土力学 全部

合集下载

土力学复习资料

土力学复习资料

基础:建筑物最底下的这一部分结构。

地基:承受由基础传来荷载的土层(或岩层)。

持力层:位于基础底面下的第一层土。

下卧层:持力层下的土层。

地基的分类:按地质情况分:土基、岩基。

按设计施工情况分:天然地基:不需处理而直接利用的地基。

人工地基:经过人工处理而达到设计要求的地基。

土的特点:碎散性、压缩性、固体颗粒间的相对移动性及透水性。

连续介质的固体材料。

土的用途:作为地基;作为建筑材料(e.g.路基,堤坎)土力学的研究对象:研究土的本构关系以及土与结构物相互作用的规律。

土的本构关系:即土的应力——应变——强度——时间四变量之间的内在联系。

地基设计中,必须满足的两个技术条件:1、地基的变形条件:(沉降量、沉降差、倾斜、局部倾斜)保证建筑物不因地基变形而损坏或者影响其正常使用。

2、地基的强度条件:要求作用于地基的荷载不超过地基的承载力,保证地基在防止整体破坏方面有足够的安全储备。

基础设计中,必须满足的两个技术条件:基础应当具有足够的强度和耐久性。

土的概念: 土是岩石风化的产物,是母岩风化后经搬运、沉积等地质作用形成的岩石碎屑和土颗粒组成的集合体。

土的分类(1)按有机质含量 :有机土;无机土(2)按粒间粘聚程度: 粘性土,无粘性土土力学的概念 :以土和土体为研究对象,研究其物理、力学特性、稳定性以及土与结构的相互作用的一门学科。

土的性质包括 :物理性质 ,力学性质 ,水理性质 ,工程性质土的成因 :土的形成要经历风化、剥蚀、搬运、沉积等作用过程。

残积土:残积土是残留在原地未被搬运的那一部分岩石风化剥蚀后的碎屑堆积物,其成分与母岩相同,一般没有层理构造,均质性差,孔隙度较大,作为建筑物地基容易引起不均匀沉降。

洪积土:是指在山区或高地由暂时性水流(山洪急流)作用,将大量的残积物、坡积物搬运堆积在山谷中或山前平原上的堆积物。

冲积土:是由河流流水的地质作用,将两岸基岩及其上部覆盖的坡积、洪积物质剥蚀后搬运沉积在河流平缓地带形成的沉积物。

土力学

土力学

承压水:指充满于两个稳定隔水层之间的含水 层中的地下水。 角点法: 计算均布矩形荷载下得地基竖向附 加压力时,若计算点不位于矩形荷载面角点之 下,则可以通过作辅助线把荷载面分成若干个 矩形面积,使计算点正好位于这些矩形面积的 角点之下,然后应用叠加原理进行计算,这种 方法称为角点法。 自重应力:由土的自重在地基内所产生的应力 称为自重应力。 基底附加压力:从建筑物建造后的基底压力中 扣除基底标高处原有土的自重应力后,才是基 底平面处新增加于地基表面的压力,即基底附 加压力。 有效应力:通过土粒承受和传递的粒间应力, 称为有效应力。 基底压力:是指作用于地基表面单位面积上的 压力。 附加应力:由建筑物荷载在地基土中引起的应 力,是引起地基变形和破坏的主要因素,用σ 表示。 土的压缩性:土在压力作用下体积减小的特性 称为土的压缩性。 土的固结:土的压缩性随时间的增长的过程, 称为土的固结。 压缩模量:土在完全侧限条件下得竖向附加压 力与相应的竖向应变的比值,称为压缩模量。 地基承载力:地基承受荷载压力的能力。 地基的最终沉降量:是指地基在建筑物荷载作 用下,地基表面的最终稳定沉降量。 地基沉降计算深度:是自基底以下需要计算压 缩变形的土层总厚度。 前期固结压力:天然土层在历史所经历过得最 大固结压力称为前期固结压力。 超固结比:前期固结压力(Pc)与现有土层自重 压力(Po)之比称为超固结比。 正常固结土:土体现有的上覆有效压力等于先 期固结压力的土。 超固结土:前期固结压力大于现有土自重应力 的这类土称为超固结土。 欠固结土:前期固结压力小于现在自重应力, 在现有自重应力作用下没有完全固结的土。 土的抗剪强度:是指土体抵抗剪切破坏的极限 能力。 触变性:粘性土的抗剪强度随时间恢复的胶体 化学性质称为土的触变性。 地基承载力特征值:在保证地基稳定的条件下, 使建筑物的沉降量不超过允许值的地基承载 力称为地基承载力的特征值。 不固结不排水剪:试样在施加周围压力和随后 施加竖向压力直至剪切破坏的整个过程中都 不允许排水,试验至始至终关闭排水阀门。 土压力的临界深度:墙背上压应力等于拉应力 的点到地面的距离。 地基塑性区:当地基土中的各点都处于极限平 衡状态时,这一区域就称为地基塑性区。 土的抗剪强度:是指土体抵抗剪切破坏的极限 能力,其数值等于剪切破坏时滑动面上的剪切 力。 土的极限平衡条件:是指土体处于极限平衡状 态时土的应力状态和土的抗剪强度指标之间 的的关系式。 地基的临塑荷载:是指在外荷载作用下,地基 中刚开始产生朔性变形时地基底面单位面积 上所承受的荷载。 快剪:是再转让那个试验过程中,都不让土样 排水固结,亦即不让孔隙水压力消散。 慢剪:施加垂直压力并待试样固结完成后,以 缓慢的剪切速度施加水平剪力,使试样在剪切

