2017_2018七年级数学下册第八章二元一次方程组8.3实际问题与二元一次方程(第1课时)习题课件
最新人教版数学七年级下册--二元一次方程组--8.3-实际问题与二元一次方程组--和差倍分--专题练习题-含答案

人教版数学七年级下册 第八章 二元一次方程组 8.3 实际问题与二元一次方程组和差倍分问题 专题练习题1. 已知∠1与∠2互补,并且∠1比∠2的3倍还大20°,若设∠1=x °,∠2=y °,则x ,y 满足的方程组为( )A .⎩⎨⎧x +y =90x =3y +20B .⎩⎨⎧x +y =90y =3x +20C .⎩⎨⎧x +y =180x =3y +20D .⎩⎨⎧x +y =180y =3x +20 2.一种饮料有两种包装,5大盒、4小盒共装148瓶,2大盒、5小盒共装100瓶,大盒与小盒每盒各装多少瓶?设大盒装x 瓶,小盒装y 瓶,则可列方程组( )A .⎩⎨⎧5x +4y =1482x +5y =100B .⎩⎨⎧4x +5y =1482x +5y =100C .⎩⎨⎧5x +4y =1485x +2y =100D .⎩⎨⎧4x +5y =1485x +2y =1003.一篮水果分给一群小孩,若每人分8个,则差3个水果;若每人分7个,则多4个水果,在这个问题中,有小孩____人,水果____个.4.甲种电影票每张20元,乙种电影票每张15元.若购买甲、乙两种电影票共40张,恰好用去700元,则甲种电影票买了____张.5.一个两位数的十位数字与个位数字的和是8,把这个两位数加上18,结果恰好成为数字对调后组成的两位数,求这个两位数.设个位数字为x ,十位数字为y ,下面所列方程组正确的是( )A .⎩⎨⎧x +y =8xy +18=yxB .⎩⎨⎧x +y =810(x +y )+18=yx C .⎩⎨⎧x +y =810x +y +18=yx D .⎩⎨⎧x +y =8x +10y +18=10x +y6.一个两位数,比它十位上的数与个位上的数的和大9;如果交换十位上的数与个位上的数,所得两位数比原两位数大27,求这个两位数.7.某车间有60名工人生产太阳镜,1名工人每天可生产镜片200片或镜架50个.应如何分配工人生产镜片和镜架,才能使产品配套?设安排x 名工人生产镜片,y 名工人生产镜架,则可列方程组( )A .⎩⎨⎧x +y =602×200x =50yB .⎩⎨⎧x +y =60200x =50yC .⎩⎨⎧x +y =60200x =2×50yD .⎩⎨⎧x +y =5050x =200y8.家具厂生产方桌,按设计1立方米木材可制作50个桌面或300个桌腿,现有10立方米木材,怎样分配木材才能使生产的桌面和桌腿恰好配套,并指出共可生产多少张方桌?(一张方桌按1个桌面4条桌腿配置)9.有大小两种船,1艘大船与4艘小船一次可以载乘客46人,2艘大船与3艘小船一次可以载乘客57人,则1艘大船和1艘小船一次可以载乘客的人数分别是( )A .18人,7人B .17人,8人C .15人,7人D .16人,8人10.某校举行安全知识竞赛,其评分规则如下:答对一题得5分,答错一题得-5分,不作答得0分.已知试题共20道,满分100分,凡优秀(得分80分或以上)者才有资格参加决赛.小明同学在这次竞赛中有2道题未答,但刚好获得决赛资格,则小明答对____道题,答错____道题.11.某芒果种植基地去年结余为500万元,估计今年能结余960万元,并且今年的收入比去年高15%,支出比去年低10%,则去年的收入是____________万元,支出是____________万元.12.学生在素质教育基地进行社会实践活动,帮助农民伯伯采摘了黄瓜和茄子共40千克,了解到这些蔬菜的种植成本共42元,还了解到如下信息:(1)请问采摘的黄瓜和茄子各为多少千克?(2)这些采摘的黄瓜和茄子可赚多少元?13.请你阅读下面的诗句:“栖树一群鸦,鸦树不知数,三只栖一树,五只没去处,五只栖一树,闲了一棵树,请你仔细数,鸦树各几何?”求诗句中谈到的鸦的只数,树的棵数.14.一名学生问老师:“您今年多大?”老师风趣地说:“我像你这样大时你才1岁,你到我这么大时,我已经37岁了.”请问老师、学生今年分别多大了?15.陈老师为学校购买运动会的奖品后,回学校向后勤处王老师交账说:“我买了两种书共105本,单价分别为8元和12元,买书前我领了1500元,现在还余418元.”王老师算了一下,说:“你肯定搞错了.”(1)王老师为什么说他搞错了?试用方程的知识给予解释;(2)陈老师连忙拿出购物发票,发现的确弄错了,因为他还买了一个笔记本.但笔记本的单价已模糊不清,只能辨认出应为小于5元的整数,笔记本的单价可能为多少元?方法技能:1.审题时要弄清题意和题目中的数量关系,找出问题中的所有相等关系.2.设未知数可直接设,也可间接设,力求简洁.3.检验所得的解是否符合题意和实际意义,不符合的解要舍去.4.