不会出现冗余问题..在确定自由度后;就可以合理的布置各关节来分配这些自由度了..由于计算数值解远比封闭解费时;数值解很难用于实时控制;这样;后3个关节就确定了末端执行器的姿态;而前3个关节确定腕关节原点的位置..采用这种方法设计的机械臂可以认为是由定位结构及其后面串联的定向结构或手腕组成的..这样设计出来的机器人都具有封闭解..另外;定位结构都采用简单结构连杆转角为0或90°的形式;连杆长度可以不同;但是连杆偏距都为0;这样的结构会使推倒逆解时计算简单..定位机构是涉及形式主要有以下几种:SCARA型机械臂;直角坐标型机械臂;圆柱坐标型机械臂;极坐标型机械臂;关节坐标型机械臂等..SCARA机械臂是平面关节型;不能满足本文对机械臂周边3维空间任意抓取的要求;直角坐标型机械臂投影面积较大;工作空间小;极坐标方式需要线性移动;机械臂如需较大的工作空间;则臂长较长;和其他类型相比关节型机械臂在其工作空间内干涉是最小的;是一种较为优良的结构..所以初步确定本文机械臂构型为关节型..2.2臂杆长度的确定机械臂的臂杆设计如表2-1所示:表2-1 机械臂臂杆长度臂体名称大臂L1 小臂L2 机械手长度mm 550 500 1502.3 机械臂结构设计2.3.1 关节结构方案为了便于机械臂关节的模块化涉及和简化结构;本设计使用电机直接连接减速器;减速器连接臂体连接结构..图2-1是关节结构动力传递方案..图2-1 关节结构动力传递方案使用这种联接方式因中间零件少;故形变量与回程间隙都较小;且能保持较高的结构刚度..2.4 关键部件的选型2.4.1 关节负载的估算各关节的动态参数是驱动元件的选择和关节传动零件选择的重要依据..由机器人动力学相关知识可知完整的机器人动力学方程为:式中一般使用静力学方法和动力学方法计算机器人的动力参数;速度较低的机械;在运行过程中;惯性引起的动载荷较小;一般使用静力学方法;忽略C和F的影响..而对于运行速度较高机械;其动载荷也较大;即C项的影响较大;甚至超过静载荷;且粘滞摩擦也较大;同时考虑静载荷和动载荷;需使用动力学计算..本文的设计要求是一款可以安装在全向移动平台上的轻型机械臂;对关节的旋转速度要求不高;因此估算机械臂力矩时采用静力学方法..图2-2 机械臂受力简图估计关节力矩之前;首先假设每个关节的重力作用集中在中心;将连杆的重量均分于各关节;机械臂受力简图如图 2-2 所示;使用静力学方法计算关节所受力矩的最大值..六自由度机械臂三维静态仿真图如图2-3所示:图2-3 三维静态仿真图2.4.2 关节驱动系统电机的选型机械臂的驱动系统;有三种基本类型;即电动驱动、液压驱动和气动驱动;也可以根据需要组合成为复合式的驱动系统..1 电机驱动目前机械臂上使用最多的一种驱动方式是电动驱动;它利用各种电机产生的力和力矩;直接或通过机械传动装置来驱动执行机构..这类系统效率比液压驱动和气动驱动系统高;且电源方便;所以在机器人中得到了广泛的应用..2 液压驱动液压驱动的主要优点是功率密度大..液压缸也可直接作为臂体的一部分;因而结构紧凑;刚性好..由于液压油液的不可压缩性;系统的固有频率较高;快速响应好;可实现频繁平稳的变速和换向..液压系统易于实现过载保护;动作平稳、耐冲击、耐振动、防爆性好..3 气动驱动气动驱动系统通常由气缸、气阀、气罐和空压机组成;其特点是气源方便、结构简单、造价较低、维修方便..与液压驱动系统相比;同体积条件下功率较小;也难以进行速度控制;多用于中、小负荷且精度要求不高的机器人控制系统中..综上;本设计决定使用电动驱动方式为机械臂提供动力;步进电机为驱动电机..2.4.3驱动系统减速器的选型结合上文;本文将使用步进电机为驱动电机为机械臂提供动力;结合各关节受力和机械臂关节传动机构组合方式;应在驱动电机和机械臂关节间安装减速器做扭矩适配;降低输出轴的速度;增大输出扭矩..一般行星齿轮减速器、蜗轮蜗杆减速器、谐波减速器、齿轮减速器等可以和步进电机适配..1、行星齿轮减速器行星齿轮减速器通常由一个或者多个外部齿轮围绕着一个中心齿轮旋转;就像行星绕着太阳公转一样..在工作状态中多个行星齿轮协同工作;因而承载能力大;属纯扭矩传动;工作平稳..单级行星齿轮减速器的减速比一般较小;需要增加减速比时只需增加行星轮系的级数即可;而整体体积变化较小..2、蜗轮蜗杆减速器蜗轮蜗杆减速器的传动比大;一般为 10-80;也可以达到 80 以上..