古典概型和几何概型的联系和区别

合集下载

6、事件的关系和运算、古典概型、几何概型

6、事件的关系和运算、古典概型、几何概型

(2)先从袋中随机取一个球,记下编号为 m,放回后,再 从袋中随机取一个球, 记下编号为 n, 其一切可能的结果 (m,n)有: (1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),(3,1), (3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4),共 16 个. [8 分] 又满足条件 n≥m+2 的事件有:(1,3),(1,4),(2,4),共 3 个. 3 所以满足条件 n≥m+2 的事件的概率为 P1=16.[10 分] 3 13 故满足条件 n<m+2 的事件的概率为 1-P1=1-16=16. [12 分]
一、事件的关系与运算
定义 如果事件 A 发生,则 事件 B 一定发生,这 时称事件 B 包含 事件 A(或称事件 A 包含于 事件 B) 若 B⊇A 且 A⊇B 若某事件发生当且仅 当 A 发生或事件 B 发 生, 称此事件为事件 A 与事件 B 的 并事件(或 和事件) 符号表示
B⊇A
包含关系
(或 A⊆B)
例 2 现有 8 名世博会志愿者,其中志愿者 A1、 A2、A3 通晓日语,B1、B2、B3 通晓俄语,C1、 C2 通晓韩语.从中选出通晓日语、俄语和韩 语的志愿者各 1 名,组成一个小组. (1)求 A1 被选中的概率; (2)求 B1 和 C1 不全被选中的概率.
变式训练 2 抛掷两枚骰子, 求下列事件的概率: (1)点数之和是 4 的倍数; (2)点数之和大于 5 小于 10.
用 M 表示“A1 恰被选中”这一事件, M={(A1, 则 B1,C1),(A1,B1,C2),(A1,B2,C1),(A1,B2, C2),(A1,B3,C1),(A1,B3,C2)}, 6 1 事件 M 由 6 个基本事件组成,因而 P(M)=18=3. (2)用 N 表示“B1 和 C1 不全被选中”这一事件, 由 于 N ={(A1,B1,C1),(A2,B1,C1),(A3,B1,C1)}, 3 1 事件 N 由 3 个基本事件组成,所以 P( N )=18=6, 1 由对立事件的概率公式得 P(N)=1-P( N )=1-6 5 =6.语和韩语志愿者各

概率的古典概型和几何概型

概率的古典概型和几何概型


P({ei })
1 n
,
i 1, 2,
,n.
若事件 A 包含其样本空间 S 中 k 个基本事件,即 A {ei1} {ei2 } {eik },
则事件 A 发生的概率
k
k
P( A) P eij P eij
j1
j1
k n
A包含的基本事件数 S中基本事件的总数
.
例 1.10 将1, 2, 3, 4 四个数随意地排成一行,求下列各事件的概
设试验的样本空间为 S {e1, e2 , , en} .在古典概型的假设下,
试验中每个基本事件发生的可能性相同,即有
P({e1}) P({e2}) P({en}) . 又由于基本事件是两两互不相容的.因而
1 P(S) P({e1} {e2}
{en})
P({e1}) P({e2}) P({en}) nP({ei}) ,
(1)事件 A 中共有 2 种排法,因而
P( A) 2 1 . 24 12
(2)事件 B 中有 2 (3!) 12 种排法,故有
P(B) 12 1 . 24 2
(3)先将数字1和 2 排在任意相邻两个位置,共有 23种排法, 其余两个数可在其余两个位置任意排放,共有 2!种排法,因而事件 C 有 23 2 12种排法,即
出的 n 只球中至少有 m 只红球} , Bm { 取出的 n 只球中恰有 m 只红球
} ,求 P( Am ) 及 P(Bm ) m min(n, M ) .
解 (i)放回抽样
在放回抽样的情况下,从 N 只球中取 n 只,共有 N n 种取法.
事件 Am 相当于从 n 次取球中先选取 m 次,使得这 m 次都取红球, 剩下的 n m 次可以任意取,因而 Am 中总的取法有 Cmn M m N nm 种.