设未知数及作答时要注意单位名称统一.易错提示:注意配套问题中的数量关系.答案:1. C2. A3. 7 534. 205. D6. 解:设这个两位数十位上的数为x ,个位上的数为y ,则有⎩⎨⎧10x +y =x +y +9,10y +x =10x +y +27,解得⎩⎨⎧x =1,y =4,∴这个两位数为147. C8. 解:设分配x 立方米木材生产桌面,y 立方米木材生产桌腿,根据题意得⎩⎨⎧x +y =10,50x ×4=300y ,解得⎩⎨⎧x =6,y =4,则共可生产方桌为50x =300张9. A10. 17 111. 2040 154012. 解:(1)设采摘黄瓜x 千克,茄子y 千克,根据题意得⎩⎨⎧x +y =40,x +1.2y =42,解得⎩⎨⎧x =30,y =10,则采摘的黄瓜和茄子分别为30千克、10千克(2)30×(1.5-1)+10×(2-1.2)=23(元),则这些采摘的黄瓜和茄子可赚23元13. 解:设有x 只鸦,y 棵树,则有⎩⎨⎧3y =x -5,5(y -1)=x ,解得⎩⎨⎧x =20,y =5,则鸦的只数为20,树的棵数为514. 解:设老师今年x 岁,学生今年y 岁,则有⎩⎨⎧x -y =y -1,37-x =x -y ,解得⎩⎨⎧x =25,y =13,则老师今年25岁,学生今年13岁15. 解:(1)设单价为8元的书买了x 本,单价为12元的书买了y 本,根据题意得⎩⎨⎧x +y =105,8x +12y =1500-418,解得⎩⎨⎧x =44.5,y =60.5,显然书的本数应为整数,不能为小数,不合题意,故一定是搞错了 (2)设笔记本的单价为a 元,根据题意得⎩⎨⎧x +y =105,8x +12y +a =1500-418,可得y =242-a 4,要使y 为整数,则a 首先必须为偶数,又是小于5元的整数,故a 只能为2,4.当a=2时,y=60;当a=4时,y=59.5(不合题意舍去).综上所述,笔记本的单价可能为2元。
人教版七年级数学 下册 第八章 8.3 实际问题与二元一次方程组 课时练(含答案)

第八章 二元一次方程组 8.3 实际问题与二元一次方程组一、选择题1、甲、乙两地相距100千米,一艘轮船往返两地,顺流用4小时,逆流用5小时,•那么这艘轮船在静水中的航速与水速分别是( )A .24千米/时,8千米/时B .22.5千米/时,2.5千米/时C .18千米/时,24千米/时D .12.5千米/时,1.5千米/时2、某个体商店在一次买卖中同时卖出两件上衣,每件都是以135元卖出,若按成本计算,其中一件赢利25%,另一件亏损25%,则这家商店在这次买卖中( )A .不赔不赚B .赚9元C .赔8元D .赔18元3、某校七年级一班40名同学为“希望工程”捐款,共捐款100元,捐款情况如表:表格中捐款2元和3元的人数不小心被墨水污染已看不清楚,若设捐款2元的有x 名同学,捐款3元的有y 名同学,根据题意,可列方程组( )A .⎩⎪⎨⎪⎧x +y =272x +3y =66B .⎩⎪⎨⎪⎧x +y =272x +3y =100 C .⎩⎪⎨⎪⎧x +y =273x +2y =66 D .⎩⎪⎨⎪⎧x +y =273x +2y =100 4、有一些苹果箱,若每只装苹果25 kg ,则剩余40 kg 无处装;若每只装30 kg ,则还有20个空箱,这些苹果箱有( )A .12只B .6只C .112只D .128只5、已知甲、乙两数之和是42,甲数的3倍等于乙数的4倍,求甲、乙两数.若设甲数为x ,乙数为y ,由题意得方程组( )A. 42{ 43x y x y +==B. 42{ 34x y x y+==C. 42{ 1134x yx y-== D. 42{ 43y xx y +==二、填空题6、 一个两位数,个位上的数比十位上的数的2倍多1,若将十位数字与个位数字调换位置,则比原两位数的2倍还多2,则原两位数是_________。
7、某人买了60分的邮票和80分的邮票共20张,用去了13元2角,则60分的邮票买了 枚,80分的邮票买了 枚。
人教版七年级数学下册第八章列二元一次方程组解数字、工程、计费问题课件

解:
(1)依题意得
x-y=100 5x=6y
(2)解(1)中所列方程组,得
x=600 y=500
答:甲队每天铺设600 m,乙队每天铺设500 m.
题型 3 计费问题
应用1 阶梯电(水)价问题
6.(中考·朝阳)为响应国家节能减排的号召,鼓励居民 节约用电,各省先后出台了居民用电“阶梯价格”制 度,如表中是某省的电价标准(每月).
_1_0__0_c_+___1_0__b_+_;a
(2)用数位上的数字表示数的方法:个位上的数字×1,十位上的数字×10,百位上 的数字×100,以此类推,然后把它们加起来就可以表示一个多位数.