此外;蜗轮蜗杆减速器机械结构紧凑、热交换性能好、工作平稳、噪声小、具备机械自锁能力;安全性高..3、谐波减速器波发生器;柔轮;刚轮是谐波减速器的三大部分;谐波齿轮减速器传动结构简单;减速比高;同时啮合的齿数多;运行平稳、传动承载力大;齿侧间隙小;传动精度高;传动误差只有普通圆柱齿轮传动的 1/4 左右;传动空程小;适用于反向转动;在机器人领域有着广泛应用..但对柔轮材料有较高的强度要求;工艺复杂..4、齿轮减速器圆柱齿轮减速机构为定传动比齿轮机构;其传动准确;平稳高效;传动功率范围和速度范围大;广泛用于各种仪器仪表中;但其制造和安装精度要求高;高减速比时结构较为复杂;体积一般较大..综上;初步去确定使用谐波齿轮减速器;减速比大;传动精度高;体积小巧;输入轴与输出轴轴线重合;可很方便地与步进电机组合安装成为机械臂关节的一部分;同时便于机械臂的模块化设计..本文将采用 Harmonic Drive CSF-mini 系列组合型谐波减速器;其中腰关节采用型号为 CSF-14-100-2XH-F;肘关节俯仰和肘关节旋转采用 CSF-11-100-2XHF;腕俯仰采用 CSF-8-100-2XH-F..2.4.4电机驱动器的选型虽然步进电机广泛地应用于各行各业;但步进电机并不能像普通的直流电机那样通过控制输入的等效电压就可以驱动和调速..它必须利用电子电路;将直流电变成分时多相时序控制电流;用这种电流为步进电机供电;步进电机才能正常工作..常见的有单片机 I/O 直接控制;步进电机驱动芯片、运动控制卡..1、单片机 I/O 直接控制方式使用单片机内部的锁存器、计数/定时器;和并行 I/O 接口;可以实现对步进电机的控制;脉冲环形分配器的功能由单片机系统实现完成;通过软件中断方式实现步进电机的变速控制;改变通电顺序则可改变转向..2、步进电机专用驱动芯片步进电机专用驱动芯片一般集成度较高;外围电路简单;一般有 ENABLE、STEP 和 DIR 三个输入端;ENABLE 为使能端;使能有效时方可驱动步进电机;STEP 为脉冲输入;输入一个脉冲;即可驱动步进电机产生微动;DIR 为方向 ;改变 DIR 逻辑电平即可换向..3、运动控制卡驱动控制通过计算机可直接控制步进电机;运动控制卡是专用于步进电机控制的 PC 插卡;是应对复杂系统的控制而出现的;一般可同时控制十几台甚至几十台步进电机的运动;一般价格很高..综上;本设计将使用步进电机专用驱动芯片来驱动步进电机..其中肩关节和肘关节俯仰有自锁需求;使用东芝 THB7128 3A 128 高细分步进电机专用驱动芯片驱动;其他轴选用 A4988 微步驱动器..2.4.5传感器的选型本文将使用步进电机和谐波齿轮减速器为机械臂提供动力;步进电机只需要通控制驱动脉冲的数量;即可简单实现较高精度的定位;并使工作物在精确地停在目标位置..步进电机以细分后的步距角为基本单位进行定位..以两相电机为例;其步距角为1.8°;使用 1/16 细分方式进行驱动;那么每给驱动器一个脉冲步进电机转子旋转的角度为角度=1.8°1/16=0.1125°;转子旋转一周需要脉冲数为360°/0.1125°=3200;需要旋转到其他任意角度的计算方式与上式相同..本文使用限位开关的型号为 Omron 微动开关 SS-5 摆杆型限位开关..2.4.6下位机的选型对于机器臂控制;需要对多台电机进行联动控制..为了实现多台电机之间的通信和控制;必须建立一套数据通信系统来完成主计算机与各运动控制单元间的数据交换..基于现场总线的分布式控制技术能够解决这些问题..但常见的分布式控制系统又有 USB 总线;SERCOS总线;RS-485 总线和 CAN 总线等这几种..本设计将采用RS-485 总线来实现机械臂的分布式控制..本设计选用了TI公司的2000系列 DSP TMS320LF2407 作为控制单元..其时钟频率可达 40MHz;具有高速的处理能力;片内资源丰富;特别是它特有两个内置事件管理器模块EVA、EVB..通过JTAG 接口可以方便的对 DSP 进行全速的在系统调试仿真..TMS320LF2407 的电源电压为 3.3V;正常下作电流为 80m A 左右;抗干扰能力较强..关节控制器硬件电路关节控制器是以 DSP 芯片为核心;芯片本身及其外围电路的性能直接决定了系统的性能..故芯片的选择及其外围电路的设计;也就显得十分的重要..下面将通过单个模块电路的方式分别介绍控制器硬件电路..(1)电源电路通过开关电源;接入B0505LS模块产生稳定的的5V 电压作为TPS7333芯片的供电电压;管脚8做为2407 的上电复位信号..