土力学资料

土力学资料

土力学概述一、土力学学科的重要性土是地壳岩石经受强烈风化的产物,是各种矿物颗粒的集合体,由固体颗粒、水、和空气三相组成。

土木工程技术人员离不开土,在建筑工程中土作为地基承担了建筑物的全部荷载。

在道路建设中,土又作为建筑材料被使用。

而土本身又是千差万别的。

因此,土木工程人员必须了解土的性质,并应用之为工程建设服务,这就是要学习土力学的重要原因。

二、土力学与土质学的概念土力学:土力学是从力学与工程的角度研究土的一门学科。

即:土力学是利用力学的一般原理,研究土的物理、化学和力学性质及土体在荷载、水、温度等外界因素作用下工程性质的应用科学。

它主要研究土的应力、变形与强度、稳定性。

也研究土——结相互作用的规律,也是工程力学的一个分支。

由于土是自然历史的产物,以及土的分散性,使得土力学这门学科除了应用一般连续体力学的基本原理外,还须结合土的实际情况进行研究,在土力学中提出的力学模型,必须通过现场勘察及室内土工实验测定土的计算参数,须通过专门的土工试验技术进行探讨。

土力学是一门实践性很强的学科。

土的定义:土是矿物或岩石碎屑物构成的松软集合体。

是岩石经过风化、剥蚀、搬运沉积等过程后,形成的各种松散的沉积物。

在建筑工程中称之为“土”。

这是土的狭义概念。

广义的概念也包括岩石在内。

三、先导课程四、本学科的发展概况【工程实例】意大利比萨斜塔1.工程事故概况比萨市位于意大利中部,靠近罗马市与米兰市中间的佛罗伦萨市,有铁路相通,交通方便。

比萨斜塔位于比萨市北部,它是比萨大教堂的一座钟塔,在大教堂东南方向相距约25m。

比萨斜塔是一座独立的建筑,周围空旷,游人可以环绕塔身行走与观赏。

斜塔西侧有一大片四季常青的草地长达200m,景色秀丽。

比萨斜塔建造,经历了三个时期:第一期,自1173年9月8日动工,至1178年,建至第4层,高度约29m时,因塔倾斜而停工。

第二期,钟塔施工中断94年后,于1272年复工,至1278年,建完第7层,高48m,再次停工。

土力学_精品文档

土力学_精品文档

土力学一、介绍土力学是土木工程中的一个重要学科,研究土壤力学和土木工程中土壤的应力、应变和变形等方面的规律。

土力学的研究对象是土壤及其力学性质,通过对土壤的特性和行为的研究,可以预测和控制土壤在工程中的行为,为土木工程的设计和施工提供科学依据。

二、土壤力学的基本概念1. 土壤物理性质土壤的物理性质包括土壤的颗粒组成、容重、孔隙比、相对密度等。

这些性质直接影响土壤的承载力、抗剪强度和渗透性等力学性质,是土壤力学研究的基础。

2. 土壤力学参数土壤力学参数包括土壤的压缩性、内摩擦角、剪切强度参数等。

这些参数描述了土壤在受力作用下的变形和破坏特性,是土壤力学分析和计算的重要依据。

3. 土壤应力状态土壤应力状态是指土壤中的应力分布情况,包括垂直应力、水平应力和剪应力等。

了解土壤的应力状态可以帮助工程师预测土壤的承载力、变形和破坏状态,从而设计出安全可靠的土木工程。

三、土壤力学的应用1. 土壤的承载力分析土壤的承载力是指土壤在承受外力作用下的最大抵抗能力。

工程师通过对土壤的颗粒组成、孔隙结构、内摩擦角等参数的分析,计算得出土壤的承载力,并根据承载力的大小来设计和选择合适的基础结构和土方工程。

2. 土壤的变形特性研究土壤在受力作用下会发生变形,包括压缩变形、剪切变形和液化等。

了解土壤的变形特性可以帮助工程师预测土壤的沉降和位移,并采取相应的补充措施,确保土木工程的安全和稳定。

3. 土壤的抗剪强度分析土壤的抗剪强度是指土壤在剪切作用下的抵抗能力。

通过对土壤的剪切试验和理论分析,工程师可以确定土壤的剪切强度参数,并结合实际工程条件进行抗剪强度的计算和分析,为土木工程的设计和施工提供重要依据。

四、土力学的挑战与发展土力学作为土木工程中的重要学科,正面临着一系列的挑战和发展机遇。

首先,随着城市化进程的加快和人口增长的需求,工程建设规模不断扩大,对土力学的研究和应用提出了新的要求。

其次,随着科技的进步和实验技术的发展,土力学研究手段和方法也将得到加强和完善,从而能够更加准确和全面地研究土壤的力学性质和行为规律。

土力学名词解释

土力学名词解释

土力学名词解释土的结构:土的结构主要是指土粒或土粒集合体的大小,形状,相互排列与联结等。

土的构造:在同一土层中的物质成分和颗粒大小等都相近的各部分之间的相互关系的特征称之为土的构造。

土的密度:单位体积土的质量称之为土的质量密度,简称土的密度。

土的重力密度:单位体积土所受的重力称之为土的重力密度,简称土的重度。

土的相对密度:土粒密度(单位体积土粒的质量)与4 °C时纯水密度之比,称为土粒的相对密度,或土粒比重。

土的含水量:土中水的质量与土粒质量之比(用百分数表示)成为土的含水量。

土的干密度:单位体积中土中土粒的质量成为土的干密度。

土的饱和重度:土中孔隙完全被水充满诗土的重度成为饱和重度。

土的有效重度:地下水位以下的土受到水的浮力作用,扣除水浮力后单位体积所受的重力称为土的有效重度。

土的孔隙比:土中孔隙体积与土粒体积之比土的孔隙率:土中体积和总体积之比土的饱和度:土中水的体积与孔隙体积之比液限:土由可塑状态转到流动状态的界限含水量塑限:土由半固态转到可塑状态的界限含水量。

塑性指数:土的液限和塑限的差值液性指数:是指粘性土的天然含水量和塑性的差值与塑性指数之比碎石土:粒径大于2mm的颗粒质量超过总质量50%的土砂土:粒径大于2mm的颗粒质量不超过总质量的50%,而粒径大于0.075mm的颗粒质量的超过总质量的50%的土粉土:塑性指数小于或等于10,粒径大于0.075mm的颗粒含量不超过总质量的50%的土粘性土:是指塑性指数大于10的土,粘性土按塑性指数大小分为粉质粘土和粘土。