2.有一个两位数,若把个位数字扩大为原来的 2 倍,十位数字 减去 4,所得的数是原两位数的13;而把个位数字与十位数字 互换,所得的两位数比原两位数小 9.求原两位数.
(2)甲的套餐费用为199元,其中含600 MB的月流量;丙的 套餐费用为244.2元,其中包含1 GB的月流量,二人均 定制了超过1 000 min的每月语音通话时间,并且丙的 语音通话时间比甲多300 min.求m的值.
解:
(1)依题意得:
100a+(500-100)×0.07(600-500)b=48 100a+(500-100)×0.07(1024×2-500)b=120.4
设这个三位数的百位数字为x ,去掉百位数字后剩下的两位数为y.
”5乙01说M:B“~我2乘0(出G2B租)车用走了数8 km位,付上了16的元. 数字表示数的方法:个位上的数字×1,
15+(1000-500)×0.
1x+01(8M-B3~)y5=0016MB十位上的数字×10,百位上的数字×100,以此类推,
例如:方女士家5月份用电500 kW·h,电费=180×0.6+ 220×二档电价+100×三档电价=352(元); 李先生家5月份用电460 kW·h,交费316元.
人教版数学七年级下册课件:第八章 第1课时

7. 已知 _____0____.
是方程组
的解,则 a+b=
8.如果方程xm+1yn-1是二元一次方程,那么 m=__0___,n=____2__.
9.在3x+4y=9,如果有2y=6,那么x=____-1______.
10.以
为解的一个二元一次方程组是
_________.
课后作业
11.已知△ABC中,∠A=x,∠B=2x,∠C=y,试写出x、y 的关系式,若x=y,试求出各角的大小.
能力提升
*14.二元一次方程4x+y=11有无数个解,试探讨它 的非负整数解有哪些?
解:x=0时,4×0+y=11,∴y=11;x=1,时, 4×1+y=11, ∴y=7;x-2时,4×2+y=11,∴y=3,x=3 时.4×3+y=11, ∴y=-1,为负数,不合题意.∴4x-y=11的非负整 数解为
中,是二元一次方程的有______2_、__6___________.
类比精炼
1.已知方程:①2x+ =3;②5xy-1=0;③x2+y=2; ④3x-y+z=0;⑤2x-y=3;⑥x+3=5,其中是二元一次 方程的有_____5_.(填序号即可)
课堂精讲
知识点2. 二元一次方程组的解的概念 例2.是方程ax-y=3的解,则a的取值是( A)
4.写出方程
的两个正整数解:x=5,y;=1
课前预习
5.已知5组数据如下:
其中__1_、__2_、__4_____是方程
的解;
__2_、__3_、__5______是
方程 的解;
_______2_________________是方程组
8-3 二元一次方程组与实际问题-2022 -2023学年七年级数学下册同步教学课件(人教版)

5.从甲地到乙地有一段上坡与一段平路,如果保持上坡每小时走
3 km,平路每小时走 4 km,下坡每小时走 5 km,那么从甲地到
乙地需 54 min,从乙地到甲地需 42 min.甲地到乙地全程是多少?
解:设从甲地 到乙地的上坡路为x km,平路为y km.
x
3
由题意,得 x
因此,我们必须知道产品的数量和原料的数量.
产品x吨
原料y吨
公路运费(元)
1.5×20x
1.5×10y 1.5(20x+10y)
铁路运费(元)
1.2×110x
价值(元)
8 000x
合计
1.2×120y 1.2(110x+120y)
1 000y
知识点3 行程问题
解:设产品xt,原料yt.
1.5
×
20
200x:400y=3:4
A
解得 x=60
y=40
将这块土地分为长200m,宽60m和长200m,宽40m的
两个小长方形分别种植甲、乙两种作物.
B
知识点3 行程问题
探究2
如图,长青化工厂与 A,B 两地有公路、铁路
相连.这家工厂从A地购买一批每吨 1 000元的原料运回
工厂,制成每吨 8 000 元的产品运到 B 地.公路运价
A
E
x=120
解得 y=80
将这块土地分为长120m,宽100m和长100m,宽80m的
两个小长方形分别种植甲、乙两种作物.
B
知识点2 几何问题
2.横着画,把宽分成两段,则长不变
D
解:设DE=xm,AE=ym.