管角 5;6 通过滤波电容输出作为 2407 的供电电压3.3V..如图2-5..图2-4 电源电路(2)时钟电路TMS320LF2407 的时钟源可以来自外部有源晶振也可以用晶体;利用内部振荡器..一般经常使用外部时钟输入;因为使用外部时钟时;时钟的精度高、信号比较稳定;外部时钟电路和锁相环电路如图 2-6 所示..图2-5 时钟电路(3)JTAG 接口电路仿真接口电路如图2-7所示.目标层次的TI调试标准使用5个标准的IEEE1149.1JTAG信号TRST、TCK、TMS、TDI、TDO和两个TI扩展口EMU0、EMU1..JTAG 目标器件通过专用的仿真端口支持仿真;此端口由仿真器直接访问并提供仿真功能..JTAG 接口电路为仿真器与微机的接口电路;便于系统进行在线调试..图2-6 JTAG电路(4)外接SRAM电路TMS320LF2407最多可寻址64K的外部程序空间和64K的外部数据空间..由于控制算法的需要;本系统需扩充外部 RAM..TMS320LF2407片内的 Flash可用作程序存储器;但在开发阶段使用 Flash 作为程序存储器极为不便;因为每一次程序的修改都需要对 Flash 进行清除、擦除和编程操作;而且进行CCS 调试时只能设置硬件断点;故从调试的角度考虑;应扩充程序 RAM..这里用的是CY7C1021V33芯片;它是64K16bit的SRAM;存取时间为15ns;故不需要插入等待周期;可保证系统全速运行..图 2-8 为外接 SRAM 扩展电路图..图2-7 SRAM扩展电路图(5)编码器处理电路增量式编码器信号处理电路如图2-9所示..图 2-8 增量式编码器信号处理电路(6)霍尔接近开关电路本设计选用 A31443E 常开型霍尔接近开关..其接法如图 2-10;提供电压为5V;由于输出采用了集电极开路门;必须通过 10K 的上拉电阻接到 5V 电源上..当磁源的某一极与霍尔传感器的距离达到一定范围以内时;输出低电平;否则输出高电平;不需要外接放大电路..一套关节控制器将采用 3 支霍尔接近开关..HALL1、HALL2 分别固定在关节控制器运动的极限位置;其信号通过 IOPE5、IOPE6 不断查询..HALL3 用于绝对零位检测;采用中断的方式..图2-9 霍尔接近开关的接法2.5 机械臂的模块化设计机械臂的大小臂体和关节在整个机械臂中具有高度的相似性;同时机械臂是机电一体化的典型;其主体结构和联接结构都有一定的复杂性;而采用模块化设计思想;可以一定程度上简化设计流程;只需对不同的应用对象进行少量修改便可完成组合适配..2.5.1 旋转关节的设计机械臂的基本单元有旋转关节和俯仰关节;其结构具有相似性;本文重点介绍旋转关节的设计..旋转关节包含有电机、减速器、编码器、制动器以及其他附件;本文使用步进电机直连谐波减速器的驱动方式;使用限位微动开关确定机械臂初始定位零点;以计步进电机已发脉冲数为关节相对旋转角度参考;是一个开环的运动控制系统;动力传递链路为:电机--波发生器--柔轮--刚轮—输出轴..机械臂的旋转关节模块在运行过程中会受到来自机械臂末端的弯矩;因此需要对输出轴做轴向和径向卸荷;减少输出轴的负载;保证系统的刚度;延长使用寿命..一般来说;一根轴需要两个支点;每个支点由一个或一个以上的轴承组成;每组轴承间有以下三种常用的配置方法..1、双支点各单向固定这种轴承配置常用两个反向安装的圆锥滚子轴承或角接触球轴承;两个轴承各限制轴向一个方向的轴向移动..这种配置方式轴向移动限制比较精确、也便于调整轴承的预紧程度..另外深沟球轴承也可用于双支点各单向固定;通过调整外壳与轴承端盖端面的厚度来补偿轴的受热伸长;因而这种配置方式不适合需要对轴做精确轴向定位的场合..2、一支点双向固定;另一端支点游动对于热伸长量较大的轴;这种轴一般跨距较大且工作温度较高;应该采用一支点双向固定;另一支点游动的支撑结构..其双向固定端需要使用能承受双向轴向载荷的轴承;内外圈都需要固定..3、两端游动支撑对于人字齿轮轴;由于本身具有相互间的轴向限位作用;其中只需保证一根轴与机座有相对固定的轴向位置;另一根轴上的两个轴承必须游动;防止人字齿轮卡死或两侧受力不均匀..本文将采用一支点双向固定;另一端支点游动的方式组合成卸荷轴承组;其中双向固定端使用深沟球轴承;游动端使用滚针轴承..