太原市2020年初中毕业班综合测试二数学

合集下载

太原市2020年中考数学达标检测试题

太原市2020年中考数学达标检测试题

2019-2020学年中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.如图,在△ABC中,∠ACB=90°, ∠ABC=60°, BD平分∠ABC ,P点是BD的中点,若AD=6, 则CP的长为( )A.3.5 B.3 C.4 D.4.52.一、单选题小明和小张两人练习电脑打字,小明每分钟比小张少打6个字,小明打120个字所用的时间和小张打180个字所用的时间相等.设小明打字速度为x个/分钟,则列方程正确的是()A.1201806x x=+B.1201806x x=-C.1201806x x=+D.1201806x x=-3.在一次酒会上,每两人都只碰一次杯,如果一共碰杯55次,则参加酒会的人数为()A.9人B.10人C.11人D.12人4.下列各运算中,计算正确的是()A.a12÷a3=a4B.(3a2)3=9a6C.(a﹣b)2=a2﹣ab+b2D.2a•3a=6a25.某青年排球队12名队员年龄情况如下:年龄18 19 20 21 22人数 1 4 3 2 2则这12名队员年龄的众数、中位数分别是()A.20,19 B.19,19 C.19,20.5 D.19,206.如图,已知////AB CD EF,那么下列结论正确的是()A.AD BCDF CE=B.BC DFCE AD=C.CD BCEF BE=D.CD ADEF AF=7.如图,矩形ABCD中,AB=8,BC=1.点E在边AB上,点F在边CD上,点G、H在对角线AC上.若四边形EGFH是菱形,则AE的长是()A .25B .35C .5D .6 8.若分式11x x -+的值为零,则x 的值是( ) A .1 B .1- C .1± D .29.如图所示,在折纸活动中,小明制作了一张△ABC 纸片,点D,E 分别在边AB,AC 上,将△ABC 沿着DE 折叠压平,A 与A′重合,若∠A=70°,则∠1+∠2= ( )A .70°B .110°C .130°D .140°10.如图,已知BD 是ABC △的角平分线,ED 是BC 的垂直平分线,90BAC ∠=︒,3AD =,则CE 的长为( )A .6B .5C .4D .33二、填空题(本题包括8个小题)11.某中学数学教研组有25名教师,将他们分成三组,在38~45(岁)组内有8名教师,那么这个小组的频率是_______。

太原市2020版八年级下学期期中数学试卷(II)卷

太原市2020版八年级下学期期中数学试卷(II)卷

太原市2020版八年级下学期期中数学试卷(II)卷姓名:________ 班级:________ 成绩:________一、选择题 (共8题;共16分)1. (2分)函数y=kx+b与函数y=在同一坐标系中的大致图象正确的是()A .B .C .D .2. (2分)点P在第四象限,且|x|=3,|y|=5,则点P关于x轴对称点的坐标是()A . (3,-5)B . (-3,5)C . (-5,-3)D . (3,5)3. (2分) (2015八下·孟津期中) 随着电子技术的不断进步,电子元件的尺寸大幅度缩小,在芯片上某种电子元件大约只占0.00000065m2 .这个数用科学记数法表示为()mm2 .A . 6.5×10﹣6B . 0.65×10﹣6C . 65×10﹣6D . 6.5×10﹣74. (2分) (2015八下·孟津期中) 下列分式从左到右边形正确的是()A .B .C .D .5. (2分) (2015八下·孟津期中) 如图,直线y=mx与双曲线y= 交于A,B两点,过点A作AM⊥x轴,垂足为点M,连接BM,若S△ABM=2,则k的值为()A . ﹣2B . 2C . 4D . ﹣46. (2分) (2015八下·孟津期中) 若直线y=kx+b平行于直线y=3x﹣4,且过点(1,﹣2),则该直线的解析式是()A . y=3x﹣2B . y=﹣3x﹣6C . y=3x﹣5D . y=3x+57. (2分) (2015八下·孟津期中) 若M(﹣2,y1),N(﹣1,y2),P(2,y3)三点都在函数y= (k<0)的图像上,则y1 , y2 , y3的大小关系是()A . y3>y1>y2B . y3>y2>y1C . y1>y2>y3D . y2>y1>y38. (2分) (2015八下·孟津期中) 两个一次函数y=ax+b和y=bx+a在同一直角坐标系中的图像可能是()A .B .C .D .二、填空题 (共8题;共8分)9. (1分) (2019八上·孝南月考) 若x2-kxy+9y2是一个完全平方式,则k的值为________.10. (1分) (2019八上·连云港期末) 一个函数的图象经过点,且y随x的增大而增大,则这个函数的解析式可能是________ 答案不唯一,只需写一个11. (1分)(2016·黄石模拟) 在平面直角坐标系中,已知一次函数y=2x+1的图象经过P1(x1 , y1)、P2(x2 , y2)两点,若x1<x2 ,则y1________y2 .(填“>”“<”或“=”)12. (1分)(2018·镇平模拟) 如图,一段抛物线:y=﹣x(x﹣2)(0≤x≤2)记为C1 ,它与x轴交于两点O,A1;将C1绕A1旋转180°得到C2 ,交x轴于A2;将C2绕A2旋转180°得到C3 ,交x轴于A3;…如此进行下去,直至得到C6 ,若点P(11,m)在第6段抛物线C6上,则m=________.13. (1分)已知抛物线p:y=ax2+bx+c的顶点为C,与x轴相交于A、B两点(点A在点B左侧),点C关于x轴的对称点为C′,我们称以A为顶点且过点C′,对称轴与y轴平行的抛物线为抛物线p的“梦之星”抛物线,直线AC′为抛物线p的“梦之星”直线.若一条抛物线的“梦之星”抛物线和“梦之星”直线分别是y=x2+2x+1和y=2x+2,则这条抛物线的解析式为________ .14. (1分) (2015八下·孟津期中) 若关于x的分式方程无解,则a=________.15. (1分) (2015八下·孟津期中) 如图,已知函数y=2x+b与函数y=kx﹣3的图像交于点P,则不等式kx ﹣3>2x+b的解集是________.16. (1分) (2015八下·孟津期中) 观察下列式子:x﹣1 ,﹣2x﹣2 , 4x﹣3 ,﹣8x﹣4 , 16x﹣5…根据你发现的规律,则第n个式子可表示为________三、解答题 (共8题;共58分)17. (5分)计算:()2+(π﹣2016)0﹣4cos60°+()﹣3 .18. (5分) (2015八下·孟津期中) 解分式方程: +3= .19. (5分) (2015八下·孟津期中) 化简:﹣÷ .20. (10分) (2015八下·孟津期中) 某产品每件成本10元,试销阶段每件产品的销售价x(元)与产品的日销售量y(件)之间的关系如下表:x (元)152025…y (件)252015…若日销售量y是销售价x的一次函数.(1)求出日销售量y(件)与销售价x(元)的函数关系式;(2)求销售价定为30元时,每日的销售利润.21. (5分) (2015八下·孟津期中) 某服装加工厂计划加工400套运动服,在加工完160套后,采用了新技术,工作效率比原计划提高了20%,结果共用了18天完成全部任务.求原计划每天加工多少套运动服?22. (7分) (2015八下·孟津期中) 在平面直角坐标系中,点A(﹣3,4)关于y轴的对称点为点B,连接AB,反比例函数y= (x>0)的图像经过点B,过点B作BC⊥x轴于点C,点P是该反比例函数图像上任意一点,过点P作PD⊥x轴于点D,点Q是线段AB上任意一点,连接OQ、CQ.(1)点B的坐标是________;k的值为________(2)判断△QDC与△POD的面积是否相等,并说明理由.23. (6分) (2015八下·孟津期中) 甲、乙两地距离300km,一辆货车和一辆轿车先后从甲地出发驶向乙地.如图,线段OA表示货车离甲地的距离y(km)与时间x(h)之间的函数关系,折线BCDE表示轿车离甲地的距离y(km)与时间x(h)之间的函数关系,根据图像,解答下列问题:(1)线段CD表示轿车在中途停留了________ h;(2)求轿车从甲地出发后经过多长时间追上货车.24. (15分) (2015八下·孟津期中) 甲、乙两座仓库分别有农用车12辆和6辆.现在需要调往A县10辆,需要调往B县8辆,已知从甲仓库调运一辆农用车到A县和B县的运费分别为40元和80元;从乙仓库调运一辆农用车到A县和B县的运费分别为30元和50元.(1)设乙仓库调往A县农用车x辆,求总运费y关于x的函数关系式;(2)若要求总运费不超过900元,问共有几种调运方案;(3)求出总运费最低的调运方案,最低运费是多少元?参考答案一、选择题 (共8题;共16分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、二、填空题 (共8题;共8分)9-1、10-1、11-1、12-1、13-1、14-1、15-1、16-1、三、解答题 (共8题;共58分)17-1、18-1、19-1、20-1、20-2、21-1、22-1、22-2、23-1、23-2、24-1、24-2、24-3、。

山西省2020年中考数学试题(Word版,含答案与解析)

山西省2020年中考数学试题(Word版,含答案与解析)

山西省2020年中考数学试卷一、单选题(共10题;共20分))的结果是()1.计算(−6)÷(−13A. −18B. 2C. 18D. −2【答案】C【考点】有理数的除法)=(-6)×(-3)=18.【解析】【解答】解:(-6)÷(- 13故答案为:C.【分析】根据有理数的除法法则计算即可,除以应该数,等于乘以这个数的倒数.2.自新冠肺炎疫情发生以来,全国人民共同抗疫,各地积极普及科学防控知识.下面是科学防控知识的图片,图片上有图案和文字说明,其中的图案是轴对称图形的是()A. B. C. D.【答案】 D【考点】轴对称图形【解析】【解答】解:A、不是轴对称图形;B、不是轴对称图形;C、不是轴对称图形;D、是轴对称图形;故答案为:D.【分析】根据轴对称图形的概念判断即可.3.下列运算正确的是()A. 3a+2a=5a2B. −8a2÷4a=2aC. (−2a2)3=−8a6D. 4a3⋅3a2=12a6【答案】C【考点】单项式乘单项式,单项式除以单项式,合并同类项法则及应用,积的乘方【解析】【解答】解:A. 3a+2a=5a,故A选项不符合题意;B. −8a2÷4a=−2a,故B选项不符合题意;C. (−2a2)3=−8a6,故C选项符合题意;D. 4a3⋅3a2=12a5,故D选项不符合题意.故答案为C.【分析】利用合并同类项、单项式除法、幂的乘方、单项式乘法的运算法则逐项判定即可.4.下列几何体都是由4个大小相同的小正方体组成的,其中主视图与左视图相同的几何体是()A. B. C. D.【答案】B【考点】简单几何体的三视图【解析】【解答】A、左视图为,主视图为,左视图与主视图不同,故此选项不合题意;B、左视图为,主视图为,左视图与主视图相同,故此选项符合题意;C、左视图为,主视图为,左视图与主视图不同,故此选项不合题意;D、左视图为,主视图为,左视图与主视图不同,故此选项不合题意;故答案为:B.【分析】分别画出四个选项中简单组合体的三视图即可.5.泰勒斯是古希腊时期的思想家,科学家,哲学家,他最早提出了命题的证明.泰勒斯曾通过测量同一时刻标杆的影长,标杆的高度。

2020年山西省中考数学试卷-答案

2020年山西省中考数学试卷-答案

2020年山西省初中学业水平考试数学答案一、 1.【答案】C 2.【答案】D 3.【答案】C 4.【答案】B 5.【答案】D 6.【答案】A 7.【答案】A 8.【答案】B 9.【答案】C 10.【答案】B 二、 11.【答案】5 12.【答案】()31n +13.【答案】甲 14.【答案】2 15.【答案】5485三、16.【答案】解:(1)原式()11638⎛⎫=⨯--- ⎪⎝⎭23=-+1=(2)任务一:①三;分式的基本性质;分式的分子与分母都乘(或除以)同一个不为零的整式,分式的值不变; ②五;括号前是“-”号,去掉括号后,括号里的第二项没有变号; 任务二:解;726x -+任务三:解:答案不唯一,如:最后结果应化为最简分式或整式;约分,通分时,应根据分式的基本性质进行变形;分式化简不能与解分式方程混淆,等. 17.【答案】解:设该电饭煲的进价为x 元 根据题意,得()150%80%128568x +⋅-=解,得580x =.答:该电饭煲的进价为580元 18.【答案】解:连接OB .AB ∵与O 相切于点B ,OB AB ⊥∴.90OBA ∠=︒∴.∵四边形OABC 是平行四边形,AB OC ∴∥90BOC OBA ∠=∠=︒∴ OB OC =∵,()()11180180904522C OBC BOC ∠=∠=︒-∠=⨯︒-︒=︒∴ ∵四边形OABC 是平行四边形,45A C ∠=∠=︒∴180180459045AOB A OBA ∠=︒-∠-∠=︒-︒-︒=︒∴.1114522.5222E DOB AOB ∠=∠=∠=⨯︒=︒.19.【答案】(1)300(2)解:甲更关注在线职位增长率,在“新基建”五大细分领域中,2020年第一季度“5G 基站建设”在线职位与2019年同期相比增长率最高;乙更关注预计投资规模,在“新基建”五大细分领域中,“人工智能”在2020年预计投资规模最大 (3)解:列表如下:或画树状图如下:由列表(或画树状图)可知一共有20种可能出现的结果,且每种结果出现的可能性都相同,其中抽到“W ”和“R ”的结果有2种.所以,P (抽到“W ”和“R ”)212010==. 20.【答案】(1)勾股定理的逆定理(或如果三角形两边的平方和等于第三边的平方,那么这个三角形是直角三角形)(2)证明:由作图方法可知:QR QC =,QS QC =,QCR QRC ∠=∠∴,QCS QSC ∠=∠. 又180SRC RCS RSC ∠+∠+∠=︒∵,180QCR QCS QRC QSC ∠+∠+∠+∠=︒∴.()2180QCR QCS ∠+∠=︒∴.90QCR QCS ∠+∠=︒∴ 即90RCS ∠=︒.(3)解:①如图,直线CP 即为所求.②答案不唯一,如:三边分别相等的两个三角形全等(或SSS );等腰三角形顶角的平分线、底边上的高、底边上的中线重合(或等腰三角形“三线合一”);到一条线段两个端点距离相等的点,在这条线段的垂直平分线上,等.21.【答案】(1)解:连接AD ,并向两方延长,分别交BC ,EF 于点M ,N .由点A 与点D 在同一水平线上,BC ,EF 均垂直于地面可知,MN BC ⊥,MN EF ⊥,所以MN 的长度就是BC 与EF 之间的距离.同时,由两圆弧翼成轴对称可得AM DN =. 在Rt ABM △中,90AMB ∠=︒,28ABM ∠=︒,60AB =,sin AMABM AB∠=∵, sin AM AB ABM =⋅∠∴60sin28600.4728.2=⨯︒≈⨯=. MN AM DN AD =++∴ 228.2210AM AD =+=⨯+ 66.4=.BC ∴与EF 之间的距离为66.4 cm .(2)解法一:设一个人工检票口平均每分钟检票通过的人数为x 人. 根据题意,得18018032x x-=解,得30x =.经检验30x =是原方程的解. 当30x =时,260x =答:一个智能闸机平均每分钟检票通过的人数为60人. 解法二:设一个智能闸机平均每分钟检票通过的人数为x 人. 根据题意,得180180312x x +=.解,得60x =经检验60x =是原方程的解.答:一个智能闸机平均每分钟检票通过的人数为60人. 22.【答案】解:(1)四边形BE FE '是正方形理由:由旋转可知:90E AEB '∠=∠=︒,90EBE '∠=︒又180AEB FEB ∠+∠=︒,90AEB ∠=︒90FEB ∠=︒∴∴四边形BE FE '是矩形.由旋转可知,BE BE '=.∴四边形BE FE '是正方形.(2)CF FE '=.证明:如图,过点D 作DH AE ⊥,垂足为H ,则90DHA ∠=︒,1390∠+∠=︒DA DE =∵12AH AE =∴. ∵四边形ABCD 是正方形, AB DA =∴,90DAB ∠=︒.1290∠+∠=︒∴ 23∠=∠∴90AEB DHA ∠=∠=︒∵, AEB DHA ∴△≌△.AH BE =∴.由(1)知四边形BE FE '是正方形,BE E F '=∴ AH E F '=∴由旋转可得CE AE '=,1''2FE CE =∴CF FE '=∴(3). 23.【答案】解:(1)()2,0A-,()6,0B ,直线l 的函数表达式为:112y x =--.(2)解:如图,根据题意可知,点P 与点N 的坐标分别为21,34P m m m ⎛⎫-- ⎪⎝⎭,1,12N m m ⎛⎫-- ⎪⎝⎭.22113344PM m m m m =--=-++ 111122MN m m =--=+,2211111322442NP m m m m m ⎛⎫⎛⎫=-----=-++ ⎪ ⎪⎝⎭⎝⎭,分两种情况:①当3PM MN =时,得21133142m m m ⎛⎫-++=+ ⎪⎝⎭.解,得10m =,22m =-(舍去)当0m =时,21334m m --=-.∴点P 的坐标为()0,3-②当3PM NP =时,得22111332442m m m m ⎛⎫-++=-++ ⎪⎝⎭.解,得13m =,22m =-(舍去)当3m =时,2115344m m --=-∴点P 的坐标为153,4⎛⎫- ⎪⎝⎭.∴当点N 是线段PM 的三等分点时,点P 的坐标为()0,3-或153,4⎛⎫- ⎪⎝⎭(3)解:∵直线112y x =--与y 轴交于点E ,∴点E 坐标为()0,1-.分两种情况:①如图,当点Q 在y 轴正半轴上时,记为点1Q .过点1Q 作1Q H ⊥直线,垂足为H .则190Q HE AOE ∠=∠=︒,1Q EH AEO ∠=∠∵, 1Q HE AOE ∴△∽.1Q H HEAO OE =∴ 即121Q H HE =12Q H HE =∴.又145Q DH ∠=︒∵,190Q HD ∠=︒,1145HQ D Q DH ∠=∠=︒∴ 12DH Q H HE ==∴.HE ED =∴连接CD ,∵点C 的坐标为()0,3-,点D 的坐标为()4,3-,CD y ⊥∴轴ED ∴HE =1Q H=110Q E ==∴.111019OQ Q E OE =-=-=∴.∴点1Q 的坐标为()0,9.②如图,当点Q 在y 轴负半轴上时,记为点2Q .过点2Q 作2Q G ⊥直线,垂足为G 则290Q GE AOE ∠=∠=︒,2Q EG AEO ∠=∠∵,2Q GE AOE ∴△∽△.2Q G EGAO OE =∴. 即221Q G EG =22Q G EG =∴.又245Q DG ∠=︒∵,290Q GD ∠=︒,2245DQ G Q DG ∠=∠=︒∴22DG Q G EG ==∴.3ED EG DG EG =+=∴.由①可知,ED =.3EG =∴.EG =∴.2Q G ∴2103EQ ==∴.221013133OQ OE EQ =+=+=∴ ∴点2Q 的坐标为130,3⎛⎫- ⎪⎝⎭∴点Q 的坐标为()0,9或130,3⎛⎫- ⎪⎝⎭.。

山西省太原市2020年(春秋版)八年级下学期数学期末考试试卷(II)卷

山西省太原市2020年(春秋版)八年级下学期数学期末考试试卷(II)卷

山西省太原市2020年(春秋版)八年级下学期数学期末考试试卷(II)卷姓名:________ 班级:________ 成绩:________一、选择题 (共6题;共12分)1. (2分)(2017·广东) 下列所述图形中,既是轴对称图形又是中心对称图形的是()A . 等边三角形B . 平行四边形C . 正五边形D . 圆2. (2分)下列调查中,适合采用抽样调查的是()A . 调查本班同学的视力B . 调查一批节能灯管的使用寿命C . 学校招聘教师,对应聘人员面试D . 对乘坐某班客车的乘客进行安检3. (2分) (2018九上·瑞安期末) 若,则的值等于()A .B .C .D .4. (2分)关于x的方程的两根互为相反数,则k的值是()A . 2B . ±2C . -2D . -35. (2分) (2019八上·滕州期中) 如果,且,则的值是()A . 6B . -6C . 6或-6D . 无法确定6. (2分)(2014·连云港) 如图,△ABC的三个顶点分别为A(1,2),B(2,5),C(6,1).若函数y=在第一象限内的图象与△ABC有交点,则k的取值范围是()A . 2≤k≤B . 6≤k≤10C . 2≤k≤6D . 2≤k≤二、填空题 (共10题;共10分)7. (1分) (2020八上·覃塘期末) 若代数式的值为零,则的值是________.8. (1分) (2020七下·九江期末) 必然事件发生的概率是________.9. (1分)已知:多项式x2-kx+1是一个完全平方式,则反比例函数y= 的解析式为 ________.10. (1分) (2019七下·桂林期末) 如图,三角形ABC的面积为1,将三角形ABC沿着过AB的中点D的直线折叠,使点A落在BC边上的A1处,折痕为DE,若此时点E是AC的中点,则图中阴影部分的面积为 ________。