二渗流:水等液体在土体孔隙中流动的现象渗透性:土具有被水等液体透过的性质渗透变形:土工构筑物由于渗透作用而出现的变形水力坡降:单位渗流长度上的水头损失水头:单位重量水体所具有的能量层流:指液流速度十分缓慢,液流相邻两个水分子的轨迹相互平行而不混惨的流动渗透指数:反映土的透水性能的比例系数,相当于水力坡降等于1时的渗透速度流网:在流线和等势线所组成的正交网格称为流网渗透力:单位体积土体内土颗粒所受的渗透作用力,也称为动水力流土:渗透力方向与重力方向相反,且向上的渗透力克服向下的重力时,表层土局部范围内的土体或颗粒群同时发生悬浮,移动的现象,俗称流土或流砂临界水力坡降:指土体发生流土破坏时的水力坡降管涌:在渗透水作用下,土中的细颗粒在粗颗粒形成的孔隙中移动,以至流失,随着土的孔隙不断扩大,渗透流速不断增加,较粗的颗粒也相继被水流逐渐带走,最终导致土体内形成贯通的渗流管道,造成土体塌陷,这种现象称为管涌,也叫潜蚀三自重应力:由土体自重引起的应力基底压力:基础底面传递给地基表面的压力基底附加应力:建筑物建造后在基础底面新增加的压力,是基底压力减去基底标高处原有自重应力之后的应力附加应力:由建筑物荷载在地基土中引起的,附加在原有自重应力之上的应力有效应力:通过土粒承受和传递的粒间应力四角点沉降系数:单位均布矩形荷载在某角点处引起的沉降地基沉降计算深度:计算地基时,超过地基下一定深度,土的变形可不计,该深度称为地基沉降计算深度压缩性:土在压力作用下体积缩小的特性固结:土的压缩随时间而增长的过程压缩曲线:室内土的侧限压缩试验结果,是图的孔隙比与所受的压力关系曲线压缩系数:反映土在一定压力作用下或在一定压力变化区间其压缩性大小的参数,其值等于e——p曲线上对应一定压力的切线斜率或对应一定压力变化区间的割线斜率压缩指数:采用半对数直角坐标测绘的e——log p压缩曲线,其后段接近直线,直线的斜率称为土的压缩指数压缩模量:土在完全侧限条件下的竖向附加压应力与相应的应变增量之比值变形模量:根据土体在无侧限条件下的应力应变关系得到的参数,定义同弹性模量,但由于变形模量随应力水平而异,加载和下载时值不同,故未称作弹性模量,而称变形模量地基最终沉降量:地基土层在荷载作用下,达到压缩稳定时地基表面的沉降量应力比法:地基沉降计算深度取地基附加应力等于自重应力的20%处,在该深度以下如有高压缩性土,则继续向下取至10%处,这种确定沉降计算深度的方法称为应力比法平均附加应力系数:基底下一定深度范围处附加应力系数的平均值变形比法:由基底下一定深度向上取规定的计算厚度,若计算厚度土层的压缩量不大于该深度土层总压缩沉降量的2.5%,即可确定该深度为地基沉降计算深度,这种确定地基沉降计算深度的规范方法为变形比法前期固结压力:土体土层在历史上所经受的最大固结压力正常固结土:历史上所经受的最大固结压力等于现有覆盖土自重应力的土体超固结土:土体历史上曾经受过大于现有覆盖土自重应力的前提固结压力的土体欠固结力:在目前自重应力下还未达到完全固结的土体,土体实际固结压力小于现有覆盖土自重应力超固结比:土体经受过的前期固结压力与现有的土自重应力之比原始压缩曲线:指室内压缩试验e——log p 曲线经修正后得出的符合现场原始土体孔隙比与有效应力的关系曲线五抗剪强度:指土体抵抗剪切破坏的极限能力破坏准则:当土体中的应力组合满足一定短息是,土体即发生破坏,这种应力组合即为破坏准则,也是判定土体是否破坏的标准,破坏准则也称极限平衡条件库伦定律:将土的抗剪强度表示为剪切面上法向应力的函数莫尔—库伦强度理论:由库伦公式表示莫尔包线的强度理论莫尔包线:土地发生剪切破坏时,剪切破坏面上的剪应力是该面上的法向应力的函数,这个函数在坐标中是一曲线,该曲线为莫尔包线快剪试验:在试样施加竖向压力后,立即快速施加水平应力使试样剪切破坏的直接剪切试验,要求在3~5min 内将土样剪坏固结快剪试验:是允许试样在竖向压力下充分排水,待固结稳定后,再快速施加水平剪应力使试样剪切破坏的直接剪切试验,要求3~5内将土样剪坏慢剪试验:是允许试样在竖向压力下充分排水,待固结稳定后,在缓慢地施加水平剪应力使试样剪切破坏的直接剪切试验,为保证剪切过程中土样内不产生孔隙水压力,施加水平剪应力使试样剪切破坏历时较长,对粘性土一般历时4~6h不固结不排水试验:试样在施加周围压力和随后施加竖向压力直至剪切破坏的整个过程中都不允许排出,自始自终关闭排水阀门的三轴压缩试验固结不排水试验:施加周围压力,打开排水阀门,允许排水固结,固结完成后关闭排水阀门,再施加竖向压力,使试样在不排水的条件下剪切破坏的三轴压缩试验固结排水试验:试样在施加周围压力后,允许排水固结,待固结稳定后,再排水条件下施加竖向压力至试件剪切破坏的三轴压缩试验无侧限抗压强度:将圆柱土样放在无侧限抗压仪中,不施加任何侧向压力的情况下施加垂直压力,直到使土样剪切破坏,剪切破坏时试样所能承受的最大轴向压力孔隙压力系数:指土体在不排水和不排气的条件下,由外荷载引起的孔隙压力增量与总应力增量的比值天然休止角:指干燥砂土自然堆积所形成的最大坡角临界孔隙比:由不同初始孔隙比的砂土试样在同一压力下进行剪切试验,得出初始孔隙比与体积变化之间的关系,相应于体积变化为零的初始孔隙比为临界孔隙比应力路径:土体内应力状态的变化可在应力坐标图中以应力点的移动轨迹表示,该移动轨迹为应力路径破坏主应力线:在p-q坐标表示的剪切破坏包线,是表示极限状态应力圆最大剪应力的特征点的连线。

