数值分析向量,矩阵范数,矩阵的条件数.
谈谈矩阵条件数及其几种计算方法

谈谈矩阵条件数及其几种计算方法摘要:矩阵条件数在数值分析领域中有重要作用,特别是在线郑治波性方程组和矩阵特征值扰动分析中有广泛的应用,条件数的大小就决定了方程组解的相对误差的大小,用条件数来判断方程组的解对于误差的敏感度是很有用的,它反映了方程组的状态。
关键词:矩阵条件数估计在生产实践和企业管理等实际问题中,经常会碰到许多大型线性方程组的求解问题,其系数阵a总是以抽样统计数据或以实验数据为基础。
统计技术的高低,实验仪器分辨率的高低等等都将给数据带来误差,而这种不可避免的误差,有时甚至是微小的变动也会引起解的极大波动,这时就称系数阵为“病态矩阵”。
对于这种“病态矩阵”一般的算法很难得出理想的结果。
我们知道,算法对误差的传播和积累有很大影响,为了减少这种影响,算法的选取是很重要的,这就是通常所说的算法的稳定性问题。
另一方面,方程组本身对计算中误差的积累也起着极其重要的作用,系数阵a的条件的好坏至关重要,如果问题是病态的,那么即使选择良好的计算方法,也不能指望有好的结果出现,因此判别原始方程组是否病态是十分重要的。
怎样有效地判别矩阵是否为病态矩阵?近几十年国内外许多从事计算数学的学者都在进行摸索研究,得知“条件数”与矩阵病态有密切关系。
“条件数”这一名词在上世纪五十年代初出现,主要用来衡量矩阵的病态程度,条件数越小,则矩阵的非奇异程度越高,称矩阵是良态的;条件数越大,则矩阵的非奇异程度越差,称矩阵为病态的。
另外,在数值分析中,常常要讨论矩阵扰动对一个给定矩阵的特征值的影响,条件数可以衡量矩阵的特征值经过扰动的偏离度,也是衡量矩阵a关于特征值问题是否良态的重要标志。
然而由于矩阵的阶数较大时,的计算量大导致应用定义计算矩阵条件数十分困难,因此,矩阵条件数的估计对研究各种矩阵问题有着重要意义。
1.条件数的提出(1)线性方程组的条件数考虑线性方程组的求解,其中用精确的计算求解得:若对常数列加入的摄动量,即考虑,所得解与之差是 .显然,对方程组的右端向量只不过改变了,而解却相差1806 .又如,设,,,由计算可知方程组和方程组的解分别为和 .由此可见,系数矩阵只产生的误差而解却产生300000 的误差。
(参考资料)数值分析笔记

常用的矩阵范数
n
矩阵的 1-范数:
A
1
max
1 jn
i 1
aij
矩阵的 2-范数:
A 2
max (AT A)
n
矩阵的-范数:
A
max 1in
j 1
aij
n
矩阵的 F-范数: A F
ai2j
i, j1
,也称矩阵的列范数. ,也称为谱范数. ,也称为行范数.
1, 2, …, n 为矩阵 A 的 n 个特征值,
向量的 1-范数:
向量的 2-范数:
向量的-范数:
x 1 x1 x2 xn
x 2
x12 x22 xn2
范数的等价性 m ‖x‖ ‖x‖ M ‖x‖ , xRn
x
max
1in
|
xi
|
常用的三种向量范数等价关系 ‖x‖ ‖x‖1 n‖x‖ , xRn
x x n x ,x Rn
2
x x n x ,x Rn
凡是由精确值经过四舍五入得到的近似值,其绝对误差限等于该近似值末位的半
个单位。
2.设近似值 x 的相对误差限位 10-5,则 x 至少具有(5)为有效数字。
第二章 解线性方程组的直接法
1、Gauss 消去法
是一种规则化的加减消元法,通过逐次消元计算,转化为等价的上三角形方程组。
顺序 Gauss 消去法(简称为 Gauss 消去法):
a11 U
a12 a22 l21u12
a13
a23 l21u13
a33 l31u13 l32u23
(2)平方根法
u11
LDM 分解 和 Cholesky 分解(GGT) D u22
数值分析复习资料