太原市2020年初二下期末质量检测数学试题含解析

太原市2020年初二下期末质量检测数学试题含解析

太原市2020年初二下期末质量检测数学试题一、选择题(每题只有一个答案正确)1.甲、乙两车从A城出发前往B城.在整个行程中,汽车离开A城的距离y与时刻t的对应关系如图所示,则下列结论错误的是()A.A城和B城相距300kmB.甲先出发,乙先到达C.甲车的速度为60km/h,乙车的速度为100km/hD.6:00~7:30乙在甲前,7:30甲追上乙,7:30~9:00甲在乙前2.下面是甲、乙两人10次射击成绩(环数)的条形统计图,则下列说法正确的是()A.甲比乙的成绩稳定B.乙比甲的成绩稳定C.甲、乙两人的成绩一样稳定D.无法确定谁的成绩更稳定3.如图,点E在正方形ABCD内,满足∠AEB=90°,AE=3,BE=4,则阴影部分的面积是()A.12 B.16 C.19 D.254.“凤鸣”文学社在学校举行的图书共享仪式上互赠图书,每个同学都把自己的图书向本组其他成员赠送一本,某组共互赠了210本图书,如果设该组共有x名同学,那么依题意,可列出的方程是()A .x (x+1)=210B .x (x ﹣1)=210C .2x (x ﹣1)=210D .12x (x ﹣1)=210 5.如图所示,一次函数y mx m =+的图像可能是 ( )A .B .C .D .6.下列所叙述的图形中,全等的两个三角形是( )A .含有45°角的两个直角三角形B .腰相等的两个等腰三角形C .边长相等的两个等边三角形D .一个钝角对应相等的两个等腰三角形 7.一次函数y=ax+b 与反比例函数a b y x-=,其中ab <0,a 、b 为常数,它们在同一坐标系中的图象可以是( ) A . B . C .D .8.为了比较甲乙两足球队的身高谁更整齐,分别量出每人身高,发现两队的平均身高一样,甲、乙两队的方差分别是1.7、2.4,则下列说法正确的是( )A .甲、乙两队身高一样整齐B .甲队身高更整齐C .乙队身高更整齐D .无法确定甲、乙两队身高谁更整齐9.如图,在ABCD 中,已知12cm AD =,8cm EC =,AE 平分BAD ∠交BC 边于点E ,则CD 边的长等于( )A .4cmB .6cmC .8cmD .12cm10.在数轴上与原点的距离小于8的点对应的x 满足 ( )A .x <8B .x >8C .x <-8或x >8D .-8<x <8二、填空题11.计算:(1)20=______;(2)3a=______;(3)114=______.12.如图,在梯形ABCD中,AD∥BC,AD=1,BC=4,AC=3,BD=4,则梯形ABCD的面积为______.13.如图,在中国象棋的残局上建立平面直角坐标系,如果“相”和“兵”的坐标分别是(3,-1)和(-3,1),那么“卒”的坐标为_____.14.如图,在等腰梯形ABCD中,AB∥CD,AD AB=,BD⊥BC,则∠C=________.15.若关于x的一元二次方程2220x x m++=有两个不相等的实数根,则m的取值范围________ 16.如图,已知在△ABC中,BC边上的高AD与AC边上的高BE交于点F,且∠BAC=45°,BD=6,CD=4,则△ABC的面积为_____.17.如图,已知函数y=x+2b和y=12ax+3的图象交于点P,则不等式x+2b>12ax+3的解集为________ .三、解答题18.如图①,已知正方形ABCD的边长为1,点P是AD边上的一个动点,点A关于直线BP的对称点是点Q,连接PQ、DQ、CQ、BQ,设AP=x.(1)BQ+DQ的最小值是_______,此时x的值是_______;(2)如图②,若PQ的延长线交CD边于点E,并且∠CQD=90°.①求证:点E是CD的中点;②求x的值.(3)若点P是射线AD上的一个动点,请直接写出当△CDQ为等腰三角形时x的值.19.(6分)已知x=17+52(),y=1752(),求下列各式的值:(1)x2-xy+y2;(2)x y y x +.20.(6分)第一个不透明的布袋中装有除颜色外均相同的7个黑球、5个白球和若干个红球每次摇匀后随机摸出一个球,记下颜色后再放回袋中,通过大量重复摸球试验后,发现摸到红球的频率稳定在0.4,估计袋中红球的个数.21.(6分)某校八(1)班次数学测验(卷面满分100分)成绩统计,有30%的优生,他们的人均分为90分,20%的不及格,他们的人均分为50分,其它同学的人均分为70分,求全班这次测试成绩的平均分. 22.(8分)为了普及环保知识,增强环保意识,某大学某专业学院从本专业450人中随机抽取了30名学生参加环保知识测试,得分(十分制)情况如图所示:(1)这30名学生的测试成绩的众数,中位数,平均数分别是多少?(2)学院准备拿出2000元购买奖品奖励测试成绩优秀的学生,奖品分为三等,成绩为10分的为一等,成绩为8分和9分的为二等,成绩为7分的为三等;学院要求一等奖奖金,二等奖奖金,三等奖奖金分别占20%、40%、40%,问每种奖品的单价各为多少元?(3)如果该专业学院的学生全部参加测试,在(2)问的奖励方案下,请你预测该专业学院将会拿出多少奖金来奖励学生,其中一等奖奖金为多少元?23.(8分)如图,在△ABC中,AB=10,BC=8,AC=1.点D在AB边上(不包括端点),DE⊥AC,DF⊥BC,垂足分别为点E和点F,连结EF.(1)判断四边形DECF的形状,并证明;(2)线段EF是否存在最小值?如果存在,请求出最小值;如果不存在,请说明理由.24.(10分)如图,在平面直角坐标系中,已知△ABC的三个顶点坐标分别是A(1,1),B(4,1),C(3,3).(1)将△ABC向下平移5个单位后得到△A1B1C1,请画出△A1B1C1;(2)将△ABC绕原点O逆时针旋转90°后得到△A2B2C2,请画出△A2B2C2;(3)判断以O,A1,B为顶点的三角形的形状.(无须说明理由)25.(10分)某校260名学生参加植树活动,要求每人植4~7棵,活动结束后随机抽查了20名学生每人的植树量,并分为四种类型,A:4棵;B:5棵;C:6棵;D:7棵.将各类的人数绘制成扇形图(如图1)和条形图(如图2),经确认扇形图是正确的,而条形图尚有一处错误.回答下列问题:(1)写出条形图中存在的错误,并说明理由;(2)写出这20名学生每人植树量的众数、中位数;(3)在求这20名学生每人植树量的平均数时,小宇是这样分析的:① 小宇的分析是从哪一步开始出现错误的?② 请你帮他计算出正确的平均数,并估计这260名学生共植树多少棵.参考答案一、选择题(每题只有一个答案正确)1.D【解析】【分析】根据整个行程中,汽车离开A城的距离y与时刻t的对应关系,即可得到正确结论.【详解】解:A、由题可得,A,B两城相距300千米,故A选项正确;B、由图可得,甲车先出发,乙车先到达B城,故B选项正确;C、甲车的平均速度为:300÷(10﹣5)=60(千米/时);乙车的平均速度为:300÷(9﹣6)=100(千米/时),故C选项正确;D、6:00~7:30甲在乙前,7:30乙追上甲,7:30~9:00乙在甲前,故D选项错误;故选:D.【点睛】此题主要考查了看函数图象,以及一次函数的应用,关键是正确从函数图象中得到正确的信息.2.B【解析】【分析】【详解】通过观察条形统计图可知:乙的成绩更整齐,也相对更稳定,故选B.3.C【解析】【分析】根据勾股定理求出AB,分别求出△AEB和正方形ABCD的面积,即可求出答案.【详解】解:∵在Rt△AEB中,∠AEB=90°,AE=3,BE=4,由勾股定理得:=5,∴正方形的面积=5×5=25,∵△AEB的面积=12AE×BE=12×3×4=6,∴阴影部分的面积=25-6=19,故选:C.【点睛】本题考查了勾股定理,正方形的面积以及三角形的面积的求法,熟练掌握勾股定理是解题的关键.4.B【解析】【详解】设全组共有x名同学,那么每名同学送出的图书是(x−1)本;则总共送出的图书为x(x−1);又知实际互赠了210本图书,则x(x−1)=210.故选:B.5.D【解析】分析:根据题意,当m≠0时,函数y=mx+m是一次函数,结合一次函数的性质,分m>0与m<0两种情况讨论,可得答案.详解:根据题意,当m≠0时,函数y=mx+m是一次函数,有两种情况:(1)当m>0时,其图象过一二三象限,D选项符合,(2)当m<0时,其图象过二三四象限,没有选项的图象符合,故选D.点睛:本题考查了一次函数的定义、图象和性质.熟练应用一次函数的性质对图象进行辨别是解题的关键. 6.C【解析】【分析】根据已知条件,结合全等的判定方法对各个选项逐一判断即可.【详解】解:A、含有45°角的两个直角三角形,缺少对应边相等,所以两个三角形不一定全等;B、腰相等的两个等腰三角形,缺少两腰的夹角或底边对应相等,所以两个三角形不一定全等;C、边长相等的两个等边三角形,各个边长相等,符合全等三角形的判定定理SSS,所以两个三角形一定全等,故本选项正确;D、一个钝角对应相等的两个等腰三角形的腰长或底边不一定对应相等,所以两个三角形不一定全等,故本选项错误.故选:C.【点睛】本题主要考查全等图形的识别,解题的关键是熟练掌握全等三角形的判定定理:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.7.C【解析】【分析】根据一次函数的位置确定a、b的大小,看是否符合ab<0,计算a-b确定符号,确定双曲线的位置.【详解】A. 由一次函数图象过一、三象限,得a>0,交y轴负半轴,则b<0,满足ab<0,∴a−b>0,∴反比例函数y=a bx的图象过一、三象限,所以此选项不正确;B. 由一次函数图象过二、四象限,得a<0,交y轴正半轴,则b>0,满足ab<0,∴a−b<0,∴反比例函数y=a b x-的图象过二、四象限, 所以此选项不正确;C. 由一次函数图象过一、三象限,得a>0,交y 轴负半轴,则b<0,满足ab<0,∴a−b>0,∴反比例函数y=a b x-的图象过一、三象限, 所以此选项正确;D. 由一次函数图象过二、四象限,得a<0,交y 轴负半轴,则b<0,满足ab>0,与已知相矛盾所以此选项不正确;故选C.【点睛】此题考查反比例函数的图象,一次函数的图象,解题关键在于确定a 、b 的大小8.B【解析】【分析】根据方差的意义可作出判断,方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.【详解】∵S 2甲=1.7,S 2乙=2.4,∴S 2甲<S 2乙,∴甲队成员身高更整齐;故选B.【点睛】此题考查方差,掌握波动越小,数据越稳定是解题关键9.A【解析】【分析】首先根据平行四边形的性质,得出12AD BC cm ==,AB CD =,AD BC ∥,进而得出∠DAE=∠AEB ,然后得出∠BAE=∠AEB ,根据等腰三角形的性质,即可得解.【详解】∵平行四边形ABCD∴12AD BC cm ==,AB CD =,AD BC ∥∴∠DAE=∠AEB又∵AE 平分BAD ∠∴∠BAE=∠DAE∴∠BAE=∠AEB∴AB=BE又∵12cm AD =,8cm EC =,∴CD=4 cm故答案为A.【点睛】此题主要考查平行四边形和等腰三角形的性质,熟练掌握,即可解题. 10.D【解析】【详解】解: 数轴上对应x 的点到原点的距离可表示为|x|. 由题意可知8x ,< 解得88x -<<,故选D.二、填空题11.【解析】【分析】= 【详解】解:(1===(2===(3===故答案为:. 【点睛】此题考查的是二次根式的化简,掌握二次根式的乘法公式:ab a b=⨯和除法公式a ab b=是解决此题的关键.12.2【解析】【分析】过点D作DE∥AC,交BC的延长线于点E,得四边形ACED是平行四边形,则DE=AC=3,CE=AD=1.根据勾股定理的逆定理即可证明三角形BDE是直角三角形.根据梯形的面积即为直角三角形BDE的面积进行计算.【详解】解:过点D作DE∥AC,交BC的延长线于点E,则四边形ACED是平行四边形,∴DE=AC=3,CE=AD=1,在三角形BDE中,∵BD=4,DE=3,BE=5,∴根据勾股定理的逆定理,得三角形BDE是直角三角形,∵四边形ACED是平行四边形∴AD=CE,∴AD+BC=BE,∵梯形ABCD与三角形BDE的高相等,∴梯形的面积即是三角形BDE的面积,即3×4÷2=2,故答案是:2.【点睛】本题考查了梯形的性质,梯形中常见的辅助线之一是平移对角线.13.(-2,-2)【解析】【分析】先根据“相”和“兵”的坐标确定原点位置,然后建立坐标系,进而可得“卒”的坐标.【详解】“卒”的坐标为(﹣2,﹣2),故答案是:(﹣2,﹣2).【点睛】考查了坐标确定位置,关键是正确确定原点位置.14.60°【解析】【分析】利用平行线及AB ∥CD ,证明ADB ABD BDC ∠=∠=∠,再证明ADC BCD ∠=∠,再利用直角三角形两锐角互余可得答案.【详解】解:因为:AB ∥CD ,所以:,ADB ABD ∠=∠因为:AD AB =,所以:BDC ABD ∠=∠ ,所以;ADB ABD BDC ∠=∠=∠,因为:等腰梯形ABCD ,所以:ADC BCD ∠=∠,设:BDC x ∠=︒ ,所以2BCD x ∠=︒,因为:BD ⊥BC ,所以:290x x +=,解得:30,x =所以:60C ∠=°.故答案为:60︒.【点睛】本题考查等腰梯形的性质,等腰三角形的性质及平行线的性质,掌握相关性质是解题关键.15.12m < 【解析】【分析】根据∆>0列式求解即可.【详解】由题意得4-8m>0,∴12 m<.故答案为:12 m<.【点睛】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式∆=b2﹣4ac与根的关系,熟练掌握根的判别式与根的关系式解答本题的关键.当∆>0时,一元二次方程有两个不相等的实数根;当∆=0时,一元二次方程有两个相等的实数根;当∆<0时,一元二次方程没有实数根.16.1【解析】分析:首先证明△AEF≌△BEC,推出AF=BC=10,设DF=x.由△ADC∽△BDF,推出AD BDDC DF=,构建方程求出x即可解决问题;详解:∵AD⊥BC,BE⊥AC,∴∠AEF=∠BEC=∠BDF=90°,∵∠BAC=45°,∴AE=EB,∵∠EAF+∠C=90°,∠CBE+∠C=90°,∴∠EAF=∠CBE,∴△AEF≌△BEC,∴AF=BC=10,设DF=x.∵△ADC∽△BDF,∴AD BD DC DF=,∴1064xx+=,整理得x2+10x﹣24=0,解得x=2或﹣12(舍弃),∴AD=AF+DF=12,∴S△ABC=12•BC•AD=12×10×12=1.故答案为1.点睛:本题考查勾股定理、等腰三角形的判定和性质等知识,解题的关键是正确寻找全等三角形或相似三角形解决问题,学会利用参数构建方程解决问题,属于中考常考题型.17.x>1【解析】解:由图象可知:当x>1时,1232x b x+>+.故答案为:x>1.三、解答题18.(11;(3) ①理由详见解析;②13;(3) 33或 【解析】试题分析:(1)根据两点之间,线段最短可知,点Q 在线段BD 上时BQ +DQ 的值最小,是BD 的长度,利用勾股定理即可求出;再根据△PDQ 是等腰直角三角形求出x 的值;(3) ①由对称可知AB=BQ=BC,因此∠BCQ=∠BQC.根据∠BQE=∠BCE=90°,可知∠EQC=∠ECQ,从而EQ=EC.再根据∠CQD=90°可得∠DQE+∠CQE=90°, ∠QCE+∠QDE=90°,而∠EQC=∠ECQ, 所以∠QDE=∠DQE ,从而EQ=ED.易得点E 是CD 的中点;②在Rt △PDE 中,PE= PQ+QE=x+12,PD=1﹣x ,PQ=x ,根据勾股定理即可求出x 的值.(3) △CDQ 为等腰三角形分两种情况:①CD 为腰,以点C 为圆心,以CD 的长为半径画弧,两弧交点即为使得△CDQ 为等腰三角形的Q 点; ②CD 为底边时,作CD 的垂直平分线,与AC 的交点即为△CDQ 为等腰三角形的Q 点,则共有 3个Q 点,那么也共有3个P 点,作辅助线,利用直角三角形的性质求之即得.试题解析:(1. (3)①证明:在正方形ABCD 中,AB=BC ,∠A=∠BCD=90°.∵Q 点为A 点关于BP 的对称点,∴AB=QB ,∠A=∠PQB=90°,∴QB=BC ,∠BQE=∠BCE ,∴∠BQC=∠BCQ ,∴∠EQC=∠EQB ﹣∠CQB=∠ECB ﹣∠QCB=∠ECQ ,∴EQ=EC .在Rt △QDC 中,∵∠QDE=90°﹣∠QCE ,∠DQE=90°﹣∠EQC ,∴∠QDE=∠DQE ,∴EQ=ED ,∴CE=EQ=ED ,即E 为CD 的中点.②∵AP=x ,AD=1,∴PD=1﹣x ,PQ=x ,CD=1.在Rt △DQC 中,∵E 为CD 的中点,∴DE=QE=CE=12, ∴PE=PQ+QE=x+12, ∴()22211x+=1-x +22⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭, 解得 x=13.(3)△CDQ 为等腰三角形时x 的值为3-3,33,3+3. 如图,以点B 为圆心,以AB 的长为半径画弧,以点C 为圆心,以CD 的长为半径画弧,两弧分别交于Q 1,Q 3.此时△CDQ 1,△CDQ 3都为以CD 为腰的等腰三角形.作CD 的垂直平分线交弧AC 于点Q 3,此时△CDQ 3以CD 为底的等腰三形.以下对此Q 1,Q 3,Q 3.分别讨论各自的P 点,并求AP 的值.讨论Q ₁:如图作辅助线,连接BQ 1、CQ 1,作PQ 1⊥BQ 1交AD 于P ,过点Q 1,作EF ⊥AD 于E ,交BC 于F .∵△BCQ 1为等边三角形,正方形ABCD 边长为1,∴132Q F =,1232Q E =. 在四边形ABPQ 1中,∵∠ABQ 1=30°,∴∠APQ 1=150°,∴△PEQ 1为含30°的直角三角形,∴PE=123332EQ -=. ∵AE=12, ∴x=AP=AE-PE=3-3.②讨论Q 3,如图作辅助线,连接BQ 3,AQ 3,过点Q 3作PG ⊥BQ 3,交AD 于P ,连接BP ,过点Q 3作EF ⊥CD 于E ,交AB 于F .∵EF 垂直平分CD ,∴EF 垂直平分AB ,∴AQ 3=BQ 3.∵AB=BQ 3,∴△ABQ 3为等边三角形.在四边形ABQP 中,∵∠BAD=∠BQP=90°, ∠ABQ ₂=60°,∴∠APE=130°∴∠EQ 3G=∠DPG=180°-130°=60°,∴223Q E -=, ∴233-, ∴3,∴PD=1-33,∴x=AP=1-PD=33.③对Q3,如图作辅助线,连接BQ1,CQ1,BQ3,CQ3,过点Q3作BQ3⊥PQ3,交AD的延长线于P,连接BP,过点Q1,作EF⊥AD于E,此时Q3在EF上,不妨记Q3与F重合.∵△BCQ1为等边三角形,△BCQ3为等边三角形,BC=1,∴123QQ=123 2Q E=,∴23 EF+=.在四边形ABQ3P中∵∠ABF=∠ABC+∠CBQ3=150°,∴∠EPF=30°,∴3233+∵AE=12,∴3.综上所述,△CDQ为等腰三角形时x的值为3333考点:⒈四边形综合题; ⒉正方形的性质; ⒊等腰三角形的性质.19.(1) 112;(2) 12.【解析】试题分析:由x=17+52(),y=1752(),得出7xy=12,由此进一步整理代数式,整体代入求得答案即可.试题解析:(1)∵x =12(,y =12(,∴x +y xy =12, ∴x 2-xy +y 2=(x +y)2-3xy =7-32=112; (2) x y y x +=2x+y)2xy xy -(=7-112=12. 20.估计袋中红球8个.【解析】【分析】根据摸到红球的频率,可以得到摸到黑球和白球的概率之和,从而可以求得总的球数,从而可以得到红球的个数.【详解】解:由题意可得:摸到黑球和白球的频率之和为:10.40.6-=,∴总的球数为:(75)0.620+÷=,∴红球有:20(75)8-+=(个).答:估计袋中红球8个.【点睛】此题主要考查了利用频率估计概率,本题利用了用大量试验得到的频率可以估计事件的概率.关键是根据红球的频率得到相应的等量关系.21.平均分1【解析】【分析】根据加权平均数的计算方法可计算出这次测验全班成绩的平均数.【详解】 解:9030%5020%7050%72x =⨯+⨯+⨯=.故答案为:平均分1.【点睛】本题考查加权平均数的计算方法,正确的计算加权平均数是解题的关键.22.(1)众数是7,中位数是 7,平均数是6.5,(2)一,二,三等奖奖金每种奖品的单价分别为200元,160元,100元;(3)一等奖奖金为6000元.【解析】【分析】()1根据众数,中位数,平均数的定义即可进行解答;()2分别用总钱数⨯百分比÷人数可得每种奖品的单价;()3先计算一等奖的人数占30人的百分比,再与450相乘可得一等奖的总人数,根据单价200元可得结论.【详解】()1由图形可知:众数是7,中位数:第15个数和第16个数的平均数:7, 平均数:13344576873829210195x 6.53030⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯===; ()2一等奖奖金:200020%2200⨯÷=元,二等奖奖金:()200040%32160⨯÷+=元,三等奖奖金:200040%8100⨯÷=元,答:一,二,三等奖奖金每种奖品的单价分别为200元,160元,100元;()234502006000(30⨯⨯=元), 答:其中一等奖奖金为6000元.【点睛】 本题考查了众数、平均数和中位数的定义,用到的知识点:一组数据中出现次数最多的数据叫做这组数据的众数.将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.平均数是指在一组数据中所有数据之和再除以数据的个数.23.(1)四边形DECF 是矩形,理由见解析;(2)存在,EF=4.2.【解析】【分析】(1)根据勾股定理的逆定理得到△ABC 是直角三角形,∠C=90°,由垂直的定义得到∠DEC=DFC=90°,于是得到四边形DECF 是矩形;(2)连结CD ,由矩形的性质得到CD=EF ,当CD ⊥AB 时,CD 取得最小值,即EF 为最小值,根据三角形的面积即可得到结论.【详解】解:(1)四边形DECF 是矩形,理由:∵在△ABC中,AB=10,BC=2,AC=1,∴BC2+AC2=22+12=102=AB2,∴△ABC是直角三角形,∠C=90°,∵DE⊥AC,DF⊥BC,∴∠DEC=DFC=90°,∴四边形DECF是矩形;(2)存在,连结CD,∵四边形DECF是矩形,∴CD=EF,当CD⊥AB时,CD取得最小值,即EF为最小值,∵S△ABC=12AB•CD=12AC•BC,∴12⨯10×CD=12⨯1×2,∴EF=CD=4.8.【点睛】本题考查了矩形的判定和性质,垂线段最短,勾股定理的逆定理,三角形的面积,熟练掌握矩形的判定定理是解题的关键.24.(1)画图见解析;(2)画图见解析;(3)三角形的形状为等腰直角三角形.【解析】【分析】(1)利用点平移的坐标特征写出A1、B1、C1的坐标,然后描点即可得到△A1B1C1为所作;(2)利用网格特定和旋转的性质画出A、B、C的对应点A2、B2、C2,从而得到△A2B2C2,(3)根据勾股定理逆定理解答即可.【详解】(1)如图所示,△A1B1C1即为所求;(2)如图所示,△A2B2C2即为所求;(3)三角形的形状为等腰直角三角形,OB=OA1224117+A12253+34即OB2+OA12=A1B2,所以三角形的形状为等腰直角三角形.【点睛】本题考查了作图﹣旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.25.解:(1)D错误(2)众数为1,中位数为1.(2)①小宇的分析是从第二步开始出现错误的.②1278(颗)【解析】分析:(1)条形统计图中D的人数错误,应为20×10%.(2)根据条形统计图及扇形统计图得出众数与中位数即可.(2)①小宇的分析是从第二步开始出现错误的;②求出正确的平均数,乘以260即可得到结果.解:(1)D错误,理由为:∵共随机抽查了20名学生每人的植树量,由扇形图知D占10%,∴D的人数为20×10%=2≠2.(2)众数为1,中位数为1.(2)①小宇的分析是从第二步开始出现错误的.②44586672x 5.320⨯+⨯+⨯+⨯==(棵).估计260名学生共植树1.2×260=1278(颗)。