土力学知识点及习题整理

土力学知识点及习题整理

第一章土的组成一、简答题1. 什么是土的颗粒级配?什么是土的颗粒级配曲线?土粒的大小及其组成情况,通常以土中各个粒组的相对含量(各粒组占土粒总量的百分数)来表示,称为土的颗粒级配(粒度成分)。

根据颗分试验成果绘制的曲线(采用对数坐标表示,横坐标为粒径,纵坐标为小于(或大于)某粒径的土重(累计百分)含量)称为颗粒级配曲线,它的坡度可以大致判断土的均匀程度或级配是否良好。

2. 土中水按性质可以分为哪几类?3. 土是怎样生成的?有何工程特点?土是连续、坚固的岩石在风化作用下形成的大小悬殊的颗粒,经过不同的搬运方式,在各种自然环境中生成的沉积物。

与一般建筑材料相比,土具有三个重要特点:散粒性、多相性、自然变异性。

4. 什么是土的结构?其基本类型是什么?简述每种结构土体的特点。

土的结构是指由土粒单元大小、矿物成分、形状、相互排列及其关联关系,土中水的性质及孔隙特征等因素形成的综合特征。

基本类型一般分为单粒结构、蜂窝结(粒径0.075~0.005mm)、絮状结构(粒径<0.005mm)。

单粒结构:土的粒径较大,彼此之间无连结力或只有微弱的连结力,土粒呈棱角状、表面粗糙。

蜂窝结构:土的粒径较小、颗粒间的连接力强,吸引力大于其重力,土粒停留在最初的接触位置上不再下沉。

絮状结构:土粒较长时间在水中悬浮,单靠自身中重力不能下沉,而是由胶体颗粒结成棉絮状,以粒团的形式集体下沉。

5. 什么是土的构造?其主要特征是什么?土的宏观结构,常称之为土的构造。

是同一土层中的物质成分和颗粒大小等都相近的各部分之间的相互关系的特征。

其主要特征是层理性、裂隙性及大孔隙等宏观特征。

6. 试述强、弱结合水对土性的影响。

强结合水影响土的粘滞度、弹性和抗剪强度,弱结合水影响土的可塑性。

7. 试述毛细水的性质和对工程的影响。

在那些土中毛细现象最显著?毛细水是存在于地下水位以上,受到水与空气交界面处表面张力作用的自由水。

土中自由水从地下水位通过土的细小通道逐渐上升。

土力学总结

一、名词解释1. 最优含水率:在击数一定时,当含水率较低时,击实后的干密度随着含水率的增加而增大;而当含水率达到某一值时,干密度达到最大值,此时含水率继续增加反而招致干密度的减小。

