ADS微波技术 带通滤波器设计

ADS微波技术 带通滤波器设计
ADS微波技术 带通滤波器设计

《电磁场与微波技术》

课程设计报告

课程题目:带通滤波器的设计与仿真

姓名:

指导老师:

系别:

专业:通信工程

学号:

班级:

完成时间: 2012-06-02

微波带通滤波器的设计与仿真

摘要:

平行耦合微带线带通滤波器在微波电路系统中广泛,为了提高带通滤波器性能,缩短设计周期,采用奇偶模原理分析与ADS仿真真相结合的方法,设计出一个中心频率为2.4GHz,相对带宽为9%的平行耦合微带线带通滤波器。进一步优化参数,得到电路版图。最终结果证明,这种方法具有设计周期短,可靠性高的特点,且各项参数满足设计要求。

关键词:平行耦合微带线;ADS;带通滤波器;奇偶模分析;电路版图。

一.基本原理

边缘耦合的平行耦合线由两条相互平行且靠近的微带线构成,单个带通滤波器单元如图1(a)所示。根据传输线理论及带通滤波器理论,带通滤波元件是由串臂上的谐振器和并臂上的谐振器来完成,但是在微带上实现相间的串联和并联谐振元件尤为困难,为此课采用倒置转换器将串并联电路转化为谐振元件全部串联或全部并联在线上。因此,单个耦合微带滤波器单元能够等效成如图1(b)所示的一个导纳倒置转化器和接在两边传输线段的组合。

这种单独耦合线节单元虽然具有典型的带通滤波器的特性,但是单个带通滤波器单元难以具有良好的滤波器响应及陡峭的带通—阻带过度。因此,通常情况下,采用级联多个这些基本耦合单元来构成实用的滤波器。如图1(a)所示为一级联耦合微带线节单元构成的带通滤波器的典型结构,其每一个耦合线节左右对称,长度约为1/4波长(对中心频率而言)。带通滤波器有(N+1)个图1所示的耦合线带通滤波器单元构成,而每一段耦合线又可等效为如图1(b)所示的电路结构,因此导纳倒置转换器之间为特性阻抗Zo。电角度为2θ的传输线段。Z0o与Z0e分别为耦合线的奇模与偶模特性阻抗。

图一

滤波器主要设计要求如下:

中心频率G0=2.4GHz;相对带宽:9%;带内波纹:<0.2dB;在频率2.2GHz和2.6GHz处,衰减>25dB;输入输出阻抗:50Ω

滤波器使用的基板参数还是Er=2.7,H=1.27mm,此时基板上的50ohm阻抗传输线的宽大概为1.22mm。

这里设计的滤波器为平行耦合线带通滤波器设计图如下:

二.平行耦合带通滤波器设计

为设计出符合要求的带通滤波器,可以将传统的平行耦合微带线设计方法与先进的微波电路仿真软件ADS2008相结合,使全部设计要求转换成实际的滤波器设计,图3是平行耦

合微带线滤波器的设计的流程图。

三.计算主要参数

1 由低通到带同频率的交换, 这里W为相对带宽,

如果采用切比雪夫原型,查表得到此滤波器为n=5级。纹波系数为0.1dB的切比雪夫原型的元件数值分别为:g0=1;g1=1.1468;g2=1.3712;g3=1.9775;g4=1.3712;g5=1.1468;

并且为了简单起见,采用对称耦合的末段。

2 根据如下公式求出偶,奇阻抗

各耦合段的偶.奇模阻抗

耦合段编号 1 2 3 4 5 6

偶模阻抗/Ω75.4 57.5 55.23 55.23 57.5 75.4

奇模阻抗/Ω38.3 44.5 45.7 45.7 44.5 38.3

3这里使用ADS自带的耦合微带传输线计算器来计算各个尺寸。对于ADS微带线计算器LineCale,参数设置如下(对于第一组数据)

各个参数计算如下

耦合区号 1 2 3 4 5 6

W(mm) 1.901060 2.519750 2.561170 2.561170 2.519750 1.901060 S(mm) 0.204545 1.036920 1.410200 1.410200 1.036920 0.204545 L(mm) 21.720100 21.117100 21.067900 21.067900 21.117100 21.720100

四.仿真与优化

用ADS进行仿真,在schematic中用模拟微带线进行布局,示意如下:

其中的电路板参数设置为; 解释如下:H为电路板厚度,Er为介电

常数,设置为2.7。Mur为渗透系数,设置为1。Cond是介质板上面金属层电导率,如果是铜的话,电导率取5.78e6,T为金属层厚度。

设置了S参数后就可以仿真了,仿真结果如下:

从图中数据分析。中心频率点在2.400GHz,带宽在2.300GHz~2.520GHz间,带内起伏较大,与要求的带内波纹:<0.2dB,不符合要求,带宽大小和频率在2.2GHz和2.6GHz处,衰减>25dB比较符合。于是要进行优化。

优化处理:

优化如下:用Tune工具进行优化,需要一定的时间和耐心,最后改变后输出图像为:

优化之后仿真输出的波形:

此时的图形比较符合要求,因此进行电路板模拟,用ADS自带的电路板生成工具,得到介质板如下:

版图的仿真是采用矩量法直接对电磁场进行计算,其结果比在原理图中仿真要准确,但是它的计算比较复杂,需要较长的时间,可作为对原理图设计的验证。

①首先要由原理图生成版图,生成版图前先要把原理图中用于S参数仿真的两个Term以及接地去掉。

②然后点击菜单中的Layout -> Generate/Update Layout,版图生成后先要设置微带电路的基本参数(即原理图中MSUB里的参数),点击版图窗口菜单中的Momentum -> Substrate -> Update From Schematic从原理图中获得这些参数。

2)版图的仿真

①点击Momentum -> Simulation -> S-parameter弹出仿真设置窗口,设置窗口进行仿真。经过多次的修改,优化之后出的波形,版图仿真出的波形如下,

最后的版图优化后电路的尺寸

五.仿真分析

平行耦合线微带线带通滤波器原理为基础,将传统的滤波器分析方法与利用微波电路仿真工具——ADS设计滤波器的方法相结合,设计了一个相对带宽为9%的平行耦合带通滤波器器,整个project在设计过程中主要是注重使带宽符合要求,在设计过程中发现,由公式根据需要算出来的尺寸和实际仿真出来的结果又很大的出入,这主要是由于计算的时候是根据理想条件来的,而实际上还要考虑到很多其它因素对电磁波的影响,介质损耗等等。

因此在频率的搬移上我们做了很大的功夫,时间是费了好久才搞定的。

指标要求的带宽大概是在200MHz左右,它已经能将200MHz以外的过滤掉。因此在2.3~2.5GHz内,满足要求。

本设计经多次优化后,可以得到耦合微带线带通滤波器的具体结构尺寸。设计采用了对称的平行耦合线滤波器结构。值得注意的是,在微带带通滤波器优化过程中,每次只需要对各节耦合微带线的线长、线宽及间隙共9个参数进行部分调整,即可起到改善性能的作用。L主要影响带通滤波器的通带中心频率,通带内的最大衰减则主要受S参数影响,整个通带带宽及带外衰减情况,则受W、S、L3个参数共同作用。每次优化只需要进行微调即可达到改善性能的效果,因为初始的理论分析和参数设计与最终尺寸已经比较接近。