2020年山西太原中考数学试卷及答案

2020年山西太原中考数学试卷及答案第I 卷选择题(共30分)一、选择题(本大题共10个小题,每小题3分,共30分.在每个小题给出的四个选项中,只有一项符合题目要求,请选出并在答题卡上将该项涂黑) 1.计算1(6)3⎛⎫-÷- ⎪⎝⎭的结果是() A .18-B .2C .18D .2-2.自新冠肺炎疫情发生以来,全国人民共同抗疫,各地积极普及科学防控知识.下面是科学防控知识的图片,图片上有图案和文字说明,其中的图案是轴对称图形的是()A .B .C .D .3.下列运算正确的是() A .2325a a a +=B .2842a a a -÷=C .()32628aa -=- D .3264312a a a ⋅=4.下列几何体都是由4个大小相同的小正方体组成的,其中主视图与左视图相同的几何体是()A .B .C .D .5.泰勒斯是古希腊时期的思想家,科学家,哲学家,他最早提出了命题的证明.泰勒斯曾通过测量同一时刻标杆的影长,标杆的高度。

金字塔的影长,推算出金字塔的高度。

这种测量原理,就是我们所学的()A .图形的平移B .图形的旋转C .图形的轴对称D .图形的相似6.不等式组26041x x ->⎧⎨-<-⎩的解集是()A .5x >B .35x <<C .5x <D .5x >-7.已知点()11,A x y ,()22,B x y ,()33,C x y 都在反比例函数ky x=()0k <的图像上,且1230x x x <<<,则1y ,2y ,3y 的大小关系是()A .213y y y >>B .321y y y >>C .123y y y >>D .312y y y >>8.中国美食讲究色香味美,优雅的摆盘造型也会让美食锦上添花.图①中的摆盘,其形状是扇形的一部分,图②是其几何示意图(阴影部分为摆盘),通过测量得到12AC BD cm ==,C ,D 两点之间的距离为4cm ,圆心角为60︒,则图中摆盘的面积是()图①图② A .280cm πB .240cm πC .224cm πD .22cm π9.竖直上抛物体离地面的高度()h m 与运动时间()t s 之间的关系可以近似地用公式2005h t v t h =-++表示,其中()0h m 是物体抛出时离地面的高度,()0/v m s 是物体抛出时的速度.某人将一个小球从距地面1.5m 的高处以20/m s 的速度竖直向上抛出,小球达到的离地面的最大高度为()A .23.5mB .22.5mC .21.5mD .20.5m10.如图是一张矩形纸板,顺次连接各边中点得到菱形,再顺次连接菱形各边中点得到一个小矩形.将一个飞镖随机投掷到大矩形纸板上,则飞镖落在阴影区域的概率是()A .13B .14C .16D .18第II 卷非选择题(共90分)二、填空题(本大题共5个小题,每小题3分,共15分) 11.计算:2(32)24+-=_______.12.如图是一组有规律的图案,它们是由边长相等的正三角形组合而成,第1个图案有4个三角形,第2个图案有7个三角形,第3个图案有10个三角形按此规律摆下去,第n 个图案有_______个三角形(用含n 的代数式表示).……第1个第2个第3个第4个13.某校为了选拔一名百米赛跑运动员参加市中学生运动会,组织了6次预选赛,其中甲,乙两名运动员较为突出,他们在6次预选赛中的成绩(单位:秒)如下表所示: 甲12.0 12.0 12.2 11.8 12.1 11.9乙 12.3 12.1 11.8 12.0 11.7 12.1由于甲,乙两名运动员的成绩的平均数相同,学校决定依据他们成绩的稳定性进行选拔,那么被选中的运动员是______.14.如图是一张长12cm ,宽10cm 的矩形铁皮,将其剪去两个全等的正方形和两个全等的矩形,剩余部分(阴影部分)可制成底面积224cm 是的有盖的长方体铁盒.则剪去的正方形的边长为______cm .15.如图,在Rt ABC ∆中,90ACB ∠=︒,3AC =,4BC =,CD AB ⊥,垂足为D ,E 为BC 的中点,AE 与CD 交于点F ,则DF 的长为_______.三、解答题(本大题共8个小题,共75分.解答应写出文字说明,证明过程或演算步骤)16.(1)计算:321(4)(41)2⎛⎫-⨯---+ ⎪⎝⎭(2)下面是小彬同学进行分式化简的过程,请认真阅读并完成相应任务.229216926x x x x x -+-+++ 2(3)(3)21(3)2(3)x x x x x +-+=-++第一步32132(3)x x x x -+=-++第二步 2(3)212(3)2(3)x x x x -+=-++第三步26(21)2(3)x x x --+=+第四步26212(3)x x x --+=+第五步526x =-+第六步任务一:填空:①以上化简步骤中,第_____步是进行分式的通分,通分的依据是____________________或填为_____________________________;②第_____步开始出现错误,这一步错误的原因是_____________________________________; 任务二:请直接写出该分式化简后的正确结果;任务三:除纠正上述错误外,请你根据平时的学习经验,就分式化简时还需要注意的事项给其他同学提一条建议. 17.2020年5月份,省城太原开展了“活力太原·乐购晋阳”消费暖心活动,本次活动中的家电消费券单笔交易满600元立减128元(每次只能使用一张)某品牌电饭煲按进价提高50%后标价,若按标价的八折销售,某顾客购买该电饭煲时,使用一张家电消费券后,又付现金568元.求该电饭煲的进价.18.如图,四边形OABC 是平行四边形,以点O 为圆心,OC 为半径的O 与AB 相切于点B ,与AO 相交于点D ,AO 的延长线交O 于点E ,连接EB 交OC 于点F ,求C ∠和E ∠的度数.19.2020年国家提出并部署了“新基建”项目,主要包含“特高压,城际高速铁路和城市轨道交通,5G 基站建设,工业互联网,大数据中心,人工智能,新能源汽车充电桩”等.《2020新基建中高端人才市场就业吸引力报告》重点刻画了“新基建”中五大细分领域(5G 基站建设,工业互联网,大数据中心,人工智能,新能源汽车充电桩)总体的人才与就业机会.下图是其中的一个统计图. 请根据图中信息,解答下列问题:(1)填空:图中2020年“新基建”七大领域预计投资规模的中位数是______亿元;(2)甲,乙两位待业人员,仅根据上面统计图中的数据,从五大细分领域中分别选择了“5G 基站建设”和“人工智能”作为自己的就业方向,请简要说明他们选择就业方向的理由各是什么;(3)小勇对“新基建”很感兴趣,他收集到了五大细分领域的图标,依次制成编号为W ,G ,D ,R ,X 的五张卡片(除编号和内容外,其余完全相同),将这五张卡片背面朝上,洗匀放好,从中随机抽取一张(不放回),再从中随机抽取一张.请用列表或画树状图的方法求抽到的两张卡片恰好是编号为W (5G 基站建设)和R (人工智能)的概率.W G D R X 20.阅读与思考下面是小宇同学的数学日记,请仔细阅读并完成相应的任务. ×年×月×日星期日没有直角尺也能作出直角今天,我在书店一本书上看到下面材料:木工师傅有一块如图①所示的四边形木板,他已经在木板上画出一条裁割线AB ,现根据木板的情况,要过AB 上的一点C ,作出AB 的垂线,用锯子进行裁割,然而手头没有直角尺,怎么办呢?办法一:如图①,可利用一把有刻度的直尺在AB 上量出30CD cm =,然后分别以D ,C 为圆心,以50cm 与40cm 为半径画圆弧,两弧相交于点E ,作直线CE ,则DCE ∠必为90︒.图①办法二:如图②,可以取一根笔直的木棒,用铅笔在木棒上点出M ,N 两点,然后把木棒斜放在木板上,使点M 与点C 重合,用铅笔在木板上将点N 对应的位置标记为点Q ,保持点N 不动,将木棒绕点N 旋转,使点M 落在AB 上,在木板上将点M 对应的位置标记为点R .然后将RQ 延长,在延长线上截取线段QS MN =,得到点S ,作直线SC ,则90RCS ∠=︒.图②我有如下思考:以上两种办法依据的是什么数学原理呢?我还有什么办法不用直角尺也能作出垂线呢? …… 任务:(1)填空;“办法一”依据的一个数学定理是_____________________________________; (2)根据“办法二”的操作过程,证明90RCS ∠=︒;(3)①尺规作图:请在图③的木板上,过点C 作出AB 的垂线(在木板上保留作图痕迹,不写作法); ②说明你的作法依据的数学定理或基本事实(写出一个即可)21.图①是某车站的一组智能通道闸机,当行人通过时智能闸机会自动识别行人身份,识别成功后,两侧的圆弧翼闸会收回到两侧闸机箱内,这时行人即可通过.图②是两圆弧翼展开时的截面图,扇形ABC 和DEF 是闸机的“圆弧翼”,两圆弧翼成轴对称,BC 和EF 均垂直于地面,扇形的圆心角28ABC DEF ∠=∠=︒,半径60BA ED cm ==,点A 与点D 在同一水平线上,且它们之间的距离为10cm .图①图②(1)求闸机通道的宽度,即BC 与EF 之间的距离(参考数据:sin 280.47︒≈,cos280.88︒≈,tan 280.53︒≈); (2)经实践调查,一个智能闸机的平均检票速度是一个人工检票口平均检票速度的2倍,180人的团队通过一个智能闸机口比通过一个人工检票口可节约3分钟,求一个智能闸机平均每分钟检票通过的人数. 22.综合与实践 问题情境:如图①,点E 为正方形ABCD 内一点,90AEB ∠=︒,将Rt ABE ∆绕点B 按顺时针方向旋转90︒,得到CBE '∆(点A 的对应点为点C ),延长AE 交CE '于点F ,连接DE .猜想证明:图①图②(1)试判断四边形BE FE '的形状,并说明理由;(2)如图②,若DA DE =,请猜想线段CF 与FE '的数量关系并加以证明; 解决问题:(3)如图①,若15AB =,3CF =,请直接写出DE 的长. 23.综合与探究 如图,抛物线2134y x x =--与x 轴交于A ,B 两点(点A 在点B 的左侧),与y 轴交于点C .直线l 与抛物线交于A ,D 两点,与y 轴交于点E ,点D 的坐标为()4,3-.(1)请直接写出A ,B 两点的坐标及直线l 的函数表达式;(2)若点P 是抛物线上的点,点P 的横坐标为m ()0m ≥,过点P 作PM x ⊥轴,垂足为M .PM 与直线l 交于点N ,当点N 是线段PM 的三等分点时,求点P 的坐标; (3)若点Q 是y 轴上的点,且45ADQ ∠=︒,求点Q 的坐标.参考答案1-5:CDCBD 6-10:AABCB 11.512.()31n +13.甲14.215.548516.解:(1)原式116(3)8⎛⎫=⨯--- ⎪⎝⎭23=-+1=(2)任务一:①三;分式的基本性质;分式的分子与分母都乘(或除以)同一个不为零的整式,分式的值不变; ②五;括号前是“-”号,去掉括号后,括号里的第二项没有变号; 任务二:解;726x -+任务三:解:答案不唯一,如:最后结果应化为最简分式或整式;约分,通分时,应根据分式的基本性质进行变形;分式化简不能与解分式方程混淆,等. 17.解:设该电饭煲的进价为x 元根据题意,得(150%)80%128568x +⋅-= 解,得580x =.答;该电饭煲的进价为580元 18.解:连接OB .AB 与O 相切于点B ,OB AB ∴⊥.90OBA ∴∠=︒.四边形OABC 是平行四边形,//AB OC ∴90BOC OBA ∴∠=∠=︒ OB OC =,()()11180180904522C OBC BOC ∴∠=∠=︒-∠=⨯︒-︒=︒ 四边形OABC 是平行四边形,45A C ∴∠=∠=︒180180459045AOB A OBA ∴∠=︒-∠-∠=︒-︒-︒=︒.1114522.5222E DOB AOB ∠=∠=∠=⨯︒=︒.19.(1)300(2)解:甲更关注在线职位增长率,在“新基建”五大细分领域中,2020年第一季度“5G 基站建设”在线职位与2019年同期相比增长率最高;乙更关注预计投资规模,在“新基建”五大细分领域中,“人工智能”在2020年预计投资规模最大(3)解:列表如下:第二张 第一张WGD R XW(),W G(),W D (),W R (),W X G(),G W(),G D(),G R(),G X D(),D W (),D G(),D R(),D X R(),R W (),R G (),R D(),R XX(),X W(),X G(),X D(),X R或画树状图如下:由列表(或画树状图)可知一共有20种可能出现的结果,且每种结果出现的可能性都相同,其中抽到“W ”和“R ”的结果有2种.所以,P (抽到“W ”和“R ”)212010==. 20.(1)勾股定理的逆定理(或如果三角形两边的平方和等于第三边的平方,那么这个三角形是直角三角形);(2)证明:由作图方法可知:QR QC =,QS QC =,QCR QRC ∴∠=∠,QCS QSC ∠=∠.又180SRC RCS RSC ∠+∠+∠=︒,180QCR QCS QRC QSC ∴∠+∠+∠+∠=︒. 2()180QCR QCS ∴∠+∠=︒. 90QCR QCS ∴∠+∠=︒即90RCS ∠=︒.(3)解:①如图,直线CP 即为所求.作图正确.图③②答案不唯一,如:三边分别相等的两个三角形全等(或SSS );等腰三角形顶角的平分线、底边上的高、底边上的中线重合(或等腰三角形“三线合一”);到一条线段两个端点距离相等的点,在这条线段的垂直平分线上,等. 21.解:连接AD ,并向两方延长,分别交BC ,EF 于点M ,N .由点A 与点D 在同一水平线上,BC ,EF 均垂直于地面可知,MN BC ⊥,MN EF ⊥,所以MN 的长度就是BC 与EF 之间的距离.同时,由两圆弧翼成轴对称可得AM DN =. 在Rt ABM ∆中,90AMB ∠=︒,28ABM ∠=︒,60AB =,sin AMABM AB∠=, sin AM AB ABM ∴=⋅∠60sin 28600.4728.2=⨯︒≈⨯=.228.221066.4MN AM DN AD AM AD ∴=++=+=⨯+=. BC ∴与EF 之间的距离为66.4cm .(1)解法一:设一个人工检票口平均每分钟检票通过的人数为x 人. 根据题意,得18018032x x-= 解,得30x =.经检验30x =是原方程的解 当30x =时,260x =答:一个智能闸机平均每分钟检票通过的人数为60人. 解法二:设一个智能闸机平均每分钟检票通过的人数为x 人. 根据题意,得180180312x x +=.解,得60x =经检验60x =是原方程的解.答:一个智能闸机平均每分钟检票通过的人数为60人.22.解:(1)四边形BE FE '是正方形理由:由旋转可知:90E AEB '∠=∠=︒,90EBE '∠=︒又180AEB FEB ∠+∠=︒,90AEB ∠=︒90FEB ∴∠=︒∴四边形BE FE '是矩形.由旋转可知,BE BE '=.∴四边形BE FE '是正方形.(2)CF FE '=.证明:如图,过点D 作DH AE ⊥,垂足为H ,则90DHA ∠=︒,1390∠+∠=︒DA DE =12AH AE ∴=. 四边形ABCD 是正方形,AB DA ∴=,90DAB ∠=︒.1290∴∠+∠=︒23∴∠=∠90AEB DHA ∠=∠=︒,AEB DHA ∴∆≅∆.AH BE ∴=.由(1)知四边形BE FE '是正方形,BE E F '∴=AH E F '∴=由旋转可得CE AE '=,12FE CE ''∴= CF FE '∴=(3)317.图②23.解:(1)()2,0A -,()6,0B ,直线l 的函数表达式为:112y x =--. (2)解:如图,根据题意可知,点P 与点N 的坐标分别为 21,34P m m m ⎛⎫-- ⎪⎝⎭,1,12N m m ⎛⎫-- ⎪⎝⎭. 22113344PM m m m m =--=-++ 111122MN m m =--=+, 2211111322442NP m m m m m ⎛⎫⎛⎫=-----=-++ ⎪ ⎪⎝⎭⎝⎭, 分两种情况:①当3PM MN =时,得21133142m m m ⎛⎫-++=+ ⎪⎝⎭. 解,得10m =,22m =-(舍去) 当0m =时,21334m m --=-. ∴点P 的坐标为()0,3-②当3PM NP =时,得22111332442m m m m ⎛⎫-++=-++ ⎪⎝⎭. 解,得13m =,22m =-(舍去) 当3m =时,2115344m m --=- ∴点P 的坐标为153,4⎛⎫- ⎪⎝⎭.∴当点N 是线段PM 的三等分点时,点P 的坐标为()0,3-或153,4⎛⎫- ⎪⎝⎭(3)解:直线112y x =--与y 轴交于点E , ∴点E 坐标为()0,1-.分两种情况:①如图,当点Q 在y 轴正半轴上时,记为点1Q . 过点1Q 作1Q H ⊥直线l ,垂足为H .则190Q HE AOE ∠=∠=︒, 1Q EH AEO ∠=∠,1Q HE AOE ∴∆∆. 1Q H HE AO OE∴= 即121Q H HE = 12Q H HE ∴=.又145Q DH ∠=︒,190Q HD ∠=︒,1145HQ D Q DH ∴∠=∠=︒12DH Q H HE ∴==.HE ED ∴=连接CD ,点C 的坐标为()0,3-,点D 的坐标为()4,3-, CD y ∴⊥轴2222[1(3)]425ED EC CD ∴=+=---+=. 25HE =145Q H =.110Q E ∴===. 111019OQ Q E OE ∴=-=-=. ∴点1Q 的坐标为()0,9.②如图,当点Q 在y 轴负半轴上时,记为点2Q .过点2Q 作2Q G ⊥直线l ,垂足为G 则290Q GE AOE ∠=∠=︒, 2Q EG AEO ∠=∠,2~Q GE AOE ∴∆∆. 2Q G EG AO OE∴=. 即221Q G EG = 22Q G EG ∴=.又245Q DG ∠=︒,290Q GD ∠=︒, 2245DQ G Q DG ∴∠=∠=︒22DG Q G EG ∴==.3ED EG DG EG ∴=+=.由①可知,ED =3EG ∴=3EG ∴=.23Q G ∴=2103EQ ∴===.221013133OQ OE EQ ∴=+=+= ∴点2Q 的坐标为130,3⎛⎫- ⎪⎝⎭∴点Q 的坐标为()0,9或130,3⎛⎫- ⎪⎝⎭.。