干密度的这一最大值称为最大干密度,与它对应的含水率称为最优含水率。

2. 静止侧压力系数:土体在无侧向变形条件下,侧向有效应力与竖向有效应力之比值。

3. 抗剪强度:土体抵抗剪切变形的最大能力或土体频临剪切破坏时所能承受的最大剪应力称为土的抗剪强度。

4. 主动土压力 :当挡土墙离开填土移动,墙后填土达到极限平衡状态时,作用在墙上的土压力称为主动土压力。

5. 允许承载力:地基频临破坏时所能的基底压力称为地基的极限承载力,将土中的剪切破坏区限制在某一区域范围内,视地基土能承受多大的基底压力,此压力即为允许承载力。

容许承载力等于极限承载力除以安全系数。

管涌:管涌是渗透变形的一种形式.指在渗流作用下土体中的细土粒在粗土颗粒形成的空隙中发生移动并被带出的现象.被动土压力:当挡土墙向沿着填土方向转动或移动时,随着位移的增加墙后受到挤压而引起土压力增加,当墙后填土达到极限平衡状态时增加到最大值,作用在墙上的土压力称为被动土压力。

土:是各类岩石经长期地质营力作用风化后的产物,是由各种岩石碎块和矿物颗粒组成的松散集合体。

粒组:将工程性质相似,颗粒大小相近的土粒归并成组,按其粒径大小分成若干组别,称为粒组。

土的结构:指组成土的土粒大小、形状、表面特征,土粒间的连结关系和土粒的排列情况,其中包括颗粒或集合体间的距离、孔隙大小及其分布特点。

塑性指数:粘性土中含水量在液限与塑限两个稠度界限之间时,具有可塑性,且可塑性的强弱可由这两个稠度界限的差值大小来反映,这差值就称为塑性指数IP 。

即渗透系数:反映土的透水性能的比例系数,是水力梯度为1时的渗透速度,其量纲与渗透速度相同。

其物理含义是单位面积单位水力梯度单位时间内透过的水量。

角点法:利用角点下的应力计算公式和应力叠加原理推求地基中任意点的附加应力的方法称为角点法。

土力学与地基基础知识点整理

地基基础部分1.土由哪几部分组成?土是由岩石风化生成的松散沉积物,一般而言,土是由固体颗粒、液态水和空隙中的气体等三部分组成。

2.什么是粒径级配?粒径级配的分析方法主要有哪些?土中土粒组成,通常以土中各个粒组的相对含量(各粒组占土粒总质量的百分数)来表示,称为土的粒径级配。

对于粒径小于或等于60mm、大于0.075的土可用筛分法,而对于粒径小于0.075的土可用密度计法或移液管法分析。

3.什么是自由水、重力水和毛细水?自由水是存在于土粒表面电场范围以外的水,它可以分为重力水和毛细水。

重力水存在于地下水位一下的土骨架空隙中,受重力作用而移动,传递水压力并产生浮力。

毛细水则存在于地下水位以上的孔隙中,土粒之间形成环状弯液面,弯液面与土粒接触处的表面张力反作用于土粒,成为毛细压力,这种力使土粒挤紧,因而具有微弱的粘聚力或称为毛细粘聚力。

4.什么是土的结构?土的主要结构型式有哪些?土的结构主要是指土体中土粒的排列和联结形式,它主要分为单粒结构、蜂窝结构和絮状结构三种基本类型。

5.土的物理性质指标有哪些?哪些是基本物理性质指标?哪些是换算指标?P66.熟练掌握土的各个物理性质指标的概念,并能够进行相互换算。

P7-87.无粘性土和粘性土的物理特征是什么?无粘性土一般指具有单粒结构的碎石土和砂土。

天然状态下无粘性土具有不同的密实度。

密实状态时,压缩小,强度高。

疏松状态时,透水性高,强度低。

粘性土粒之间存在粘聚力而使土具有粘性。

随含水率的变化可分别划分为固态、半固态、可塑及流动状态。

8.什么是相对密度?P99.什么是界限含水量?什么是液限、塑限含水量?界限含水率:粘性土由一种状态转换到另一种状态的分界含水率;液限:由流动状态转为可塑状态的界限含水率;塑限:有可塑状态转为半固态的界限含水率;缩限:由半固态转为固态的界限含水率。

10.什么是塑性指数和液性指数?他们各反映粘性土的什么性质?P1011.粗粒土和细粒土各采用什么指标进行定名?粗粒土:粒径级配细粒土:塑性指数12.什么是动水力(或渗透力)?动水力的量纲是什么?地下水渗流时对土颗粒产生压力,单位体积内骨架受到的力称为动水力,亦称渗透力。

全套电子课件:土质学与土力学


什么是土?
岩石
风化
颗粒堆积物
地球
地球
土:
“土”是地壳表层岩石受风化、剥蚀、 搬运、沉积而形成的松散堆积物,在地质 年代上形成于第四纪,故又称“第四纪沉 积物”
土木工程中遇到的与土有关的问题
➢ 作为建筑物(房屋、桥梁、道路、水工结构等)地基的 土。
➢ 作为建筑材料(路基材料、土坝材料)的土。 ➢ 作为建筑物周围介质或环境(隧道、挡土墙、地下建
土质学作为一门独立学科,始于20世纪。早期土质学的著作 如Приклонский 的《土质学》和Пенисов的《黏性土的工程 性质》,系统的论述了土质学的原理,为土质学的进一步发 展奠定了基础,也对我国土地的研究有很大的影响。
近代的著作如黄文熙的《土的工程性质》和Mitchell的 《Fundamentals of Soil Behavior》代表了从两个不同的角度深 入研究土的工程性质所达到的新水平。
连续固体
连续流体 碎散材料
二十一世纪土力学的发展具有以下特点:
(1) 进一步汲取现代数学、现代力学的成果和充分利用计算 机技术,深入研究土的非线性、各向异性、流变等特性, 建立新的更符合土体特性的本构模型和计算方法。
(2)充分考虑土和土工问题的不确定性,进行风险分析和优 化决策,岩土工程的定值设计方法逐步向可靠度设计转 化。
筑、滑坡问题等)的土。
土的特点
土的形成经历了漫长的地质历史过 程,是地质作用的产物,是一种矿物 集合体,是一多相分散系统。土体极 易受到外界环境(温度、湿度等)变化 而变化,其主要特征是分散性、复杂 性和易变性。
岩石风化的 产物
碎散性
非连续介质
受力以后易变形 体积变化主要是孔隙变化 剪切变形主要由颗粒 相对位移引起 强度低