其中腰关节使用型号为 HRB 61809-2Z、SKF HK5020;肘关节旋转使用型号为 HRB 61806-2Z、SKF HK3512..2.5.2 旋转关节的设计各运动轴基于模块化设计;设计时已考虑各运动轴的联接;使用简单的金属板件便能将各运动轴连接可靠;并具有一定的刚度..本文各运动轴均为法兰端面输出;与金属板材间通过螺钉联接固定;依靠金属板与法兰端面的摩擦力传递扭矩到金属板材..图 2-11 为肩关节联接金属板材机械加工工程图:图2-10 肩关节联接金属板2.5.3 抓手的设计一款通用型的机械臂应该具有抓取多种物体的能力;也为某一目标物体专门设计一款抓手;因而在设计机械臂臂体与机械抓手时;需要设计一个合理的联接结构;以便机械抓手能够快速更换..机械抓手在抓取物体时需要保持一定的夹持力;本文将使用舵机为机械手爪提供动力;舵机在旋转到位后能持续提供一定的扭矩以保持夹持状态..使用舵机型号为 TowerPro MG945 全金属齿舵机;表2-5舵机型号及相关参数图2-12 为和机械抓手配合的臂体联接结构..同理只要末端执行器设计为可与该联接结构配合;即可实现更换;以完成对不同物体的抓取任务..图2-11 机械臂执行器联接结构3机械臂软件系统设计整个机械臂控制系统软件包括主计算机监控软件和各关节控制器软件..主计算机接收目标位姿数据;完成路径规划算法..另外;主计算机要实时读取关节控制器的反馈数据;记录机械臂的当前位姿;并显示在屏幕上..不仅直线运动、点到点运动、复位动作的完成需要主计算机监控软件协调;而且像各关节绝对位置的确定过程、各关节运动范围是否越界也必须由主计算机实时参与;及时做出决策..主计算机还要提供给用户友好的人机交互界面;方便于用户输入各种命令;存储设置好的参数;允许数据以表格或者曲线等形式导出..3.1 关节控制器软件设计3.1.1 PID控制算法关节控制器TMS320LF2407来实现;完成电机的位置环控制和速度环控制;如图3-1所示..位置环的控制周期设为2ms;速度环的控制周期也设为2ms..由于采用了速度环;系统的动态性性能可以得到显着提高..两个闭环都采用积分分离PD控制;根据实际调试情况;可以对控制律进行适当的化简..零位霍尔接近开关在系统上电时用于较粗略的确定电机的绝对位置;再结合增量编码器的Z通道的信号;就可以较精确的确定出电机的绝对位置..主计算机路径规划求得的目标位置;应该换算成增量码盘的脉冲数后;再发给关节控制器..关节控制器利用它和从增量编码器实际测得的脉冲数进行比较;利用积分分离PID算法求解位置环的控制量..3.1.2 关节控制器程序流程主程序的流程图如3-2所示:图3-1 主程序流程图寄存器初始化操作主要包括:设置CPUCLK为外部晶振的2倍频;即16MHZ;设置串口通讯波特率为:38.4kbPs;设置定时器/计数器相关寄存器;设置QEP 电路单元相关寄存器;设置中断控制寄存器等等..串口数据接收中断服务程序流程图如3-3所示..在中断服务程序中;读取数据接收寄存器中的数据;存入数据接收区;而并不作任何进一步分析和处理..数据接收区是内存中暂时存放数据的区域;当存满一条完整指令信息后;由主程序分析和处理..图 3-2 串口数据接收中断服务程序流程图控制周期2ms定时中断服务程序的流程见图3-4..定时器/计数器3为位置环和速度环控制周期定时2ms;每3ms进入定时中断服务程序一次;读取位置反馈值和速度反馈值;进行积分分离PID运算;最后输出给DA转换成模拟量..每一个插补周期50ms;主计算机向关节控制器发送一次运动规划后的目标位置..该目标位置是以增量编码器信号四倍频后的脉冲数为单位;以前一次的目标位置作为脉冲计数的零点;因此;关节控制器在读取新的目标位置后;也应该以前一次的目标位置作为新的增量码盘脉冲计数零点;测量实际的电机位置;与新的目标位置比较、运算..主计算机根据需要可以查询当前电机运行的实际位置;关节控制器返回的位置则是关节角的绝对位置;单位是0.1度..图3-3 控制周期定时中断服务服务程序流程图4 结束语本文提出了一套机械臂结构方案..硬件上;对机械臂的构型、臂杆长度、电机、驱动器、减速器、传感器和主控制器进行了选型..并且对机械臂进行了模块化设计;其中包括旋转关节的设计、连接件的设计和抓手的设计..软件方面设计了DSP关节控制器;实现了电机位置和速度闭环控制..基于RS485总线和DSP 的分布式控制体系结构;具有高速、稳定、可靠、易于维护等优点;适合于六自由度机械臂的实时控制..5 参考文献1 王罗罗. 