2020山西省太原市中考数学达标测试试题

2019-2020学年中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.如图,小明为了测量河宽AB ,先在BA 延长线上取一点D ,再在同岸取一点C ,测得∠CAD=60°,∠BCA=30°,AC=15 m ,那么河AB 宽为( )A .15 mB .53 mC .103 mD .123 m2.如图,在矩形ABCD 中,P 、R 分别是BC 和DC 上的点,E 、F 分别是AP 和RP 的中点,当点P 在BC 上从点B 向点C 移动,而点R 不动时,下列结论正确的是( )A .线段EF 的长逐渐增长B .线段EF 的长逐渐减小C .线段EF 的长始终不变D .线段EF 的长与点P 的位置有关3.如图,将一张三角形纸片ABC 的一角折叠,使点A 落在ABC ∆处的'A 处,折痕为DE .如果A α∠=,'CEA β∠=,'BDA γ∠=,那么下列式子中正确的是( )A .2γαβ=+B .2γαβ=+C .γαβ=+D .180γαβ=--4.如图,A,B 两点分别位于一个池塘的两端,小聪想用绳子测量A,B 间的距离,但绳子不够长,一位同学帮他想了一个主意:先在地上取一个可以直接到达A,B 的点C,找到AC,BC 的中点D,E,并且测出DE 的长为10m,则A,B 间的距离为( )A .15mB .25mC .30mD .20m5.平面直角坐标系内一点()2, 3P -关于原点对称点的坐标是( )A .()3,2-B .()2,3C .()2,3--D .()2,3-6.某种商品的进价为800元,出售时标价为1200元,后来由于该商品积压,商店准备打折销售,但要保证利润率不低于5%,则至多可打( ) A .6折 B .7折 C .8折 D .9折7.一、单选题如图: 在ABC ∆中,CE 平分ACB ∠,CF 平分ACD ∠,且//EF BC 交AC 于M ,若5CM =,则22CE CF +等于( )A .75B .100C .120D .1258.如图,边长为1的小正方形构成的网格中,半径为1的⊙O 的圆心O 在格点上,则∠BED 的正切值等于( )A .25B .5 C .2 D .129.如图,两个同心圆(圆心相同半径不同的圆)的半径分别为6cm 和3cm ,大圆的弦AB 与小圆相切,则劣弧AB 的长为( )A .2πcmB .4πcmC .6πcmD .8πcm10.如图,在△ABC 中,∠C=90°,M 是AB 的中点,动点P 从点A 出发,沿AC 方向匀速运动到终点C,动点Q 从点C 出发,沿CB 方向匀速运动到终点B .已知P ,Q 两点同时出发,并同时到达终点.连结MP ,MQ ,PQ.在整个运动过程中,△MPQ 的面积大小变化情况是( )A.一直增大B.一直减小C.先减小后增大D.先增大后减小二、填空题(本题包括8个小题)11.如图,AB是⊙O的直径,C是⊙O上的点,过点C作⊙O的切线交AB的延长线于点D.若∠A=32°,则∠D=_____度.12.将直角边长为5cm的等腰直角△ABC绕点A逆时针旋转15°后,得到△AB′C′,则图中阴影部分的面积是_____cm1.13.小芸一家计划去某城市旅行,需要做自由行的攻略,父母给她分配了一项任务:借助网络评价选取该城市的一家餐厅用餐.小芸根据家人的喜好,选择了甲、乙、丙三家餐厅,对每家餐厅随机选取了1000条网络评价,统计如下:评价条数等级五星四星三星二星一星合计餐厅甲538 210 96 129 27 1000乙460 187 154 169 30 1000丙486 388 81 13 32 1000(说明:网上对于餐厅的综合评价从高到低,依次为五星、四星、三星、二星和一星.)小芸选择在________(填"甲”、“乙"或“丙”)餐厅用餐,能获得良好用餐体验(即评价不低于四星)的可能性最大. 14.比较大小:417(填入“>”或“<”号)15.如图,Rt ABC ∆中,ACB=90∠︒,AC=CB=42,BAD=ADE=60∠∠︒,AD=5,CE 平分ACB ∠,DE 与CE 相交于点E ,则DE 的长等于_____.16.如图,有一个横截面边缘为抛物线的水泥门洞,门洞内的地面宽度为8m ,两侧离地面4m 高处各有一盏灯,两灯间的水平距离为6m ,则这个门洞的高度为_______m .(精确到0.1m )17.如图,点A 的坐标是(2,0),△ABO 是等边三角形,点B 在第一象限,若反比例函数ky x=的图象经过点B ,则k 的值是_____.18.工人师傅常用角尺平分一个任意角.做法如下:如图,∠AOB 是一个任意角,在边OA ,OB 上分别取OM=ON ,移动角尺,使角尺两边相同的刻度分别与M ,N 重合.过角尺顶点C 的射线OC 即是∠AOB 的平分线.做法中用到全等三角形判定的依据是______.三、解答题(本题包括8个小题)19.(6分)如图,在ABC 中,CD AB ⊥,垂足为D ,点E 在BC 上,EF AB ⊥,垂足为F.12∠∠=,试判断DG 与BC 的位置关系,并说明理由.20.(6分)2018年江苏省扬州市初中英语口语听力考试即将举行,某校认真复习,积极迎考,准备了A、B、C、D四份听力材料,它们的难易程度分别是易、中、难、难;a,b是两份口语材料,它们的难易程度分别是易、难.从四份听力材料中,任选一份是难的听力材料的概率是.用树状图或列表法,列出分别从听力、口语材料中随机选一份组成一套完整的模拟试卷的所有情况,并求出两份材料都是难的一套模拟试卷的概率.21.(6分)“扬州漆器”名扬天下,某网店专门销售某种品牌的漆器笔筒,成本为30元/件,每天销售量y (件)与销售单价x(元)之间存在一次函数关系,如图所示.求y与x之间的函数关系式;如果规定每天漆器笔筒的销售量不低于240件,当销售单价为多少元时,每天获取的利润最大,最大利润是多少?该网店店主热心公益事业,决定从每天的销售利润中捐出150元给希望工程,为了保证捐款后每天剩余利润不低于3600元,试确定该漆器笔筒销售单价的范围.22.(8分)如图,某校一幢教学大楼的顶部竖有一块“传承文明,启智求真”的宣传牌CD、小明在山坡的坡脚A处测得宣传牌底部D的仰角为60°,然后沿山坡向上走到B处测得宣传牌顶部C的仰角为45°.已知山坡AB的坡度i=13(斜坡的铅直高度与水平宽度的比),经过测量AB=10米,AE=15米,求点B到地面的距离;求这块宣传牌CD的高度.(测角器的高度忽略不计,结果保留根号)23.(8分)为加快城乡对接,建设美丽乡村,某地区对A、B两地间的公路进行改建,如图,A,B两地之间有一座山.汽车原来从A地到B地需途经C地沿折线ACB行驶,现开通隧道后,汽车可直接沿直线AB行驶,已知BC=80千米,∠A=45°,∠B=30°.开通隧道前,汽车从A地到B地要走多少千米?开通隧道后,汽车从A地到B地可以少走多少千米?(结果保留根号)24.(10分)我国古代《算法统宗》里有这样一首诗:我问开店李三公,众客都来到店中,一房七客多七客,一房九客一房空.诗中后两句的意思是:如果每间客房住7人,那么有7人无房可住;如果每间客房住9人,那么就空出一间房.求该店有客房多少间?房客多少人?25.(10分)请根据图中提供的信息,回答下列问题:一个水瓶与一个水杯分别是多少元?甲、乙两家商场同时出售同样的水瓶和水杯,为了迎接新年,两家商场都在搞促销活动,甲商场规定:这两种商品都打八折;乙商场规定:买一个水瓶赠送两个水杯,另外购买的水杯按原价卖.若某单位想要买5个水瓶和n(n>10,且n为整数)个水杯,请问选择哪家商场购买更合算,并说明理由.(必须在同一家购买)26.(12分)如图,一只蚂蚁从点A沿数轴向右直爬2个单位到达点B,点A表示﹣,设点B所表示的数为m.求m的值;求|m﹣1|+(m+6)0的值.参考答案一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.A【解析】过C作CE⊥AB,Rt△ACE中,∵∠CAD=60°,AC=15m,∴∠ACE=30°,AE=12AC=12×15=7.5m,CE=AC•cos30°=15×32=1532,∵∠BAC=30°,∠ACE=30°,∴∠BCE=60°,∴BE=CE•tan60°=1532×3=22.5m,∴AB=BE﹣AE=22.5﹣7.5=15m,故选A.【点睛】本题考查的知识点是解直角三角形的应用,关键是构建直角三角形,解直角三角形求出答案.2.C【解析】试题分析:连接AR,根据勾股定理得出AR=22AD DR的长不变,根据三角形的中位线定理得出EF=12AR,即可得出线段EF的长始终不变,故选C.考点:1、矩形性质,2、勾股定理,3、三角形的中位线3.A【解析】【详解】分析:根据三角形的外角得:∠BDA'=∠A+∠AFD,∠AFD=∠A'+∠CEA',代入已知可得结论. 详解:由折叠得:∠A=∠A',∵∠BDA'=∠A+∠AFD,∠AFD=∠A'+∠CEA',∵∠A=α,∠CEA′=β,∠BDA'=γ,∴∠BDA'=γ=α+α+β=2α+β,故选A.点睛:本题考查了三角形外角的性质,熟练掌握三角形的外角等于与它不相邻的两个内角的和是关键. 4.D【解析】【分析】根据三角形的中位线定理即可得到结果.【详解】解:由题意得AB=2DE=20cm,故选D.【点睛】本题考查的是三角形的中位线,解答本题的关键是熟练掌握三角形的中位线定理:三角形的中位线平行于第三边,并且等于第三边的一半.5.D【解析】【分析】根据“平面直角坐标系中任意一点P(x,y),关于原点的对称点是(-x,-y),即关于原点的对称点,横纵坐标都变成相反数”解答.【详解】解:根据关于原点对称的点的坐标的特点,∴点A(-2,3)关于原点对称的点的坐标是(2,-3), 故选D.【点睛】本题主要考查点关于原点对称的特征,解决本题的关键是要熟练掌握点关于原点对称的特征.6.B【解析】 【详解】设可打x 折,则有1200×10x-800≥800×5%, 解得x≥1. 即最多打1折. 故选B . 【点睛】本题考查的是一元一次不等式的应用,解此类题目时注意利润和折数,计算折数时注意要除以2.解答本题的关键是读懂题意,求出打折之后的利润,根据利润率不低于5%,列不等式求解. 7.B 【解析】 【分析】根据角平分线的定义推出△ECF 为直角三角形,然后根据勾股定理即可求得CE 2+CF 2=EF 2,进而可求出CE 2+CF 2的值. 【详解】解:∵CE 平分∠ACB ,CF 平分∠ACD , ∴∠ACE=12∠ACB ,∠ACF=12∠ACD ,即∠ECF=12(∠ACB+∠ACD )=90°, ∴△EFC 为直角三角形,又∵EF ∥BC ,CE 平分∠ACB ,CF 平分∠ACD , ∴∠ECB=∠MEC=∠ECM ,∠DCF=∠CFM=∠MCF , ∴CM=EM=MF=5,EF=10, 由勾股定理可知CE 2+CF 2=EF 2=1. 故选:B . 【点睛】本题考查角平分线的定义(从一个角的顶点引出一条射线,把这个角分成两个完全相同的角,这条射线叫做这个角的角平分线),直角三角形的判定(有一个角为90°的三角形是直角三角形)以及勾股定理的运用,解题的关键是首先证明出△ECF 为直角三角形. 8.D 【解析】 【分析】根据同弧或等弧所对的圆周角相等可知∠BED=∠BAD ,再结合图形根据正切的定义进行求解即可得. 【详解】 ∵∠DAB=∠DEB ,∴tan ∠DEB= tan ∠DAB=12, 故选D . 【点睛】本题考查了圆周角定理(同弧或等弧所对的圆周角相等)和正切的概念,正确得出相等的角是解题关键. 9.B 【解析】 【分析】首先连接OC ,AO ,由切线的性质,可得OC ⊥AB ,根据已知条件可得:OA=2OC ,进而求出∠AOC 的度数,则圆心角∠AOB 可求,根据弧长公式即可求出劣弧AB 的长. 【详解】解:如图,连接OC ,AO ,∵大圆的一条弦AB 与小圆相切, ∴OC ⊥AB , ∵OA=6,OC=3, ∴OA=2OC , ∴∠A=30°, ∴∠AOC=60°, ∴∠AOB=120°, ∴劣弧AB 的长=1206180π⨯⨯ =4π,故选B . 【点睛】本题考查切线的性质,弧长公式,熟练掌握切线的性质是解题关键. 10.C 【解析】如图所示,连接CM ,∵M是AB的中点,∴S△ACM=S△BCM=12S△ABC,开始时,S△MPQ=S△ACM=12S△ABC;由于P,Q两点同时出发,并同时到达终点,从而点P到达AC的中点时,点Q也到达BC的中点,此时,S△MPQ=14S△ABC;结束时,S△MPQ=S△BCM=12S△ABC.△MPQ的面积大小变化情况是:先减小后增大.故选C.二、填空题(本题包括8个小题)11.1【解析】分析:连接OC,根据圆周角定理得到∠COD=2∠A,根据切线的性质计算即可.详解:连接OC,由圆周角定理得,∠COD=2∠A=64°,∵CD为⊙O的切线,∴OC⊥CD,∴∠D=90°-∠COD=1°,故答案为:1.点睛:本题考查的是切线的性质、圆周角定理,掌握圆的切线垂直于经过切点的半径是解题的关键.12253【解析】∵等腰直角△ABC绕点A逆时针旋转15°后得到△AB′C′,∵∠CAC′=15°,∴∠C′AB=∠CAB﹣∠CAC′=45°﹣15°=30°,AC′=AC=5,∴阴影部分的面积=12×5×tan30°25313.丙【解析】【分析】不低于四星,即四星与五星的和居多为符合题意的餐厅.【详解】不低于四星,即比较四星和五星的和,丙最多.故答案是:丙.【点睛】考查了可能性的大小和统计表.解题的关键是将问题转化为比较四星和五星的和的多少.14.>【解析】【分析】试题解析:∵∴4考点:实数的大小比较.【详解】请在此输入详解!15.3【解析】【分析】如图,延长CE、DE,分别交AB于G、H,由∠BAD=∠ADE=60°可得三角形ADH是等边三角形,根据等腰直角三角形的性质可知CG⊥AB,可求出AG的长,进而可得GH的长,根据含30°角的直角三角形的性质可求出EH的长,根据DE=DH-EH即可得答案.【详解】如图,延长CE、DE,分别交AB于G、H,∵∠BAD=∠ADE=60°,∴△ADH是等边三角形,∴DH=AD=AH=5,∠DHA=60°,∵AC=BC,CE平分∠ACB,∠ACB=90°,∴,AG=12AB=4,CG⊥AB,∴GH=AH=AG=5-4=1,∵∠DHA=60°,∴∠GEH=30°,∴EH=2GH=2∴DE=DH-EH=5=2=3.故答案为:3【点睛】本题考查等边三角形的判定及性质、等腰直角三角形的性质及含30°角的直角三角形的性质,熟记30°角所对的直角边等于斜边的一半的性质并正确作出辅助线是解题关键.16.9.1【解析】【分析】建立直角坐标系,得到二次函数,门洞高度即为二次函数的顶点的纵坐标【详解】如图,以地面为x 轴,门洞中点为O 点,画出y 轴,建立直角坐标系由题意可知各点坐标为A (-4,0)B (4,0)D (-3,4)设抛物线解析式为y=ax 2+c (a≠0)把B 、D 两点带入解析式可得解析式为2464y 77x =-+,则C (0,647) 所以门洞高度为647m≈9.1m【点睛】本题考查二次函数的简单应用,能够建立直角坐标系解出二次函数解析式是本题关键173【解析】【分析】已知△ABO 是等边三角形,通过作高BC ,利用等边三角形的性质可以求出OB 和OC 的长度;由于Rt △OBC 中一条直角边和一条斜边的长度已知,根据勾股定理还可求出BC 的长度,进而确定点B 的坐标;将点B 的坐标代入反比例函数的解析式k y x=中,即可求出k 的值. 【详解】过点B 作BC 垂直OA 于C ,∵点A 的坐标是(2,0),∴AO=2,∵△ABO 是等边三角形,∴OC=1,BC=3,∴点B 的坐标是()1,3,把()1,3代入k y x=,得3k =. 