土力学知识点.

土力学知识点1、课程性质土力学是一门专业基础课。

土力学研究的对象课概括为:研究土的本构关系以及土与结构的物相互作用的规律。

2、土的本构关系即土的应力、应变、强度和时间这四个变量之间的内在关系。

3、为确保建筑物的安全和使用良好,在地基与基础设计中必须满足哪两个技术条件?1、地基的强度条件:要求建筑物地基保持稳定型,不发生滑动破坏,必须有一定的地基强度安全系数2、地基的变性条件:要求建筑物的变形不能大于地基变形允许值。

4、组成岩石的矿物称为造岩矿物5、矿物的种类:原生矿物和次生矿物6、矿物的主要物理性质?形态、色泽、光泽、硬度、解理、断口解理:矿物在受外力作用时,能沿一定的方向裂开成光滑平面的性能。

断口:矿物在受外力打击后断裂成不规则的形态。

7、矿物的鉴定方法:肉眼鉴定法和偏光显微镜法8、岩石分类?按成因分:岩浆岩、沉积岩、变质岩按坚固性分:硬质岩石、软质岩石按风化程度分:未风化、微风化、中等风化、强风化9、第四纪沉积层:地表的岩石,经物理化学风化、剥蚀成岩屑、粘土矿物及化学溶解物质;又经搬运、沉积而成的沉积物,年代不长,未压密硬结成岩石之前,呈松散状态,称为第四级沉积层,即“土”10、第四纪沉积层分类:残积层、坡积层、洪积层、冲击层、海相沉积层、湖沼沉积层11、常见的不良地质条件有?断层、岩层节理发育的场地、滑坡、河床冲淤、岸坡失稳、河沟侧向位移12、地下水分类:上层滞水、潜水、承压水13、初见水位:工程勘察钻孔时,当钻头带上水时所测的水位稳定水位:钻孔完毕,讲将钻孔的孔口保护好,待二十四小时后再测得的水位14、土是由岩石,经物理化学风化、剥蚀、搬运、沉积,形成固体矿物、流体水和气体的一种集合体。

15、土的结构:土颗粒之间的互相排列和联结形式称为土的结构分类:单粒结构、蜂窝结构、絮状结构16、土的构造:同一层土中,土颗粒之间相互关系的特征称为土的构造。

分类:层状构造、分散构造、结核状构造、裂隙状构造17:土与其它连续介质的建筑材料相比,具有哪三个显著的工程特性?1、压缩性高2、强度低3、透水性大18、土粒中的矿物分为三类:原生矿物、次生矿物、腐殖质19、工程中常用的土中各粒径的含量占总质量的百分比称为土的粒径级配。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

可塑性:土可以塑成任何形状不发生裂缝并在外力解除以前保持原有形状不恢复原状的性质塑限:可塑状态与半固体状态间的界限含水率称为塑限液限:流塑状态与可塑状态间的车界限含水率塑性指数:可塑性大小可用黏土在可塑状态含水率变化来衡量,从液限到塑限变化范围越大,土可塑性越好,这个范围称为塑性指数液性指数:是指粘性土天然含水率和塑限差值与塑性指数之比压缩系数:表示土体压缩性大小的指标,是压缩试验所得e-p曲线上某一压力段的割线的斜率压缩模量:E S土在完全侧限条件下竖向应力增量Δp与相应的应变量Δε比值。