数值分析复习资料一、重点公式第一章 非线性方程和方程组的数值解法 1)二分法的基本原理,误差:~12k b ax α+--<2)迭代法收敛阶:1lim0i pi ic εε+→∞=≠,若1p =则要求01c <<3)单点迭代收敛定理:定理一:若当[],x a b ∈时,[](),x a b ϕ∈且'()1x l ϕ≤<,[],x a b ∀∈,则迭代格式收敛于唯一的根;定理二:设()x ϕ满足:①[],x a b ∈时,[](),x a b ϕ∈, ②[]121212,,, ()(),01x x a b x x l x x l ϕϕ∀∈-≤-<<有 则对任意初值[]0,x a b ∈迭代收敛,且:110111i i iii x x x llx x x lαα+-≤---≤-- 定理三:设()x ϕ在α的邻域内具有连续的一阶导数,且'()1ϕα<,则迭代格式具有局部收敛性;定理四:假设()x ϕ在根α的邻域内充分可导,则迭代格式1()i i x x ϕ+=是P 阶收敛的 ()()()0,1,,1,()0j P j P ϕαϕα==-≠ (Taylor 展开证明)4)Newton 迭代法:1'()()i i i i f x x x f x +=-,平方收敛 5)Newton 迭代法收敛定理:设()f x 在有根区间[],a b 上有二阶导数,且满足: ①:()()0f a f b <; ②:[]'()0,,f x x a b ≠∈;③:[]'',,f x a b ∈不变号④:初值[]0,x a b ∈使得''()()0f x f x <;则Newton 迭代法收敛于根α。
6)多点迭代法:1111111()()()()()()()()()i i i i i i i i i i i i i i i f x f x f x x x x x f x f x f x f x f x f x x x -+-----=-=+----收敛阶:P =7)Newton 迭代法求重根(收敛仍为线性收敛),对Newton 法进行修改 ①:已知根的重数r ,1'()()i i i i f x x x rf x +=-(平方收敛) ②:未知根的重数:1''()(),()()()i i i i u x f x x x u x u x f x +=-=,α为()f x 的重根,则α为()u x 的单根。
第五专题矩阵的数值特征(行列式、范数、条件数、迹、秩、相对特征根)讲解学习

第五专题矩阵的数值特征(行列式、迹、秩、相对特征根、范数、条件数)一、行列式已知A p x q, B q x p,则|l p+AB| = |l q + BA|证明一:参照课本194 页,例4.3.证明二:利用AB 和BA 有相同的非零特征值的性质;从而l p+AB ,l q+BA 中不等于1 的特征值的数目相同,大小相同;其余特征值都等于1。
行列式是特征值的乘积,因此|I p+AB|和|I q+BA|等于特征值(不等于1)的乘积,所以二者相等。
二、矩阵的迹矩阵的迹相对其它数值特征简单些,然而,它在许多领域,如数值计算,逼近论,以及统计估计等都有相当多的应用,许多量的计算都会归结为矩阵的迹的运算。
下面讨论有关迹的一些性质和不等式。
nn定义:tr(A) a ii i ,etrA=exp(trA)i 1 i 1性质:1. tr( A B) tr(A) tr(B) ,线性性质;2. tr(A T ) tr(A) ;3. tr(AB) tr(BA) ;14. tr(P 1AP) tr(A) ;5. tr(x H Ax) tr(Axx H),x 为向量;nn6. tr(A) i ,tr(A k) i k;i 1 i 1从Schur 定理(或Jordan 标准形) 和(4)证明;7. A 0,则tr(A) 0 ,且等号成立的充要条件是A=0;8. A B(即A B 0),则tr(A) tr(B),且等号成立的充要条件是A=B( A B i(A) i(B) );9. 对于n阶方阵A,若存在正整数k,使得A k=0, 则tr(A)=0 (从Schur 定理或Jordan 标准形证明)。
若干基本不等式对于两个m x n复矩阵A和B, tr(A H B)是m x n 维酉空间上的内积,也就是将它们按列依次排成的两个mn 维列向量的内积,利用Cauchy-schwarz 不等式2[x,y] w [x,x]. [y,y]得定理:对任意两个m x n 复矩阵A 和B|tr(A H B)|2w tr(冲A) • tr(B H B)这里等号成立的充要条件是A=cB,c为一常数。
2范数和条件数病态方程组

由于
( I A)( I A)1 I ( I A)1 A( I A)1 I
( I A)1 I A( I A)1
在最后一式两端取范数,得
( I A) 1 I A ( I A) 1
1 A
( I A) 1 I 1.
练习:计算矩阵
1 2 A 3 4 的各种范数.
