电源模块POWER

电源模块POWER
电源模块POWER

电源模块POWER-22E原理描述

以参考电路为例描述芯片的工作原理:当外电源上电时,通过启动电阻R2,R3给电容C3充电,当电压到了ZD1的稳压值后,ZD1导通为INT提供电流,电路开启,完成电路的启动;电路开启后,电路进入正激工作状态,反馈绕组由ZD1与R8继续为INT提供电流,维持了电路的开启,由于主电路中电流Ic的增大,在限流电阻R9上的电压升高,并通过C4、R6传到Fb引脚,当电压大于0.7V时,主开关管关闭,电路进入反激工作状态,电路通过D6为C3充电,提供Vdd电压;并完成电路的振荡。

引脚功能

1 Vdd

芯片的电源引脚,应用时串接电阻限制电流,不同芯片的电流不同。

2 Gnd

芯片的接地。

3 Int

磁复位检测引脚。当电压大于0.7V时,主开关管开启。

4 Fb

电压控制引脚,当电压大于0.7V时主开关管关闭,用于电压、电流控制环路。

5 Emitter

内置开关管的发射极(Emitter)引脚,应用时串接一个限流电阻到地,以控制芯片的最大电流。

6 Test

测试引脚,应用时应空置。

7、8 Collector

内置开关管的集电极(Collector)引出,兼芯片的散热引出脚。

6.3、参考设计的计算

6.3.1 启动电阻器设计

设计交流输入电压为(80V~264V),由于VDC=1.4*V AC,则对应的直流电压为

(112V~370V),由表6可知POWER-22E的启动电流为0.15~1mA,则由欧姆定律R=U/I,最大电阻Rmax=112/0.15 =746K,最小电阻Rmin=370/1=370K;所以启动电阻取370K~746K 之间的值,取660K电阻,由于1/4W电阻的最高耐电压只有250V,故用两只330K电阻串接以提升耐压。

6.3.2、Vdd电源限流电阻R5的计算。

由表6可知,POWER-22E的Idd电流为50mA~200mA,Vdd电压我们设计在5V,由于主开关管的Vbe的存在(Vbe=1.5V),由R=U/I可得,Rmax=(5-1.5)/0.04=70R,Rmin=23R,参考设计取值为47R。

6.3.3、限流电阻R9的计算。

限流电阻R9在电路中限制了主开关管的电流,以保护主开关管的安全及防止变压器的磁芯饱合,也限制了输出的最大功率;由表6可知,POWER-22E的Ic最大电流为1.0A,留有30%的安全余量,则Ic取0.7A,又由于Fb的电压为0.7V,由R=U/I=0.7V/0.7A=1.0R,则POWER-22E的最小电阻为1.0R,为了更有效的保护电路,R9应根据实际应用的输出功率取值,可参考以下经验工式:I峰值电流=输出功率/效率/最小直流电压/0.225,

则:I峰值电流=7.5/0.7/112/0.225=0.425,R=U/I=0.7V/0.425A=1.65R,参考设计取1.5R。6.3.4、INT限流电阻的计算。

合理的INT电流对产品的效率及短路保护是有益的,最小的电流出现在最低电压,最大电流出现在最高电压,由表6可知,POWER-22E的Iint电流为2mA~20mA,设定变压器的匝比为15:1(初级匝数/反馈组匝数),则反馈绕组的正激电压为:输入直流电压/匝比;则最小电压为:112/15=7.5V,则INT的最大电阻为:7.5/2=3.75K,最小电阻为:370V/15/20=1.23K;参考设计取3K。

6.3.5、启动电压的设定。

启动电压由ZD1决定,要求大于5V电压,参考设计取5.1V稳压管。

6.3.6、其它。

电路中ZD2为次级电压环路失效保护,(可不需要)取高于Vdd的30%电压值。

电流控制环路C4在103~104之间取值,R6在220R~1K之间取值。

软启动电阻R7取值在8K~10K之间。

多路输出直流稳压电源模块设计方案(23)

多路输出直流稳压电源模块设计方案(23) (3)DC/DC 电路设计。 为了得到稳定可靠的±12 V 和+5 V 直流电压,在 DC/DC 电路中,分别选用高可靠的DC/DC模块实现低压直流输出。在低压侧,经过整流后得到23 V 直流电压,通过采用不同的集成稳压器实现+9 V 和+12 V 输出,在每个模块的输入输出端分别加100 μF/25 V 和47 μF/25 V 的电解电容进行滤波。在高压侧,产生三个±12 V 和+5 V 直流电压,并且要求能够通过外部接口输入高低电平控制这三个电压信号的输出。故选用VICOR的VI-J61-IZ、VI-J61-IY 和VI-J60-IX 电源模块实现±12 V 和+5 V 电压输出。这三个模块的电源输入端接300 V 直流电源,即可获得高精度的±12 V和+5 V 电压,要想对DC/DC 的进行输出控制,只需要控制三个电源模块中的Gate In 端即可,三个DC/DC 电路原理图如图2 所示。图2 中当控制端信号为高电平时,VT1、VT2 和VT3 工作,此时DC/DC 的2 端接地,DC/DC 均不工作,±12V 和+5V 电压不输出;当控制端信号为低电平时,VT1、VT2 和VT3 均不工作,此时DC/DC 均正常工作,±12 V和+5 V 电压输出。 图2 三个DC/DC 电路原理图。