故答案为3.【点睛】考查待定系数法确定反比例函数的解析式,只需求出反比例函数图象上一点的坐标;18.SSS .【解析】【分析】由三边相等得△COM ≌△CON ,即由SSS 判定三角全等.做题时要根据已知条件结合判定方法逐个验证.【详解】由图可知,CM=CN ,又OM=ON ,∵在△MCO 和△NCO 中MO NO CO CO NC MC ⎧⎪⎨⎪⎩===,∴△COM ≌△CON (SSS ),∴∠AOC=∠BOC ,即OC 是∠AOB 的平分线.故答案为:SSS .【点睛】本题考查了全等三角形的判定及性质.要熟练掌握确定三角形的判定方法,利用数学知识解决实际问题是一种重要的能力,要注意培养.三、解答题(本题包括8个小题)19.DG∥BC,理由见解析【解析】【分析】由垂线的性质得出CD∥EF,由平行线的性质得出∠2=∠DCE,再由已知条件得出∠1=∠DCE,即可得出结论.【详解】解:DG∥BC,理由如下:∵CD⊥AB,EF⊥AB,∴CD∥EF,∴∠2=∠DCE,∵∠1=∠2,∴∠1=∠DCE,∴DG∥BC.【点睛】本题考查平行线的判定与性质;熟练掌握平行线的判定与性质,证明∠1=∠DCE是解题关键.20.(1)12;(2)14.【解析】【分析】(1)依据A、B、C、D四份听力材料的难易程度分别是易、中、难、难,即可得到从四份听力材料中,任选一份是难的听力材料的概率是12;(2)利用树状图列出分别从听力、口语材料中随机选一份组成一套完整的模拟试卷的所有情况,即可得到两份材料都是难的一套模拟试卷的概率.【详解】(1)∵A、B、C、D四份听力材料的难易程度分别是易、中、难、难,∴从四份听力材料中,任选一份是难的听力材料的概率是24=12,故答案为12;(2)树状图如下:∴P (两份材料都是难)=2184=. 【点睛】本题主要考查了利用树状图或列表法求概率,当有两个元素时,可用树形图列举,也可以列表列举.随机事件A 的概率P (A )=事件A 可能出现的结果数除以所有可能出现的结果数.21.(1)10700y x =-+;(2)单价为46元时,利润最大为3840元.(3)单价的范围是45元到55元.【解析】【分析】(1)可用待定系数法来确定y 与x 之间的函数关系式;(2)根据利润=销售量×单件的利润,然后将(1)中的函数式代入其中,求出利润和销售单件之间的关系式,然后根据其性质来判断出最大利润;(3)首先得出w 与x 的函数关系式,进而利用所获利润等于3600元时,对应x 的值,根据增减性,求出x 的取值范围.【详解】(1)由题意得:4030055150k b k b +=⎧⎨+=⎩ 10700k b =-⎧⇒⎨=⎩. 故y 与x 之间的函数关系式为:y=-10x+700,(2)由题意,得-10x+700≥240,解得x≤46,设利润为w=(x-30)•y=(x-30)(-10x+700),w=-10x 2+1000x-21000=-10(x-50)2+4000,∵-10<0,∴x <50时,w 随x 的增大而增大,∴x=46时,w 大=-10(46-50)2+4000=3840,答:当销售单价为46元时,每天获取的利润最大,最大利润是3840元;(3)w-150=-10x 2+1000x-21000-150=3600,-10(x-50)2=-250,x-50=±5,x 1=55,x 2=45,如图所示,由图象得:当45≤x≤55时,捐款后每天剩余利润不低于3600元.【点睛】此题主要考查了二次函数的应用、一次函数的应用和一元二次方程的应用,利用函数增减性得出最值是解题关键,能从实际问题中抽象出二次函数模型是解答本题的重点和难点.22.(1)2;(2)宣传牌CD 高(20﹣m .【解析】试题分析:(1)在Rt △ABH 中,由tan ∠BAH=BHAH ∠BAH=30°,于是得到结果BH=ABsin ∠BAH=1sin30°=1×12=2;(2)在Rt △ABH 中,AH=AB .cos ∠BAH=1.cos30°在Rt △ADE 中,tan ∠DAE=DE AE ,即tan60°=15DE ,得到,如图,过点B 作BF ⊥CE ,垂足为F ,求出,于是得到DF=DE ﹣EF=DE﹣2.在Rt △BCF 中,∠C=90°﹣∠CBF=90°﹣42°=42°,求得∠C=∠CBF=42°,得出+12,即可求得结果.试题解析:解:(1)在Rt △ABH 中,∵tan ∠BAH=BHAH ∴∠BAH=30°,∴BH=ABsin ∠BAH=1sin30°=1×12=2. 答:点B 距水平面AE 的高度BH 是2米;(2)在Rt △ABH 中,AH=AB .cos ∠BAH=1.cos30°在Rt △ADE 中,tan ∠DAE=DE AE ,即tan60°=15DE ,∴,如图,过点B 作BF ⊥CE ,垂足为F ,∴+12,DF=DE ﹣EF=DE ﹣2.在Rt △BCF 中,∠C=90°﹣∠CBF=90°﹣42°=42°,∴∠C=∠CBF=42°,∴,∴CD=CF ﹣+12﹣(2)=20﹣.答:广告牌CD 的高度约为(20﹣23.(1)开通隧道前,汽车从A地到B地要走2千米;(2)汽车从A地到B地比原来少走的路程为23)]千米.【解析】【分析】(1)过点C作AB的垂线CD,垂足为D,在直角△ACD中,解直角三角形求出CD,进而解答即可;(2)在直角△CBD中,解直角三角形求出BD,再求出AD,进而求出汽车从A地到B地比原来少走多少路程.【详解】(1)过点C作AB的垂线CD,垂足为D,∵AB⊥CD,sin30°=CDBC,BC=80千米,∴CD=BC•sin30°=80×12=40(千米),AC=CD402sin45︒=(千米),AC+BC=80+1-8(千米),答:开通隧道前,汽车从A地到B地要走(80+1-8)千米;(2)∵cos30°=BDBC,BC=80(千米),∴BD=BC•cos30°=3=403千米),∵tan45°=CDAD,CD=40(千米),∴AD=CD40tan45︒=(千米),∴AB=AD+BD=40+3千米),∴汽车从A地到B地比原来少走多少路程为:AC+BC﹣AB=80+1-8﹣40﹣40340+4023)(千米).-]千米.答:汽车从A地到B地比原来少走的路程为[40+40(23)【点睛】本题考查了勾股定理的运用以及解一般三角形,求三角形的边或高的问题一般可以转化为解直角三角形的问题,解决的方法就是作高线.24.客房8间,房客63人【解析】【分析】设该店有x间客房,以人数相等为等量关系列出方程即可.【详解】设该店有x间客房,则+=-7799x xx=解得8x+=⨯+=7778763答:该店有客房8间,房客63人.【点睛】本题考查的是利用一元一次方程解决应用题,根据题意找到等量关系式是解题的关键.25.(1)一个水瓶40元,一个水杯是8元;(2)当10<n<25时,选择乙商场购买更合算.当n>25时,选择甲商场购买更合算.【解析】【分析】(1)设一个水瓶x元,表示出一个水杯为(48﹣x)元,根据题意列出方程,求出方程的解即可得到结果;(2)计算出两商场得费用,比较即可得到结果.【详解】解:(1)设一个水瓶x元,表示出一个水杯为(48﹣x)元,根据题意得:3x+4(48﹣x)=152,解得:x=40,则一个水瓶40元,一个水杯是8元;(2)甲商场所需费用为(40×5+8n)×80%=160+6.4n乙商场所需费用为5×40+(n ﹣5×2)×8=120+8n则∵n >10,且n 为整数,∴160+6.4n ﹣(120+8n )=40﹣1.6n讨论:当10<n <25时,40﹣1.6n >0,160+0.64n >120+8n ,∴选择乙商场购买更合算.当n >25时,40﹣1.6n <0,即 160+0.64n <120+8n ,∴选择甲商场购买更合算.【点睛】此题主要考查不等式的应用,解题的关键是根据题意找到等量关系与不等关系进行列式求解.26.(1) ;(2【解析】试题分析:()1 点A 表示 向右直爬2个单位到达点B ,点B 表示的数为2m =,()2把m 的值代入,对式子进行化简即可.试题解析:()1 由题意A 点和B 点的距离为2,其A 点的坐标为 因此B 点坐标 2.m =()2把m 的值代入得:()()00162126m m -++=-+,(018=-+,11=+,=2019-2020学年中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意) 1.在数轴上到原点距离等于3的数是( ) A .3B .﹣3C .3或﹣3D .不知道2.如图,点A 、B 、C 、D 在⊙O 上,∠AOC =120°,点B 是弧AC 的中点,则∠D 的度数是( )A .60°B .35°C .30.5°D .30°3.如图,若△ABC 内接于半径为R 的⊙O ,且∠A =60°,连接OB 、OC ,则边BC 的长为( )A .2RB .32R C .22R D .3R4.已知5a =,27b =,且a b a b +=+,则-a b 的值为( ) A .2或12B .2或12-C .2-或12D .2-或12-5.如图,一次函数1y ax b 和反比例函数2ky x=的图象相交于A ,B 两点,则使12y y >成立的x 取值范围是( )A .20x -<<或04x <<B .2x <-或04x <<C .2x <-或4x >D .20x -<<或4x >6.下列各数中是有理数的是( ) A .πB .0C 2D 357.如图,在▱ABCD 中,AB=6,AD=9,∠BAD 的平分线交BC 于点E ,交DC 的延长线于点F ,BG ⊥AE ,垂足为G ,若BG=42△CEF 的面积是( )A.22B.2C.32D.428.“凤鸣”文学社在学校举行的图书共享仪式上互赠图书,每个同学都把自己的图书向本组其他成员赠送一本,某组共互赠了210本图书,如果设该组共有x名同学,那么依题意,可列出的方程是()A.x(x+1)=210 B.x(x﹣1)=210C.2x(x﹣1)=210 D.12x(x﹣1)=2109.-2的倒数是()A.-2 B.12-C.12D.210.方程(m–2)x2+3mx+1=0是关于x的一元二次方程,则()A.m≠±2B.m=2 C.m=–2 D.m≠2二、填空题(本题包括8个小题)11.化简:a ba b b a+--22=__________.12.一个三角形的两边长分别为3和6,第三边长是方程x2-10x+21=0的根,则三角形的周长为______________.13.如图,小红将一个正方形纸片剪去一个宽为4cm的长条后,再从剩下的长方形纸片上剪去一个宽为5cm的长条,且剪下的两个长条的面积相等.问这个正方形的边长应为多少厘米?设正方形边长为xcm,则可列方程为_____.14.如图,正方形OABC与正方形ODEF是位似图形,点O为位似中心,位似比为2:3,点B、E在第一象限,若点A的坐标为(1,0),则点E的坐标是______.15.桌上摆着一个由若干个相同正方体组成的几何体,其主视图和左视图如图所示,这个几何体最多可以由___________个这样的正方体组成.16.如图,将一个正三角形纸片剪成四个全等的小正三角形,再将其中的一个按同样的方法剪成四个更小的正三角形,……如此继续下去,结果如下表:则a n=__________(用含n的代数式表示).所剪次数 1 2 3 4 …n正三角形个数 4 7 10 13 …a n 17.如图,圆O的直径AB垂直于弦CD,垂足是E,∠A=22.5°,OC=4,CD的长为________.18.如图,从甲楼底部A处测得乙楼顶部C处的仰角是30°,从甲楼顶部B处测得乙楼底部D处的俯角是45°,已知甲楼的高AB是120m,则乙楼的高CD是_____m(结果保留根号)三、解答题(本题包括8个小题)19.(6分)如图,正方形OABC绕着点O逆时针旋转40°得到正方形ODEF,连接AF,求∠OFA的度数20.(6分)近日,深圳市人民政府发布了《深圳市可持续发展规划》,提出了要做可持续发展的全球创新城市的目标,某初中学校了解学生的创新意识,组织了全校学生参加创新能力大赛,从中抽取了部分学生成绩,分为5组:A组50~60;B组60~70;C组70~80;D组80~90;E组90~100,统计后得到如图所示的频数分布直方图(每组含最小值不含最大值)和扇形统计图.抽取学生的总人数是人,扇形C的圆心角是°;补全频数直方图;该校共有2200名学生,若成绩在70分以下(不含70分)的学生创新意识不强,有待进一步培养,则该校创新意识不强的学生约有多少人?21.(6分)在一个不透明的布袋里装有4个标有1、2、3、4的小球,它们的形状、大小完全相同,李强从布袋中随机取出一个小球,记下数字为x,王芳在剩下的3个小球中随机取出一个小球,记下数字为y,x,y这样确定了点M的坐标()()1画树状图列表,写出点M所有可能的坐标;()2求点()M x,y在函数y x1=+的图象上的概率.22.(8分)已知Rt△ABC中,∠ACB=90°,CA=CB=4,另有一块等腰直角三角板的直角顶点放在C处,CP=CQ=2,将三角板CPQ绕点C旋转(保持点P在△ABC内部),连接AP、BP、BQ.如图1求证:AP=BQ;如图2当三角板CPQ绕点C旋转到点A、P、Q在同一直线时,求AP的长;设射线AP与射线BQ相交于点E,连接EC,写出旋转过程中EP、EQ、EC之间的数量关系.23.(8分)程大位是珠算发明家,他的名著《直指算法统宗》详述了传统的珠算规则,确立了算盘用书中有如下问题:一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚得几丁.意思是:有100个和尚分100个馒头,如果大和尚1人分3个,小和尚3人分1个,正好分完,大、小和尚各有多少人?24.(10分)如图1,在正方形ABCD中,E是AB上一点,F是AD延长线上一点,且DF=BE,求证:CE =CF;如图2,在正方形ABCD中,E是AB上一点,G是AD上一点,如果∠GCE=45°,请你利用(1)的结论证明:GE=BE+GD;运用(1)(2)解答中所积累的经验和知识,完成下题:如图3,在直角梯形ABCD中,AD∥BC(BC>AD),∠B=90°,AB=BC,E是AB上一点,且∠DCE=45°,BE=4,DE=10, 求直角梯形ABCD的面积.25.(10分)某文具店购进一批纪念册,每本进价为20元,出于营销考虑,要求每本纪念册的售价不低于20元且不高于28元,在销售过程中发现该纪念册每周的销售量y(本)与每本纪念册的售价x(元)之间满足一次函数关系:当销售单价为22元时,销售量为36本;当销售单价为24元时,销售量为32本.求出y与x的函数关系式;当文具店每周销售这种纪念册获得150元的利润时,每本纪念册的销售单价是多少元?设该文具店每周销售这种纪念册所获得的利润为w元,将该纪念册销售单价定为多少元时,才能使文具店销售该纪念册所获利润最大?最大利润是多少?26.(12分)某校有3000名学生.为了解全校学生的上学方式,该校数学兴趣小组以问卷调查的形式,随机调查了该校部分学生的主要上学方式(参与问卷调查的学生只能从以下六个种类中选择一类),并将调查结果绘制成如下不完整的统计图.种类 A B C D E F上学方式电动车私家车公共交通自行车步行其他某校部分学生主要上学方式扇形统计图某校部分学生主要上学方式条形统计图根据以上信息,回答下列问题:参与本次问卷调查的学生共有____人,其中选择B类的人数有____人.在扇形统计图中,求E类对应的扇形圆心角α的度数,并补全条形统计图.若将A、C、D、E这四类上学方式视为“绿色出行”,请估计该校每天“绿色出行”的学生人数.参考答案一、选择题(本题包括10个小题,每小题只有一个选项符合题意)。