答案 : 6,7, 15 221 , 30
§2.3 矩阵的条件数与病态线性方程组
2.3.1
矩阵的条件数与线性方程组的性态
给定线性方程组 Ax =b,现在考察,系数矩阵 A 和常数列 b 有了微小变化 △A,△b ,它如何影 响解向量 x,即,解向量 x 的变化量 △x 何样? 由于A (或 b)的元素是测量得到的,或者是 计算的结果,在前种情况下, A (或 b)常常带有 某些观测误差,在后种情况下, A (或 b)包含舍 入误差,因此我们处理的实际矩阵是A + △A (或 b+ △b )。
n×n矩阵 A,式(1.2)中定义的函数是一种矩阵范 数,并且它与给定的向量范数是相容的.
A max Ax
单位球上的 最大像值
x 1
(1.2)
证明 先证相容性. 对任意的n×n矩阵A和n维非零向
量 y. 由于
y 1 max Ax A Ay . x 1 y y
所以有
Ay y max Ax y A ,
考察方程组 Ax = b, 当 A 或 b 有微小扰动时, 对解的影响, 首先看一个例子:
1 x1 2 1 , 1 1.0001 x2 2 1 x1 2 1 x 1 1.0001 2.0001 2
矩阵范数的计算公式

矩阵范数的计算公式矩阵范数是在线性代数中常常被使用的一个概念,它是用来度量矩阵的大小或者矩阵之间的距离的一种方法。
在实际应用中,矩阵范数有着广泛的应用,比如用于矩阵的条件数计算、矩阵的特征值估计等。
矩阵范数的计算公式如下:对于一个矩阵A,它的范数可以表示为:||A|| = max{||Ax|| / ||x||},其中||x||表示向量x的范数,Ax表示矩阵A乘以向量x的结果。
矩阵范数有很多种不同的定义方式,常见的有以下几种:1. 1范数(L1范数):矩阵A的1范数定义为:||A||1 = max{sum(abs(A(:,i)))},即矩阵A的每一列的绝对值之和的最大值。
2. 2范数(L2范数):矩阵A的2范数定义为:||A||2 = sqrt(max{eig(A' * A)}),即矩阵A的转置矩阵与自身的乘积的特征值的最大值的平方根。
3. 无穷范数(L∞范数):矩阵A的无穷范数定义为:||A||∞ = max{sum(abs(A(i,:)))},即矩阵A的每一行的绝对值之和的最大值。
这些范数的计算公式可以帮助我们准确地度量矩阵的大小或者矩阵之间的距离。
不同的范数对于矩阵的特征有不同的描述能力。
比如1范数对于稀疏矩阵有较好的描述能力,2范数对于谱半径较小的矩阵有较好的描述能力,无穷范数对于行或列之间差异较大的矩阵有较好的描述能力。
除了上述常见的矩阵范数外,还有其他一些特殊的矩阵范数,比如F范数、核范数等。
F范数是指矩阵A的所有元素的平方和的平方根,可以表示为:||A||F = sqrt(sum(sum(abs(A).^2)))。
核范数是用来度量矩阵A的秩的近似程度,可以表示为:||A||* = sum(svd(A)),其中svd(A)表示矩阵A的奇异值分解。
在实际应用中,选择合适的矩阵范数对于问题的求解和分析都非常重要。
不同的范数有着不同的性质和应用领域,我们需要根据具体问题的需求选择适当的范数。
Chapter1_2_向量范数与矩阵范数
设 b 精确,A有误差 A ,得到的解为 x x ,即 || A || || A1 || 是关键 的误差放大因子,称为 ( A A的状态数(条件数), b A)( x x) 记为cond (A) , A( x x) A( x x) b ( A A) x ( A A) x b ( A A) x Ax x A1 A( x x) A( I A1 A) x Ax || x || || A1 || || A || || x x || x ( I A1 A)1 A1 Ax || A || 1 (只要 A充分小,使得
算子范数 ( operator norm ),又称为从属的矩阵范数: 由向量范数 || · p 导出关于矩阵 A Rnn 的 p 范数: ||
利用Cauchy 不等式 则 || AB || p || A || p || B || p || Ax || p || A || p max max || Ax || p y | ||x || || y || |x 2 x0 | |x | |p 1 || x || p || Ax || p || A || p || 2 || p x
命题(P26,推论1) 若A对称,则有: || A ||2 ( A)