根据题意列方程组为
x+y=100
《8.2消元——解二元一次方程组》第1课时教案

《8.2消元——解二元一次方程组》第1课时教案《《8.2消元——解二元一次方程组》第1课时教案》这是优秀的教学设计文章,希望可以对您的学习工作中带来帮助!一、内容及内容解析:1.内容:“用代入法解二元一次方程组”是人教实验版教科书七年级下册第八章第二节的第一课时.2.内容解析:本节内容是在学习了一元一次方程的基础上的进一步深入,本节对比根据题意列出的二元一次方程组和一元一次方程,发现把方程组中一个方程变形为用含一个未知数的式子表示另一个未知数后,将它代入方程组中的另一个方程,原来的二元一次方程组就转化为一元一次方程.这种转化对解二元一次方程很重要,它的基本思路是“将未知数的个数由多化少,逐一解决”的消元思想. 通过代入法,减少了未知数的个数,使多元方程最终转化为一元方程,达到消元的目的.在提出消元思想后,又归纳得出代入法的基本步骤,既渗透了算法中程序化的思想,又有助于培养学生良好的学习习惯,提高思考的深度.基于此,本节课的教学重点是:会用代入消元法解简单的二元一次方程组,能体会“代入法”解二元一次方程组的基本思路是“消元“.二、目标及目标解析:1.目标(1).会运用代入消元法解二元一次方程组.(2).理解代入消元法的基本思想体现的“化未知为已知”的化归思想方法.2.目标解析达成目标(1)的标志是:学生掌握代入消元法解二元一次方程组的一般步骤,并能正确的求出二元一次方程组的解.培养学生的分析能力,能迅速在所给的二元一次方程组中,选择一个系数较简单的方程进行变形.达成目标(2)的标志是:学生通过探索,逐步发现解方程的基本思想是“消元”,化二元一次方程组为一元一次方程.通过代入消元,使学生初步理解把未知转化为已知和复杂问题转化为简单问题的思想方法.三、问题诊断分析:1、教学时,应结合具体的例子指出这里解二元一次方程组的关键在于消元,即把“二元”转化为“一元”.我们是通过等量代换的方法,消去一个未知数,从而求得原方程组的解.2、用代入法解二元一次方程组时,学生选择哪一个方程进行变形,容易出现不一样的选择.因此,教师讲解例题时要注意由简到繁,由易到难,逐步加深,而且要特别强调解方程组时应努力使变形后的方程比较简单和代入后化简比较容易.这样不仅可以迅速解方程,而且可以减少错误.基于此,本节的教学难点是:灵活运用代入法解二元一次方程组.四、教学过程设计:1.创设情境,复习导入二元一次方程组:有___个未知数,含有每个未知数的项的次数都是____,并且一共有____个方程的方程组.二元一次方程的解:使二元一次方程两边的值相等的______________.二元一次方程组的解:二元一次方程组的两个方程的________.2.探究新知问题:篮球联赛中,每场比赛都要分出胜负,每队胜1场得2分,负1场得1分.某队为了争取较好名次,想在全部22场比赛中得到40分,那么这个队胜负场数应分别是多少?问题一:你会用一元一次方程解决这个问题吗?解:设胜x场,则有:.问题二:你会用二元一次方程组解决这个问题吗?解:设胜x场,负y场,则问题三:怎样求得二元一次方程组的解呢?(设计意图:这题说明要想求出两个未知数的值,必须先知道其中一个未知数的值.这为用代入法解二元一次方程组打下基础:即消去一个未知数的值,转化为一元一次方程去解。
人教版数学七年级下册 第八章 二元一次方程组 8.3 实际问题与二元一次方程组 同步练习(含答案) (1)
实际问题与二元一次方程组同步练习一.选择题(共12小题)1.某校教师举行茶话会,若每桌坐12人,则空出一张桌子;若每桌坐10人,还有10人不能就坐,问:该校有多少名教师?共准备了多少张桌子?若设该校的教师有x人,共准备了y张桌子,则根据题意可列出方程组()A.B.C.D.2.把若干只鸡兔关在同一个笼子里,从上面数,有11个头;从下面数,有32条腿.则笼中的兔子共有()A.3只B.4只C.5只D.6只3.甲种物品每个1kg,乙种物品每个2.5kg,现购买甲种物品x个,乙种物品y个,共30kg.若两种物品都买,则所有可供购买方案的个数为()A.4 B.5 C.6 D.74.一个两位数的十位数字与个位数字的和是7.如果把这个两位数加上45,那么恰好成为个位数字与十位数字对调后组成的二位数,则这个二位数是()A.36 B.25 C.61 D.165.如图,宽为60cm的矩形图案由10个完全一样的小长方形拼成,则其中一个小长方形的周长为()A.60cm B.120cm C.312cm D.576cm6.我国民间流传着许多趣味算题,他们多以顺口溜的形式表达,请大家看这样的一个数学问题:一群老头去赶集,半路买了一堆梨,一人一个多一梨,一人两个少二梨,请问君子知道否,几个老头几个梨?请你猜想一下:几个老头几个梨?()A.3个老头4个梨B.4个老头3个梨C.5个老头6个梨D.7个老头8个梨7.某种高端品牌的家用电器,若按标价打八折销售该电器一件,则可获利润500元,其利润率为20%.