2020学年太原市中考数学达标检测试题

2019-2020学年中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.据国土资源部数据显示,我国是全球“可燃冰”资源储量最多的国家之一,海、陆总储量约为39000000000吨油当量,将39000000000用科学记数法表示为()A.3.9×1010B.3.9×109C.0.39×1011D.39×1092.如图,菱形ABCD中,E. F分别是AB、AC的中点,若EF=3,则菱形ABCD的周长是()A.12 B.16 C.20 D.243.如图,已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,给出以下四个结论:①abc=0,②a+b+c>0,③a>b,④4ac﹣b2<0;其中正确的结论有()A.1个B.2个C.3个D.4个4.如图,正方形ABCD的对角线AC与BD相交于点O,∠ACB的角平分线分别交AB,BD于M,N两点.若AM=2,则线段ON的长为( )A 2B3C.1 D65.若55+55+55+55+55=25n,则n的值为()A.10 B.6 C.5 D.36.一、单选题点P(2,﹣1)关于原点对称的点P′的坐标是()A.(﹣2,1)B.(﹣2,﹣1)C.(﹣1,2)D.(1,﹣2)7.点P(1,﹣2)关于y轴对称的点的坐标是()A.(1,2)B.(﹣1,2)C.(﹣1,﹣2)D.(﹣2,1)8.如图,小明将一张长为20cm,宽为15cm的长方形纸(AE>DE)剪去了一角,量得AB=3cm,CD=4cm,则剪去的直角三角形的斜边长为()A.5cm B.12cm C.16cm D.20cm9.如图,在△ABC中,点D是AB边上的一点,若∠ACD=∠B,AD=1,AC=2,△ADC的面积为1,则△BCD的面积为()A.1 B.2 C.3 D.410.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,则下列结论: ① abc<0;② 2a+b=0; ③ b2-4ac<0;④ 9a+3b+c>0; ⑤ c+8a<0.正确的结论有().A.1个B.2个C.3个D.4个二、填空题(本题包括8个小题)11.如图,在矩形ABCD中,AB=4,BC=5,点E是边CD的中点,将△ADE沿AE折叠后得到△AFE.延长AF交边BC于点G,则CG为_____.,12.如图,点G是ABC的重心,AG的延长线交BC于点D,过点G作GE//BC交AC于点E,如果BC6那么线段GE的长为______.13.关于x的一元二次方程(k-1)x2+6x+k2-k=0的一个根是0,则k的值是______.14.如图所示,D、E分别是△ABC的边AB、BC上的点,DE∥AC,若S△BDE:S△CDE=1:3,则S△BDE:S四边形DECA的值为_____.15.如图,在Rt△ABC中,∠C=90°,AC=6,∠A=60°,点F在边AC上,并且CF=2,点E为边BC上的动点,将△CEF沿直线EF翻折,点C落在点P处,则点P到边AB距离的最小值是_________.16.如图,CB=CA,∠ACB=90°,点D在边BC上(与B、C不重合),四边形ADEF为正方形,过点F作FG⊥CA,交CA的延长线于点G,连接FB,交DE于点Q,给出以下结论:①AC=FG;②S△FAB:S四边形CBFG=1:2;③∠ABC=∠ABF;④AD2=FQ•AC,其中正确的结论的个数是______.17.如图,在△ABC中,∠A=70°,∠B=50°,点D,E分别为AB,AC上的点,沿DE折叠,使点A落在BC 边上点F处,若△EFC为直角三角形,则∠BDF的度数为______.18.若m是方程2x2﹣3x﹣1=0的一个根,则6m2﹣9m+2016的值为_____.三、解答题(本题包括8个小题)19.(6分)解方程组4311, 213.x yx y-=⎧⎨+=⎩①②20.(6分)在边长为1的5×5的方格中,有一个四边形OABC,以O点为位似中心,作一个四边形,使得所作四边形与四边形OABC位似,且该四边形的各个顶点都在格点上;求出你所作的四边形的面积.21.(6分)已知:如图,在平行四边形ABCD中,BAD∠的平分线交BC于点E,过点D作AE的垂线交AE 于点G ,交AB 延长线于点F ,连接EF ,ED .求证:EF ED =; 若60ABC ∠=︒,6AD =, 2CE =,求EF 的长.22.(8分)一项工程,甲,乙两公司合做,12天可以完成,共需付施工费102000元;如果甲,乙两公司单独完成此项工程,乙公司所用时间是甲公司的1.5倍,乙公司每天的施工费比甲公司每天的施工费少1500元.甲,乙两公司单独完成此项工程,各需多少天?若让一个公司单独完成这项工程,哪个公司的施工费较少?23.(8分)如图,AB 是⊙O 的直径,点E 是AD 上的一点,∠DBC=∠BED .求证:BC 是⊙O 的切线;已知AD=3,CD=2,求BC 的长.24.(10分)为了解中学生“平均每天体育锻炼时间”的情况,某地区教育部门随机调查了若干名中学生,根据调查结果制作统计图①和图②,请根据相关信息,解答下列问题:本次接受随机抽样调查的中学生人数为_______,图①中m 的值是_____ ;求本次调查获取的样本数据的平均数、众数和中位数;根据统计数据,估计该地区250000名中学生中,每天在校体育锻炼时间大于等于1.5h 的人数.25.(10分)如图,分别以Rt △ABC 的直角边AC 及斜边AB 向外作等边△ACD ,等边△ABE ,已知∠BAC=30°,EF ⊥AB ,垂足为F ,连接DF 试说明AC=EF ;求证:四边形ADFE 是平行四边形.26.(12分)如图,在菱形ABCD中,对角线AC与BD交于点O.过点C作BD的平行线,过点D作AC 的平行线,两直线相交于点E.求证:四边形OCED是矩形;若CE=1,DE=2,ABCD的面积是.参考答案一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.A【解析】【分析】用科学记数法表示较大的数时,一般形式为a×10n,其中1≤|a|<10,n为整数,据此判断即可.【详解】39000000000=3.9×1.故选A.【点睛】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a 时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.2.D【解析】【分析】根据三角形的中位线平行于第三边并且等于第三边的一半求出AD,再根据菱形的周长公式列式计算即可得解.【详解】E、F分别是AC、DC的中点,∴EF是ADC的中位线,∴2236AD EF==⨯=,∴菱形ABCD的周长44624AD==⨯=.故选:D.【点睛】本题主要考查了菱形的四边形都相等,三角形的中位线平行于第三边并且等于第三边的一半,求出菱形的边长是解题的关键.3.C【解析】【详解】根据图像可得:a<0,b<0,c=0,即abc=0,则①正确;当x=1时,y<0,即a+b+c<0,则②错误;根据对称轴可得:-=-,则b=3a,根据a<0,b<0可得:a>b;则③正确;根据函数与x轴有两个交点可得:-4ac>0,则④正确.故选C.【点睛】本题考查二次函数的性质.能通过图象分析a,b,c的正负,以及通过一些特殊点的位置得出a,b,c之间的关系是解题关键.4.C【解析】【分析】作MH⊥AC于H,如图,根据正方形的性质得∠MAH=45°,则△AMH为等腰直角三角形,所以AH=MH=222,再根据角平分线性质得2,则2,于是利用正方形的性质得到22,OC=122,所以2△CON∽△CHM,再利用相似比可计算出ON的长.【详解】试题分析:作MH⊥AC于H,如图,∵四边形ABCD 为正方形,∴∠MAH=45°,∴△AMH 为等腰直角三角形,∴AH=MH=22AM=222, ∵CM 平分∠ACB ,∴2∴2∴222)2+2, ∴OC=122,CH=AC ﹣2+222, ∵BD ⊥AC ,∴ON ∥MH ,∴△CON ∽△CHM , ∴ON OC MH CH =21222+=+ ∴ON=1.故选C .【点睛】本题考查了相似三角形的判定与性质:在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用,寻找相似三角形的一般方法是通过作平行线构造相似三角形.也考查了角平分线的性质和正方形的性质.5.D【解析】【分析】直接利用提取公因式法以及幂的乘方运算法则将原式变形进而得出答案.【详解】解:∵55+55+55+55+55=25n ,∴55×5=52n ,则56=52n,解得:n=1.故选D.【点睛】此题主要考查了幂的乘方运算,正确将原式变形是解题关键.6.A【解析】【分析】根据“关于原点对称的点,横坐标与纵坐标都互为相反数”解答.【详解】解:点P(2,-1)关于原点对称的点的坐标是(-2,1).故选A.【点睛】本题考查了关于原点对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:关于原点对称的点,横坐标与纵坐标都互为相反数.7.C【解析】关于y轴对称的点,纵坐标相同,横坐标互为相反数,由此可得P(1,﹣2)关于y轴对称的点的坐标是(﹣1,﹣2),故选C.【点睛】本题考查了关于坐标轴对称的点的坐标,正确地记住关于坐标轴对称的点的坐标特征是关键.关于x轴对称的点的坐标特点:横坐标不变,纵坐标互为相反数;关于y轴对称的点的坐标特点:纵坐标不变,横坐标互为相反数.8.D【解析】【分析】解答此题要延长AB、DC相交于F,则BFC构成直角三角形,再用勾股定理进行计算.【详解】延长AB、DC相交于F,则BFC构成直角三角形,运用勾股定理得:BC 2=(15-3)2+(1-4)2=122+162=400,所以BC=1.则剪去的直角三角形的斜边长为1cm .故选D .【点睛】本题主要考查了勾股定理的应用,解答此题要延长AB 、DC 相交于F ,构造直角三角形,用勾股定理进行计算.9.C【解析】【详解】∵∠ACD=∠B ,∠A=∠A ,∴△ACD ∽△ABC , ∴12AC AD AB AC ==, ∴2ACD ABC S AD SAC ⎛⎫= ⎪⎝⎭, ∴2112ABCS ⎛⎫= ⎪⎝⎭, ∴S △ABC =4,∴S △BCD = S △ABC - S △ACD =4-1=1.故选C考点:相似三角形的判定与性质.10.C【解析】【分析】由抛物线的开口方向判断a 与0的关系,由抛物线与y 轴的交点判断c 与0的关系,然后根据对称轴及抛物线与x 轴交点情况进行推理,进而对所得结论进行判断.【详解】 解:抛物线开口向下,得:a <0;抛物线的对称轴为x=-2b a=1,则b=-2a ,2a+b=0,b=-2a ,故b >0;抛物线交y 轴于正半轴,得:c >0.∴abc <0, ①正确;2a+b=0,②正确;由图知:抛物线与x 轴有两个不同的交点,则△=b 2-4ac >0,故③错误;由对称性可知,抛物线与x 轴的正半轴的交点横坐标是x=3,所以当x=3时,y= 9a+3b+c=0,故④错误;观察图象得当x=-2时,y <0,即4a-2b+c <0∵b=-2a ,∴4a+4a+c <0即8a+c <0,故⑤正确.正确的结论有①②⑤,故选:C【点睛】主要考查图象与二次函数系数之间的关系,会利用对称轴的表达式求2a 与b 的关系,以及二次函数与方程之间的转换,根的判别式的熟练运用.二、填空题(本题包括8个小题)11.45【解析】【分析】如图,作辅助线,首先证明△EFG ≌△ECG ,得到FG =CG (设为x ),∠FEG =∠CEG ;同理可证AF =AD =5,∠FEA =∠DEA ,进而证明△AEG 为直角三角形,运用相似三角形的性质即可解决问题.【详解】连接EG ;∵四边形ABCD 为矩形, ∴∠D =∠C =90°,DC =AB =4;由题意得:EF =DE =EC =2,∠EFG =∠D =90°;在Rt △EFG 与Rt △ECG 中,EF EC EG EG=⎧⎨=⎩, ∴Rt △EFG ≌Rt △ECG (HL ),∴FG =CG (设为x ),∠FEG =∠CEG ;同理可证:AF =AD =5,∠FEA =∠DEA ,∴∠AEG =12×180°=90°, 而EF ⊥AG ,可得△EFG ∽△AFE,∴2EF AF FG =∴22=5•x ,∴x =45, ∴CG =45, 故答案为:45. 【点睛】此题考查矩形的性质,翻折变换的性质,以考查全等三角形的性质及其应用、射影定理等几何知识点为核心构造而成;对综合的分析问题解决问题的能力提出了一定的要求.12.2【解析】分析:由点G 是△ABC 重心,BC=6,易得CD=3,AG :AD=2:3,又由GE ∥BC ,可证得△AEG ∽△ACD ,然后由相似三角形的对应边成比例,即可求得线段GE 的长.详解:∵点G 是△ABC 重心,BC=6,∴CD=12BC=3,AG :AD=2:3, ∵GE ∥BC ,∴△AEG ∽△ADC ,∴GE :CD=AG :AD=2:3,∴GE=2.故答案为2.点睛:本题考查了三角形重心的定义和性质、相似三角形的判定和性质.利用三角形重心的性质得出AG :AD=2:3是解题的关键.13.2.【解析】试题解析:由于关于x 的一元二次方程()22160k x x k k -++-=的一个根是2,把x=2代入方程,得20k k -= ,解得,k 2=2,k 2=2当k=2时,由于二次项系数k ﹣2=2,方程()22160k x x k k -++-=不是关于x 的二次方程,故k≠2. 所以k 的值是2.故答案为2.14.1:1【解析】【分析】根据题意得到BE :EC=1:3,证明△BED ∽△BCA ,根据相似三角形的性质计算即可.∵S△BDE:S△CDE=1:3,∴BE:EC=1:3,∵DE∥AC,∴△BED∽△BCA,∴S△BDE:S△BCA=(BE)2=1:16,BC∴S△BDE:S四边形DECA=1:1,故答案为1:1.【点睛】本题考查的是相似三角形的判定和性质,掌握相似三角形的面积比等于相似比的平方是解题的关键.15.23-2.【解析】【分析】延长FP交AB于M,当FP⊥AB时,点P到AB的距离最小.运用勾股定理求解.【详解】解:如图,延长FP交AB于M,当FP⊥AB时,点P到AB的距离最小.∵AC=6,CF=1,∴AF=AC-CF=4,∵∠A=60°,∠AMF=90°,∴∠AFM=30°,∴AM=1AF=1,2∴223,AF FM∵FP=FC=1,∴3,∴点P到边AB距离的最小值是3.故答案为3-1.本题考查了翻折变换,涉及到的知识点有直角三角形两锐角互余、勾股定理等,解题的关键是确定出点P 的位置.16.①②③④ .【解析】【分析】由正方形的性质得出∠FAD =90°,AD =AF =EF ,证出∠CAD =∠AFG ,由AAS 证明△FGA ≌△ACD ,得出AC =FG ,①正确;证明四边形CBFG 是矩形,得出S △FAB =12FB•FG =12S 四边形CBFG ,②正确; 由等腰直角三角形的性质和矩形的性质得出∠ABC =∠ABF =45°,③正确;证出△ACD ∽△FEQ ,得出对应边成比例,得出④正确.【详解】解:∵四边形ADEF 为正方形,∴∠FAD =90°,AD =AF =EF ,∴∠CAD +∠FAG =90°,∵FG ⊥CA ,∴∠GAF +∠AFG =90°,∴∠CAD =∠AFG ,在△FGA 和△ACD 中,G C AFG CAD AF AD ===∠∠⎧⎪∠∠⎨⎪⎩,∴△FGA ≌△ACD (AAS ),∴AC =FG ,①正确;∵BC =AC ,∴FG =BC ,∵∠ACB =90°,FG ⊥CA ,∴FG ∥BC ,∴四边形CBFG 是矩形,∴∠CBF =90°,S △FAB =12FB•FG =12S 四边形CBFG ,②正确; ∵CA =CB ,∠C =∠CBF =90°,∴∠ABC =∠ABF =45°,③正确;∵∠FQE =∠DQB =∠ADC ,∠E =∠C =90°,∴△ACD∽△FEQ,∴AC:AD=FE:FQ,∴AD•FE=AD2=FQ•AC,④正确;故答案为①②③④.【点睛】本题考查了相似三角形的判定与性质、全等三角形的判定与性质、正方形的性质、矩形的判定与性质、等腰直角三角形的性质;熟练掌握正方形的性质,证明三角形全等和三角形相似是解决问题的关键.17.110°或50°.【解析】【分析】由内角和定理得出∠C=60°,根据翻折变换的性质知∠DFE=∠A=70°,再分∠EFC=90°和∠FEC=90°两种情况,先求出∠DFC度数,继而由∠BDF=∠DFC﹣∠B可得答案.【详解】∵△ABC中,∠A=70°、∠B=50°,∴∠C=180°﹣∠A﹣∠B=60°,由翻折性质知∠DFE=∠A=70°,分两种情况讨论:①当∠EFC=90°时,∠DFC=∠DFE+∠EFC=160°,则∠BDF=∠DFC﹣∠B=110°;②当∠FEC=90°时,∠EFC=180°﹣∠FEC﹣∠C=30°,∴∠DFC=∠DFE+∠EFC=100°,∠BDF=∠DFC﹣∠B=50°;综上:∠BDF的度数为110°或50°.故答案为110°或50°.【点睛】本题考查的是图形翻折变换的性质及三角形内角和定理,熟知折叠的性质、三角形的内角和定理、三角形外角性质是解答此题的关键.18.2.【解析】【分析】把x=m代入方程,求出2m2﹣3m=2,再变形后代入,即可求出答案.【详解】解:∵m是方程2x2﹣3x﹣2=0的一个根,∴代入得:2m2﹣3m﹣2=0,∴2m2﹣3m=2,∴6m2﹣9m+2026=3(2m2﹣3m)+2026=3×2+2026=2,故答案为:2.【点睛】本题考查了求代数式的值和一元二次方程的解,解此题的关键是能求出2m 2﹣3m =2.三、解答题(本题包括8个小题)19.53x y =⎧⎨=⎩【解析】【分析】将②×3,再联立①②消未知数即可计算.