(4)直流电压控制电路。 直流电压控制电路的原理图如图3 所示。该电路主要由过欠压保护电路和外部电压控制电路两部分组成。过欠压保护电路主要是指当输入电压过高(或过低)时产生超过(低于)300 V 一定比例的电压后,经过调理电路使电压比较器MAX973 电压发生跳变,从而改变控制信号的输出,致使DC/DC 的Gate In 端电压跳变,进而使DC/DC 停止工作。外部电压控制电路是指当外部控制信号输入端电平发生改 变时,控制信号的输出端的电压发生跳变,从而改变DC/DC 的Gate In端的电压,使DC/DC 停止(或开始)工作。 当外部控制信号输入为低电平时,与非门电路中触发器输出为高电平,此时计数器清零,经过计数触发电路和反相器反相后控制信号输出为高电平,从而进一步验证三个 DC-DC不工作,相应的DC/DC工作指示灯不亮。当外部控制信号输入为高电平时,与非门电路中触发器输出为低电平,此时计数器开始计数,经过计数触发电路和反相器反相后控制信号输出为低电平,从而进一步验证三个DC-DC正常工作,±12 V和+5 V电压输出,相应的DC/DC工作指示灯亮。 图3 直流电压控制电路原理图。

PWM控制电路的基本构成及工作原理

甲血罔屈十 锂代-* 卜 ARC 阴 I/O CAP 基于DSP 的三相SPWM 变频电源的设计 变频电源作为电源系统的重要组成部分,其性能的优劣直接关系到整个系统的安全和可靠性指标。现代变频电源以低功 耗、高效率、电路简洁等显著优点而备受青睐。变频电源的整个电路由交流 -直流-交流-滤波等部分构成,输出电压和电 流波形均为纯正的正弦波,且频率和幅度在一定范围内可调。 本文实现了基于TMS320F28335的变频电源数字控制系统的设计,通过有效利用TMS320F28335丰富的片上硬件资 源,实现了 SPWM 的不规则采样,并采用PID 算法使系统产生高品质的正弦波,具有运算速度快、精度高、灵活性好、 系统扩展能力强等优点。 系统总体介绍 根据结构不同,变频电源可分为直接变频电源与间接变频电源两大类。本文所研究的变频电源采用间接变频结构即 交-直-交变换过程。首先通过单相全桥整流电路完成交 -直变换,然后在DSP 控制下把直流电源转换成三相 SPWM 波形 供给后级滤波电路,形成标准的正弦波。变频系统控制器采用 TI 公司推出的业界首款浮点数字信号控制器 TMS320F28 335,它具有150MHz 高速处理能力,具备32位浮点处理单元,单指令周期 32位累加运算,可满足应用对于更快代码 开发与集成高级控制器的浮点处理器性能的要求。与上一代领先的数字信号处理器相比,最新的 F2833x 浮点控制器不 仅可将性能平均提升50%,还具有精度更高、简化软件开发、兼容定点 C28x TM 控制器软件的特点。系统总体框图如 图1所示。 图1系统总体框图 (1)整流滤波模块:对电网输入的交流电进行整流滤波,为变换器提供波纹较小的直流电压。 (2)三相桥式逆变器模块:把直流电压变换成交流电。其中功率级采用智能型 IPM 功率模块,具有电路简单、可 靠性高等特点。 (3)LC 滤波模块:滤除干扰和无用信号,使输出信号为标准正弦波。 (4) 控制电路模块:检测输出电压、电流信号后,按照一定的控制算法和控制策略产生 SPWM 控制信号,去控制 IPM 开关管的通断从而保持输出电压稳定,同时通过 SPI 接口完成对输入电压信号、电流信号的程控调理。捕获单元完 成对输出信号的测频。 (5) 电压、电流检测模块:根据要求,需要实时检测线电压及相电流的变化,所以需要三路电压检测和三路电流 检测电路。所有的检测信号都经过电压跟随器隔离后由 TMS320F28335的A/D 通道输入。 电柠朗 初电厝

LED灯驱动电源的技术方案和使用模块

LED灯驱动电源的技术方案和使用模块 大功率LED灯驱动电源的技术方案和功能模块大功率发光二极管用于一般照明是本世纪的新课题,其节能、安全、长寿命的综合优势将引发下一轮照明产业的革命。生产和生活中的原始电源有各种形式,但无论那种电源,一般都不能直接给发光二极管供电。因此,要用发光二极管做照明光源就要解决电源变换的问题。大功率发光二极管实际上是一个电流驱动的低电压单向导电器件,给发光二极管供电的电源变换器的设计必须要注意发光二极管以下五个特点: 1、发光二极管是单向导电器件。由于这个特点,就要用直流电流或者单向脉冲电流给发光二极管供电。 2、发光管是一个具有P/N结结构的半导体器件,具有势垒电势,这就形成了导通门限电压,加在发光二极管上的电压值超过这个门限电压二极管才会充分到通。大功率发光二极管的门限电压一般在2.5V以上,正常工作时的管压降3―4V。 3、发光二极管的电流/电压特性是非线性的。流过发光二极管的电流在数值上等于供电电源的电动势减去发光二极管的势垒电势再除以回路的总电阻(电源内阻、引线电阻、发光管体电阻之和)。因此,流过发光二极管的电流和加在发光管两端的电压不成正比。 4、发光二极管的P/N结是负的温度系数温度升高发光二极管的势垒电势降低。由于这个特点,所以发光二极管不能直接用电压源供电,必须采取限流措施,否则随着管子工作时温度的升高电流会越来越大以至损坏。 5、流过发光管的电流和发光管的光通量的比值也是非线性的。发光二极管的光通量随着流过发光管的增加而增加,但却不成正比,越到后来光通量增加得越少。因此,应该使发光管在一个发光效率比较高的电流值下工作。另外,发光二极管也和其他光源一样,所能承受的电功率是有限的。如果加在发光二极管上的电功率超过一定数值,发光管可能损坏。有于生产工艺和材料特性方面的差异,同样型号的发光管的势垒电势以及发光管的内阻也不完全一样,这就导致发光管工作时的管压降不一致,再加上发光管势垒电势具有负的温度系数,因此,发光管不能直接并联使用。由于上述原因,用发光管作照明必须有合理的驱动。用原始电源给发光二极管供电有4种情况:1、低电压驱动。2、过渡电压驱动。3、高电压驱动。4、市电驱动。不同的情况在电源变换器的技术实现上有不同的方案。下面简要的介绍一下这几种情况下的电源驱动方法及其应用产品。 1、低电压驱动发光二极管低电压驱动就是指用低于发光二极管正向导通压降的电压驱动发光二极管,如一节普通干电池或者镍铬/镍氢电池,其正常供电电压在0.8----1.65V之间。低电压驱动发光二极管需要把电压升高到足以使发光二极管导通的电压值。对于发光二极管这样的低功耗照明器件这是一种常见的使用情况,如发光二极管手电,发光二极管应急灯,节能台灯等。由于受单节电池容量的限制,一般不需要很大功率,但要求有最低的成本和比较高的变换效率,考虑有可能配合一节5号电池工作,还要有最小的体积。其最佳技术方案是泵式升压变换器。 LED-1W1P是一种采用泵式升压方案的脉冲输出LED驱动模块,具有最简洁的电路结构,最低的生产成本,最小的体积,最高的变换效率,外加一个10 K的电位器就可以方便的0―100%连续脉宽调光。正常工作电压0.8----1.8V,起动电压0.6伏,完全熄灭电压低于0.35伏。最大输出功率1瓦。可以用来驱动一个350mA的1瓦大功率发光管或者并联驱动18个20mA 的小功率发光管。该模块非精密控制器件,电池电压降低输出功率会减小。该模块有5个引出脚,电源正极,电源负极,输出脚,还有两个调光控制脚,发光二极管正极接输出脚,负极接电源负极,控制极之间接一个10K电位器用于调光。如果不需要调光,把两个控制脚直接相连即可。模块为圆形结