现如果按同一标价打九折销售该电器一件,那么获得的纯利润为()A.562.5元B.875元C.550元D.750元8.为确保信息安全,信息需加密传输,发送方将明文加密文件传输给接收方,接收方收到密文后解密还原为明文,已知某种加密规则为,明文a、b对应的密文为a+2b,2a-b,例如:明文1,2对应的密文是5,0,当接收方收到的密文是1,7时,解密得到的明文是()A.3,-1 B.1,-3 C.-3,1 D.-1,39.某同学上学时步行,回家时坐车,路上一共用90min,若往返都坐车,全部行程只需要30min,若往返都步行,全部行程需要(假定步行、坐车的平均速度不变)()A.100 min B.120 min C.150 min D.160 min10.已知某三种图书的价格分别为10元,15元,20元.某学校计划恰好用500元购买上述图书30本,每种图书至少一本,则不同的购书方案有()种.A.10 B.9 C.12 D.1111.某果农要用绳子捆扎甘蔗,有三种规格的绳子可以使用:长绳子1米,每根能捆7根甘蔗;中等长度的绳子0.6米,每根能捆5根甘蔗;短绳子0.3米,每根能捆3根甘蔗.果农最后捆扎好了23根甘蔗,则果农总共最少使用多少米的绳子()A.2.9 B.2.7 C.2.4 D.2.112.某体育文具用品店老板两次购进排球,篮球的个数和费用如表:已知店老板两次购进排球,篮球的单价一样,且一个排球和一个篮球的总价为100元,则b 的值是()A.224 B.276 C.280 D.332二.填空题(共5小题)13.《孙子算经》记载:“今有木,不知长短.引绳度之,余绳四尺五,屈绳量之,不足一尺.问木长几何?”译文:“用一根绳子去量一根长木,绳子还剩余4.5尺,将绳子对折再量长木,长木还剩余1尺,问长木长多少尺?”设绳长x尺,长木为y尺,可列方程组为.14.某商店购进一批衬衫,甲顾客以7折的优惠价格买了20件,而乙顾客以8折的优惠价格买了5件,结果商店都获利200元,那么这批衬衫的进价为元,售价为元.15.一次智力竞赛有20题选择题,每答对一道题得5分,答错一道题扣2分,不答题不给分也不扣,小亮答完全部测试题共得65分,那么他答错了道题.16.小明郊游,早上9时下车,先走平路然后登山,到山顶后又原路返回到下车处,正好是下午2时.若他走平路每小时行4千米,爬山时每小时走3千米,下山时每小时走6千米,小明从下车到山顶走了千米(途中休息时间不计).17.某文化用品商店计划同时购进一批A、B两种型号的计算器,若购进A型计算器10只和B型计算器8只,共需要资金880元;若购进A型计算器2只和B型计算器5只,共需要资金380元.则A型号的计算器的每只进价为元.三.解答题(共5小题)18.“春蕾”爱心社给甲、乙两所学校捐赠图书共5000本,已知捐给甲校的图书比捐给乙校的2倍少700本,求捐给甲、乙学校图书各多少本?19.为了防治“新型冠状病毒”,某市某小区购买了若干瓶消毒剂和若干支红外线测温枪,积极号召主动接受测温和各楼道做好消毒工作.其中,每瓶消毒剂5元,每支红外线测温枪560元,总共消费金额为3000元.问本次小区购买消毒剂的数量和测温枪的数量.20.《九章算术》是我国古代第一部数学专著,此专著中有这样一道题:今有共买鹅,人出九,盈十一;人出六,不足十六,问人数、鹅价几何?这道题的意思是:今有若干人共买一只鹅,若每人出9文钱,则多出11文钱;若每人出6文钱,则相差16文钱,求买鹅的人数和这只鹅的价格.21.某工厂去年的利润(总产值-总支出)为300万元,今年总产值比去年增加了20%,总支出比去年减少了10%,今年的利润为810万元,去年的总产值、总支出各是多少万元?22.滴滴快车是一种便捷的出行工具,计价规则如表:小明与小亮各自乘坐滴滴快车,到同一地点约见,已知到达约见地点时他们的实际行车里程分别为6公里与8.5公里.设小明乘车时间为x分钟,小亮乘车时间为y分钟.(1)则小明乘车费为元(用含x的代数式表示),小亮乘车费为元(用含y的代数式表示);(2)若小明比小亮少支付3元钱,问小明与小亮的乘车时间哪个多?多几分钟?(3)在(2)的条件下,已知乘车时间较少的人先到达约见地点等候,等候时间是他自己乘车时间的一半,且比另一人乘车时间的三分之一少2分钟,问他俩谁先出发?先出发多少分钟?参考答案1-5:ACBDB 6-10:ABACB 11-12:CB13\、14、200;30015、516、1017、4018、设捐给甲校图书x本,捐给乙校图书y本,依题意,得:解得:答:捐给甲校图书3100本,捐给乙校图书1900本.19、设本次小区购买消毒剂的数量和测温枪的数量分别为x和y,根据题意可得:5x+560y=3000,当y=1时,x=488,当y=2时,x=376,当y=3时,x=264,当y=4时,x=152,当y=5时,x=40,答:本次小区购买消毒剂的数量和测温枪的数量分别为488,1或376,2或264,3或152,4或40,5.20、买鹅的人数有9人,鹅的价格为70文21、设去年总产值为x万元,总支出为y万元,根据题意得:解得:答:去年的总产值、总支出各是1800万元、1500万元.22、:(1)小明乘车费为(0.3x+10.8)元(用含x的代数式表示),小亮乘车费为(0.3y+16.5)元.