优化后,带内的最大衰减为-0.142dB左右,在2.2G和2.6G两个点上,衰减均大于25dB,且中心频率落在通带的中点,效果良好,符合设计要求。

3个参数和通带曲S21线的大概关系。L主要影响带通滤波器的通带中心频率,L越大,中心频率越低;反之,L越小,中心频率越高。而通带内的最大衰减则主要受S参数响。整个通带带宽及带外衰减情况,则受W、S、L3个参数共同作用。

六.总结

本次课程设计是用ADS设计微带带通滤波器,之前从未接触过ADS这个软件以及微波技术,首先学会如何使用ADS。以及熟悉软件的各个部分的功能作用。

学会了ADS的使用之后,根据设计的指标,查找相关的资料,把前人所做过的例子,在软件上仿真,熟悉一遍,了解设计仿真一个滤波器的具体步骤。经过查找资料与组员讨论。

采用级联耦合微带线带通滤波器,所给的参数计算出所要设计的滤波器需要的阶数为5,用ADS自带的微带计算器算计算出各个微带线的参数,然后布局电路,仿真,出来的S(2,1)参数波形与指标要求的有一定的差距,再经过优化终于得到正确的波形且完全符合设计要求。

接下来版图的仿真,版图仿真得到的S(2,1)参数波形不满足指标要求,重新回到原理图窗口进行优化仿真,产生这种情况的原因是微带线的宽度取值不合适,可以改变优化变量的初值,也可根据曲线与指标的差别情况适当调整优化目标的参数,重新进行优化。直到达到指标要求的波形。通过本次课程设计,且对于带通通滤波器有了更深的了解,以及微波技术中一些重要参数的仿真与技术。

参考文献

[1] 徐兴福,ADS2008射频电路设计与仿真实例[M]北京:电子工业出版社,2009.

[2] 黄玉兰,射频电路理论与设计[M]:北京,人民邮电出版社,2008.

ads设计的滤波器.

1 课题背景 随着信息化浪潮的推进,现代社会产生了巨大的信息要求,通信技术正在向高速、多频段、大容量方向发展。目前移动通信中所使用的主要频率为0.8-1.0GHz,全球GSM频段分为4段,即850/900/1800/1900MHz。在宽带移动化方面,IEEE802工作组先后制定了WLAN和WiMAX等技术规范,希望能沿着固定、游牧/便携、移动这样的演进路线逐步实现宽带移动化,常用的WLAN通信频段标准为IEEE802.1b/g(2.4-2.5GHz)和IEEE802.11a(5.2-5.8GHz)。为了在移动环境下实现宽带数据传输,IEEE802.16WiMAX成了宽带移动的主要里程碑,促进了移动宽带的演进和发展,2.3-2.4GHz和3.4-3.6GHz频段均被划分为WiMAX的全球性统一无线电频段。这正是S波段的应用,因此如何研究出高性能,小型化的滤波器是目前电路设计的的关键之一。 当频率达到或接近GHz时,滤波器通常由分布参数元件构成,分布参数不仅可以构成低通滤波器,而且可以构成带通和带阻滤波器。平行耦合微带传输线由两个无屏蔽的平行微带传输线紧靠在一起构成,由于两个传输线之间电磁场的相互作用,在两个传输线之间会有功率耦合,这种传输线也因此称为耦合传输线。平行耦合微带线可以构成带通滤波器,这种滤波器是由四分之一波长耦合线段构成,它是一种常用的分布参数带通滤波器。 当两个无屏蔽的传输线紧靠一起时,由于传输线之间电磁场的相互作用,在传输线之间会有功率耦合,这种传输线称之为耦合传输线。根据传输线理论,每条单独的微带线都等价为小段串联电感和小段并联电容。每条微带线的特性阻抗为Z0,相互耦合的部分长度为L,微带线的宽度为W,微带线之间的距离为S,偶模特性阻抗为Z e,奇模特性阻抗为Z0。单个微带线单元虽然具有滤波特性,但其不能提供陡峭的通带到阻带的过渡。 如果将多个单元级联,级联后的网络可以具有良好的滤波特性。如图1.1所示。

根据ADS的带阻滤波器设计

电磁波与微波技术 课程设计 ----带阻滤波器的设计与仿真 课题:带阻滤波器的设计与仿真 指导老师: 姓名: 学号:

目录 1.设计要求 (3) 2.微带短截线带阻滤波器的理论基础 (3) 2.1理查德变换 (4) 2.2科洛达规则 (6) 3.设计步骤 (7) 3.1ADS 简介 (7) 3.2初步设计过程 (8) 3.3优化设计过程 (14) 3.4对比结果 (17) 4.心得体会 (17) 5.参考文献 (18)

1.课程设计要求: 1.1 设计题目:带阻滤波器的设计与仿真。 1.2设计方式:分组课外利用ads软件进行设计。 1.3设计时间:第一周至第十七周。 1.4 带阻滤波器中心频率:6GHz;相对带宽:9%;带内波纹: <0.2dB。 1.5 滤波器阻带衰减>25dB;在频率5.5GHz和6.5GHz处,衰 减<3dB;输入输出阻抗:50Ω。 2.微带短截线带阻滤波器的理论基础 当频率不高时,滤波器主要是由集总元件电感和电容构成,但当频率高于500Mz时,滤波器通常由分布参数元件构成,这是由于两个原因造成的,其一是频率高时电感和电容应选的元件值小,由于寄生参数的影响,如此小的电感和电容已经不能再使用集总参数元件;其二是此时工作波长与滤波器元件的物理尺寸相近,滤波器元件之间的距离不可忽视,需要考虑分布参数效应。我们这次设计采用短截线方法,将集总元件滤波器变换为分布参数滤波器,其中理查德变换用于将集总元件变换为传输段,科洛达规则可以将各滤波器元件分隔。 2.1 理查德变换

通过理查德变换,可以将集总元件的电感和电容用一段终端短路和终端开路的传输线等效。终端短路和终端开路传输线的输入阻抗具有纯电抗性,利用传输线的这一特性,可以实现集总元件到分布参数元件的变换。 在传输线理论中,终端短路传输线的输入阻抗为: 错误!未找到引用源。= 错误!未找到引用源。(1.0) 式中 错误!未找到引用源。 当传输线的长度错误!未找到引用源。= 错误!未找到引用源。时 错误!未找到引用源。 (1.1) 将式(1.1)代入式(1.1),可以得到 错误!未找到引用源。(1.2)式中 错误!未找到引用源。 (1.3) 称为归一化频率。