电源设计模块芯片资料

7805稳压电源电路图 7805管脚图 7805典型应用电路图:

78XX系列集成稳压器的典型应用电路如下图所示,这是一个输出正5V直流电压的稳压电源电路。IC采用集成稳压器7805,C1、C2分别为输入端和输出端滤波电容,RL为负载电阻。当输出电较大时,7805 应配上散热板。 下图为提高输出电压的应用电路。稳压二极管VD1串接在78XX稳压器2脚与地之间,可使输出电压Uo 得到一定的提高,输出电压Uo为78XX稳压器输出电压与稳压二极管VC1稳压值之和。VD2是输出保护

二极管,一旦输出电压低于VD1稳压值时,VD2导通,将输出电流旁路,保护7800稳压器输出级不被损坏。 下图为输出电压可在一定范围内调节的应用电路。由于R1、RP电阻网络的作用,使得输出电压被提高,提高的幅度取决于RP与R1的比值。调节电位器RP,即可一定范围内调节输出电压。当RP=0时,输出电压Uo等于78XX稳压器输出电压;当RP逐步增大时,Uo也随之逐步提高。 下图为扩大输出电流的应用电路。VT2为外接扩流率管,VT1为推动管,二者为达林顿连接。R1为偏置电阻。该电路最大输出电流取决于VT2的参数。 7905概述

下图为提高输入电压的应用电路。78XX稳压器的最大输入电压为35V(7824为40V),当输入电压高于此值时,可采用下图所示的电路。VT、R1和VD组成一个预稳压电路,使得加在7800稳压器输入端的电压恒定在VD的稳压值上(忽略VT的b-e结压降)。Ui端的最大输入电压仅取决于VT的耐压。 集成稳压器还可以用作恒流源。下图为78XX稳压器构成的恒流源电路,其恒定电流Io等于78XX稳压器输出电压与R1的比值。

开关电源各模块原理实图讲解

开关电源原理 一、开关电源的电路组成: 开关电源的主要电路是由输入电磁干扰滤波器(EMI)、整流滤波电路、功率变换电路、PWM F3、FDG1组成的电路进行保护。当加在压敏电阻两端的电压超过其工作电压时,其阻值 降低,使高压能量消耗在压敏电阻上,若电流过大,F1、F2、F3会烧毁保护后级电路。 ②输入滤波电路:C1、L1、C2、C3组成的双π型滤波网络主要是对输入电源的电磁噪声及 杂波信号进行抑制,防止对电源干扰,同时也防止电源本身产生的高频杂波对电网干扰。 当电源开启瞬间,要对C5充电,由于瞬间电流大,加RT1(热敏电阻)就能有效的防止浪 涌电流。因瞬时能量全消耗在RT1电阻上,一定时间后温度升高后RT1阻值减小(RT1是 负温系数元件),这时它消耗的能量非常小,后级电路可正常工作。 ③整流滤波电路:交流电压经BRG1整流后,经C5滤波后得到较为纯净的直流电压。若C5 容量变小,输出的交流纹波将增大。

时Q2导通。如果C8漏电或后级电路短路现象,在起机的瞬间电流在RT1上产生的压降增 大,Q1导通使Q2没有栅极电压不导通,RT1将会在很短的时间烧毁,以保护后级电路。 三、功率变换电路: 1、MOS管的工作原理:目前应用最广泛的绝缘栅场效应管是MOSFET(MOS管),是利用半导 体表面的电声效应进行工作的。也称为表面场效应器件。由于它的栅极处于不导电状态,所以输入电阻可以大大提高,最高可达105欧姆,MOS管是利用栅源电压的大小,来改变半导体表面感生电荷的多少,从而控制漏极电流的大小。 2、常见的原理图: 3、工作原理: R4、C3、R5、R6、C4、D1、D2组成缓冲器,和开关MOS管并接,使开关管电压应力减少,EMI减少,不发生二次击穿。在开关管Q1关断时,变压器的原边线圈易产生尖峰电压和尖峰电流,这些元件组合一起,能很好地吸收尖峰电压和电流。从R3测得的电流峰值信号参与当前工作周波的占空比控制,因此是当前工作周波的电流限制。当R5上的电压达到1V时,UC3842停止工作,开关管Q1立即关断。 R1和Q1中的结电容C GS、C GD一起组成RC网络,电容的充放电直接影响着开关管的开关速度。R1过小,易引起振荡,电磁干扰也会很大;R1过大,会降低开关管的开关速度。Z1通常将MOS管的GS电压限制在18V以下,从而保护了MOS管。 Q1的栅极受控电压为锯形波,当其占空比越大时,Q1导通时间越长,变压器所储存的能量