故答案为(0.3x+10.8),(0.3y+16.5).(2)由题意:10.8+0.3x+3=16.5+0.3y,∴x-y=9,∴小明比小亮的乘车时间多,多9分钟.(3)由(2)可知:小亮乘车时间为y分钟,小明乘车时间为(y+9)分钟.由题意:解得y=6.∴小明的乘车时间为6+9=15(分钟),小亮等候的时间为3(分钟),∴小明比小亮先出发,先出发的时间=15-6-3=6(分钟),答:明比小亮先出发,先出发6分钟。
人教版七年级数学下册8.3《实际问题与二元一次方程组(2)》课后习题含答案
8.3《实际问题与二元一次方程组(2)》课后习题含答案1.木工厂有28名工人,每名工人一天加工桌子数与加工椅子数的比是9:20,现在如何安排劳动力能使生产的一张桌子与四个椅子配套.2.有大小两种货车,2辆大货车与3辆小货车一次可以运货15.5吨.5辆大货车与6辆小货车一次可以运货35吨.则3辆大货车与5辆小货车,一次可以运货多少吨?3.足球表面是由一些呈正五边形和正六边形的皮块缝合而成的,共计32块,已知正五边形块数比正六边形块数的一半多2.问两种皮块各有多少?4.两个水池共存水40吨,如果再往甲池注进水4吨,再往乙池注进水8吨,则两池的水一样多,那么两池原来分别有水多少吨?5.用一根绳子环绕一棵大树,若环绕大树3周,则绳子还多4尺.若环绕大树4周,则绳子少了3尺,求这根绳子长多少尺?参考答案1.解:设安排x人加工桌子,安排y人加工椅子,由题可知:x+y=289x:20y=1:4解得: x=10y=18答:安排10人加工桌子,安排18人加工椅子可以使生产的1张桌子与4个椅子配套。
2.解:设一辆大货车一次可以运货x吨,一辆小货车一次可以运货y吨,由题可知:2x+3y=15.55x+6y=35解得: x=4y=2.5则3辆大货车与5辆小货车,一次可以运货的吨数为3×4+5×2.5=24.5(吨)答:3辆大货车与5辆小货车,一次可以运货24.5吨。
3.解:设正五边形x块,正六边形y块,由题可知:x+y=32½ y+2=x解得: x=12y=20答:正五边形12块,正六边形20块。
4.解:设甲水池原有水x吨,乙水池原有y吨,由题可知:x+y=40x+4=y+8解得: x=22y=18答:甲水池原有水22吨,乙水池原有18吨。
5.解:设绳子长为x尺,大树周长为y尺,由题可知:x-3y=44y-x=3解得: x=25y=7答:绳子长为25尺,大树周长为7尺。
人教版初中数学七年级下册第八章《8.3实际问题与二元一次方程组》同步练习题(含答案) (1)
《8.3实际问题与二元一次方程组》一、选择题(每小题只有一个正确答案)1.在一次献爱心活动中,某学校捐给山区一学校初一年级一批图书,如果该年级每个学生分5本还差3本,如果每个学生分4本则多出3本,设这批图书共有y本,该年级共有x名学生,列出方程组为()A. B. C. D.2.小明在拼图时,发现8个一样大小的长方形,恰好可以拼成一个大的长方形如图(1);小红看见了,说:“我也来试一试.”结果小红七拼八凑,拼成了如图(2)那样的正方形,中间还留下了一个洞,恰好是边长为3mm的小正方形,则每个小长方形的面积为()A.120mm2B.135mm2C.108mm2D. 96mm23.甲、乙两人分别从相距40千米的两地同时出发,若同向而行,则5小时后,快者追上慢者;若相向而行,则2小时后,两人相遇,那么快者速度和慢者速度(单位:千米/小时)分别是()A. 14和6B. 24和16C. 28和12D. 30和104.某商场购进甲、乙两种服装后,都加价40%标价出售.“春节”期间商场搞优惠促销,决定将甲、乙两种服装分别按标价的八折和九折出售.某顾客购买甲、乙两种服装共付182元,两种服装的标价之和为210元,则这两种服装的进价各是()A. 50、100B. 50、56C. 56、126D. 100、1265.我国古代数学名著《孙子算经》中记载了一道数学趣题:一百马,一百瓦,大马一个拖三个,小马三个拖一个.大意是:100 匹马恰好拉了 100 片瓦,已知 1 匹大马能拉3 片瓦,3 匹小马能拉 1 片瓦,问有多少匹大马、多少匹小马?若设大马有x 匹,小马有y 匹,那么可列方程组为( )A. B. C. D.6.某班学生分组搞活动,若每组7人,则余下4人;若每组8人,则有一组少3人.设全班有学生x人,分成y个小组,则可得方程组()A.74{83x yx y+=-=B.7y4{83xy x=++=C.7y4{83xy x=-=+D.7y+4{83xy x==+7.已知甲、乙两数之和是42,甲数的3倍等于乙数的4倍,求甲、乙两数.若设甲数为x,乙数为y,由题意得方程组()A.42{43x yx y+==B.42{34x yx y+==C.42{1134x yx y-==D.42{43y xx y+==二、填空题8.某公司向银行申请了甲 、乙两种贷款,共计68万元,每年需付出8.42万元利息。