ADS设计的带通滤波器

设计报告 学生: 课题:带通滤波器的设计与仿真 目录

摘要 (3) 一平行耦合微带线滤波器的理论基础 (3) 二、平行耦合微带线滤波器的设计的流程图 (4) 三、设计的具体步骤 (5) 1、确定下边频和归一化带宽 (5) 2、在设计向导中生成原理图 (6) 3、平行耦合微带线带通滤波器设计 (7) 4、设计平行耦合微带线带通滤波器原理图 (8) 四、心得体会 (14) 五、参考文献 (14) 带通滤波器的设计与仿真

摘要: 介绍一种借助ADS( Advanced Des ign SySTem )软件进行设计和优化平行耦合微带线带通滤波器的方法,给出了清晰的设计步骤,最后结合设计方法利用ADS给出一个中心频率为2.4 GHz,相对带宽为9%的微带带通滤波器的设计及优化实例和仿真结果,仿真结果表明: 这种方法是可行的,满足设计的要求。 滤波器是用来分离不同频率信号的一种器件。它的主要作用是抑制不需要的信号,使其不能通过滤波器,只让需要的信号通过。在微波电路系统中,滤波器的性能对电路的性能指标有很大的影响,因此如何设计出一个具有高性能的滤波器,对设计微波电路系统具有很重要的意义。微带电路具有体积小,重量轻、频带宽等诸多优点,近年来在微波电路系统应用广泛,其中用微带做滤波器是其主要应用之一。平行耦合微带线带通滤波器在微波集成电路中是被广为应用的带通滤波器。 一、滤波器的介绍 (1)波器可以分为四种:低通滤波器和高通滤波器、带通滤波器和带阻滤波器 按照滤波器的制作方法和材料,射频滤波器又可以分为以下四种: (2)波器、同轴线滤波器、带状线滤波器、微带滤波器 (3)滤波的性能指标: 频率范围:滤波器通过或截断信号的频率界限 通带衰减:滤波器残存的反射以及滤波器元件的损耗引起 阻带衰减:取通带外与截止频率为一定比值的某频率的衰减值 寄生通带:有分布参数的频率周期性引起,在通带的一定外有产生新的通带 二、平行耦合微带线滤波器的理论基础 当频率达到或接近GHz时,滤波器通常由分布参数元件构成,分布参数不仅可以构成低通滤波器,而且可以构成带通和带阻滤波器。 平行耦合微带传输线由两个无屏蔽的平行微带传输线紧靠在一起构成,由于两个传输线之间电磁场的相互作用,在两个传输线之间会有功率耦合,这种传输线也因此称为耦合传输线。 平行耦合微带线可以构成带通滤波器,这种滤波器是由四分之一波长耦合线段构成,她是一种常用的分布参数带通滤波器。 当两个无屏蔽的传输线紧靠一起时,由于传输线之间电磁场的相互作用,在传输线之间会有功率耦合,这种传输线称之为耦合传输线。根据传输线理论,每条单独的微带线都等价为小段串联电感和小段并联电容。每条微带线的特性阻抗为Z 0,相互耦合的部分长度为L,微带线的宽度为W,微带线之间的距离为S,偶模特性阻抗为Z e,奇模特性阻抗为Z0。单个微带线单元虽然具有滤波特性,但其不能提供陡峭的通带到阻带的过渡。 如果将多个单元级联,级联后的网络可以具有良好的滤波特性。

基于ADS的微带滤波器设计

基于ADS的微带滤波器设计 微波滤波器是用来分离不同频率微波信号的一种器件。它的主要作用是抑制不需要的信号, 使其不能通过滤波器, 只让需要的信号通过。在微波电路系统中,滤波器的性能对电路的性能指标有很大的影响,因此如何设计出一个具有高性能的滤波器,对设计微波电路系统具有很重要的意义。微带电路具有体积小,重量轻、频带宽等诸多优点,近年来在微波电路系统应用广泛,其中用微带做滤波器是其主要应用之一,因此本节将重点研究如何设计并优化微带滤波器。1 微带滤波器的原理微带滤波器当中最基本的滤波器是微带低通滤波器,而其它类型的滤波器可以通过低通滤波器的原型转化过来。最大平坦滤波器和切比雪夫滤波器是两种常用的低通滤波器的原型。微带滤波器中最简单的滤波器就是用开路并联短截线或是短路串联短截线来代替集总元器件的电容或是电感来实现滤波的功能。这类滤波器的带宽较窄,虽然不能满足所有的应用场合,但是由于它设计简单,因此在某些地方还是值得应用的。2 滤波器的分类最普通的滤波器的分类方法通常可分为低通、高通、带通及带阻四种类型。图12.1给出了这四种滤波器的特性曲线。按滤波器的频率响应来划分,常见的有巴特沃斯型、切比雪夫Ⅰ型、切比雪夫Ⅱ型及椭圆型等;按滤波器的构成元件来划分,则可分为有源型及无源型两类;按滤波器的制作方法和材料可分为波导滤波器、同轴线滤波器、带状线滤波器、微带滤波器。3 微带滤波器的设计指标微带滤波器的设计指标主要包括:1绝对衰减(Absolute attenuation):阻带中最大衰减(dB)。 2带宽(Bandwidth):通带的3dB带宽(flow—fhigh)。3中心频率:fc或f0。4截止频率。下降沿3dB点频率。5每倍频程衰减(dB/Octave):离开截止频率一个倍频程衰减(dB)。 6微分时延(differential delay):两特定频率点群时延之差以ns计。 7群时延(Group delay):任何离散信号经过滤波器的时延(ns)。8插入损耗(insertion loss):当滤波器与设计要求的负载连接,通带中心衰减,dB 9带内波纹(passband ripple):在通带内幅度波动,以dB计。10相移(phase shift):当信号经过滤波器引起的相移。 11品质因数Q(quality factor):中心频率与3dB带宽之比。 12反射损耗(Return loss) 13形状系数(shape factor):定义为。 14止带(stop band或reject band):对于低通、高通、带通滤波器,指衰减到指定点(如60dB点)的带宽。工程应用中,一般要求我们重点考虑通带边界频率与通带衰减、阻带边界频率与阻带衰减、通带的输入电压驻波比、通带内相移与群时延、寄生通带。前两项是描述衰减特性的,是滤波器的主要技术指标,决定了滤波器的性能和种类(高通、低通、带通、带阻等);输入电压驻波比描述了滤波器的反射损耗的大小;群时延是指网络的相移随频率的变化率,定义为 dU/df ,群时延为常数时,信号通过网络才不会产生相位失真;寄生通带是由于分布参数传输线的周期性频率特性引起的,它是离设计通带一定距离处又出现的通带,设计时要避免阻带内出现寄生通带。4 微带滤波器的设计本小节设计一个微带低通滤波器,滤波器的指标如下:通带截止频率:3GHz。通带增益:大于-5dB,主要由滤波器的S21参数确定。阻带增益:在4.5GHz以上小于-48dB,也主要由滤波器的S21参数确定。通带反射系数:小于-22dB,由滤波器的S11参数确定。在进行设计时,我们主要是以滤波器的S参数作为优化目标。S21(S12)是传输参数,滤波器通带、阻带的位置以及增益、衰减全都表现在S21(S12)随频率变化的曲线上。S11(S22)参数是输入、输出端口的反射系数,如果反射系数过大,就会导致反射损耗增大,影响系统的前后级匹配,使系统性能下降。了解了滤波器的设计原理以及设计指标后,下面开始设计微带低通滤波器。4.1建立工程新建工程,选择【File】→【New Project】,系统出现新建工程对话框。在name栏中输入工程名:microstrip_filter,并在Project Technology Files栏中选择ADS Standard:Length unit——millimet,默认单位为mm,。单击OK,完成新建工程,此时原理图设计窗口会自动打开。4.2原理图和电路参数设计工程文件创立完毕后,下面介绍微带低通滤波