机械臂的结构设计及控制研究D. 哈尔滨工业大学; 2009.2 招绍坤. 轻型机械臂模块化设计与运动控制的研究 D. 哈尔滨工业大学; 2010.3 王再明. 轻型臂电控系统的研究D. 哈尔滨工业大学; 2007.4 方红根;杨军. 基于模块化关节轻型机械臂的研制J. 上海电气技术; 2011.5 濮良贵. 机械设计M. 北京:高等教育出版社;2012:186-273.6 李世其; 刘洋; 朱文革 ;刘燕; 贾阳. 多关节轻型机械臂的设计研究J. 航天器工程; 2009.7 刘宝志. 步进电机的精确控制方法研究D. 山东大学; 2010.8 雷凯. 步进电机细分驱动技术的研究D. 苏州大学; 2003.。
第五章 DSP系统设计

随着大规模集成芯片和可编程逻辑芯片的发展,使硬
件原理设计的难度得以降低,但它依然是DSP系统集成 中关键的一步。原理图设计的成功与否是DSP系统能否
正常工作的最重要的一个因素。
16/39
第五章
DSP系统设计
5.1 系统设计— DSP系统硬件设计
第四步:PCB设计
PCB图的设计要求DSP系统的设计人员既要熟悉系
流之间留有一定余量,因为峰值电流会更大,余量至少
是20%。 现有的电源模块分AC/DC型和DC/DC型。DSP设计中常用 DC/DC型。 DC/DC型中又分开关型和线性低压降型(LDO)。开关型效
率高,但体积大、纹波大。线性LDO型体积小巧,但效率
低,其效率相当于输出电压和输入电压之比,例如5V转 1.8V的效率仅32%,只适用于电流较小的场合。
的电流消耗。 以AD6P21060/ADSP 21062为例,其进行FFT运算时,需 要的电源电流最大,这一峰值电流约是700 mA,但这是 在最“坏”情况下,真正的电流消耗比这小很多。
19/39
第五章
DSP系统设计
5.2 电路设计— 电源设计
因此在设计电源时,必须考虑在电源电流和实际需用电
出现问题时,一般采用修改软件的方法,如果软件修改
无法解决问题,则必须调整硬件,这时问题就严重了。
18/39
第五章
DSP系统设计
5.2 电路设计— 电源设计
DSP使用的电源是数字电源,这些电源必须满足一定要 求,一般要求纹波不超过10%;还应准确估算出DSP及
其外围器件的功耗。DSP数据手册给出了各种情况下DSP
电路设计时有必要采用多层印刷板,一般建议其中 一层是地层。优点:减少干扰;布线时省去了大量 器件管脚接地的工作量。注意:现在DSP等元件广泛 采用表贴封装,在器件布线时,将尽可能多的网络
数字控制系统的基本原理与设计方法

数字控制系统的基本原理与设计方法数字控制系统(Digital Control System)是一种通过数字处理器来实现系统控制的技术。
它可以对运动、压力、温度等物理量进行精确的测量和控制,具有精准性高、稳定性好、适应性强等优点。
本文将介绍数字控制系统的基本原理和设计方法。
一、数字控制系统的基本原理数字控制系统的基本原理是将输入量(Input)通过传感器采集后,经过模数转换器(A/D Converter)转换为数字量,然后经过数字信号处理器(DSP)进行运算和控制处理,最后通过数模转换器(D/A Converter)将控制信号转换为模拟量输出,从而实现对被控物理量的精确控制。
在数字控制系统中,传感器起到了关键作用。
传感器能够将被测量的物理量转换为电信号,例如压力传感器、温度传感器等。
这些传感器的输出信号需要经过模数转换器将其转换为数字信号,以便数字信号处理器进行处理。
数字信号处理器是数字控制系统的核心部件,它能够对输入信号进行滤波、运算、控制等处理。
通过数字信号处理器,可以实现对控制系统的闭环控制,将被控对象的实际输出与期望输出进行比较,进而调整控制信号,使系统输出达到预期。
二、数字控制系统的设计方法1. 系统建模与参数估计在设计数字控制系统之前,需要对被控对象进行建模和参数估计。
通过数学模型可以描述被控对象的动态特性,参数估计可以获得模型参数的数值。
常用的建模方法有传递函数、状态空间法等。
2. 控制器设计控制器是数字控制系统的关键组成部分,它的设计直接影响控制系统的性能。
常用的控制器设计方法有比例-积分-微分(PID)控制器、模糊逻辑控制器、自适应控制器等。
在设计控制器时,需要考虑到系统的稳定性、快速响应、抗干扰能力等因素。
3. 信号采样与重构在数字控制系统中,输入信号需要进行采样和重构。