证明:|| A ||2 max ( A A) max ( A )
T 2
A对称
若 是 A 的一个特征根,则2 必是 A2 的特征根。
max ( A2 ) 2 ( A) 对某个 A 的特征根 成立
又:对称矩阵的特征根为实数,即 2(A) 为非负实数, 所以2-范数亦称为 故得证。 谱范数。
矩阵的条件数
例3.设
1 i 0
A
i
0
i
,
A
C
33
,
0
b
C
3
0 i 1
为 的 使解A 线2 xˆ性的方相程对组误Ax差=b的解x xx与xˆ2
(
2
A
104
A)x b
,试问
A 应不超过何值? 2
作业
2 1 3
1.设
A
8
2
4
,
4 4 10
求A的条件数cond ( A)
作业
2.设
2 2 2
∞-条件数:
cond ( A)
A
A1
1-条件数:
cond1( A)
A 1
A1 1
2-条件数:
cond2 ( A)
A 2
A1 2
1 n
(1是AH A的最大特征值,
n是AH A的最小特征值)
矩阵的条件数
常用的条件数有:
特别地,当A是一个正规矩阵时,
cond2 ( A)
A 2
A1 1 2 n
(4)பைடு நூலகம்U是酉矩阵时,则
cond2 (U )=1
cond2 (UA)=cond2 (AU )=cond2 (A)
(5)当A、B是可逆矩阵时,则
cond(AB) cond(A)cond(B)
矩阵的条件数
1
n阶Hilbert矩阵
H
i
1 j
1
nn
1 2
1 2 1 3
1 1
cond2 (H4 )=1.5514 104 n n 1
det( A)
0.00002
李庆扬-数值分析第五版第5章和第7章习题答案解析
WORD格式.分享第5章复习与思考题1、用高斯消去法为什么要选主元?哪些方程组可以不选主元?k答:使用高斯消去法时,在消元过程中可能出现a的情况,这时消去法无法进行;即kkk时主元素0和舍入增长a,但相对很小时,用其做除数,会导致其它元素数量级的严重kk计误差的扩散,最后也使得计算不准确。
因此高斯消去法需要选主元,以保证计算的进行和算的准确性。
当主对角元素明显占优(远大于同行或同列的元素)时,可以不用选择主元。
计算时一般选择列主元消去法。
2、高斯消去法与LU分解有什么关系?用它们解线性方程组Ax=b有何不同?A要满足什么条件?答:高斯消去法实质上产生了一个将A分解为两个三角形矩阵相乘的因式分解,其中一个为上三角矩阵U,一个为下三角矩阵L。
用LU分解解线性方程组可以简化计算,减少计算量,提高计算精度。
A需要满足的条件是,顺序主子式(1,2,⋯,n-1)不为零。
3、楚列斯基分解与LU分解相比,有什么优点?楚列斯基分解是LU分解的一种,当限定下三角矩阵L的对角元素为正时,楚列斯基分解具有唯一解。
4、哪种线性方程组可用平方根法求解?为什么说平方根法计算稳定?具有对称正定系数矩阵的线性方程可以使用平方根法求解。
,切对角元素恒为正数,因此,是一个稳定的平方根法在分解过程中元素的数量级不会增长算法。
5、什么样的线性方程组可用追赶法求解并能保证计算稳定?对角占优的三对角方程组6、何谓向量范数?给出三种常用的向量范数。
向量范数定义见p53,符合3个运算法则。
正定性齐次性三角不等式x为向量,则三种常用的向量范数为:(第3章p53,第5章p165)设n||x|||x|1ii11n22||x||(x)2ii1||x||max|x i|1in7、何谓矩阵范数?何谓矩阵的算子范数?给出矩阵A=(a ij)的三种范数||A||1,||A||2,精品.资料WORD格式.分享||A||∞,||A||1与||A||2哪个更容易计算?为什么?向量范数定义见p162,需要满足四个条件。
(完整版)数值分析重点公式
第一章 非线性方程和方程组的数值解法 1)二分法的基本原理,误差:~12k b ax α+--<2)迭代法收敛阶:1lim0i pi ic εε+→∞=≠,若1p =则要求01c <<3)单点迭代收敛定理:定理一:若当[],x a b ∈时,[](),x a b ϕ∈且'()1x l ϕ≤<,[],x a b ∀∈,则迭代格式收敛于唯一的根;定理二:设()x ϕ满足:①[],x a b ∈时,[](),x a b ϕ∈, ②[]121212,,, ()(),01x x a b x x l x x l ϕϕ∀∈-≤-<<有 则对任意初值[]0,x a b ∈迭代收敛,且:110111i i iii x x x ll x x x lαα+-≤---≤--定理三:设()x