ADS低通滤波器的设计与仿真

电磁场与微波技术 课程设计报告 课程题目:低通滤波器的设计与仿真姓名: 指导老师: 系别:电子信息与电气工程系专业:通信工程 班级: 学号: 完成时间:

低通滤波器的设计与仿真 摘要:微波滤波器是用来分离不同频率微波信号的一种器件。它的主要作用是抑制不需要的信号, 使其不能通过滤波器, 只让需要的信号通过。在微波电路系统中,滤波器的性能对电路的性能指标有很大的影响,因此如何设计出一个具有高性能的滤波器,对设计微波电路系统具有很重要的意义。微带电路具有体积小,重量轻、频带宽等诸多优点,近年来在微波电路系统应用广泛,其中用微带做滤波器是其主要应用之一。 关键词:ads;微带线;低通滤波器

一、设计思路 1、设计要求:截止频率:1.1GHz,通带内波纹小于0.2dB,在 1.21GHz 处具有不小于 25dB 的带外衰减。 2、方案选择 利用椭圆函数滤波器设计并仿真,经过优化后,结果调出来的波形能达到指标,但波形会形成带阻波形,只能实现在一定范围内低通。所以不选。 利用切比雪夫滤波器设计并仿真,经过优化调试后可用。 3、设计法案 首先用 LC 设计低通滤波器集总参数模型当频率工作在高频时,要用微带线代替 LC 元件。高阻抗微带线代替串联电感,低阻抗微带线代替并联电容。一般取 Zhigh=120Ω,Zlow=20Ω。在输入和输出加上 50Ω微带线。然后根据设计要求通过 ADS 自带的Linecalc 计算转换过来的微带线长和宽。在进行设计时,主要以滤波器的 S 参数作为优化目标进行优化仿真。 S21(S12) S(表示传输参数,滤波器的通带,阻带的位置以及衰减,起伏全部表现在 S21(S12)随频率变化的曲线上。S11(S22)参数是输入、输出端口的反射系数,由它可以换算输入输出的电压驻波比。如果反射系数过大,就会导致反射损耗过大,影响系统的后级匹配,使系统性能下降。 板材设置:H(基板厚度)=0.8mm,Er(基板相对介电常数)=2.2,Mur (磁导率)=1,Cond(金属电导率)=1E+50,Hu(封装高度)=1E+033mm,T (金属层厚度)=0.01mm,TanD (损耗角正切)=0。 二、仿真过程及电路原理图、版图、S 参数等 经过ADS软件的仿真和折中,以下就以相对比较好的方案为例介绍详细过程以及电路和版图仿真的情况。

(完整word版)微带线带通滤波器的ADS设计

应用ADS 设计微带线带通滤波器 1、微带带通微带线的基本知识 微波带通滤波器是应用广泛、结构类型繁多的微波滤波器,但适合微带结构的带通滤波器结构就不是那么多了,这是由于微带线本身的局限性,因为微带结构是个平面电路,中心导带必须制作在一个平面基片上,这样所有的具有串联短截线的滤波器都不能用微带结构来实现;其次在微带结构中短路端不易实现和精确控制,因而所有具有短路短截线和谐振器的滤波器也不太适合于微带结构。 微带线带通滤波器的电路结构的主要形式有5种: 1、电容间隙耦合滤波器带宽较窄,在微波低端上显得太长,不够紧凑,在2GHz以 上有辐射损耗。 2、平行耦合微带线带通滤波器 窄带滤波器,有5%到25%的相对带宽,能够精确设计,常为人们所乐用。但其在微波低端显得过长,结构不够紧凑;在频带较宽时耦合间隙较小,实现比较困难。 3、发夹线带通滤波器把耦合微带线谐振器折迭成发夹形式而成。这种滤波器由于容易激起表面波,性能不够理想,故常把它与耦合谐振器混合来用,以防止表面波的直接耦合。这种滤波器的精确设计较难。

4、1/4 波长短路短截线滤波器 5、半波长开路短截线滤波器 下面主要介绍平行耦合微带线带通滤波器的设计,这里只对其整个设计过程和方法进行简单的介绍。 2、平行耦合线微带带通滤波器平行耦合线微带带通滤波器是由几节半波长谐振器组合而成的,它不要求对地连接,结构简单,易于实现,是一种应用广泛的滤波器。整个电路可以印制在很薄的介质基片上(可以簿到1mm以下),故其横截面尺寸比波导、同轴线结构的小得多;其纵向尺寸虽和工作波长可以比拟,但采用高介电常数的介质基片,使线上的波长比自由空间小了几倍,同样可以减小;此外,整个微带电路元件共用接地板,只需由导体带条构成电路图形,结构大为紧凑,从而大大减小了体积和重量。 关于平行耦合线微带带通滤波器的设计方法,已有不少资料予以介绍。但是,在设计过程中发现,到目前为止所查阅到的各种文献,还没有一种能够做到准确设计。在经典的工程设计中,为避免繁杂的运算,一般只采用简化公式并查阅图表,这就造成较大的误差。而使用电子计算机进行辅助设计时,则可以力求数学模型精确,而不追求过分的简化。基于实际设计的需要,我对于平行耦合线微带