采样是指将连续时间信号转换为离散时间信号,常用的采样方法有脉冲采样、均匀采样等。
重构是指通过采样得到的离散时间信号,再恢复为连续时间信号。
电子工程师培训中心课程(2024)

FPGA/CPLD设计实践
FPGA/CPLD基本原理
介绍FPGA和CPLD的基本原理、内部结构和设计方法。
2024/1/27
VHDL/Verilog硬件描述语言
学习VHDL或Verilog硬件描述语言,掌握其基本语法、数据类型和编 程方法。
FPGA/CPLD开发工具
熟悉FPGA/CPLD开发工具的使用,包括设计输入、综合、布局布线 和仿真验证等步骤。
学员心得分享
邀请了部分优秀学员代表上台发言,分享他们在学习过程 中的心得体会和成长历程,为其他学员提供了宝贵的经验 借鉴。
教师点评与总结
教师对学员的学习成果进行了客观的评价和总结,肯定了 学员的努力和进步,同时也指出了存在的问题和不足,为 学员今后的学习和发展提供了有益的指导。
34
对未来电子工程师的展望
2024/1/27
29
创新项目设计与实现过程分享
太阳能跟踪系统设计
利用光敏传感器和电机驱动实 现太阳能板自动跟踪太阳方位 ;
基于FPGA的图像处理系 统设计
学习FPGA编程,实现图像处 理算法加速;
智能语音交互系统设计
机器人控制系统设计
利用语音识别和语音合成技术 ,实现智能语音交互功能;
学习机器人基本原理,掌握机 器人控制系统软硬件设计。
物联网技术应用
介绍了物联网体系结构、传 感器技术、无线通信技术等 前沿知识,拓展了学员的技 术视野。
2024/1/27
33
学员成果展示及评价
2024/1/27
学员作品展示
展示了学员在课程期间完成的多个优秀项目,如智能家居 控制系统、智能农业监测系统、智能小车等,充分展现了 学员的实践能力和创新精神。
小型机器人关节控制电路系统设计

小型机器人关节控制电路系统设计黄春晓;白雪飞;黄鲁;郝沛【摘要】给出一种小型机器人关节控制电路系统的软硬件设计方案.该方案以意法半导体32位单片机STM32为核心处理器,通过CAN总线接收上位机的命令和反馈传感器采集的信息,利用双相DMOS全桥驱动电路芯片A3995驱动关节电机,采用PID算法实现空心杯直流电机的高精度闭环定位控制.其中关节位置信息的采集使用的是AS5045磁旋转编码器,分辨率达到0.087 9°.关节角度转动的误差控制在1°以内,关节控制电路板的面积为11.88 cm2,信号传输速率为1 Mb/s.【期刊名称】《微型机与应用》【年(卷),期】2015(034)012【总页数】4页(P23-26)【关键词】空心杯直流电机;STM32嵌入式微处理器;磁旋转编码器;PID控制【作者】黄春晓;白雪飞;黄鲁;郝沛【作者单位】中国科学技术大学电子科学与技术系,安徽合肥230027;中国科学技术大学电子科学与技术系,安徽合肥230027;中国科学技术大学电子科学与技术系,安徽合肥230027;中国科学技术大学电子科学与技术系,安徽合肥230027【正文语种】中文【中图分类】TP273+.1黄春晓,白雪飞,黄鲁,郝沛(中国科学技术大学电子科学与技术系,安徽合肥230027)小型化机器人在通信、军事、医疗、航天航空以及家庭服务等领域具有重要的应用价值。
机器人转动关节的准确定位和控制是小型机器人运动控制系统的一项关键技术。
关节控制精度、与上位机的通信、功耗、控制电路体积是小型机器人运动控制电路设计时需要重点考虑的问题。
关节控制电路的电机选取空心杯直流电机,该种电机具有突出的节能特性、灵敏的控制特性和稳定的运行特性,广泛用于各种机电产品中[1]。
本系统为了实现电机的快速准确控制,需要进行比例积分微分(PID)控制算法运算,因此采用低功耗的ARM嵌入式微处理器STM32F103C8T6(以下简称STM32)作为控制器,通过CAN(控制器局域网)总线接口与上位机进行双向通信,充分利用CAN总线突出的可靠性、实时性、可扩展性以及总线利用率高等特点[2]。
机械手课程设计
《机电系统》课程设计说明书课程设计任务书姓名班级学号设计题目简易型机械手的设计设计任务:(1)方案论证;在其基础上进行机械手的总体设计,并绘制总体布局图。
(2)驱动系统设计:根据机械手的特点,选用舍党的驱动方式,根据总体设计要求进行电机选型。
进行电机选型相关计算。
进行驱动系统零部件的选型和设计。
绘制驱动系统布局图。
(3)控制系统设计:确定机械手的控制方式并进行控制系统的控制与编程。
绘制控制系统布局图。