ϕ在α的邻域内具有连续的一阶导数,且'()1ϕα<,则迭代格式具有局部收敛性;定理四:假设()x ϕ在根α的邻域内充分可导,则迭代格式1()i i x x ϕ+=是P 阶收敛的 ()()()0,1,,1,()0j P j P ϕαϕα==-≠L (Taylor 展开证明)4)Newton 迭代法:1'()()i i i i f x x x f x +=-,平方收敛 5)Newton 迭代法收敛定理:设()f x 在有根区间[],a b 上有二阶导数,且满足: ①:()()0f a f b <; ②:[]'()0,,f x x a b ≠∈;③:[]'',,f x a b ∈不变号④:初值[]0,x a b ∈使得''()()0f x f x <;则Newton 迭代法收敛于根α。
6)多点迭代法:1111111()()()()()()()()()i i i i i i i i i i i i i i i f x f x f x x x x x f x f x f x f x f x f x x x -+-----=-=+----收敛阶:P =7)Newton 迭代法求重根(收敛仍为线性收敛),对Newton 法进行修改 ①:已知根的重数r ,1'()()i i i i f x x x rf x +=-(平方收敛) ②:未知根的重数:1''()(),()()()i i i i u x f x x x u x u x f x +=-=,α为()f x 的重根,则α为()u x 的单根。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
§8 向量,矩阵范数,矩阵的条件数 一 、 向量、矩阵范数 为了讨论线性方程组近似解的误差估计与研究解方程组迭代法的收敛性,需要在)(nnnRR或中引进向量序列(或矩阵序列)极限概念。为此,这就需要对量空间nR(或nnR矩阵空间)元素的“大小”引进某种度量即向量范数(或矩阵范数)即距离的概念。 (一)向量范数:向量范数是3R中向量长度概念的推广。
定义8 (1)},{1为复数innxxxxxC称为n维复向量空间。 },)({为复数ijnnijnnaaAAC称为nn复矩阵空间。
(2)设nnnCACx,,称TnHxxxx),,(
1
为x的共轭转置,
THAA称为A共轭转置矩阵。
在许多应用中,对向量的范数(对向量的“大小”的度量)都要求满足正定条件,齐次条件和三角不等式,下面给出向量范数的抽象定义。 定义9(向量范数)关于向量nRx(或nCx)的某个实值非负函数xxN)(,如果满足下述条件
(1)正定性 00,0xxx (2)齐次性 xax其中R(或C) (3)三角不等式 )(,,nnCRyxyxyx或,称xxN)(是nR上(或nC)一个向量范数(或为模)。 由三角不等式可推出不等式 (4)yxyx 下面给出矩阵计算中一些常用向量范数。 定义10 设)(),,(1nnTnCxRxxx或
(1)向量的“”范数 inixxxN1max)(
(2)向量的“1”范数 niixxxN111)( (3)向量的“2”范数 2/1122/122)(),()(niixxxxxN (4)向量的能量范数 设nnRA为对称正定阵 2/1),()(xAxxxNRxAAn
称为向量的能量范数。
定理19 设nRx(或nCx),则)(),(),(12xNxNxN是nR上(或nC)的向量范数。 证明 只验证三角不等式:对任意nRyx,,则222yxyx
利用哥西不等式:22),(yxyx,则有 ),(22yxyxyx),(),(2),(yyyxxx
2222222yyxx2
22))(yx
定理20 (范数的等价性) 对任何nRyx,则 (1) xnxx2 (2) 212xnxx (3) xnxx1
证 只证(1)。记jininxxxxxx11max, 于是有(a)niijxxxx122222 (b) nijjniixnxnxxx12221222 (二)向量序列的极限 定义11 (向量序列的极限)设有向量序列}{)(kx及向量x且记 TnTknkkxxxxxx),,(,),,(1)()(1)(
如果2n个数列收敛,即 ),,1(lim)(nixxikik 则称}{)(kx收敛于x,记xxkk)(lim, 或说向量序列的收敛是)(kx分量收敛到x对应分量。 例 设有向量序列
),,2,1(102102)(nkxkkk
显然,有22lim)(kkx