ADS滤波器设计

微带滤波器的设计(ADS ) https://www.360docs.net/doc/eb11045865.html, 原理 这次设计的滤波器主要是针对前面设计的天线而来的,即要实现最后的级联。所以有必 要阐述一下上次设计的天线的具体规格: 上次设计的天线是在 2.5GHz 附近工作,而我在这里设计的滤波器目的是针对移动通信设计,所要求带宽较窄,令带宽在50MHz 左右,符合天线能提供的范围。滤波器使用的基板参数还是εr= 9.8, h=1.27mm ,此时基板上的50ohm 阻抗传输线的宽大概为1.22mm 。 滤波器主要设计要求如下: 中心频率G0=2.5GHz 带宽=50MHz~70MHz (计算按50MHz ) 在2.55GHz 上衰减达到25dB 这里设计的滤波器为边缘耦合平行耦合线带通滤波器设计图如下: 计算主要参数 1、由低通到带通频率的变换 这里W 为相对带宽, 0 12 12122f f f f f f f W ?=+?==0.02 得到'1 ωω′=2,如果采用切比雪夫原型,查表得到此滤波器为n=4级。 纹波系数为0.01dB 的切比雪夫原型的元件数值分别为: g0=1;g1=0.7168;g2=1.2003;g3=1.3212;g4=0.6476;g5=1.1007;'1ω=1 并且为了简单起见,采用对称耦合的末段。 2、 ???????= 2121W πθ=1.5551=ο1.89; 1tan 2 1θτ==31.828; 计算各个G 参数如下: 7168 .011 1×=G =1.1811;1007.16476.015×=G =1.1844; 2003.17168.012×=G =1.0781;3212.12003.113×=G =0.7941;

ADS低通滤波器的设计与仿真

- - 电磁场与微波技术 课程设计报告 课程题目:低通滤波器的设计与仿真 姓名: 指导老师: 系别:电子信息与电气工程系 专业:通信工程 班级: 学号: 完成时间:

低通滤波器的设计与仿真 摘要:微波滤波器是用来分离不同频率微波信号的一种器件。它的主要作用是抑制不需要的信号, 使其不能通过滤波器, 只让需要的信号通过。在微波电路系统中,滤波器的性能对电路的性能指标有很大的影响,因此如何设计出一个具有高性能的滤波器,对设计微波电路系统具有很重要的意义。微带电路具有体积小,重量轻、频带宽等诸多优点,近年来在微波电路系统应用广泛,其中用微带做滤波器是其主要应用之一。 关键词:ads;微带线;低通滤波器

一、设计思路 1、设计要求:截止频率:1.1GHz,通带波纹小于0.2dB,在1.21GHz 处具有不小于25dB 的带外衰减。 2、方案选择 利用椭圆函数滤波器设计并仿真,经过优化后,结果调出来的波形能达到指标,但波形会形成带阻波形,只能实现在一定围低通。所以不选。 利用切比雪夫滤波器设计并仿真,经过优化调试后可用。 3、设计法案 首先用LC 设计低通滤波器集总参数模型当频率工作在高频时,要用微带线代替LC 元件。高阻抗微带线代替串联电感,低阻抗微带线代替并联电容。一般取Zhigh=120Ω,Zlow=20Ω。在输入和输出加上50Ω微带线。然后根据设计要求通过ADS 自带的Linecalc 计算转换过来的微带线长和宽。在进行设计时,主要以滤波器的S 参数作为优化目标进行优化仿真。S21(S12)S(表示传输参数,滤波器的通带,阻带的位置以及衰减,起伏全部表现在S21(S12)随频率变化的曲线上。S11(S22)参数是输入、输出端口的反射系数,由它可以换算输入输出的电压驻波比。如果反射系数过大,就会导致反射损耗过大,影响系统的后级匹配,使系统性能下降。 板材设置:H(基板厚度)=0.8mm,Er(基板相对介电常数)=2.2,Mur (磁导率)=1,Cond(金属电导率)=1E+50,Hu(封装高度)=1E+033mm,T (金属层厚度)=0.01mm,TanD(损耗角正切)=0。 二、仿真过程及电路原理图、版图、S 参数等 经过ADS软件的仿真和折中,以下就以相对比较好的方案为例介绍详细过程以及电路和版图仿真的情况。

教程:ADS微波滤波器设计

微带滤波器的设计(ADS ) 原理 这次设计的滤波器主要是针对前面设计的天线而来的,即要实现最后的级联。所以有必 要阐述一下上次设计的天线的具体规格: 上次设计的天线是在 2.5GHz 附近工作,而我在这里设计的滤波器目的是针对移动通信设计,所要求带宽较窄,令带宽在50MHz 左右,符合天线能提供的范围。滤波器使用的基板参数还是εr= 9.8, h=1.27mm ,此时基板上的50ohm 阻抗传输线的宽大概为1.22mm 。 滤波器主要设计要求如下: 中心频率G0=2.5GHz 带宽=50MHz~70MHz (计算按50MHz ) 在2.55GHz 上衰减达到25dB 这里设计的滤波器为边缘耦合平行耦合线带通滤波器设计图如下: 计算主要参数 1、由低通到带通频率的变换 这里W 为相对带宽, 0 12 12122f f f f f f f W ?=+?==0.02 得到'1 ωω′=2,如果采用切比雪夫原型,查表得到此滤波器为n=4级。 纹波系数为0.01dB 的切比雪夫原型的元件数值分别为: g0=1;g1=0.7168;g2=1.2003;g3=1.3212;g4=0.6476;g5=1.1007;'1ω=1 并且为了简单起见,采用对称耦合的末段。 2、 ???????= 2121W πθ=1.5551=ο1.89; 1tan 2 1θτ==31.828; 计算各个G 参数如下: 7168 .011 1×=G =1.1811;1007.16476.015×=G =1.1844; 2003.17168.012×=G =1.0781;3212.12003.113×=G =0.7941;

基于ADS的带阻滤波器设计

基于ADS的带阻滤波器设计

————————————————————————————————作者:————————————————————————————————日期: ?

电磁波与微波技术 课程设计 ----带阻滤波器的设计与仿真 课题:带阻滤波器的设计与仿真 ?指导老师: ???姓名: 学号:

目录 1.设计要求 (3) 2.微带短截线带阻滤波器的理论基础 (3) 2.1理查德变换 (4) 2.2科洛达规则 (6) 3.设计步骤.......................73.1ADS简介 (7) 3.2初步设计过程 (8) 3.3优化设计过程···················14 3.4对比结果·····················17 4.心得体会 (17) 5.参考文献 (18)

1.课程设计要求: 1.1 设计题目:带阻滤波器的设计与仿真。 1.2设计方式:分组课外利用ads软件进行设计。 1.3设计时间:第一周至第十七周。 1.4 带阻滤波器中心频率:6GHz;相对带宽:9%;带内波纹: <0.2dB。 1.5滤波器阻带衰减>25dB;在频率5.5GHz和6.5GH z处,衰减<3dB;输入输出阻抗:50Ω。 2.微带短截线带阻滤波器的理论基础 当频率不高时,滤波器主要是由集总元件电感和电容构成,但 当频率高于500Mz时,滤波器通常由分布参数元件构成,这是由于两个原因造成的,其一是频率高时电感和电容应选的元件值小,由于寄生参数的影响,如此小的电感和电容已经不能再使用集总参数元件;其二是此时工作波长与滤波器元件的物理尺寸相近,滤波器元件之间的距离不可忽视,需要考虑分布参数效应。我们这次设计采用短截线方法,将集总元件滤波器变换为分布参数滤波器,其中理查德变换用于将集总元件变换为传输段,科洛达规则可以将各滤波器元件分隔。 2.1 理查德变换