压缩指数: e ~㏒10p曲线中直线段的斜率。

变形模量:土体在无侧压条件下的应力与应变的比值。

水头梯度:沿着水流方向单位长度上的水流差。

初始水头梯度:黏土中自由水的渗流受到结合水的黏滞作用,只有克服结合水的抗剪强度后才能开始渗流。

克服此抗剪强度所需的水头梯度称为黏性土的起始水头梯度。

临界水头梯度:向上的动力水与土的有重度相等这是土颗粒之间的压力等于0土颗粒将处于悬浮状态而失去稳定,这种现象称为流沙现象。

这使得水头梯度称为临界水头梯度。

颗粒级配:土中各个粒组的相对含量。

可塑状态:当粘性土含水量在某一范围时,可用外力塑成任何形状而不发生裂纹,并当外力移去后仍能保持既得的形状,这种状态称为可塑状态。

固结度:饱和土层或试样在固结过程中,某一时刻的孔隙水压力平均消散值(或压缩量)与初始孔隙水压力(或最终压缩量)比值,以百分率表示。

临塑荷载(比例界限):指基础边缘地基中刚要出现塑性区时基底单位面积上所承担的荷载,它相当于地基从压缩阶段过渡到剪切阶段时的界限荷载,称为地基临塑荷载。

土的结构:土粒或土粒集合体的大小、形状、相互排列与联结等综合特征。

土的构造:在同一土层剖面中,颗粒或颗粒集合体相互间的特征。

结合水:受电分子引力吸附于土粒表面的土中水。

强结合水:紧靠土粒表面的结合水膜。

相对密实度:砂土的最大孔隙比和天然孔隙比的差值与最大孔隙比和最小孔隙比的差值之比。

土的湿陷性:在一定压力作用下,受水浸湿后土的结构迅速破坏而发生显著附加下陷的特性。

土的天然稠度:原状土样测定的液限和天然含水量的差值与塑性指数之比。

触变性:饱和粘性土的结构受到扰动,导致强度降低,当扰动停止后,抗剪强度随时间恢复的胶体化学性质。

渗流力:水在土中流动时,单位体积土颗粒受到的渗流作用力。

流砂:土体在向上动水力作用下,有效应力为零时,颗粒发生悬浮、移动的现象。

固结度:地基土层在某一压力作用下,经历时间t产生的固结变形量与最终固结变形量之比。

瞬时沉降:加荷后地基瞬时发生的沉降。

孔隙压力:土中孔隙传递的应力,包括孔隙水压力和孔隙气压力。

无侧限抗压强度:在不施加任何周围压力的情况下,施加垂直压力,直到试样剪切破坏为止,剪切破坏时试样所能承受的最大轴向压力。

抗剪强度:土体抵抗剪切破坏的极限能力。

被动土压力:挡土结构在荷载作用下向土体方向位移,使土体达到被动极限平衡状态时,作用在挡土结构上的土压力。

主动土压力:挡土结构在土压力作用下向离开土体的方向位移,当土体达到主动极限平衡状态时,作用在挡土结构上的土压力。

临塑荷载:地基即将产生塑性变形区基底单位面积上所承担的荷载。

临界荷载p1/3:地基塑性区最大深度为基底宽度1/3所对应的荷载。

地基极限承载力:地基剪切破坏发展即将失稳时基底单位面积上所承担的荷载。

1.有效应力原理:用有效应力阐明在力系作用下土体的各种力学效应(如压缩、强度等)的原理σ =σ′+μ式中:σ为平面上法向总应力, kPa;σ′为平面上有效法向应力, kPa;μ为孔隙水压力, kPa。

有效应力原理阐明了碎散颗粒材料与连续固体材料在应力——应变关系上的重大区别,有效应力原理表示研究平面上的总应力、有效应力与孔隙水压力三者之间的关系:当总应力保持不变时,孔隙水压力与有效应力可以相互转化,即:有效孔隙水压力减小等于有效应力的等量增加。

2.郎金主动土压力计算原理:假定挡土墙背垂直、光滑,其后土体表面水平并无限延伸,这时土体内的任意水平面和墙的背面均为主平面(在这两个平面上的剪应力为零),作用在该平面上的法向应力即为主应力。

朗金根据墙后主体处于极限平衡状态,应用极限平衡条件,推导出了主动土压力和被动土压力计算公式。

3.地基的破坏模式:有三种一是整体剪切破坏,二是局部剪切破坏,三是冲剪破坏(又称刺入剪切破坏)1整体剪切破坏:三角压密区,形成连续滑动面,两侧挤出并隆起,有明显的两个拐点2局部剪切破坏:基础下塑性区到地基某一范围,滑动面不延伸到地面,基础两侧地面微微隆起,没有出现明显的裂缝。

常发生于中等密实砂土中。

3刺入剪切破坏(冲剪破坏):基础下土层发生压缩变形,基础下沉,当荷载继续增加,附近土体发生竖向剪切破坏4.地基附加应力扩散原理地基土往往是由软硬不一的多种土层所组成,其变形特性在竖直方向差异较大,软弱土层上有一层压缩性较低的土层即硬壳层情况,当上层土的压缩性比下层土的压缩性低时(即硬壳层情况),则土中附加应力将发生扩散现象,在坚硬土层下存在软弱下卧层时,土中应力扩散的现象将随上层坚硬土层厚度的增大而更加显著。

双层地基中应力扩散的概念有着重要工程意义,特别是在软土地区,表面有一层硬壳层,由于应力扩散作用,可以减少地基的沉降,故在设计中基础应尽量浅埋,并在施工中采取保护措施,以免浅层土的结构遭受破坏。

5.条分法原理:是将假定滑动面以上的土体分成n个垂直土条,对作用于各土条上的力进行力和力矩平衡分析,求出在极限平衡状态下土体稳定的安全系数。

该法由于忽略土条之间的相互作用力的影响,因此是条分法中最简单的一种方法。

在土坡稳定分析中,为便于计算土体的重量,并使计算的抗剪强度更加精确,常将滑动土体分成若干竖直土条,求各土条对滑动圆心的抗滑力矩和滑动力矩,各取其总和,计算安全系数,这即为条分法的基本原理。