UPS供电系统方案说明剖析

转发 UPS供电系统方案 一.概述 1.1项目概况 为保证机房内各类系统的正常运行,必须为其提供安全、稳定、可靠的工作环境。因此,安全、实用、先进和美观是机房设计的总体要求。新建机房最好能满足未来5至10年的发展需要。 二、机房建设总体方案 2.1 系统建设目的 在机房建设中,要把安全性、可靠性、合理性和规范化放在首要位臵,同时兼顾美观、舒适和人性化的特点。 机房建设工程在充分考虑计算机、网络通讯、空调、UPS等设备的安全性、可靠性、易安装维护。 三、机房建设方案选择 模块化、热插拔结构的UPS完全按照IT设备的思路和结构设计,功率模块冗余并联输出,控制部分采用冗余的两套热插拔控制模块、两套逻辑低压电源模块冗余设计,可用性高。另外由于模块化热插拔结构可以非常方便的在线增减各种模块,提高输出功率或维修,因此在可用性、可维护性、扩容性方面具有传统1+1并联不可比拟的优点。

3.1 UPS 、配电的选择 根据设备测算以及未来发展的要求,我们选用APC公司2006年推出的新型Symmetra PX 10KVA 系列电源,每个功率模块的功率为16KVA /16KW。根据要求,功率定为10KW。由于用户的真实负载Symmetra可能为10KW, 四、方案特点: UPS主机为模块化、热插拔结构、模块冗余输出。 用性高。控制模块、控制低压电源模块均为两块冗余配备,功率模块冗余输出,实际形成1+1冗余。 可维护性高。全模块化热插拔设计,包括功率模块、控制模块、控制低压电源模块、通讯模块、显示模块、静态旁路模块、电池监控模块、外部维修旁路设计,均使得该系统维修时间缩短,维修难度降低。 适应性好。该产品输入参数为功率因数0.99,输入谐波<5%,输出功率32KVA/32KW N+1,实际功率大,满足新型IT负载和发电机的要求。其他产品只能输出32KVA/26KW 可扩容性好。如果今后负载增加,可以再插入功率模块,形成144KW N+1冗余。 可管理性好。该产品标配多种通讯和管理卡,232,IP45,继电器接口,EPO,功能强大。 柜体为黑色,19英寸机架式外观。与服务器机柜外观一致,可直接放在机房里面,和负载机柜并排安放。减少中间环节,提高系统可用性。降低其他配套系统的投资,缩短安装施工时间。 采用外部维修旁路开关,提供真正意义上的不间断供电。

电源模块设计分析

电源模块设计分析 电源模块是可以直接贴装在印刷电路板上的电源供应器(参看图1),其特点是可为专用集成电路(ASIC)、数字信号处理器(DSP)、微处理器、存储器、现场可编程门阵列(FP GA) 及其他数字或模拟负载提供供电。一般来说,这类模块称为负载点(POL) 电源供应系统或使用点电源供应系统(PUPS)。由于模块式结构的优点甚多,因此高性能电信、网络联系及数据通信等系统都广泛采用各种模块。虽然采用模块有很多优点,但工程师设计电源模块以至大部分板上直流/直流转换器时,往往忽略可靠性及测量方面的问题。本文将深入探讨这些问题,并分别提出相关的解决方案。 图1,电源供应器 采用电源模块的优点 目前不同的供应商在市场上推出多种不同的电源模块,而不同产品的输入电压、输出功率、功能及拓扑结构等都各不相同。采用电源模块可以节省开发时间,使产品可以更快推出市场,因此电源模块比集成式的解决方案优胜。电源模块还有以下多个优点: ● 每一模块可以分别加以严格测试,以确保其高度可靠,其中包括通电测试,以便剔除不合规格的产品。相较之下,集成式的解决方案便较难测试,因为整个供电系统与电路上的其他功能系统紧密联系一起。 ● 不同的供应商可以按照现有的技术标准设计同一大小的模块,为设计电源供应器的工程师提供多种不同的选择。 ● 每一模块的设计及测试都按照标准性能的规定进行,有助减少采用新技术所承受的风险。 ● 若采用集成式的解决方案,一旦电源供应系统出现问题,便需要将整块主机板更换;若采用模块式的设计,只要将问题模块更换便可,这样有助节省成本及开发时间。

容易被忽略的电源模块设计问题 虽然采用模块式的设计有以上的多个优点,但模块式设计以至板上直流/直流转换器设计也有本身的问题,很多人对这些问题认识不足,或不给予足够的重视。以下是其中的部分问题: ● 输出噪音的测量; ● 磁力系统的设计; ● 同步降压转换器的击穿现象; ● 印刷电路板的可靠性。 这些问题会将在下文中一一加以讨论,同时还会介绍多种可解决这些问题的简单技术。 输出噪音的测量技术 所有采用开关模式的电源供应器都会输出噪音。开关频率越高,便越需要采用正确的测量技术,以确保所量度的数据准确可靠。量度输出噪音及其他重要数据时,可以采用图2 所示的Tektronix 探针探头(一般称为冷喷嘴探头),以确保测量数字准确可靠,而且符合预测。这种测量技术也确保接地环路可减至最小。 图2,测量输出噪音数字 进行测量时我们也要将测量仪表可能会出现传播延迟这个因素计算在内。大部分电流探头的传播延迟都大于电压探头。因此必须同时显示电压及电流波形的测量便无法确保测量数字的准确度,除非利用人手将不同的延迟加以均衡。 电流探头也会将电感输入电路之内。典型的电流探头会输入600nH 的电感。对于高频的电路设计来说,由于电路可承受的电感不能超过1mH,因此,经由探头输入的电感会影响di/dt 电流测量的准确性,甚至令测量数字出现很大的误差。若电感器已饱和,则可采用