微带线带通滤波器的ADS设计

应用ADS设计微带线带通滤波器 1、微带带通微带线的基本知识 微波带通滤波器是应用广泛、结构类型繁多的微波滤波器,但适合微带结构的带通滤波器结构就不是那么多了,这是由于微带线本身的局限性,因为微带结构是个平面电路,中心导带必须制作在一个平面基片上,这样所有的具有串联短截线的滤波器都不能用微带结构来实现;其次在微带结构中短路端不易实现和精确控制,因而所有具有短路短截线和谐振器的滤波器也不太适合于微带结构。 微带线带通滤波器的电路结构的主要形式有5种: 1、电容间隙耦合滤波器 带宽较窄,在微波低端上显得太长,不够紧凑,在2GHz以上有辐射损耗。 2、平行耦合微带线带通滤波器 窄带滤波器,有5%到25%的相对带宽,能够精确设计,常为人们所乐用。但其在微波低端显得过长,结构不够紧凑;在频带较宽时耦合间隙较小,实现比较困难。 3、发夹线带通滤波器 把耦合微带线谐振器折迭成发夹形式而成。这种滤波器由于容易激起表面波,性能不够理想,故常把它与耦合谐振器混合来用,以防止表面波的直接耦合。这种滤波器的精确设计较难。

4、1/4波长短路短截线滤波器 5、半波长开路短截线滤波器 下面主要介绍平行耦合微带线带通滤波器的设计,这里只对其整个设计过程和方法进行简单的介绍。 2、平行耦合线微带带通滤波器 平行耦合线微带带通滤波器是由几节半波长谐振器组合而成的,它不要求对地连接,结构简单,易于实现,是一种应用广泛的滤波器。整个电路可以印制在很薄的介质基片上(可以簿到1mm以下),故其横截面尺寸比波导、同轴线结构的小得多;其纵向尺寸虽和工作波长可以比拟,但采用高介电常数的介质基片,使线上的波长比自由空间小了几倍,同样可以减小;此外,整个微带电路元件共用接地板,只需由导体带条构成电路图形,结构大为紧凑,从而大大减小了体积和重量。 关于平行耦合线微带带通滤波器的设计方法,已有不少资料予以介绍。但是,在设计过程中发现,到目前为止所查阅到的各种文献,还没有一种能够做到准确设计。在经典的工程设计中,为避免繁杂的运算,一般只采用简化公式并查阅图表,这就造成较大的误差。而使用电子计算机进行辅助设计时,则可以力求数学模型精确,而不追求过分的简化。基于实际设计的需要,我对于平行耦合线微带

(完整word版)微带线带通滤波器的ADS设计.doc

应用 ADS 设计微带线带通滤波器 1、微带带通微带线的基本知识 微波带通滤波器是应用广泛、结构类型繁多的微波滤波器,但适合微带结构的带通滤波器结构就不是那么多了,这是由于微带线本身的局限性,因为微带结构是个平面电路,中心导带必须制作在一个平面基片上,这样所有的具有串联短截线的滤波器都不能用微带结构来实现;其次在微带结构中短路端不易实现和精 确控制,因而所有具有短路短截线和谐振器的滤波器也不太适合于微带结构。 微带线带通滤波器的电路结构的主要形式有5种: 1、电容间隙耦合滤波器 带宽较窄,在微波低端上显得太长,不够紧凑,在2GHz以上有辐射损耗。 2、平行耦合微带线带通滤波器 窄带滤波器,有 5%到 25%的相对带宽,能够精确设计,常为人们所乐用。但其在微波低端显得过长,结构不够紧凑;在频带较宽时耦合间隙较小,实现比较困难。 3、发夹线带通滤波器 把耦合微带线谐振器折迭成发夹形式而成。这种滤波器由于容易激起表面 波,性能不够理想,故常把它与耦合谐振器混合来用,以防止表面波的直接耦合。这种滤波器的精确设计较难。

4、1/4 波长短路短截线滤波器 5、半波长开路短截线滤波器 下面主要介绍平行耦合微带线带通滤波器的设计,这里只对其整个设计过程 和方法进行简单的介绍。 2、平行耦合线微带带通滤波器 平行耦合线微带带通滤波器是由几节半波长谐振器组合而成的,它不要求对地连接,结构简单,易于实现,是一种应用广泛的滤波器。整个电路可以印制在很薄的介质基片上 ( 可以簿到 1mm以下 ) ,故其横截面尺寸比波导、同轴线结构的小得多;其纵向尺寸虽和工作波长可以比拟,但采用高介电常数的介质基片,使线上的波长比自由空间小了几倍,同样可以减小;此外,整个微带电路元件共用接地板,只需由导体带条构成电路图形,结构大为紧凑,从而大大减小了体积和重量。 关于平行耦合线微带带通滤波器的设计方法,已有不少资料予以介绍。但是,在设计过程中发现,到目前为止所查阅到的各种文献,还没有一种能够做到准确设计。在经典的工程设计中,为避免繁杂的运算,一般只采用简化公式并查阅图表,这就造成较大的误差。而使用电子计算机进行辅助设计时,则可以力求数学模型精确,而不追求过分的简化。基于实际设计的需要,我对于平行耦合线微带

ADS仿真:微带滤波器的设计

ADS仿真:微带滤波器的设计 微波滤波器是用来分离不同频率微波信号的一种器件。它的主要作用是抑制不需要的信号, 使其不能通过滤波器, 只让需要的信号通过。在微波电路系统中,滤波器的性能对电路的性能指标有很大的影响,因此如何设计出一个具有高性能的滤波器,对设计微波电路系统具有很重要的意义。微带电路具有体积小,重量轻、频带宽等诸多优点,近年来在微波电路系统应用广泛,其中用微带做滤波器是其主要应用之一,因此本节将重点研究如何设计并优化微带滤波器。 1 微带滤波器的原理 微带滤波器当中最基本的滤波器是微带低通滤波器,而其它类型的滤波器可以通过低通滤波器的原型转化过来。最大平坦滤波器和切比雪夫滤波器是两种常用的低通滤波器的原型。微带滤波器中最简单的滤波器就是用开路并联短截线或是短路串联短截线来代替集总元器件的电容或是电感来实现滤波的功能。这类滤波器的带宽较窄,虽然不能满足所有的应用场合,但是由于它设计简单,因此在某些地方还是值得应用的。 2 滤波器的分类 最普通的滤波器的分类方法通常可分为低通、高通、带通及带阻四种类型。图12.1给出了这四种滤波器的特性曲线。 按滤波器的频率响应来划分,常见的有巴特沃斯型、切比雪夫Ⅰ型、切比雪夫Ⅱ型及椭圆型等;按滤波器的构成元件来划分,则可分为有源型及无源型两类;按滤波器的制作方法和材料可分为波导滤波器、同轴线滤波器、带状线滤波器、微带滤波器。 3 微带滤波器的设计指标