该法也假定各土条为刚性不变形体,不考虑土条两侧面间的作用力。

6.沉降计算分层总和法原理:原理:分层总和法一般取基底中心点下地基附加应力来计算各分层土的竖向压缩量,认为基础的平均沉降量s为各分层上竖向压缩量Dsi之和。

在计算出Dsi时,假设地基土只在竖向发生压缩变形,没有侧向变形,故可利用室内侧限压缩试验成果进行计算。

步骤a.地基土分层。

b.计算各分层界面处土自重应力。

土自重应力应从天然地面起算。

c.计算各分层界面处基底中心下竖向附加应力。

d.确定地基沉降计算深度(或压缩层厚度)。

e.计算各分层土的压缩量7.地基附加应力分布规律有哪些?(1)附加应力不仅发生在荷载面积之下,而且分布在荷载面积以外相当大的范围之下,这就是地基附加应力的扩散分布;(2)在离基底不同深度z处各个水平面上,以基底中心点下轴线处的σz值最大,随离中轴线距离增大曲线减小;(3)在荷载分布范围之下任意点沿铅垂线的σz值,随深度最大曲线减小;(4)条形荷载比相同宽度的方形荷载σz的影响深度大,在相同深度处,条形荷载在地基中的σz比相同宽度的方形荷载大得多。

8.举例说明影响土坡稳定的因素有哪些?(1)土的剪应力增大:路堑或基坑的开挖、堤坝施工中上部填土荷重的增加、土体重度增大、动力荷载(渗流力、地震、打桩等)作用。

(2)土体抗剪强度降低:超孔隙水压力产生、干裂、冻融、粘土软化、粘性土蠕变等。

2.位于稳定土坡坡顶上的建筑物,如何确定基础底面外边缘线至坡顶边缘线的水平距离?对于条形基础,要求:a≥3.5b-d/tanβ;对于矩形基础,要求: a≥2.5b-d/tanβ。

式中:a为基础底面外边缘线至坡顶边缘线的水平距离,b为垂直于坡顶边缘线的基础底面边长,d为基础埋深,β为边坡坡角。

9.影响土压实性的主要因素有哪些?(1)含水量、(2)颗粒大小和级配、(3)击实功10.影响渗透系数大小的主要因素有哪些?(1)土的粒度成分和矿物成分 (2)土的密实度 (3)土的饱和度 (4)土的结构 (5)水的温度(6)土的构造11.流砂现象防治的方法有哪些?(1)减小或消除水头差:采用坑外降低地下水位或采用水下挖掘。

(2)增长渗流路径:打板桩。

(3)在向上渗流出口处地表压重。

(4)加固土层:冻结法、注浆法。

12.管涌发生的条件是什么?防治措施有哪些?发生条件:(1)必要条件:土中粗颗粒所构成的孔隙直径必须大于细颗粒的直径。

通常发生在Cu>10的土中。

(2)水力条件:动水力能带动细颗粒在孔隙间滚动或移动。

防治原则:(1)改变几何条件,在渗流逸出部位铺设反滤层。

(2)改变水力条件,降低水力梯度,如打板桩。

13.自重应力与附加应力各自在地基中的分布特点。

自重应力的分布特点:(1)自重应力曲线为一折线,在各土层层面与地下水位处发生转折,在各层中为直线;(2)自重应力在水平方向上一般变化不大;(3)自重应力的大小随深度的增加而增大。

附加应力的分布特点:(1)附加应力曲线为一曲线;(2)附加应力在水平方向上一般是荷载作用的中心处最大,向周围不断变小,有一定的影响范围;(3)附加应力的大小一般是随深度的增加而减小的。

14.朗金土压力与库伦土压力的异同点相同点:都要求挡土墙的移动是以使墙后填土的剪力达到抗剪强度(极限状态下)土压力.都利用莫尔-库仑强度理论;(1分)不同点:朗垦理论是根据土体中各点处于平衡状态的应力条件直接求墙背上各点的土压力.要求墙背光滑,填土表面水平,计算结果偏大.而库仑理论是根据墙背与滑动面间的楔块型处于极限平衡状态的静力平衡条件求总土压力.墙背可以倾斜,粗糙填土表面可倾斜,计算结果主动压力满足要求,而被动压力误差较大.朗肯理论是考虑墙后填土每点破坏,达极限状态;库仑理论则考虑滑动土体的刚体的极限平衡;1.什么是土的颗粒级配?什么是土的颗粒级配曲线?土粒的大小及其组成情况,通常以土中各个粒组的相对含量(各粒组占土粒总质量的百分数)来表示,称为土的颗粒级配(粒度成分)。

根据颗分试验成果绘制的曲线(采用对数坐标表示,横坐标为粒径,纵坐标为小于(或大于)某粒径的土重(累计百分)含量)称为颗粒级配曲线,它的坡度可以大致判断土的均匀程度或级配是否良好。

2.什么是土的构造?其主要特征是什么?土的宏观结构,常称之为土的构造。

是同一土层中的物质成分和颗粒大小等都相近的各部分之间的相互关系的特征。

其主要特征是层理性、裂隙性及大孔隙等宏观特征。

主要有如下构造类型:(1)层状构造,土层由不同颜色、不同粒径的土组成层理,是细粒土的一个重要特征。

(2)分散构造,土层中土粒分布均匀,性质相近,如砂、卵石层等具有该种构造。

(3)结核状构造,在细粒土中掺有粗颗粒或各种结构,工程性质取决于细粒土成分,如含砾石的冰渍粘土。

(4)裂隙状构造,土中有很多不连续的小裂隙,有的硬塑或坚硬状态的粘土为此构造。

相关文档
最新文档