【详解】解:②3⨯得:6339x y += ③①+③得:1050x =5x =把5x =代入③得10339y +=3y =∴方程组的解为53x y =⎧⎨=⎩【点睛】本题考查二元一次方程组解法,关键是掌握消元法.20.(1)如图所示,见解析;四边形OA′B′C′即为所求;(2)S 四边形OA′B′C′=1.【解析】【分析】(1)结合网格特点,分别作出点A 、B 、C 关于点O 成位似变换的对应点,再顺次连接即可得; (2)根据S 四边形OA′B′C′=S △OA′B′+S △OB′C′计算可得.【详解】(1)如图所示,四边形OA′B′C′即为所求.(2)S 四边形OA′B′C′=S △OA′B′+S △OB′C′=×4×4+×2×2=8+2=1.【点睛】本题考查了作图-位似变换:先确定位似中心;再分别连接并延长位似中心和能代表原图的关键点;接着根据位似比,确定能代表所作的位似图形的关键点;然后顺次连接上述各点,得到放大或缩小的图形.21.(1)详见解析;(2)EF =【解析】【分析】(1)根据题意AB 平分BAD ∠可得90AGF AGD ∠=∠=︒,从而证明()FAG DAG ASA ∆≅∆即可解答 (2)由(1)可知6AF AD ==,再根据四边形ABCD 是平行四边形可得642BF AF AB =-=-=,过点F 作FH EB ⊥延长线于点H ,再根据勾股定理即可解答【详解】(1)证明:AB 平分BAD ∠FAG DAG ∴∠=∠DG AE ⊥90AGF AGD ∴∠=∠=︒又AG AG =()FAG DAG ASA ∴∆≅∆GF GD ∴=又DF AE ⊥EF ED ∴=(2)FAG DAG ∆≅∆6AF AD ∴==四边形ABCD 是平行四边形//AD BC ∴,6BC AD ==180********BAD ABC ∴∠=︒-∠=︒-︒=︒1602FAE BAD ∴∠=∠=︒ 60FAE B ∴∠=∠=︒ ABE ∴∆为等边三角形624AB AE BE BC CE ∴===-=-=642BF AF AB =-=-=过点F 作FH EB ⊥延长线于点H .在Rt BFH ∆中,60HBF ABC ∠=∠=︒30HFB ∴∠=︒112BH BF ∴== 2222213HF BF BH =-=-=415EH BE BH =+=+=()22223527EF FH EH =+=+= 【点睛】此题考查三角形全等的判定与性质,勾股定理,平行四边形的性质,解题关键在于作好辅助线22.解:(1)设甲公司单独完成此项工程需x 天,则乙公司单独完成此项工程需1.5x 天.根据题意,得111x 1.5x 12+=, 解得x=1.经检验,x=1是方程的解且符合题意.1.5 x=2.∴甲,乙两公司单独完成此项工程,各需1天,2天.(2)设甲公司每天的施工费为y 元,则乙公司每天的施工费为(y ﹣1500)元,根据题意得12(y+y ﹣1500)=10100解得y=5000,甲公司单独完成此项工程所需的施工费:1×5000=100000(元);乙公司单独完成此项工程所需的施工费:2×(5000﹣1500)=105000(元);∴让一个公司单独完成这项工程,甲公司的施工费较少.【解析】(1)设甲公司单独完成此项工程需x 天,则乙工程公司单独完成需1.5x 天,根据合作12天完成列出方程求解即可.(2)分别求得两个公司施工所需费用后比较即可得到结论.23. (1)证明见解析(2)BC=【解析】【分析】(1)AB 是⊙O 的直径,得∠ADB=90°,从而得出∠BAD=∠DBC ,即∠ABC=90°,即可证明BC 是⊙O 的切线;(2)可证明△ABC∽△BDC,则BC CDCA BC=,即可得出BC=10.【详解】(1)∵AB是⊙O的切直径,∴∠ADB=90°,又∵∠BAD=∠BED,∠BED=∠DBC,∴∠BAD=∠DBC,∴∠BAD+∠ABD=∠DBC+∠ABD=90°,∴∠ABC=90°,∴BC是⊙O的切线;(2)解:∵∠BAD=∠DBC,∠C=∠C,∴△ABC∽△BDC,∴BC CDCA BC=,即BC2=AC•CD=(AD+CD)•CD=10,∴BC=10.考点:1.切线的判定;2.相似三角形的判定和性质.24.(1)250、12;(2)平均数:1.38h;众数:1.5h;中位数:1.5h;(3)160000人;【解析】【分析】(1) 根据题意, 本次接受调查的学生总人数为各个金额人数之和, 用总概率减去其他金额的概率即可求得m值.(2) 平均数为一组数据中所有数据之和再除以这组数据的个数; 众数是在一组数据中出现次数最多的数; 中位数是将一组数据按大小顺序排列, 处于最中间位置的一个数据, 或是最中间两个数据的平均数, 据此求解即可.(3) 根据样本估计总体, 用“每天在校体育锻炼时间大于等于1.5h的人数” 的概率乘以全校总人数求解即可.【详解】(1)本次接受随机抽样调查的中学生人数为60÷24%=250人,m=100﹣(24+48+8+8)=12,故答案为250、12;(2)平均数为=1.38(h),众数为1.5h,中位数为=1.5h;(3)估计每天在校体育锻炼时间大于等于1.5h的人数约为250000×=160000人.【点睛】本题主要考查数据的收集、处理以及统计图表.25.证明见解析.【解析】【分析】(1)一方面Rt△ABC中,由∠BAC=30°可以得到AB=2BC,另一方面△ABE是等边三角形,EF⊥AB,由此得到AE=2AF,并且AB=2AF,从而可证明△AFE≌△BCA,再根据全等三角形的性质即可证明AC=EF.(2)根据(1)知道EF=AC,而△ACD是等边三角形,所以EF=AC=AD,并且AD⊥AB,而EF⊥AB,由此得到EF∥AD,再根据平行四边形的判定定理即可证明四边形ADFE是平行四边形.【详解】证明:(1)∵Rt△ABC中,∠BAC=30°,∴AB=2BC.又∵△ABE是等边三角形,EF⊥AB,∴AB=2AF.∴AF=BC.∵在Rt△AFE和Rt△BCA中,AF=BC,AE=BA,∴△AFE≌△BCA(HL).∴AC=EF.(2)∵△ACD是等边三角形,∴∠DAC=60°,AC=AD.∴∠DAB=∠DAC+∠BAC=90°.∴EF∥AD.∵AC=EF,AC=AD,∴EF=AD.∴四边形ADFE是平行四边形.考点:1.全等三角形的判定与性质;2.等边三角形的性质;3.平行四边形的判定.26.(1)证明见解析;(2)1.【解析】【分析】(1)欲证明四边形OCED是矩形,只需推知四边形OCED是平行四边形,且有一内角为90度即可;(2)由菱形的对角线互相垂直平分和菱形的面积公式解答.【详解】(1)∵四边形ABCD是菱形,∴AC⊥BD,∴∠COD=90°.∵CE∥OD,DE∥OC,∴四边形OCED是平行四边形,又∠COD=90°,∴平行四边形OCED是矩形;(2)由(1)知,平行四边形OCED是矩形,则CE=OD=1,DE=OC=2.∵四边形ABCD是菱形,∴AC=2OC=1,BD=2OD=2,∴菱形ABCD的面积为:12AC•BD=12×1×2=1,故答案为1.【点睛】本题考查了矩形的判定与性质,菱形的性质,熟练掌握矩形的判定及性质、菱形的性质是解题的关键.2019-2020学年中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.若关于x 的一元二次方程2210x x kb -++=有两个不相等的实数根,则一次函数y kx b =+的图象可能是:A .B .C .D .2.学完分式运算后,老师出了一道题“计算:23224x xx x +-++-”. 小明的做法:原式222222(3)(2)26284444x x x x x x x x x x x +--+----=-==----; 小亮的做法:原式22(3)(2)(2)624x x x x x x x =+-+-=+-+-=-; 小芳的做法:原式32313112(2)(2)222x x x x x x x x x x +-++-=-=-==++-+++. 其中正确的是( ) A .小明B .小亮C .小芳D .没有正确的3.如图数轴的A 、B 、C 三点所表示的数分别为a 、b 、c .若|a ﹣b|=3,|b ﹣c|=5,且原点O 与A 、B 的距离分别为4、1,则关于O 的位置,下列叙述何者正确?( )A .在A 的左边B .介于A 、B 之间C .介于B 、C 之间D .在C 的右边4.一、单选题在某校“我的中国梦”演讲比赛中,有7名学生参加了决赛,他们决赛的最终成绩各不相同.其中的一名学生想要知道自己能否进入前3名,不仅要了解自己的成绩,还要了解这7名学生成绩的( ) A .平均数B .众数C .中位数D .方差5.如图,AB ∥ED ,CD=BF ,若△ABC ≌△EDF ,则还需要补充的条件可以是( )A .AC=EFB .BC=DFC .AB=DED .∠B=∠E6.在下面的四个几何体中,左视图与主视图不相同的几何体是( )A .B .C .D .7.下列图形中,既是中心对称图形,又是轴对称图形的是( )A .B .C .D .8.下列关于x 的方程中一定没有实数根的是( ) A .210x x --=B .24690x x -+=C .2x x =-D .220x mx --=9.已知点M (-2,3 )在双曲线上,则下列一定在该双曲线上的是( )A .(3,-2 )B .(-2,-3 )C .(2,3 )D .(3,2)10.如图,在△ABC 中,点D 是AB 边上的一点,若∠ACD=∠B,AD=1,AC=2,△ADC 的面积为1,则△BCD 的面积为( )A .1B .2C .3D .4二、填空题(本题包括8个小题)11.已知菱形的周长为10cm ,一条对角线长为6cm ,则这个菱形的面积是_____cm 1.12.如图,在扇形AOB 中,∠AOB=90°,点C 为OA 的中点,CE ⊥OA 交AB 于点E ,以点O 为圆心,OC 的长为半径作CD 交OB 于点D ,若OA=2,则阴影部分的面积为 .13.如图,在△ABC 中,AB=BC ,∠ABC=110°,AB 的垂直平分线DE 交AC 于点D ,连接BD,则∠ABD= ___________°.14.已知点A (2,4)与点B (b ﹣1,2a )关于原点对称,则ab =_____.15.一个长方体的三视图如图所示,若其俯视图为正方形,则这个长方体的体积为______.16.小芸一家计划去某城市旅行,需要做自由行的攻略,父母给她分配了一项任务:借助网络评价选取该城市的一家餐厅用餐.小芸根据家人的喜好,选择了甲、乙、丙三家餐厅,对每家餐厅随机选取了1000条网络评价,统计如下: 评价条数 等级餐厅 五星四星三星二星一星合计甲 538 210 96 129 27 1000 乙 460 187 154 169 30 1000 丙4863888113321000(说明:网上对于餐厅的综合评价从高到低,依次为五星、四星、三星、二星和一星.)小芸选择在________(填"甲”、“乙"或“丙”)餐厅用餐,能获得良好用餐体验(即评价不低于四星)的可能性最大.17.将一个含45°角的三角板ABC ,如图摆放在平面直角坐标系中,将其绕点C 顺时针旋转75°,点B 的对应点'B 恰好落在轴上,若点C 的坐标为(1,0),则点'B 的坐标为____________.18.太阳半径约为696000千米,数字696000用科学记数法表示为 千米. 三、解答题(本题包括8个小题)19.(6分)如图,在ABC ∆中,D 是BC 的中点,过点D 的直线GF 交AC 于点F ,交AC 的平行线BG 于点G ,ED DF ⊥交AB 于点E ,连接EG 、EF .求证:BG CF =;请你判断BE CF +与EF 的大小关系,并说明理由.20.(6分)如图,点D 为⊙O 上一点,点C 在直径BA 的延长线上,且∠CDA=∠CBD .判断直线CD 和⊙O的位置关系,并说明理由.过点B作⊙O的切线BE交直线CD于点E,若AC=2,⊙O的半径是3,求BE 的长.21.(6分)计算:﹣14﹣2×(﹣3)2+327-÷(﹣13)如图,小林将矩形纸片ABCD沿折痕EF翻折,使点C、D分别落在点M、N的位置,发现∠EFM=2∠BFM,求∠EFC的度数.22.(8分)某商场要经营一种新上市的文具,进价为20元,试营销阶段发现:当销售单价是25元时,每天的销售量为250件,销售单价每上涨1元,每天的销售量就减少10件写出商场销售这种文具,每天所得的销售利润(元)与销售单价(元)之间的函数关系式;求销售单价为多少元时,该文具每天的销售利润最大;商场的营销部结合上述情况,提出了A、B两种营销方案方案A:该文具的销售单价高于进价且不超过30元;方案B:每天销售量不少于10件,且每件文具的利润至少为25元请比较哪种方案的最大利润更高,并说明理由23.(8分)如图,△ABC中,点D在边AB上,满足∠ACD=∠ABC,若AC=3,AD=1,求DB的长.24.(10分)如图,平面直角坐标系中,直线AB:13y x b=-+交y轴于点A(0,1),交x轴于点B.直线x=1交AB于点D,交x轴于点E,P是直线x=1上一动点,且在点D的上方,设P(1,n).求直线AB 的解析式和点B的坐标;求△ABP的面积(用含n的代数式表示);当S△ABP=2时,以PB为边在第一象限作等腰直角三角形BPC,求出点C的坐标.25.(10分)甲、乙两名队员的10次射击训练,成绩分别被制成下列两个统计图.并整理分析数据如下表: 平均成绩/环中位数/环 众数/环 方差 甲 a77 1.2乙7b8c(1)求a ,b ,c 的值;分别运用表中的四个统计量,简要分析这两名队员的射击训练成绩.若选派其中一名参赛,你认为应选哪名队员?26.(12分)如图所示,AC=AE ,∠1=∠2,AB=AD .求证:BC=DE .参考答案一、选择题(本题包括10个小题,每小题只有一个选项符合题意) 1.B 【解析】 【详解】由方程2210x x kb ++=-有两个不相等的实数根, 可得()4410kb =-+>, 解得0kb <,即k b 、异号,当00k b >,<时,一次函数y kx b =+的图象过一三四象限,当00k b <,>时,一次函数y kx b =+的图象过一二四象限,故答案选B. 2.C 【解析】 试题解析:23224x xx x +-++- =()()32222x x x x x +--++- =3122x x x +-++ =3-12x x ++ =22x x ++ =1.所以正确的应是小芳. 故选C . 3.C 【解析】分析:由A 、B 、C 三点表示的数之间的关系结合三点在数轴上的位置即可得出b=a+3,c=b+5,再根据原点O 与A 、B 的距离分别为1、1,即可得出a=±1、b=±1,结合a 、b 、c 间的关系即可求出a 、b 、c 的值,由此即可得出结论.解析:∵|a ﹣b|=3,|b ﹣c|=5, ∴b=a+3,c=b+5,∵原点O 与A 、B 的距离分别为1、1, ∴a=±1,b=±1, ∵b=a+3, ∴a=﹣1,b=﹣1, ∵c=b+5, ∴c=1.∴点O 介于B 、C 点之间. 故选C .点睛:本题考查了数值以及绝对值,解题的关键是确定a 、b 、c 的值.本题属于基础题,难度不大,解决该题型题目时,根据数轴上点的位置关系分别找出各点代表的数是关键. 4.C 【解析】 【分析】由于其中一名学生想要知道自己能否进入前3名,共有7名选手参加,故应根据中位数的意义分析.【详解】由于总共有7个人,且他们的成绩各不相同,第4的成绩是中位数,要判断是否进入前3名,故应知道中位数的多少.故选C.【点睛】此题主要考查统计的有关知识,主要包括平均数、中位数、众数、方差的意义.反映数据集中程度的统计量有平均数、中位数、众数、方差等,各有局限性,因此要对统计量进行合理的选择和恰当的运用.5.C【解析】【分析】根据平行线性质和全等三角形的判定定理逐个分析.【详解】AB ED,得∠B=∠D,由//,因为CD BF若ABC≌EDF,则还需要补充的条件可以是:AB=DE,或∠E=∠A, ∠EFD=∠ACB,故选C【点睛】本题考核知识点:全等三角形的判定. 解题关键点:熟记全等三角形判定定理.6.B【解析】【分析】由几何体的三视图知识可知,主视图、左视图是分别从物体正面、左面看所得到的图形,细心观察即可求解.【详解】A、正方体的左视图与主视图都是正方形,故A选项不合题意;B、长方体的左视图与主视图都是矩形,但是矩形的长宽不一样,故B选项与题意相符;C、球的左视图与主视图都是圆,故C选项不合题意;D、圆锥左视图与主视图都是等腰三角形,故D选项不合题意;故选B.【点睛】本题主要考查了几何题的三视图,解题关键是能正确画出几何体的三视图.7.C【解析】【分析】根据中心对称图形和轴对称图形对各选项分析判断即可得解.【详解】A、不是轴对称图形,是中心对称图形,故本选项错误;B、不是中心对称图形,是轴对称图形,故本选项错误;C、既是中心对称图形,又是轴对称图形,故本选项正确;D、是轴对称图形,不是中心对称图形,故本选项错误.故选C.【点睛】本题考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.8.B【解析】【分析】根据根的判别式的概念,求出△的正负即可解题.【详解】解: A. x2-x-1=0,△=1+4=5>0,∴原方程有两个不相等的实数根,B. 2-+=, △=36-144=-108<0,∴原方程没有实数根,4x6x90C. 2x x+=, △=1>0,∴原方程有两个不相等的实数根,=-, 2x x0D. 2x mx20--=, △=m2+8>0,∴原方程有两个不相等的实数根,故选B.【点睛】本题考查了根的判别式,属于简单题,熟悉根的判别式的概念是解题关键.9.A【解析】因为点M(-2,3)在双曲线上,所以xy=(-2)×3=-6,四个答案中只有A符合条件.故选A 10.C【解析】【详解】∵∠ACD=∠B,∠A=∠A,。