微带滤波器的设计指标主要包括: 1绝对衰减(Absolute attenuation):阻带中最大衰减(dB)。 2带宽(Bandwidth):通带的3dB带宽(flow—fhigh)。 3中心频率:fc或f0。 4截止频率。下降沿3dB点频率。 5每倍频程衰减(dB/Octave):离开截止频率一个倍频程衰减(dB)。 6微分时延(differential delay):两特定频率点群时延之差以ns计。 7群时延(Group delay):任何离散信号经过滤波器的时延(ns)。 8插入损耗(insertion loss):当滤波器与设计要求的负载连接,通带中心衰减,dB 9带内波纹(passband ripple):在通带内幅度波动,以dB计。 10相移(phase shift):当信号经过滤波器引起的相移。 11品质因数Q(quality factor):中心频率与3dB带宽之比。 12反射损耗(Return loss) 13形状系数(shape factor):定义为。 14止带(stop band或reject band):对于低通、高通、带通滤波器,指衰减到指定点(如60dB点)的带宽。 工程应用中,一般要求我们重点考虑通带边界频率与通带衰减、阻带边界频率与阻带衰减、通带的输入电压驻波比、通带内相移与群时延、寄生通带。前两项是描述衰减特性的,是滤波器的主要技术指标,决定了滤波器的性能和种类(高通、低通、带通、带阻等);输入电压驻波比描述了滤波器的反射损耗的大小;群时延是指网络的相移随频率的变化率,定义为dU/df ,群时延为常数时,信号通过网络才不会产生相位失真;寄生通带是由于分布参数传输线的周期性频率特性引起的,它是离设计通带一定距离处又出现的通带,设计时要避免阻带内出现寄生通带。 4 微带滤波器的设计 本小节设计一个微带低通滤波器,滤波器的指标如下: 通带截止频率:3GHz。 通带增益:大于-5dB,主要由滤波器的S21参数确定。 阻带增益:在4.5GHz以上小于-48dB,也主要由滤波器的S21参数确定。 通带反射系数:小于-22dB,由滤波器的S11参数确定。 在进行设计时,我们主要是以滤波器的S参数作为优化目标。S21(S12)是传输参数,滤波器通带、阻带的位置以及增益、衰减全都表现在S21(S12)随频率变化

ADS低通滤波器的设计与仿真

. . .. 电磁场与微波技术 课程设计报告 课程题目:低通滤波器的设计与仿真 姓名: 指导老师: 系别:电子信息与电气工程系 专业:通信工程 班级: 学号: 完成时间:

低通滤波器的设计与仿真 摘要:微波滤波器是用来分离不同频率微波信号的一种器件。它的主要作用是抑制不需要的信号, 使其不能通过滤波器, 只让需要的信号通过。在微波电路系统中,滤波器的性能对电路的性能指标有很大的影响,因此如何设计出一个具有高性能的滤波器,对设计微波电路系统具有很重要的意义。微带电路具有体积小,重量轻、频带宽等诸多优点,近年来在微波电路系统应用广泛,其中用微带做滤波器是其主要应用之一。 关键词:ads;微带线;低通滤波器

一、设计思路 1、设计要求:截止频率:1.1GHz,通带波纹小于0.2dB,在1.21GHz 处具有不小于25dB 的带外衰减。 2、方案选择 利用椭圆函数滤波器设计并仿真,经过优化后,结果调出来的波形能达到指标,但波形会形成带阻波形,只能实现在一定围低通。所以不选。 利用切比雪夫滤波器设计并仿真,经过优化调试后可用。 3、设计法案 首先用LC 设计低通滤波器集总参数模型当频率工作在高频时,要用微带线代替LC 元件。高阻抗微带线代替串联电感,低阻抗微带线代替并联电容。一般取Zhigh=120Ω,Zlow=20Ω。在输入和输出加上50Ω微带线。然后根据设计要求通过ADS 自带的Linecalc 计算转换过来的微带线长和宽。在进行设计时,主要以滤波器的S 参数作为优化目标进行优化仿真。S21(S12)S(表示传输参数,滤波器的通带,阻带的位置以及衰减,起伏全部表现在S21(S12)随频率变化的曲线上。S11(S22)参数是输入、输出端口的反射系数,由它可以换算输入输出的电压驻波比。如果反射系数过大,就会导致反射损耗过大,影响系统的后级匹配,使系统性能下降。 板材设置:H(基板厚度)=0.8mm,Er(基板相对介电常数)=2.2,Mur (磁导率)=1,Cond(金属电导率)=1E+50,Hu(封装高度)=1E+033mm,T (金属层厚度)=0.01mm,TanD(损耗角正切)=0。

ADS平行耦合滤波器设计

基于ADS的平行耦合微带线带通滤波器的设计及优化 时间:2011-03-11 14:56:08 来源:维库作者: 摘要: 介绍一种借助ADS( Adv anced Des i gn Sy STem )软件进行设计和优化平行耦合微带线带通滤波器的方法,给出了清晰的设计步骤,最后结合设计方法利用ADS给出一个中心频率为2. 6 GHz,带宽为200MH z的微带带通滤波器的设计及优化实例和仿真结果,并进一步给出电路版图Momentum 仿真结果。仿真结果表明: 这种方法是可行的,满足设计的要求。 滤波器是用来分离不同频率信号的一种器件。它的主要作用是抑制不需要的信号,使其不能通过滤波器,只让需要的信号通过。在微波电路系统中,滤波器的性能对电路的性能指标有很大的影响,因此如何设计出一个具有高性能的滤波器,对设计微波电路系统具有很重要的意义。微带电路具有体积小,重量轻、频带宽等诸多优点,近年来在微波电路系统应用广泛,其中用微带做滤波器是其主要应用之一。平行耦合微带线带通滤波器在微波集成电路中是被广为应用的带通滤波器。 1基本原理 当两个无屏蔽的传输线紧靠一起时,由于传输线之间电磁场的相互作用,在传输线之间会有功率耦合,这种传输线称之为耦合传输线。根据传输线理论,每条单独的微带线都等价为小段串联电感和小段并联电容。每条微带线的特性阻抗为Z 0,相互耦合的部分长度为L,微带线的宽度为W,微带线之间的距离为S,偶模特性阻抗为Z e,奇模特性阻抗为Z0。单个微带线单元虽然具有滤波特性,但其不能提供陡峭的通带到阻带的过渡。 如果将多个单元级联,级联后的网络可以具有良好的滤波特性。 图15级耦合微带线带通滤波器 2 设计步骤 2. 1设计低通原型 根据带通滤波器的一系列参数通过频率变换和查表选择低通原型滤波器的归一化原型参量。 用ω1和ω2 表示带通滤波器的下边界和上边界,ω0表示中心频率。将带通滤波器变换为低通原型。 归一化带宽:

ADS2008巴特沃斯低通滤波器的设计

巴特沃斯低通滤波器设计 [摘要]:本论文主要介绍了仿真软件ADS的运用,然后根据滤波器设计的数学理论模型,运用仿真软件ADS进行低通滤波器的设计仿真,主要介绍了巴特沃斯低通滤波器的设计方法,并将集总参数转换为分布参数Richards变换,利用双口网络演变而来的单位元件矩阵,论述了传输线结构之间的相互变换规则,即Kuroda规则。以及微带线滤波器的设计,同时借助ADS软件对所涉及的低通滤波器进行了仿真和优化,最终得到比较理想的滤波器。 [关键字]:低通滤波器,巴特沃斯,微带滤波器,ADS.