开关电源入门必读:开关电源工作原理超详细解析

开关电源入门必读:开关电源工作原理超详细解析 第1页:前言:PC电源知多少 个人PC所采用的电源都是基于一种名为“开关模式”的技术,所以我们经常会将个人PC电源称之为——开关电源(Sw itching Mode P ow er Supplies,简称SMPS),它还有一个绰号——DC-DC转化器。本次文章我们将会为您解读开关电源的工作模式和原理、开关电源内部的元器件的介绍以及这些元器件的功能。 ●线性电源知多少 目前主要包括两种电源类型:线性电源(linear)和开关电源(sw itching)。线性电源的工作原理是首先将127 V或者220V市电通过变压器转为低压电,比如说12V,而且经过转换后的低压依然是AC交流电;然后再通过一系列的二极管进行矫正和整流,并将低压AC交流电转化为脉动电压(配图1和2中的“3”);下一步需要对脉动电压进行滤波,通过电容完成,然后将经过滤波后的低压交流电转换成DC直流电(配图1和2中的“4”);此时得到的低压直流电依然不够纯净,会有一定的波动(这种电压波动就是我们常说的纹波),所以还需要稳压二极管或者电压整流电路进行矫正。最后,我们就可以得到纯净的低压DC直流电输出了(配图1和2中的“5”) 配图1:标准的线性电源设计图

配图2:线性电源的波形 尽管说线性电源非常适合为低功耗设备供电,比如说无绳电话、PlayStation/W ii/Xbox等游戏主机等等,但是对于高功耗设备而言,线性电源将会力不从心。 对于线性电源而言,其内部电容以及变压器的大小和AC市电的频率成反比:也即说如果输入市电的频率越低时,线性电源就需要越大的电容和变压器,反之亦然。由于当前一直采用的是60Hz(有些国家是50Hz)频率的AC市电,这是一个相对较低的频率,所以其变压器以及电容的个头往往都相对比较大。此外,AC市电的浪涌越大,线性电源的变压器的个头就越大。 由此可见,对于个人PC领域而言,制造一台线性电源将会是一件疯狂的举动,因为它的体积将会非常大、重量也会非常的重。所以说个人PC用户并不适合用线性电源。 ●开关电源知多少 开关电源可以通过高频开关模式很好的解决这一问题。对于高频开关电源而言,AC输入电压可以在进入变压器之前升压(升压前一般是50-60KHz)。随着输入电压的升高,变压器以及电容等元器件的个头就不用像线性电源那么的大。这种高频开关电源正是我们的个人PC以及像VCR录像机这样的设备所需要的。需要说明的是,我们经常所说的“开关电源”其实是“高频开关电源”的缩写形式,和电源本身的关闭和开启式没有任何关系的。 事实上,终端用户的PC的电源采用的是一种更为优化的方案:闭回路系统(closed loop system)——负责控制开关管的电路,从电源的输出获得反馈信号,然后根据PC的功耗来增加或者降低某一周期内的电压的频率以便能够适应电源的变压器(这个方法称作PW M,Pulse W idth Modulation,脉冲宽度调制)。所以说,开关电源可以根据与之相连的耗电设备的功耗的大小来自我调整,从而可以让变压器以及其他的元器件带走更少量的能量,而且降低发热量。 反观线性电源,它的设计理念就是功率至上,即便负载电路并不需要很大电流。这样做的后果就是所有元件即便非必要的时候也工作在满负荷下,结果产生高很多的热量。 第2页:看图说话:图解开关电源 下图3和4描述的是开关电源的PW M反馈机制。图3描述的是没有PFC(P ow er Factor Correction,功率因素校正)电路的廉价电源,图4描述的是采用主动式PFC设计的中高端电源。 图3:没有PFC电路的电源 图4:有PFC电路的电源 通过图3和图4的对比我们可以看出两者的不同之处:一个具备主动式PFC电路而另一个不具备,前者没有110/220V转换器,而且也没有电压倍压电路。下文我们的重点将会是主动式PFC电源的讲解。

鼎汉综合智能电源屏(系统设计方案及说明)

系统设计方案及说明 一、设计指导思想及意图 北京鼎汉技术有限公司(原北方华为)依托艾默生网络能源有限公司(原华为电气)在电力电子技术、智能监控技术上的强大技术优势,成功研制的PZ系列铁路信号智能电源系统于2001年6月通过铁道部部级鉴定,目前已在全路各大铁路局、城市轨道交通等领域得到广泛应用,累计销售1200余套,其中城市轨道交通项目累计销售190余套,产品的技术先进性、质量稳定性得到全路的普遍认可。在城市轨道交通项目中,相继为上海地铁五号线、一号线、二号线、八号线及七号线停产场项目;为广州地铁一、二、三、 四、五号线项目;北京地铁四、十号线;南京地铁一号线;深圳地铁项目等提供信号电 源供应,相继配合的信号主设备供应商包括:阿尔卡特、西门子、USS、阿尔斯通等。 本次投标的综合智能电源屏是具有智能监控、高可靠、高安全、高效率、少维修、操作方便的铁路信号电源设备,主要功能是向上海地铁6号线的正线、控制中心车辆段、及试车线的所有的信号系统设备(含信号机、电动转辙机、DCS轨旁设备、计轴设备、设备室内的区域控制器、DCS设备、继电器、联锁设备等)提供稳定可靠的交、直流电源。 二、系统遵循的主要技术指标及规范 我公司提供的综合智能电源屏系统遵循的主要技术指标及规范如下: ●GB 191 包装储运图示标志 ●GB 2423.1 电工电子产品基本环境基本试验规程试验A:低温试验方法 ●GB 2423.2 电工电子产品基本环境基本试验规程试验B:高温试验方法 ●GB 2423.4 电工电子产品基本环境基本试验规程试验Db:交变湿热试验方法 ●GB/T 16435.1 远动设备及系统接口 ●GB/T13729 运动终端通用技术条件 ●JJG01 电测量变送器 ●GB 2828 逐批检查技术抽样程序及抽样表 ●GB 2829 周期检查技术抽样程序及抽样表 ●TB 1424 通信信号产品的温升 ●TB 1433 铁路信号产品正常工作环境条件 ●TB 1447 信号产品的绝缘电阻