人教版七年级下册数学 8.3 实际问题与二元一次方程组 同步习题(含答案)
8.3 实际问题与二元一次方程组同步习题1.在社会主义新农村建设中,某村积极响应党的号召,大力发动农户扩大烟叶和蔬菜的种植面积,取得了较好的经济效益.今年该村的烟叶和蔬菜的种植面积比去年增加了800亩,其中烟叶种植面积增加了20%,蔬菜种植面积增加了30%,从而使该村的烟叶和蔬菜种植面积共达到了4 200亩.问该村去年种植烟叶和蔬菜的面积各是多少亩?2.在当地农业技术部门的指导下,小明家增加种植菠萝的投资,使今年的菠萝喜获丰收.如图是小明、爸爸、妈妈的一段对话.请你用所学过的知识帮助小明算出他们家今年种植菠萝的收入.(收入-投资=净赚)3.长沙红星大市场某种高端品牌的家用电器,若按标价打八折销售该电器一件,则可获利润500元,其利润率为20%.现如果按同一标价打九折销售该电器一件,那么获得的纯利润为多少元?4.某商场投入13 800元资金购进甲、乙两种矿泉水共500箱,矿泉水的成本价和销售价如表所示:(1)(2)全部售完500箱矿泉水,该商场共获得利润多少元?5.某商场购进甲、乙两种商品后,甲种商品加价50%、乙种商品加价40%作为标价,适逢元旦,商场举办促销活动,甲种商品打八折销售,乙种商品打八五折销售,某顾客购买甲、乙两种商品各1件,共付款538元,已知商场共盈利88元,求甲、乙两种商品的进价各是多少元.6.张文以两种形式分别储蓄了2 000元和1 000元,一年后全部取出,所得利息为64.8元,已知当时这两种储蓄方式年利率的和为4.23%.问这两种储蓄方式的年利率各是百分之几?(不计利息税)7.某村粮食专业队去年计划生产水稻和小麦共150 t,实际生产了170 t.其中水稻超产15%,小麦超产10%.问该专业队去年实际生产水稻、小麦各为多少吨?8.下面是某一周甲、乙两种股票每股每天的收盘价(单位:元).(收盘价:股票每天交易结束时的价格)(不计手续费、税费等),该人星期二这一天获利200元,星期三这一天获利1 300元,试问该人持有甲、乙股票分别为多少股?9.某地生产一种绿色蔬菜,若在市场上直接销售,每吨的利润为 1 000 元;经粗加工后销售,每吨的利润可达4 500 元;经精加工后销售,每吨的利润涨至7 500 元.当地一家农工商公司收购这种蔬菜140 t,该公司加工厂的生产能力是:如果对蔬菜进行粗加工,每天可加工16 t;如果进行精加工,每天可加工6 t,但两种加工方式不能同时进行.受季节条件的限制,公司必须在15天之内将这批蔬菜处理完毕,为此公司研制了三种加工方案:方案1:将蔬菜全部进行粗加工;方案2:尽可能多地对蔬菜进行精加工,没有来得及加工的蔬菜在市场上直接销售;方案3:将部分蔬菜进行精加工,其余蔬菜进行粗加工,并恰好在15天之内完成. 你认为选择哪种方案获利最多?10.为了打造区域中心城市,实现攀枝花跨越式发展,我市花城新区建设正按投资计划有序推进.花城新区建设工程部,因道路建设需要开挖土石方,计划每小时挖掘土石方540 m3,现决定向某大型机械租赁公司租用甲、乙两种型号的挖掘机来完成这项工作,租赁公司提供的挖掘机有关信息如下表:(1)若租用甲、,则甲、乙两种型号的挖掘机各需多少台?(2)如果每小时支付的租金不超过850元,又恰好完成每小时的挖掘量,那么共有几种不同的租用方案?11.张明沿公路匀速前进,每隔4 min就遇到迎面开来的一辆公共汽车,每隔6 min 就有一辆公共汽车从背后超过他.假定公共汽车的速度不变,而且迎面开来的相邻两车的距离和从背后开来的相邻两车的距离都是1 200 m,求张明前进的速度和公共汽车的速度.12.小华从家里到学校的路是一段平路和一段下坡路,假设他始终保持平路每分钟走60 m,下坡路每分钟走80 m,上坡路每分钟走40 m,则他从家里到学校需10 min,从学校到家里需15 min.问:从小华家到学校的平路和下坡路各有多远?13.一列载客火车和一列运货火车分别在两条平行的铁轨上行驶,载客火车长150 m,运货火车长250 m.若两车相向而行.从车头相遇到车尾离开共需10 s;若载客火车从后面追赶运货火车,从车头追上运货火车车尾到完全超过运货火车共需100 s,试求两车的速度.14.甲、乙两地相距120 km,一艘船从甲地出发顺水航行6 h到达乙地,而从乙地出发逆水航行8 h到达甲地,已知船顺水航行、逆水航行的速度分别为船在静水中的速度与水流速度的和与差,求船在静水中的速度和水流速度.15.甲、乙二人在一环形场地上从A点同时同向匀速跑步,甲的速度是乙的2.5倍,4 min两人首次相遇,此时乙还需要跑300 m才跑完第一圈,求甲、乙二人的速度及环形场地的周长.16.