目录 1 绪论...................................................................... 错误!未定义书签。 1.1巴特沃斯滤波器的概述 ................................................ 错误!未定义书签。 1.2课程设计的意义 ............................................................ 错误!未定义书签。 1.3课程设计的目的 ............................................................ 错误!未定义书签。 2 设计方案 (2) 2.1设计要求 (2) 2.2方案选择 (2) 2.3 Richards变换原理 (2) 2.4 Kuroda恒等式变换 (3) 3 滤波器的设计与仿真 (4) 3.1设计过程 (4) 3.1.1创建工程 (4) 3.1.2滤波器设计向导工具的使用 (4) 3.1.3集总参数滤波器转换为微带滤波器 (5) 3.1.4 kuroda等效后仿真 (8) 3.2原理图优化与仿真 (9) 3.3版图生成与仿真 .......................................................... 错误!未定义书签。0 4 总结 (123) 参考文献 (144)

基于ADS软件低通滤波器的仿真设计毕设开题报告

青岛理工大学 基于ADS软件低通滤波器的仿真设计报告 课题名称:基于ADS软件低通滤波器的仿真设计 学院(系):通信学院 年级专业:电子专业11级 学生姓名:陈金科 指导教师:聂廷远

一、综述本课题国内外研究动态,说明选题的依据和意义 微带滤波器是用来分离不同频率微波信号的一种器件。它的主要作用是抑制不需要的信号,使其不能通过滤波器,只让需要的信号通过。滤波,本质上是从被噪声畸变和污染了的信号中提取原始信号所携带的信息的过程,研究滤波器可以去除输入信号中不必要的信息,也可以消除噪声对输入信号的干扰,它在微波中级通讯、卫星通讯、雷达技术、电子对抗以及微波测量仪器中,都有广泛应用。 在1937年,由W.P Mason和R.A.Sykes发表的文章中首先研究了微波滤波器,他们是利用了ABCD参数推导出了大量有用滤波器相位和衰减函数。应用映像参数方法当时主要在美国各大实验室中,例如在Mn’实验室里,他们重点研究波导滤波器,而在Harvard实验室重点研究宽带低通、带通同轴及窄带可调谐滤波器。映像参数方法的工作大多在MIT实验室由Fano和Lawson完成,他们的著作对于微波滤波器有比较清晰的介绍,甚至在40年后还有应用价值。在随后的微波滤波器理论的研究和发展过程中,许多专家和学者做出了重大的贡献。Cohn在集总元件低通滤波器原型机的基础上第一个提出了方便实用的直接耦合空腔滤波器理论。上世纪60年代,G.L.Matthaei在其专著中对微波滤波器的经典设计方法做出了较全面、系统的介绍,但主要针对最平坦型和契比雪夫型,未涉及椭圆函数型和广义契比雪夫型。70年代初,A.E.Williams和Kurzrok提出用于分析交叉耦合的低阶滤波器。A.E.Atia,A.E.Williams和R.W.Newcomb对交叉耦合合展开研究,总结出传输零点对称分布时的偶模网络和相应的偶模矩阵的综合方法。Levy建立了集总和分布原型的元件公式间的联系,给出了推导原型元件的简单而准确的公式;Rhode建立起了线性相位滤波器理论。1999年Richard J.Cameron把广义契比雪夫滤波器的传输零点由实数扩展到复数,从而将传输零点和时延结合起来研究,提出用循环递归的方法构成广义契比雪夫的传输和反射函数多项式,根据导纳矩阵和部分分式展开求取留数,再利用施密特正交变换的方法综合耦合矩阵,其矩阵综合和消零计算量较大。如何将不可实现或不是最简的耦合元素消零成为研究热点,但目前国际上主要采用相似变换(矩阵旋转)尽可能多地消去非零元。这一系列贡

ADS仿真:微带滤波器的设计

ADS 仿真仿真::微带滤波器的设计微带滤波器的设计 微波滤波器是用来分离不同频率微波信号的一种器件。它的主要作用是抑制不需要的信号, 使其不能通过滤波器, 只让需要的信号通过。在微波电路系统中,滤波器的性能对电路的性能指标有很大的影响,因此如何设计出一个具有高性能的滤波器,对设计微波电路系统具有很重要的意义。微带电路具有体积小,重量轻、频带宽等诸多优点,近年来在微波电路系统应用广泛,其中用微带做滤波器是其主要应用之一,因此本节将重点研究如何设计并优化微带滤波器。 1 微带滤波器的原理微带滤波器的原理 微带滤波器当中最基本的滤波器是微带低通滤波器,而其它类型的滤波器可以通过低通滤波器的原型转化过来。最大平坦滤波器和切比雪夫滤波器是两种常用的低通滤波器的原型。微带滤波器中最简单的滤波器就是用开路并联短截线或是短路串联短截线来代替集总元器件的电容或是电感来实现滤波的功能。这类滤波器的带宽较窄,虽然不能满足所有的应用场合,但是由于它设计简单,因此在某些地方还是值得应用的。 2 滤波器的分类滤波器的分类 最普通的滤波器的分类方法通常可分为低通、高通、带通及带阻四种类型。图12.1给出了这四种滤波器的特性曲线。 按滤波器的频率响应来划分,常见的有巴特沃斯型、切比雪夫Ⅰ型、切比雪夫Ⅱ型及椭圆型等;按滤波器的构成元件来划分,则可分为有源型及无源型两类;按滤波器的制作方法和材料可分为波导滤波器、同轴线滤波器、带状线滤波器、微带滤波器。 3 3 微带滤波器的设计指标微带滤波器的设计指标 微带滤波器的设计指标主要包括: 绝对衰减(Absolute attenuation):阻带中最大衰减(dB)。 2带宽(Bandwidth):通带的3dB 带宽(flow—fhigh)。 3中心频率:fc 或f0。 4截止频率。下降沿3dB 点频率。 5每倍频程衰减(dB/Octave):离开截止频率一个倍频程衰减(dB)。 6微分时延(differential delay):两特定频率点群时延之差以ns 计。 7群时延(Group delay):任何离散信号经过滤波器的时延(ns)。 8插入损耗(insertion loss):当滤波器与设计要求的负载连接,通带中心衰减,dB 9带内波纹(passband ripple):在通带内幅度波动,以dB 计。 10相移(phase shift):当信号经过滤波器引起的相移。 11品质因数Q (q uality factor):中心频率与3dB 带宽之比。

相关文档
最新文档