2020年山西省中考数学试卷(附答案详解)

2020年山西省中考数学试卷一、选择题(本大题共10小题,共30.0分))的结果是()1.(2021·湖南省·单元测试)计算(−6)÷(−13A. −18B. 2C. 18D. −22.(2021·安徽省·单元测试)自新冠肺炎疫情发生以来,全国人民共同抗疫,各地积极普及科学防控知识,下面是科学防控知识的图片,图片上有图案和文字说明,其中的图案是轴对称图形的是()A. B. C. D.3.(2021·河南省郑州市·模拟题)下列运算正确的是()A. 3a+2a=5a2B. −8a2÷4a=2aC. (−2a2)3=−8a6D. 4a3⋅3a2=12a64.(2021·吉林省长春市·模拟题)下列几何体都是由4个大小相同的小正方体组成的,其中主视图与左视图相同的几何体是()A. B.C. D.5.(2021·全国·单元测试)泰勒斯是古希腊时期的思想家,科学家,哲学家,他最早提出了命题的证明.泰勒斯曾通过测量同一时刻标杆的影长,标杆的高度,金字塔的影长,推算出金字塔的高度,这种测量原理,就是我们所学的()A. 图形的平移B. 图形的旋转C. 图形的轴对称D. 图形的相似6.(2021·山西省太原市·同步练习)不等式组{2x−6>0,4−x<−1的解集是()A. x>5B. 3<x<5C. x<5D. x>−57.(2021·四川省成都市·模拟题)已知点A(x1,y1),B(x2,y2),C(x3,y3)都在反比例函数y=kx(k<0)的图象上,且x1<x2<0<x3,则y1,y2,y3的大小关系是()A. y2>y1>y3B. y3>y2>y1C. y1>y2>y3D. y3>y1>y28.(2021·吉林省·模拟题)中国美食讲究色香味美,优雅的摆盘造型也会让美食锦上添花.图①中的摆盘,其形状是扇形的一部分,图②是其几何示意图(阴影部分为摆盘),通过测量得到AC=BD=12cm,C,D两点之间的距离为4cm,圆心角为60°,则图中摆盘的面积是()A. 80πcm2B. 40πcm2C. 24πcm2D. 2πcm29.(2021·贵州省贵阳市·单元测试)竖直上抛物体离地面的高度ℎ(m)与运动时间t(s)之间的关系可以近似地用公式ℎ=−5t2+v0t+ℎ0表示,其中ℎ0(m)是物体抛出时离地面的高度,v0(m/s)是物体抛出时的速度.某人将一个小球从距地面1.5m的高处以20m/s的速度竖直向上抛出,小球达到的离地面的最大高度为()A. 23.5mB. 22.5mC. 21.5mD. 20.5m10.(2021·全国·单元测试)如图是一张矩形纸板,顺次连接各边中点得到菱形,再顺次连接菱形各边中点得到一个小矩形.将一个飞镖随机投掷到大矩形纸板上,则飞镖落在阴影区域的概率是()A. 13B. 14C. 16D. 18二、填空题(本大题共5小题,共15.0分)11.(2020·河北省·单元测试)计算:(√3+√2)2−√24=______.12.(2020·山东省枣庄市·期中考试)如图是一组有规律的图案,它们是由边长相等的正三角形组合而成,第1个图案有4个三角形,第2个图案有7个三角形,第3个图案有10个三角形…按此规律摆下去,第n个图案有______个三角形(用含n的代数式表示).13.(2021·湖北省·其他类型)某校为了选拔一名百米赛跑运动员参加市中学生运动会,组织了6次预选赛,其中甲,乙两名运动员较为突出,他们在6次预选赛中的成绩(单位:秒)如下表所示:甲12.012.012.211.812.111.9乙12.312.111.812.011.712.1由于甲,乙两名运动员的成绩的平均数相同,学校决定依据他们成绩的稳定性进行选拔,那么被选中的运动员是______.14.(2021·江苏省泰州市·模拟题)如图是一张长12cm,宽10cm的矩形铁皮,将其剪去两个全等的正方形和两个全等的矩形,剩余部分(阴影部分)可制成底面积是24cm2的有盖的长方体铁盒.则剪去的正方形的边长为______cm.15.(2021·河南省·其他类型)如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,CD⊥AB,垂足为D,E为BC的中点,AE与CD交于点F,则DF的长为______.三、计算题(本大题共1小题,共10.0分)16.(2021·河南省·模拟题)(1)计算:(−4)2×(−12)3−(−4+1).(2)下面是小彬同学进行分式化简的过程,请认真阅读并完成相应任务.x2−9 x2+6x+9−2x+1 2x+6=(x+3)(x−3)(x+3)2−2x+12(x+3)…第一步=x−3x+3−2x+12(x+3)…第二步=2(x−3)2(x+3)−2x+12(x+3)…第三步=2x−6−(2x+1)…第四步2(x+3)…第五步=2x−6−2x+12(x+3)=−5…第六步2x+6任务一:填空:①以上化简步骤中,第______步是进行分式的通分,通分的依据是______.或填为:______;②第______步开始出现错误,这一步错误的原因是______;任务二:请直接写出该分式化简后的正确结果;任务三:除纠正上述错误外,请你根据平时的学习经验,就分式化简时还需要注意的事项给其他同学提一条建议.四、解答题(本大题共7小题,共65.0分)17.(2021·江苏省徐州市·模拟题)2020年5月份,省城太原开展了“活力太原⋅乐购晋阳”消费暖心活动,本次活动中的家电消费券单笔交易满600元立减128元(每次只能使用一张).某品牌电饭煲按进价提高50%后标价,若按标价的八折销售,某顾客购买该电饭煲时,使用一张家电消费券后,又付现金568元.求该电饭煲的进价.18.(2020·山西省·历年真题)如图,四边形OABC是平行四边形,以点O为圆心,OC为半径的⊙O与AB相切于点B,与AO相交于点D,AO的延长线交⊙O于点E,连接EB交OC于点F.求∠C和∠E的度数.19.(2021·全国·单元测试)2020年国家提出并部署了“新基建”项目,主要包含“特高压,城际高速铁路和城市轨道交通,5G基站建设,工业互联网,大数据中心,人工智能,新能源汽车充电桩”等.《2020新基建中高端人才市场就业吸引力报告》重点刻画了“新基建”中五大细分领域(5G基站建设,工业互联网,大数据中心,人工智能,新能源汽车充电桩)总体的人才与就业机会.如图是其中的一个统计图.请根据图中信息,解答下列问题:(1)填空:图中2020年“新基建”七大领域预计投资规模的中位数是______亿元;(2)甲,乙两位待业人员,仅根据上面统计图中的数据,从五大细分领域中分别选择了“5G基站建设”和“人工智能”作为自己的就业方向.请简要说明他们选择就业方向的理由各是什么;(3)小勇对“新基建”很感兴趣,他收集到了五大细分领域的图标,依次制成编号为W,G,D,R,X的五张卡片(除编号和内容外,其余完全相同),将这五张卡片背面朝上,洗匀放好,从中随机抽取一张(不放回),再从中随机抽取一张.请用列表或画状图的方法求抽到的两张卡片恰好是编号为W(5G基站建设)和R(人工智能)的概率.20.(2021·河南省许昌市·月考试卷)阅读与思考如图是小宇同学的数学日记,请仔细阅读,并完成相应的任务.×年×月×日星期日没有直角尺也能作出直角今天,我在书店一本书上看到下面材料:木工师傅有一块如图①所示的四边形木板,他已经在木板上画出一条裁割线AB,现根据木板的情况,要过AB上的一点C,作出AB的垂线,用锯子进行裁割,然而手头没有直角尺,怎么办呢?办法一:如图①,可利用一把有刻度的直尺在AB上量出CD=30cm,然后分别以D,C为圆心,以50cm与40cm为半径画圆弧,两弧相交于点E,作直线CE,则∠DCE 必为90°.办法二:如图②,可以取一根笔直的木棒,用铅笔在木棒上点出M,N两点,然后把木棒斜放在木板上,使点M与点C重合,用铅笔在木板上将点N对应的位置标记为点Q,保持点N不动,将木棒绕点N旋转,使点M落在AB上,在木板上将点M对应的位置标记为点R.然后将RQ延长,在延长线上截取线段QS=MN,得到点S,作直线SC,则∠RCS=90°.我有如下思考:以上两种办法依据的是什么数学原理呢?我还有什么办法不用直角尺也能作出垂线呢?……任务:(1)填空:“办法一”依据的一个数学定理是______;(2)根据“办法二”的操作过程,证明∠RCS=90°;(3)①尺规作图:请在图③的木板上,过点C作出AB的垂线(在木板上保留作图痕迹,不写作法);②说明你的作法所依据的数学定理或基本事实(写出一个即可).21.(2021·贵州省贵阳市·单元测试)图①是某车站的一组智能通道闸机,当行人通过时智能闸机会自动识别行人身份,识别成功后,两侧的圆弧翼闸会收回到两侧闸机箱内,这时行人即可通过.图②是两圆弧翼展开时的截面图,扇形ABC和DEF是闸机的“圆弧翼”,两圆弧翼成轴对称,BC和EF均垂直于地面,扇形的圆心角∠ABC=∠DEF=28°,半径BA=ED=60cm,点A与点D在同一水平线上,且它们之间的距离为10cm.(1)求闸机通道的宽度,即BC与EF之间的距离(参考数据:sin28°≈0.47,cos28°≈0.88,tan28°≈0.53);(2)经实践调查,一个智能闸机的平均检票速度是一个人工检票口平均检票速度的2倍,180人的团队通过一个智能闸机口比通过一个人工检票口可节约3分钟,求一个智能闸机平均每分钟检票通过的人数.22.(2021·江苏省徐州市·模拟题)综合与实践问题情境:如图①,点E为正方形ABCD内一点,∠AEB=90°,将Rt△ABE绕点B按顺时针方向旋转90°,得到△CBE′(点A的对应点为点C).延长AE交CE′于点F,连接DE.猜想证明:(1)试判断四边形BE′FE的形状,并说明理由;(2)如图②,若DA=DE,请猜想线段CF与FE′的数量关系并加以证明;解决问题:(3)如图①,若AB=15,CF=3,请直接写出DE的长.23.(2021·内蒙古自治区锡林郭勒盟·模拟题)综合与探究x2−x−3与x轴交于A,B两点(点A在点B的左侧),与y轴如图,抛物线y=14交于点C.直线l与抛物线交于A,D两点,与y轴交于点E,点D的坐标为(4,−3).(1)请直接写出A,B两点的坐标及直线l的函数表达式;(2)若点P是抛物线上的点,点P的横坐标为m(m≥0),过点P作PM⊥x轴,垂足为M.PM与直线l交于点N,当点N是线段PM的三等分点时,求点P的坐标;(3)若点Q是y轴上的点,且∠ADQ=45°,求点Q的坐标.答案和解析1.【答案】C【知识点】有理数的除法)=(−6)×(−3)=18.【解析】解:(−6)÷(−13故选:C.根据有理数的除法法则计算即可,除以一个数,等于乘以这个数的倒数.本题主要考查了有理数的除法,熟练掌握运算法则是解答本题的关键.2.【答案】D【知识点】轴对称图形【解析】【分析】此题主要考查了轴对称图形,关键是掌握轴对称图形的定义.根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形进行分析即可.【解答】解:A、不是轴对称图形;B、不是轴对称图形;C、不是轴对称图形;D、是轴对称图形.故选:D.3.【答案】C【知识点】整式的混合运算【解析】解:A、3a+2a=5a,故此选项错误;B、−8a2÷4a=−2a,故此选项错误;C、(−2a2)3=−8a6,正确;D、4a3⋅3a2=12a5,故此选项错误;故选:C.直接利用合并同类项法则以及幂的乘方和积的乘方运算法则、整式的乘除运算法则分别计算得出答案.此题主要考查了整式的混合运算,正确掌握相关运算法则是解题关键.4.【答案】B【知识点】简单组合体的三视图【解析】解:A.主视图的底层是两个小正方形,上层右边是一个小正方形;左视图底层是两个小正方形,上层左边是一个小正方形,故本选项不合题意;B .主视图和左视图均为底层是两个小正方形,上层左边是一个小正方形,故本选项符合题意;C .主视图底层是三个小正方形,上层中间是一个小正方形;左视图是一列两个小正方形,故本选项不合题意;D .主视图底层是三个小正方形,上层右边是一个小正方形;左视图是一列两个小正方形,故本选项不合题意; 故选:B .主视图、左视图是分别从物体正面、左面看,所得到的图形.分别分析四种几何体的主视图与左视图,即可求解.本题考查了利用几何体判断三视图,培养了学生的观察能力和对几何体三种视图的空间想象能力.5.【答案】D【知识点】平行投影及其相关概念、相似三角形的应用【解析】解:泰勒斯曾通过测量同一时刻标杆的影长,标杆的高度,金字塔的影长,推算出金字塔的高度,这种测量原理,就是我们所学的图形的相似, 故选:D .根据图形的变换和相似三角形的应用等知识直接回答即可.本题考查了相似三角形的应用、图形的变换等知识,解题的关键是了解物高与影长成正比,难度不大.6.【答案】A【知识点】一元一次不等式组的解法 【解析】解:{2x −6>0,4−x <−1解不等式2x −6>0,得:x >3,解不等式4−x<−1,得:x>5,则不等式组的解集为x>5.故选:A.先解不等式组中的每一个不等式的解集,再利用求不等式组解集的口诀“同大取大”来求不等式组的解集.主要考查了一元一次不等式组解集的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).7.【答案】A【知识点】反比例函数图象上点的坐标特征(k<0)的图象分布在第二、四象限,【解析】解:∵反比例函数y=kx在每一象限y随x的增大而增大,而x1<x2<0<x3,∴y3<0<y1<y2.即y2>y1>y3.故选:A.(k<0)的图象分布在第二、四象限,则y3最小,根据反比例函数性质,反比例函数y=kxy2最大.本题考查反比例函数图象上点的坐标特征:反比例函数图象上点的坐标满足其解析式.也考查了反比例函数的性质.8.【答案】B【知识点】扇形面积的计算【解析】解:如图,连接CD.∵OC=OD,∠O=60°,∴△COD是等边三角形,∴OC=OD=CD=4cm,∴S阴=S扇形OAB−S扇形OCD=60⋅π⋅162360−60⋅π⋅42360=40π(cm2),故选:B.首先证明△OCD是等边三角形,求出OC=OD=CD=4cm,再根据S阴=S扇形OAB−S扇形OCD,求解即可.本题考查扇形的面积,等边三角形的判定和性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.9.【答案】C【知识点】二次函数的应用【解析】解:由题意可得,ℎ=−5t2+20t+1.5=−5(t−2)2+21.5,故当t=2时,h取得最大值,此时ℎ=21.5,故选:C.根据题意,可以得到h与t的函数关系式,然后化为顶点式,即可得到h的最大值,本题得以解决.本题考查二次函数的应用,解答本题的关键是明确题意,利用二次函数的性质解答.10.【答案】B【知识点】几何概率、菱形的性质、中点四边形【解析】解:由图形知阴影部分的面积是大矩形面积的14,∴飞镖落在阴影区域的概率是14,故选:B.由图形知阴影部分的面积是大矩形面积的14,据此可得答案.本题主要考查几何概率,求概率时,已知和未知与几何有关的就是几何概率.计算方法是长度比,面积比,体积比等.11.【答案】5【知识点】二次根式的混合运算【解析】【分析】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍. 先利用完全平方公式计算,然后化简后合并即可. 【解答】解:原式=3+2√6+2−2√6 =5. 故答案为5.12.【答案】(3n +1)【知识点】列代数式、图形规律问题【解析】解:第1个图案有4个三角形,即4=3×1+1 第2个图案有7个三角形,即7=3×2+1 第3个图案有10个三角形,即10=3×3+1 …按此规律摆下去,第n 个图案有(3n +1)个三角形. 故答案为:(3n +1).根据图形的变化发现规律,即可用含n 的代数式表示.本题考查了规律型−图形的变化类、列代数式,解决本题的关键是根据图形的变化寻找规律.13.【答案】甲【知识点】算术平均数、方差【解析】解:甲的平均成绩为:16(12.0+12.0+12.2+11.8+12.1+11.9)=12秒, 乙的平均成绩为:16(12.3+12.1+11.8+12.0+11.7+12.1)=12秒; 分别计算甲、乙两人的百米赛跑成绩的方差为:S 甲2=16[(12.2−12)2+(11.8−12)2+(12.1−12)2+(11.9−12)2]=160, S 乙2=16[(12.3−12)2+2(12.1−12)2+(11.8−12)2+(11.7−12)2]=125,∵160<125,∴甲运动员的成绩更为稳定;故答案为:甲.分别计算、并比较两人的方差即可判断.考查了方差及算术平均数的定义,解题的关键是了解方差及平均数的计算方法,难度不大.14.【答案】2【知识点】全等图形、一元二次方程的应用【解析】解:设底面长为acm,宽为bcm,正方形的边长为xcm,根据题意得:{2(x+b)=12 a+2x=10ab=24,解得a=10−2x,b=6−x,代入ab=24中,得:(10−2x)(6−x)=24,整理得:x2−11x+18=0,解得x=2或x=9(舍去),答;剪去的正方形的边长为2cm.故答案为:2.根据题意找到等量关系列出方程组,转化为一元二次方程求解即可.本题考查了一元二次方程的应用,解决本题的关键是根据题意找到等量关系列出方程组.15.【答案】5485【知识点】勾股定理、解直角三角形、相似三角形的判定与性质、平行线分线段成比例【解析】解:如图,过点F作FH⊥AC于H.在Rt△ABC中,∵∠ACB=90°,AC=3,BC=4,∴AB=√CB2+AC2=√42+32=5,∵CD ⊥AB ,∴S △ABC =12⋅AC ⋅BC =12⋅AB ⋅CD ,∴CD =125,AD =√AC 2−CD 2=√32−(125)2=95, ∵FH//EC , ∴FH EC=AH AC,∵EC =EB =2,∴FH AH =23,设FH =2k ,AH =3k ,CH =3−3k , ∵tan∠FCH =FH CH =ADAD , ∴2k3−3k =95125,∴k =917,∴FH =1817,CH =3−2717=2417, ∴CF =√CH 2+FH 2=√(1817)2+(2417)2=3017,∴DF =125−3017=5485,故答案为5485.如图,过点F 作FH ⊥AC 于H.首先证明FH :AH =2:3,设FH =2k ,AH =3k ,根据tan∠FCH =FHCH =ADAD ,构建方程求解即可.本题考查解直角三角形,平行线分线段成比例定理等知识,解题的关键是学会利用参数构建方程解决问题,属于中考常考题型.16.【答案】三 分式的基本性质 分式的分子分母都乘(或除以)同一个不为0的整式,分式的值不变 五 括号前面是“−”,去掉括号后,括号里面的第二项没有变号【知识点】有理数的混合运算、分式的基本性质、分式的混合运算 【解析】解:(1)(−4)2×(−12)3−(−4+1)=16×(−18)+3=−2+3=1;(2)①以上化简步骤中,第三步是进行分式的通分,通分的依据是分式的基本性质.或填为:分式的分子分母都乘(或除以)同一个不为0的整式,分式的值不变;②第五步开始出现错误,这一步错误的原因是括号前面是“−”,去掉括号后,括号里面的第二项没有变号;任务二:x2−9x2+6x+9−2x+12x+6=(x+3)(x−3)(x+3)2−2x+12(x+3)…第一步=x−3x+3−2x+12(x+3)…第二步=2(x−3)2(x+3)−2x+12(x+3)…第三步=2x−6−(2x+1)2(x+3)…第四步=2x−6−2x−12(x+3)…第五步=−72x+6…第六步;任务三:答案不唯一,如:分式的混合运算,一般按常规运算顺序,但有时应先根据题目的特点,运用乘法的运算律运算,会简化运算过程.故答案为:三;分式的基本性质;分式的分子分母都乘(或除以)同一个不为0的整式,分式的值不变;五;括号前面是“−”,去掉括号后,括号里面的第二项没有变号.(1)先算乘方,再算乘法,最后算加减;如果有括号,要先做括号内的运算;(2)①根据分式的基本性质即可判断;②根据分式的加减运算法则即可判断;任务二:依据分式加减运算法则计算可得;任务三:答案不唯一,只要合理即可.本题主要考查分式的混合运算,解题的关键是掌握分式的混合运算顺序和运算法则及分式的基本性质.同时考查了有理数的混合运算.17.【答案】解:设该电饭煲的进价为x元,则标价为(1+50%)x元,售价为80%×(1+ 50%)x元,根据题意,得80%×(1+50%)x−128=568,解得x=580.答:该电饭煲的进价为580元.【知识点】一元一次方程的应用【解析】设该电饭煲的进价为x元,则售价为80%×(1+50%)x元,根据某顾客购买该电饭煲时,使用一张家电消费券后,又付现金568元列出方程,求解即可.此题考查一元一次方程的实际运用,找出题目蕴含的数量关系是解决问题的关键.18.【答案】解:连接OB,如图,∵⊙O与AB相切于点B,∴OB⊥AB,∵四边形ABCO为平行四边形,∴AB//OC,OA//BC,∴OB⊥OC,∴∠BOC=90°,∵OB=OC,∴△OCB为等腰直角三角形,∴∠C=∠OBC=45°,∵AO//BC,∴∠AOB=∠OBC=45°,∠AOB=22.5°.∴∠E=12【知识点】平行四边形的性质、切线的性质、圆周角定理【解析】连接OB,如图,根据切线的性质得OB⊥AB,再利用平行四边形的性质得AB//OC,OA//BC,则∠BOC=90°,接着计算出∠C=∠OBC=45°,然后利用平行线的性质得到∠AOB=∠OBC=45°,从而根据圆周角定理得到∠E的度数.本题考查了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.也考查了平行四边形的性质和圆周角定理.19.【答案】300【知识点】中位数、条形统计图、用列举法求概率(列表法与树状图法)【解析】解:(1)2020年“新基建”七大领域预计投资规模按照从小到大排列为100、160、200、300、300、500、640,∴图中2020年“新基建”七大领域预计投资规模的中位数是300亿元,故答案为:300;(2)甲更关注在线职位的增长率,在“新基建”五大细分领域中,2020年一季度“5G基站建设”在线职位与2019年同期相比增长率最高;乙更关注预计投资规模,在“新基建”五大细分领域中,“人工智能”在2020年预计投资规模最大;(3)列表如下:W G D R X W(G,W)(D,W)(R,W)(X,W) G(W,G)(D,G)(R,G)(X,G) D(W,D)(G,D)(R,D)(X,D) R(W,R)(G,R)(D,R)(X,R) X(W,X)(G,X)(D,X)(R,X)由表可知,共有20种等可能结果,其中抽到“W”和“R”的结果有2种,∴抽到的两张卡片恰好是编号为W(5G基站建设)和R(人工智能)的概率220=110.(1)根据统计图,将2020年“新基建”七大领域预计投资规模按照从小到大排列,再利用中位数定义求解可得;(2)分别从2020年一季度“5G基站建设”在线职位与2019年同期相比增长率和2020年预计投资规模角度分析求解可得;(3)列表得出所有等可能结果,从中找到符合条件的结果数,根据概率公式求解可得.本题主要考查条形统计图、折线统计图和列表法与树状图法求概率,根据条形图得出解题所需数据及画树状图列出所有等可能结果是解题的关键.20.【答案】勾股定理的逆定理【知识点】线段垂直平分线的概念及其性质、勾股定理的逆定理、作图与测量【解析】解:(1)∵CD=30,DE=50,CE=40,∴CD2+CE2=302+402=502=DE2,∴∠DCE=90°,故“办法一”依据的一个数学定理是勾股定理的逆定理;故答案为:勾股定理的逆定理;(2)由作图方法可知,QP=QC,QS=QC,∴∠QCR=∠QRC,∠QCS=∠QSC,∵∠SRC+∠RCS+∠QRC+∠QSC=180°,∴2(∠QCR+∠QCS)=180°,∴∠QCR+∠QCS=90°,即∠RCS=90°;(3)①如图③所示,直线PC即为所求;②答案不唯一,到一条线段两个端点距离相等的点,在这条线段的垂直平分线上.(1)根据勾股定理的逆定理即可得到结论;(2)根据直角三角形的性质即可得到结论;(3)根据线段垂直平分线的性质即可得到结论.本题考查了勾股定理的逆定理,线段垂直平分线的性质,正确的理解题意是解题的关键.21.【答案】解:(1)连接AD,并向两方延长,分别交BC,EF于M,N,由点A,D在同一条水平线上,BC,EF均垂直于地面可知,MN⊥BC,MN⊥EF,所以MN的长度就是BC与EF之间的距离,同时,由两圆弧翼成轴对称可得,AM=DN,在Rt△ABM中,∠AMB=90°,∠ABM=28°,AB=60cm,∵sin∠ABM=AMAB,∴AM=AB⋅sin∠ABM=60⋅sin28°≈60×0.47=28.2,∴MN=AM+DN+AD=2AM+AD=28.2×2+10=66.4,∴BC与EF之间的距离为66.4cm;(2)设一个人工检票口平均每分钟检票通过的人数为x人,根据题意得,180x −3=1802x,解得:x=30,经检验,x=30是原方程的根,当x=30时,2x=60,答:一个智能闸机平均每分钟检票通过的人数为60人.【知识点】解直角三角形的应用、由实际问题抽象出分式方程【解析】(1)连接AD,并向两方延长,分别交BC,EF于M,N,由点A,D在同一条水平线上,BC,EF均垂直于地面可知,MN⊥BC,MN⊥EF,所以MN的长度就是BC与EF之间的距离,同时,由两圆弧翼成轴对称可得,AM=DN,解直角三角形即可得到结论;(2)设一个人工检票口平均每分钟检票通过的人数为x人,根据题意列方程即可得到结论.本题考查了解直角三角形的应用,分式方程的应用,正确理解题意是解题的关键.22.【答案】解:(1)四边形BE′FE是正方形,理由如下:∵将Rt△ABE绕点B按顺时针方向旋转90°,∴∠AEB=∠CE′B=90°,BE=BE′,∠EBE′=90°,又∵∠BEF=90°,∴四边形BE′FE是矩形,又∵BE=BE′,∴四边形BE′FE是正方形;(2)CF=E′F;理由如下:如图②,过点D作DH⊥AE于H,∵DA=DE,DH⊥AE,AE,DH⊥AE,∴AH=12∴∠ADH+∠DAH=90°,∵四边形ABCD是正方形,∴AD=AB,∠DAB=90°,∴∠DAH+∠EAB=90°,∴∠ADH=∠EAB,又∵AD=AB,∠AHD=∠AEB=90°,∴△ADH≌△BAE(AAS),∴AH=BE=1AE,2∵将Rt△ABE绕点B按顺时针方向旋转90°,∴AE=CE′,∵四边形BE′FE是正方形,∴BE=E′F,CE′,∴E′F=12∴CF=E′F;(3)如图①,过点D作DH⊥AE于H,∵四边形BE′FE是正方形,∴BE′=E′F=BE,∵AB=BC=15,CF=3,BC2=E′B2+E′C2,∴225=E′B2+(E′B+3)2,∴E′B=9=BE,∴CE′=CF+E′F=12,由(2)可知:BE=AH=9,DH=AE=CE′=12,∴HE=3,∴DE=√DH2+HE2=√144+9=3√17.【知识点】四边形综合【解析】(1)由旋转的性质可得∠AEB=∠CE′B=90°,BE=BE′,∠EBE′=90°,由正方形的判定可证四边形BE′FE是正方形;AE,DH⊥AE,由“AAS”(2)过点D作DH⊥AE于H,由等腰三角形的性质可得AH=12AE,由旋转的性质可得AE=CE′,可得结论;可得△ADH≌△BAE,可得AH=BE=12(3)利用勾股定理可求BE=BE′=9,再利用勾股定理可求DE的长.本题是四边形综合题,考查了正方形的判定和性质,旋转的性质,全等三角形的判定和性质,等腰三角形的性质等知识,灵活运用这些性质进行推理是本题的关键.x2−x−3=0,23.【答案】解:(1)令y=0,得y=14解得,x=−2,或x=6,∴A(−2,0),B(6,0),设直线l 的解析式为y =kx +b(k ≠0),则{−2k +b =04k +b =−3, 解得,{k =−12b =−1, ∴直线l 的解析式为y =−12x −1; (2)如图1,根据题意可知,点P 与点N 的坐标分别为P(m,14m 2−m −3),N(m,−12m −1),∴PM =−14m 2+m +3,MN =12m +1,NP =−14m 2+12m +2, 分两种情况:①当PM =3MN 时,得−14m 2+m +3=3(12m +1),解得,m =0,或m =−2(舍), ∴P(0,−3);②当PM =3NP 时,得−14m 2+m +3=3(−14m 2+12m +2),解得,m =3,或m =−2(舍),∴P(3,−154); ∴当点N 是线段PM 的三等分点时,点P 的坐标为(3,−154)或(0,−3);(3)∵直线l :y =−12x −1与y 轴于点E ,∴点E 的坐标为(0,−1),分再种情况:①如图2,当点Q 在y 轴的正半轴上时,记为点Q 1,过Q1作Q1H⊥AD于点H,则∠Q1HE=∠AOE=90°,∵∠Q1EH=∠AEO,∴△Q1EH∽△AEO,∴Q1HAO =EHEO,即Q1H2=EH1∴Q1H=2HE,∵∠Q1DH=45°,∠Q1HD=90°,∴Q1H=DH,∴DH=2EH,∴HE=ED,连接CD,∵C(0,−3),D(4,−3),∴CD⊥y轴,∴ED=√CE2+CD2=√22+42=2√5,∴HE=ED=2√5,Q1H=2EH=4√5,∴Q1E=√Q1H2+EH2=10,∴Q1O=Q1E−OE=9,∴Q1(0,9);②如图3,当点Q在y轴的负半轴上时,记为点Q2,过Q2作Q2G⊥AD于G,则∠Q2GE=∠AOE=90°,∵∠Q2EG=∠AEO,∴△Q2GE∽△AOE,∴Q2GAO =EGOE,即Q2G2=EG1,∴Q2G=2EG,∵∠Q2DG=45°,∠Q2GD=90°,∴∠DQ2G=∠Q2DG=45°,∴DG=Q2G=2EG,∴ED=EG+DG=3EG,由①可知,ED=2√5,∴3EG=2√5,∴EG=2√53,∴Q2G=4√53,∴EQ2=√EG2+Q2G2=103,∴OQ2=OE+EQ2=133,∴Q2(0,−133),综上,点Q的坐标为(0,9)或(0,−133).【知识点】二次函数综合【解析】(1)令y=0,便可由抛物线的解析式求得A、B点坐标,用待定系数法求得直线AD的解析式;m2−m−3),用m表示N点坐标,分两种情况:PM=3MN;PM=3PN.(2)设P(m,14分别列出m的方程进行解答便可;(3)分两种情况,Q点在y轴正半轴上时;Q点在y轴负半轴上时.分别解决问题.本题是一个二次函数的综合题,主要考查了二次函数的图象与性质,待定系数法,等腰三角形的性质与判定,勾股定理,第(2)、(3)小题的关键在于分情况讨论.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档