为了参加2015年国际铁人三项(游泳,自行车,长跑)系列赛业余组的比赛,李明针对自行车和长跑项目进行专项训练.某次训练中,李明骑自行车的平均速度为每分钟600 m,跑步的平均速度为每分钟200 m,自行车路段和长跑路段共5 km,用时15 min.求自行车路段和长跑路段的长度.参考答案1.解:设该村去年种植烟叶和蔬菜的面积分别为x亩、y亩,依题意,得解这个方程组,得答:该村去年种植烟叶和蔬菜的面积分别是2 200亩、1 200亩.2.解:设小明家去年种植菠萝的收入为x元,投资为y元,依题意,得解得所以小明家今年种植菠萝的收入为(1+35%)×12 000=1.35×12 000=16 200(元).3.解:设该商品的进价为x元,标价为y元,由题意,得解得x=2 500,y=3750.则3 750×0.9-2 500=875(元).4.解:(1)设商场购进甲种矿泉水x箱,购进乙种矿泉水y箱,由题意,得解得答:商场购进甲种矿泉水300箱,购进乙种矿泉水200箱.(2)300×(36-24)+200×(48-33)=3 600+3 000=6 600(元).答:该商场共获得利润6 600元.5.解:设甲种商品的进价为x元,乙种商品的进价为y元.根据题意,得化简,得解得答:甲种商品的进价为250元,乙种商品的进价为200元.6.解:设存 2 000元和 1 000元的年利率分别是x%,y%,由题意,得解得答:存2 000元和1 000元的年利率分别为2.25%,1.98%.7.解:设该专业队去年计划生产水稻为x t,小麦为y t,依题意,得解得答:该专业队去年实际生产水稻、小麦各为115 t,55 t.8.解:设该人持有甲、乙股票分别为x股、y股,由题意,得解得答:该人持有甲、乙股票分别为1 000股、1 500股.解:观察表格可知:星期二甲种股票每股获利为(12.5-12)元,乙种股票每股获利为+(13.3-13.5)×股(13.3-13.5)元,则星期二这一天总获利为[(12.5-12)×股数甲]元,同理可表示星期三这一天的获利.数乙9.解:方案1获利为4 500×140=630 000(元).方案2获利为7 500×6×15+1 000×(140-6×15)=675 000+50 000=725 000(元). 方案3:设将x t蔬菜进行精加工,y t蔬菜进行粗加工,根据题意,得解得所以方案3获利为7 500×60+4 500×80=810 000(元).因为630 000<725 000<810 000,所以选择方案3获利最多.解:分别计算三种方案的获利情况,然后做出决策.10.解:(1)设甲、乙两种型号的挖掘机各需x台、y台.依题意得:解得答:甲、乙两种型号的挖掘机各需5台、3台.(2)设租用m辆甲型挖掘机,n辆乙型挖掘机.依题意得:60m+80n=540,化简得:3m+4n=27.所以m=9-n.又因为m,n都是正整数,所以方程的解为当m=5,n=3时,支付租金:100×5+120×3=860(元)>850元,超出限额;当m=1,n=6时,支付租金:100×1+120×6=820(元)<850元,符合要求.答:有一种租车方案,即租用1辆甲型挖掘机和6辆乙型挖掘机.11.解:设张明前进的速度是x m/min,公共汽车的速度是y m/min.根据题意,得解这个方程组,得答:张明前进的速度是50 m/min,公共汽车的速度是250 m/min.解:(1)“相向而遇”时,两者所走的路程之和等于两者原来的距离;(2)“同向追及”时,快者所走的路程减去慢者所走的路程等于两者原来的距离.12.解:设平路有x m,下坡路有y m,根据题意,得解得答:小华家到学校的平路和下坡路各为300 m,400 m.13.解:设载客火车的速度为x m/s,运货火车的速度为y m/s.由题意,得解得答:载客火车的速度是22 m/s,运货火车的速度是18 m/s.解:本题是一道特殊的相遇与追及结合的应用题.①两车相向而行是相遇问题,相遇时两车行驶的路程总和=两车车身长之和;②载客火车从后面追赶运货火车是追及问题,追上时两车所走的路程差=两车车身长之和.错车问题属于特殊的行程问题,它与行程问题的主要区别是:行程问题不考虑车本身的长,而错车问题要考虑车本身的长.与错车问题类似的还有过桥问题、过隧道问题等.14.解:设船在静水中的速度为x km/h,水流速度为y km/h,由题意,得解得答:船在静水中的速度为17.5 km/h,水流速度为2.5 km/h.15.解:设乙的速度为x m/min,环形场地的周长为y m,则甲的速度为2.5x m/min,由题意,得解得所以甲的速度为:2.5×150=375(m/min).答:甲的速度为375 m/min,乙的速度为150 m/min,环形场地的周长为900 m. 16.解:设自行车路段的长度为x m,长跑路段的长度为y m,则解得答:自行车路段的长度为3 000 m,长跑路段的长度为2 000 m.。