定义12 (距离) 设nRyx,,称非负实数yxyxd),(为yx,之间距离,其中为向量的任何一种意义下范数。 定理21 设}{)(kx为nR中一向量序列,且nRx,则 xxkk)(lim是0)(vkxx(当k)
其中v
为向量的任一范数。
证明 只对2,vv证明。显然有 ),,1(0limlim)()(nixxxxikikkk
)(0lim)(1kxxikini当
)(0)(kxxk当 又由范数的等价性定理有: xxnxxxxkkk)(2)()(
于是 )(0)(02)()(kxxkxxkk当 (三)矩阵的范数 一个nn矩阵A可看作2n维向量空间中一个向量,于是由nnR上向量“2”范数,可以引进nnR中矩阵的一种范数。 NjiijFaAAF1,2/12)()(称为A的 Frobenius范数。
定义13 (矩阵范数)关于矩阵nnRA的某个非负实值函数AAN)(,如果满足下述条件:
(1)正定性:00,0AAA是且 (2)齐次性:RAA, (3)三角不等式:BABA 则称)(AN是nnR上的一个矩阵范数(或模)。 由于在许多应用问题中,矩阵和向量是相联系的,现引进一种矩阵的算子范数。它是由向量范数诱导出来的并且这种矩阵范数和向量范数是相
容的,即nnnRARx,不等式xAAx 成立。
定义14 (矩阵的算子范数)设nnnRARx,且设有一种向量范数vx
相应的定义一个矩阵的非负函数
vvRxxvxAxAANn0max)(
(最大比值),称)(AN为矩阵A的算子范数。
定理22 设vx是nR上的向量范数,则vAAN)(是nnR上一个范数且满足相容条件: (1) vvvxAAx
(2) ),(nnvvvRBABAAB 证明 由vAAN)(定义,可知有
vv
vAxAx
或),(,nnnvvvRxRAxAAx
下面验证三角不等式:vvvBABA 由定义 vvxRxvxxBABAn)(max0 由于vvvBxAxxBA)(vvvvxBxAvvvxBA)(
或)0(,)(xRxBAxxBAnvvvv且 故vvvBABA 定理23 (矩阵范数公式)设nnnRARx,,则 (1)njijnixaxAxA1110maxmax(称为A的行范数)
(2) niijnjxaxAxA111101maxmax(称为A的列范数) (3) )(maxmax2202AAxAxATx(称为A的“2”范数) 其中)(maxAAT为AAT最大特征值。 证明 证(1):记`1),,(Tnxxx,txxini1max
njnjjiijniniaa1011)1(max0其中
于是jnjijninjjijnixaxaAx 1111maxmax njijitat1max 说明,对任何向量0x,则有 xAx (a) 如果能找到一向量0x且10x使 00xAx那末,定理得证。 下面来寻求0x使比值等于,记Tnxxxx),,,(210且使10x 于是,TnjnjnjjnjjjijjxaxaxaAx),,,,(111100 且由(a)式有 0Ax 由此,应选取0x为:0,10,100jijijaax当当 则10x及njnjjijjiaxa1100或0Ax 故xAxx0max 证(3):由于AAT为对称半正定矩阵,则AAT特征值为非负,即记AAT特征值为),,1,1(nii,则有021n 且有niiu1}{满足),,2,1(,niuAuAiiiT,ijjiuu),(
考查比值:nRx且0x,于是niiiuax1
),(),(),(),(2222xxxAxAxxAxAxxAxT
niininiiiiiiuu1211),(11212
niin
iii
说明,对任何非零向量nRx,则有122xAx 另一方面,取1ux则有111111221221),(),(uuuuuAu 故)(max2AAAT 定理24 (矩阵范数等价性)设nnRA,则 (1)AnAAn21;(2)AnAAn11 定义25 (矩阵的谱半径)设nnRA的特征值为),,1(nii
,称
iniA1
max)(为A的谱半径。
定理25 (特征值界) (1)设nnRA,则AA)(,其中A为满足矩阵,向量相容性条件的矩阵范数。 (2)设nnRA为对称矩阵,则)(2AA。
证明 只证(1)。 设为A的任一特征值,于是,存在0x使xAx 且Axxx xA 即 AAx)(或 定理26 设为矩阵的算子范数,且1B,则BI为非奇异矩阵,且
有估计BBI11)(1 证明 1)反证法。 设BI为奇异阵,则0)(xBI有非零解记为0x,即00xBx
于是,100xBx由此,有1B,这与假设矛盾。 2)由IBIBI1))(( 即得 11)()(BIBIBI