48V50A开关电源整流模块主电路设计

48V/50A开关电源整流模块主电路设计 高频开关电源系统具有体积小,重量轻,高效节能,输出纹波小,输出杂音电压小和动态响应性能好等很多优点,现已开始逐步地取代整流式电源而成为现代通讯设备的新型基础电源系统。随着电子技术,电力电子技术,自动控制技术和计算机控制技术的发展,高频开关电源系统的性能也越来越好。通信用开关电源系统作为开关式稳压电源的一种形式,它的设计内容和设计方法都具有自己的特殊性。 要设计一套通信用开关电源系统,首先要明白对它的全面要求,然后再设计系统的各个部分。高频开关电源主回路和控制回路所用的电路形式,元器件,控制方式都发展很快。它们的设计具有特殊的内容和方法。 1设计要求和具体电路设计 通信基础开关电源系统的关键部分是开关电源整流模块。整流模块的规格很多,结合在工 作中遇到的实际情况,提出该模块设计的硬指标如下: 1) 电网允许的电压波动范围 单相交流输入,有效值波动范围:220 V±20%,即176~264 V;频率:45~65 Hz。 2) 直流输出电压,电流 输出电压:标称-48V,调节范围:浮充,43~56?5V;均充,45~58V。 输出电流:额定值:50A。 3) 保护和告警性能 ①当输入电压低到170 VAC或高到270 VAC,或散热器温度高到75 ℃时,自动关机。 ②当模块直流输出电压高到60 V,或输出电流高到58~60 A时,自动关机。 ③当输出电流高到53~55 A时,自动限流,负载继续加大时,调低输出电压。

4) 效率和功率因数 模块的效率不低于88%,功率因数不低于0.99。 5) 其他指标 模块的其他性能指标都要满足“YD/T731”和“入网检验实施细则”等行业标准。 由于模块的输出功率不大,可采用如下的基本方案来设计主电路: 1) 单相交流输入,采用高频有源功率因数校正技术,以提高功率因数; 2) 采用双正激变换电路拓扑形式,工作可靠性高; 3) 主开关管采用 V MOSFET,逆变开关频率取为50 kHz; 4) 采用复合隔离的逆变压器,一只变压器双端工作; 5) 采用倍流整流电路,便于绕制变压器。 依照上述方案,即可设计出主电路的基本形式如图1。 图1 48V/50A整流模块DC/DC主电路基本形式 以下即可按照模块设计的要求来确定主电路中各元器件的基本参数。 1) 输出整流管的选择 输出整流二极管的工作波形如图2所示。

电力用开关电源模块(智能型)TH250D1020ZZ080217

TH250D10/20ZZ电力实验电源 技 术 说 明 书 石家庄通合电子有限公司 目录 第一章概述-------------------------------------------------------------------------- 2 一、前言-------------------------------------------------------------------------- 2 二、系统性能特点----------------------------------------------------------------- 2 三、模块主要特点----------------------------------------------------------------- 2 四、模块主要功能----------------------------------------------------------------- 3 五、型号命名--------------------------------------------------------------------- 4 六、技术指标--------------------------------------------------------------------- 5 第二章使用环境--------------------------------------------------------------------7 第三章模块构成----------------------------------------------------------------------- 7

电源滤波模块方案设计

电源滤波电路 公共模块说明 V1.0版 2011-10-31 1.功能介绍: 随着社会的发展,电的应用越来越深入人们的日常生活,而对电源的要求也越来越多。在对电源要求高的场合,需要输入信号不能被外界干扰,或者将干扰消除及抑制,所以就产生了如电源滤波器等相应的EMC电子电路模块。电源滤波器模块不仅需要有保护电路不受外界干扰或抑制干扰,还需要防止将自身产生的干扰输入到外界。此电路模块主要的构成部件就是共模差模电感和电容,应用这些简单的电子器件完成一些较为复杂的工作,电路中的电感我们主要应用共模电感LN122-2和差模电感L112-2,而电路中其他的电子器件如电容电阻在具体的环境中所需要的规格在实际中可以做出相应的调整。 由多个电感电容等组成的电路主要有如下功能:首先能够将电源的正负极正确的引入,以免当电源正负极接反时给电路带来不必要的损坏。其次能够很好的完成输入电源防浪涌,尤其应该具有较好的避雷作用。最后也是最主要的是通过电子器件的各种接法完成对输入电源滤波的作用(主要是消除和抑制外部及本身的共模干扰和差模干扰)。 本电源滤波电路能够很好的运用于各种电源接入设备,在。。。 2.典型电路 3.电路工作原理 3.1 防浪涌

7R1/7V2、7R3/7V3、7R2/7V4:每组主要由一压敏电阻和放电二极管组成,属于限压型浪涌保护电路。 7R1/7V2串联a、b两端分别接在电路电源的正负极,主要对电源刚开通的那一瞬息产生的强力脉冲有抑制作用。 7R3/7V3、7R2/7V4a、b分别接电源正负极,另一端接地与大地形成回路,主要避免外界浪涌对电路的影响。 3.2 电源正负极 7V1主要由四个二极管相互串联组成1、2分别接输入电源的正负极,“+”、“-”分别代表了输出的正负极。当输入端不确定正负极时,假如1端输入正极、2端输入负极时,1端正极遇b通过、遇a截止,正极从“+”输出;2端负极遇c截止、遇d通过,负极从“-”输出。假如1端输入负极、2端输入负极时,1端负极遇b截止、遇a通过,负极从“-”输出;2端正极遇c通过、遇d截止,正极从“+”通过。这样就用最简单的电路完成了电源无论正接反接都能正确完成电源的输入。 3.3 干扰电容