(4)传感与测试系统设计:进行控制与驱动系统的传感与测试系统的设计。
(5)机械本体设计:进行机械本体零部件设计,绘制总体和零件图。
设计工作量:(1)设计说明书一份(2)CAD图纸5张(3)文档整理排版指导教师设计时间2011年1月3日~2011年1月21日目录第1章绪论 (1)1.1机械手概述 (1)1.2机械手的设计目的 (3)1.3机械手的设计内容 (4)1.4机械手的分类及其在生产中的应用 (5)1.5机械手的应用意义 (8)1.6机械手的技术发展方向 (9)第2章设计方案的论证 (10)2.1机械手的总体设计 (10)2.2机械手腰座结构的设计 (12)2.3机械手手臂结构的设计 (14)2.4工业机器人腕部的结构 (16)2.5机械手末端执行器(手爪)的结构设计 (18)2.6机械手的机械传动机构的设计 (21)2.7机械手驱动系统的设计 (26)2.8机器人手臂的平衡机构设计 (33)第3章理论分析和设计计算 (34)3.1液压传动系统设计计算 (34)3.2电机选型有关参数计算 (43)第4章控制系统的设计 (47)4.1可编程控制器PLC (47)4.2 PLC的选型 (51)4.3机械手的工艺流程 (53)4.4 机械手的PLC控制系统程序 (57)第5章机械手本体设计 (59)5.1 机械手零部件设计 (59)5.2 机械手总成和零件图................................................ . (61)致谢 (62)参考文献 (63)第1章绪论1.1机械手的概述机械手主要由手部、运动机构和控制系统三大部分组成。
四足仿生机器人运动控制系统的设计与实现
西北工业大学硕士学位论文第一章绪论图1-1LittleDog图1-2BigDogLittleDog是由DARPA(美国国防部高级研究项目署)资助,波士顿动力公司研制的四足机器人(如图1-1所示)。
LittleDog采用电机驱动,每条腿上装有3个电机,采用便携式计算机控制,机器人装有检测关节角度、电机电流、航向、脚与地之间的接触等用途的传感器,采用无线通信模块传送数据,随身携带的锂离子聚合物电池可以保证机器人运行30分钟。
科学家们通过该机器人来研究电机、动力控制、对环境的感知和粗糙地形下的运动等问题。
BigDog也是由DARPA资助,波士顿动力公司研制的四足机器入(如图1.2所示),BigDog与LittleDog相比性能得到了大幅度的提高,号称是目前世界上最先进的四足机器人。
BigDog长为l米、高为O.7米、重量为75千克,采用液压驱动,由汽油发动机提供动力,采用随身携带的计算机控制,装有位置、力、陀螺仪等传感器。
BigDog的环境适应能力特别强,可以在山地、沼泽地、雪地等路面上行走,目前可以3.3英里/4,时的速度小跑,可以爬越35度的坡面,负载120磅。
二、四足机器人Patrush和Tekken[8J日本电信大学的H.KiIlluIa等于十几年前开始研究四足机器人,先后研制出四足机器人Patrush-1191、Patrush-IIll01、Tekken-I[“I、Tekken-II[12】【131和Tekken.Ⅳ【14】(如图l-3所示)。
以Tekken-II为例来介绍其特征,Tekken-II的外形尺寸为30X14X27.5cm,含电池重4.3kg,共16个关节(每条腿4个关节,3个主动关节,一个被动关节),采用直流伺服电机驱动、并配有减速箱,配有编码盘、陀螺仪、倾角计和接触传感器,控制器采用PC机、操作系统为RT-Linux,通过遥控器操作机器人Il”。
Ⅺmnfa将中枢模式发生器CPG网络与牵张反射、伸肌反射、屈肌反射等机理结合,实现了所研制的四足机器人Tekken在复杂地形下的自适应运动,可以实现行走(walk)、同侧跑(pace)、对角跑(trot)和奔跑(gallop)步态,能避障、越障、爬坡,Tekken.IV最高速度达1.5m/s[16J。
DSP原理及应用TMS320C54x片内外设及应用实例
应用领域拓展
随着数字信号处理技术的不断发展,DSP的应用领 域也在不断拓展,需要不断探索新的应用场景和市 场需求。
人才培养和生态系统建设
为了推动DSP技术的发展和应用,需要加强 人才培养和生态系统建设,建立完善的开发 环境和工具链。
06
参考文献
参考文献
1
[1] 张雄伟, 杨吉斌. 数字信号处理——原理、算 法与实现[M]. 北京: 清华大学出版社, 2011.