开关电源各模块原理实图讲解

开关电源原理 一、 开关电源的电路组成: PWM ① 防雷电路:当有雷击,产生高压经电网导入电源时,由MOV1、MOV2、MOV3:F1、F2、F3、FDG1组成的电路进行保护。当加在压敏电阻两端的电压超过其工作电压时,其阻值降低,使高压能量消耗在压敏电阻上,若电流过大,F1、F2、F3会烧毁保护后级电路。 ② 输入滤波电路:C1、L1、C2、C3组成的双π型滤波网络主要是对输入电源的电磁噪声及

杂波信号进行抑制,防止对电源干扰,同时也防止电源本身产生的高频杂波对电网干扰。 当电源开启瞬间,要对C5充电,由于瞬间电流大,加RT1(热敏电阻)就能有效的防止浪 涌电流。因瞬时能量全消耗在RT1电阻上,一定时间后温度升高后RT1阻值减小(RT1是 负温系数元件),这时它消耗的能量非常小,后级电路可正常工作。 ③整流滤波电路:交流电压经BRG1整流后,经C5滤波后得到较为纯净的直流电压。若C5 容量变小,输出的交流纹波将增大。 为安规电容,L2、L3为差模电感。 ②R1、R2、R3、Z1、C6、Q1、Z2、R4、R5、Q2、RT1、C7组成抗浪涌电路。在起机的瞬间, 由于C6的存在Q2不导通,电流经RT1构成回路。当C6上的电压充至Z1的稳压值时Q2 导通。如果C8漏电或后级电路短路现象,在起机的瞬间电流在RT1上产生的压降增大, Q1导通使Q2没有栅极电压不导通,RT1将会在很短的时间烧毁,以保护后级电路。 三、功率变换电路: 1、MOS管的工作原理:目前应用最广泛的绝缘栅场效应管是MOSFET(MOS管),是利用半导体 表面的电声效应进行工作的。也称为表面场效应器件。由于它的栅极处于不导电状态,所以输 5

搞定DC-DC电源转换方案设计,必看金律十一条

搞定DC/DC电源转换方案设计,必看金律十一条 来源:EEChina 作者:songzhige [导读]搞嵌入式的工程师们往往把单片机、ARM、DSP、FPGA搞的得心应手,而一旦进行系统设计,到了给电源系统供电,虽然也能让其精心设计的程序运行起来,但对于新手来说,有时可能效率低下,往往还有供电电流不足或过大引起这样那样的问题,本文十大金律轻松搞定DCDC电源转换电路设计。 关键词:DC/DC 搞嵌入式的工程师们往往把单片机、ARM、DSP、FPGA搞的得心应手,而一旦进行系统设计,到了给电源系统供电,虽然也能让其精心设计的程序运行起来,但对于新手来说,有时可能效率低下,往往还有供电电流不足或过大引起这样那样的问题,本文十大金律轻松搞定DCDC电源转换电路设计。 第一条、搞懂DC/DC电源怎么回事 DC/DC电源电路又称为DC/DC转换电路,其主要功能就是进行输入输出电压转换。一般我们把输入电源电压在72V以内的电压变换过程称为DC/DC转换。常见的电源主要分为车载与通讯系列和通用工业与消费系列,前者的使用的电压一般为48V、36V、24V 等,后者使用的电源电压一般在24V以下。不同应用领域规律不同,如PC中常用的是12V、5V、3.3V,模拟电路电源常用5V 15V,数字电路常用3.3V等,现在的FPGA、DSP 还用2V以下的电压,诸如1.8V、1.5V、1.2V等。在通信系统中也称二次电源,它是由一次电源或直流电池组提供一个直流输入电压,经DC/DC变换以后在输出端获一个或几个直流电压。 第二条、需要知道的DC/DC转换电路分类 DC/DC转换电路主要分为以下三大类: ①稳压管稳压电路。②线性(模拟)稳压电路。③开关型稳压电路 第三条、最简单的稳压管电路设计方案 稳压管稳压电路电路结构简单,但是带负载能力差,输出功率小,一般只为芯片提供基准电压,不做电源使用。比较常用的是并联型稳压电路,其电路简图如图(1)所示,

电源电路设计模块图

电源电路单元 前面介绍了电路图中的元器件的作用和符号。一张电路图通常有几十乃至几百个元器件,它们的连线纵横交叉,形式变化多端,初学者往往不知道该从什么地方开始,怎样才能读懂它。其实电子电路本身有很强的规律性,不管多复杂的电路,经过分析可以发现,它是由少数几个单元电路组成的。好象孩子们玩的积木,虽然只有十来种或二三十种块块,可是在孩子们手中却可以搭成几十乃至几百种平面图形或立体模型。同样道理,再复杂的电路,经过分析就可发现,它也是由少数几个单元电路组成的。因此初学者只要先熟悉常用的基本单元电路,再学会分析和分解电路的本领,看懂一般的电路图应该是不难的。 按单元电路的功能可以把它们分成若干类,每一类又有好多种,全部单元电路大概总有几百种。下面我们选最常用的基本单元电路来介绍。让我们从电源电路开始。 一、电源电路的功能和组成 每个电子设备都有一个供给能量的电源电路。电源电路有整流电源、逆变电源和变频器三种。常见的家用电器中多数要用到直流电源。直流电源的最简单的供电方法是用电池。但电池有成本高、体积大、需要不时更换(蓄电池则要经常充电)的缺点,因此最经济可靠而又方便的是使用整流电源。 电子电路中的电源一般是低压直流电,所以要想从 220 伏市电变换成直流电,应该先把220 伏交流变成低压交流电,再用整流电路变成脉动的直流电,最后用滤波电路滤除脉动直流电中的交流成分后才能得到直流电。有的电子设备对电源的质量要求很高,所以有时还需要再增加一个稳压电路。因此整流电源的组成一般有四大部分,见图 1 。其中变压电路其实就是一个铁芯变压器,需要介绍的只是后面三种单元电路。 二、整流电路 整流电路是利用半导体二极管的单向导电性能把交流电变成单向脉动直流电的电路。 ( 1 )半波整流 半波整流电路只需一个二极管,见图 2 ( a )。在交流电正半周时 VD 导通,负半周时 VD 截止,负载 R 上得到的是脉动的直流电

TH280D10ZZ-220AC-HZCT电力电源模块

TH280D10ZZ-220AC-HZCT 电力电源模块 技 术 说 明 书 石家庄通合电子科技股份有限公司

TonHe石家庄通合电子科技股份有限公司电力电源技术说明书目录 1、概述----------------------------------------------------------------------------------- 2 2、使用环境---------------------------------------------------------------------------- 2 3、电气参数---------------------------------------------------------------------------- 2 4、保护功能和绝缘特性----------------------------------------------------------- 2 5、电源工作原理--------------------------------------------------------------------- 4 6、操作说明----------------------------------------------------------------------------- 4 7、输入输出端子定义------------------------------------------------------------- 6 8、注意事项-------------------------------------------------------------------------- 6 9、运输、储存----------------------------------------------------------------------- 6

基于FPGA器件中电源模块的选择及设计方案

基于FPGA器件中电源模块的选择及设计方案 描述电源系统的需求很容易,执行这些需求却更具挑战性。只要它比上一代产品更小、更可靠、更有效且成本更低,那么设计经理、营销团队和用户就会很高兴。FPGA等现代半导体器件使这项具有挑战性的任务变得更加困难,它们需要以大电流提供多个容限严格的电压轨,并涉及到时序等其他复杂问题。 在这篇技术文章中,Aimtec公司将研究现代电源架构如何帮助解决这些挑战,并讨论如何选择电源模块。本文还将考虑设计与购买这些模块化解决方案哪种更好。 现代电源架构及向中间总线的过渡 在早期的系统中,大多数半导体采用5V供电,电源通常只是一个单元,有时带有多个电压轨,以便适应多个模拟器件,并通过布线将电能分配到系统各处。可靠性至关重要的系统有时会以冗余配置的方式集成两个(或多个)电源。 大约25年前,半导体电压开始向更低的电压迁移,并且随着电信系统的普及,基于电池电压的48V供电变得越来越普遍。这时候就形成了分布式电源架构(DPA)的概念,这种架构解决了先前方法的一些缺点。 采用高压总线(通常为48V)局部供电的电源转换器称为“砖”,这种转换器可以执行所需的逻辑电平转换。随着总线电压提高十倍,电流成比例地减小,损耗也减小了电流降的平方。这种显著的减少使得可以使用更细的电线,从而降低了系统成本和重量,同时仍然提高整体效率。 DPA的主要缺点是每个电源“砖”都包含隔离,这会降低效率,并增加尺寸、成本和复杂性。随着大多数DPA系统都使用了好几个砖,这个问题就变得非常重要。

图1:DPA和IBA的比较 DPA的修改版——中间总线架构(IBA)——可执行从48V到半稳定局部总线的转换(尽管可使用多种电压,但通常为12V),从而解决这一问题。这些中间总线转换器(IBC)可以提供隔离,并接入多个非隔离转换器,从而执行到半导体所需逻辑电平的转换。 这种转换器由于放置在它们所供电负载的附近,因此被称为负载点(PoL)转换器。这样可以最大程度地减少大电流走线的长度,减少损耗,并提高对负载波动的快速响应。 现代FPGA的电源需求 通常,FPGA需要提供若干严格稳压的不同电压轨,并辅以上电时序,从而确保实现可靠的操作并避免损坏。需要供电的地方包括内核、输入/输出和任何辅助功能。 内核所需的电压通常在0.9V和1.2V之间,并且容差为5%(有时以毫伏表示),而I/O 的电压取决于所使用的数字I/O逻辑。一个系统中可以有多个I/O电压。辅助电压通常为2.5V,

5V电源电路设计(包括电路各模块的详解)

5v电源电路的设计 本设计是要设计一个+5V直流电源供电,这里没有直接的+5V电压,而直流电源的输入电压为220V的电网电压,在正常情况下,这一电网电压是远远的高于本设计所需的电压值,因而需要先使用变压器,将220V的电网电压降低后,再进行下一阶段的处理[4]。 变压器是这一电源电路起始部分,将220V的电网电压转变为本设计所需的较低的电压,就可以进行下一阶段的整流部分。一般规定v1为变压器的高压侧,v2为变压器的低压侧,v1侧的线圈要比v2侧的线圈要多,这样就可以将220V 的电网电压降低,如图1所示: 图1变压器 单相桥式整流电路,就是将交流电网电压转换为所需电压,整流电路由四只整流二极管组成。下面简单介绍一下单相桥式整流电路的工作原理,为简便起见,这里所选的二极管都是理想的二极管,二极管正向导通时电阻为零,反向导通时电阻无穷大。在v2的正半周,电流从变压器副边线圈的上端流出,经过二极管D1,再由二极管D4流回变压器,所以D1、D4正向导通,D2、D3反向截止,产生一个极性为上正下负的输出电压。在v2的负半周,其极性正好相反,电流从变压器副边线圈的下端流出,经过二极管D2,再由二极管D3流回变压器,所以D1、D4反向截止,D2、D3正向导通。桥式整流电路利用了二极管的单向导电性,利用四个二极管,是它们交替导通,从而负载上始终可以得到一个单方向的脉动电压[6]。单相桥式整流电路如图2所示:

图2单相桥式整流电路 本设计的滤波电路采用的是电解电容和二极管并联方式滤波,简单的讲就是电容两端电压升高时,电容充电,电压降低时,电容放电,让电压降低时的坡度变得平缓,从而起到滤波的作用。这里选用电解电容是因为电解电容单位体积的电容量非常大,能比其它种类的电容大几十到数百倍,并且其额定的容量可以做到非常大,价格比其它种类相比具有相当大的优势,因为其组成材料都是普通的工业材料,比如铝等等。电解电容并联二极管,有效防止了电压反相。滤波电路如图3所示: 图3滤波电路 三端稳压器MC78M05CT将输出电压稳定在+5V上,三端稳压器如图4所示:

相关文档
最新文档