应用场景
在音频处理、信号测量、控制系统 等领域广泛应用。
存储器和I/O引脚
存储器和I/O引脚功能
01
TMS320C54x芯片具有外部存储器和多个I/O引脚,用于扩展外
部存储空间和连接外设。
工作原理
02
通过读写外部存储器实现数据存储,I/O引脚用于输入输出电平
信号。
应用场景
03
在数据存储、外设控制、信号采集等方面具有广泛应用。
FFT在TMS320C54x上的实现
TMS320C54x的硬件结构支持FFT运算,其乘法器和累加器运算单元可以高效地完成 FFT计算。在实现FFT时,需要注意数据的位序和存储方式。
FFT应用实例
通过FFT算法,可以分析语音、图像、雷达等信号的频谱成分,从而实现信号的频域分 析、滤波、调制解调等功能。
TMS320C54x的优势与局限性
• 丰富的外设接口:TMS320C54x系列DSP具有多种外设接口, 如串行通信接口、并行输入输出接口等,方便与外部设备进行 数据交换。
TMS320C54x的优势与局限性
价格较高
由于TMS320C54x系列DSP采用高性能的制程技术和复杂的内 部结构,导致其价格较高,增加了应用成本。
基于DSP的运动控制系统设计
基于DSP的运动控制系统设计
王研;劳奇成
【期刊名称】《电子设计工程》
【年(卷),期】2010(018)002
【摘要】为了满足CNC齿轮测量中心的测量精要求.针时定点数字信号处理器(DSP)TMS320LF2407A的特点,设计一种以DSP运动控制为核心的运动控制系统.该系统通过DSP内部集成的A/D转换模块对传感器电压值进行采样,由DSP控制给出指令,驱动电机运动,实现了位置控制,测量精度大大提高.并给出系统硬件电路设计.根据实际情况,给出CAMAC接口电路设计.
【总页数】2页(P96-97)
【作者】王研;劳奇成
【作者单位】西安工业大学机电工程学院,陕西,西安,710032;西安工业大学机电工程学院,陕西,西安,710032
【正文语种】中文
【中图分类】TP275
【相关文献】
1.基于DSP与FPGA的机器人运动控制系统设计 [J], 李疆;游有鹏
2.基于DSP的分段式运动控制系统设计 [J], 樊愿华;韩文武;杨振
3.基于DSP和FPGA的多轴运动控制系统设计 [J], 马汉波;颜钢锋
4.基于DSP的EtherCAT分布式伺服运动控制系统设计 [J], 李伟光;容爱琼;侯跃
恩;余漳;曾顺星
5.基于DSP的多轴运动控制系统设计 [J], 齐山成;刘海华;刘毅
因版权原因,仅展示原文概要,查看原文内容请购买。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
基于16/32位DSP机器人控制系统设计与实现课程设计
一、课程设计目的
本课程设计旨在通过对机器人控制系统设计与实现的学习,使学生掌握16/32
位DSP在机器人控制领域中的应用,掌握机器人控制系统的设计、实现和调试方法,提高学生的实践能力和综合素质。
二、课程设计内容
1.机器人控制系统概述
2.16/32位DSP基础知识和应用
3.控制系统设计方法
4.机器人控制系统硬件设计
5.机器人控制系统软件设计
6.控制系统调试方法
7.设计报告和展示
三、课程设计要求
1.学生需要独立完成机器人控制系统的设计及实现,包括硬件设计、软
件设计和控制系统调试。
2.学生需要撰写详细的设计报告,报告应清晰、完整地展现项目的整个
设计过程和技术细节,并体现出学生的设计思路和创新点。
3.学生需要进行现场展示并回答相关问题,展示内容包括设计思路、系
统运行效果、技术细节等。
4.课程设计结束后需要提交完整的设计文档和展示PPT。
5.学生成绩评定主要考虑设计能力、完成情况、报告质量、展示表现等
因素。
四、课程设计具体内容
1. 机器人控制系统概述
机器人控制系统包括机器人的运动系统、感知系统及决策控制系统,对比分析不同类型机器人的控制系统结构及运动控制原理,为学生对机器人控制系统的设计提供基础掌握理解。
2. 16/32位DSP基础知识和应用
介绍16/32位DSP的基本结构和内部运行原理,分析16/32位DSP在机器人控制系统中的应用案例,以及相关开发工具的使用方法。
3. 控制系统设计方法
根据不同类型的机器人,分析机器人控制系统的设计思路,介绍控制系统的架构和设计流程,设计方法的选择,学习控制系统的稳定性分析和调试原则。
4. 机器人控制系统硬件设计
针对机器人控制系统硬件设计的具体需求,进行器件选型、电路原理图设计,接口功能分析和PCB设计等。
5. 机器人控制系统软件设计
设计基于16/32位DSP的机器人控制系统软件,丰富学生编码能力,测试还原控制系统的性能特性与精度。
6. 控制系统调试方法
介绍控制系统的调试方法,包括硬件调试、软件调试及整个系统的联合调试,明确各模块间的关系,解决调试过程中可能遇到的问题。
7. 设计报告和展示
按照规定提交完整的设计文档和展示PPT,报告结构完整、论述清晰,展示内容充分体现设计思路、技术难力和效果表现等。
五、课程设计考核方式
1.学生到现场进行机器人控制系统设计、实现和调试。
2.设计报告撰写及展示,评价报告的完整、清晰、详细、准确、正确,
展示时的表现。
3.课程设计结束后向教师提交完整的设计文档和展示PPT,需要保证内
容、格式、排版及字体规范合理。
六、总结
本课程涵盖了机器人控制领域中的主要应用方法和技术,通过相关实践内容,结合了编程、电路设计、调试等知识点,帮助学生掌握机器人控制的基本原理和方法,为他们日后的学习和工作提供帮助。