第13章第2讲 古典概型与几何概型

第13章第2讲 古典概型与几何概型

1 3
������
3)ቚ1 −1
=43,故所求概率P=
4 3
2
=23.故选B.
考法4 随机模拟的应用
考法指导 利用随机模拟试验可以近似计算不规则图形A的面积,解题的依 据是根据随机模拟估计概率P(A)=随机随取机的取点点落的在总������中次的数频数,然后根据 P(A)=随机取点构的成全事部件结������的果区构域成面的积区域面积列等式求A的面积.为了方便解题, 我们常常设计出一个规则的图形(面积为定值)来表示随机取点的全部结果 构成的区域.
C方法帮∙素养大提升 易错 几何概型中“区域”选取不准致误
理科数学 第十三章:概率
理科数学 第十三章:概率
考情精解读
考纲解读 命题规律 命题分析预测
考纲解读
1.理解古典概型及其概率计算公式. 2.会计算一些随机事件所含的基本事件数及事件发生的概率. 3.了解随机数的意义,能运用模拟方法估计概率. 4.了解几何概型的意义.
∠∠������������������������������������′=π−π22 π4 =34.
( 利用角度比求概率 )
理科数学 第十三章:概率
拓展变式2 在区间[0,π]上随机取一个数x,使cos x的值介于- 23与 23之间的 概率为( )
A.13 B.23 C.38 D.58 答案 B
思路分析 先写出“6元分成3份”所含的基本事件数,然后求出乙获得“手气 最佳”所含的基本事件数,最后利用古典概型的概率公式即可得结果.
理科数学 第十三章:概率
解析 用(x,y,z)表示乙、丙、丁抢到的红包分别为x元、y元、z元. 乙、丙、丁三人抢完6元钱的所有不同的可能结果有10种,分别为 (1,1,4),(1,4,1),(4,1,1),(1,2,3),(1,3,2),(2,1,3),(2,3,1),(3,1,2),(3,2,1),(2,2,2)( 按顺 序列举,不重不漏) 乙获得“手气最佳”的所有不同的可能结果有4种,分别为(4,1,1),(3,1,2),(3,2,1), (2,2,2). 根据古典概型的概率计算公式,得乙获得“手气最佳”的概率P=140=25. 答案 D

高中数学理科基础知识讲解《122古典概型与几何概型》教学课件

高中数学理科基础知识讲解《122古典概型与几何概型》教学课件

--
考点2
--
考点2
思考如何把f(x)在区间(-∞,-1]上是减函数的问题转换成与概率的基本事件有关的问题?
解题心得f(x)在区间(-∞,-1]上是减函数可转化成开口向上的二次函数f(x)的图象的对称轴与x轴的交点的横坐标大于或等于-1,从而得出b≤a,从而不难得出b≤a包含的基本事件数.因此也就转化成了与概率的基本事件有关的问题.
长度
--
知识梳理
1.任一随机事件的概率都等于构成它的每一个基本事件概率的和.2.求试验的基本事件数及事件A包含的基本事件数的方法有:列举法、列表法和树状图法.3.与面积有关的几何概型,若已知图形不明确,可将两个变量分别作为一个点的横坐标和纵坐标,这样基本事件就构成了平面上的一个区域,即可借助平面区域解决问题.
B
A
--
考点2
--
考点2
--
考点2
--
考点2
--
考点3
与长度、角度有关的几何概型例6(1)(2020贵州贵阳模拟,8)某学校星期一至星期五每天上午共安排五节课,每节课的时间为40分钟,第一节课上课的时间为7:50~8:30,课间休息10分钟.某同学请假后返校,若他在8:50~9:30之间随机到达教室,则他听第二节课的时间不少于20分钟的概率为( )(2)如图,四边形ABCD为矩形,AB= ,BC=1,在∠DAB内任作射线AP,则射线AP与线段BC有公共点的概率为 .
B
--
考点自诊
4.(2019广东东莞高三二模,6)如图为中国古代刘徽的《九章算术注》中研究“勾股容方”问题的图形,图中△ABC为直角三角形,四边形DEFC为它的内接正方形,已知BC=2,AC=4,在△ABC上任取一点,则此点取自正方形DEFC的概率为( )

古典概率与几何概率的区别

古典概率与几何概率的区别

古典概型和几何概型的意义和主要区别在初中阶段的教学过程中,作为教师,理解古典概型和几何概型的意义和主要区别,有利于从事相应的教学。

几何概型是在学习了古典概型之后,将等可能事件的概念从有限向无限的延伸,这两种概型,在初中阶段都呈现了出来,作为教师,理解古典概型和几何概型的意义和主要区别,有利于培养学生的建模能力、逻辑推理能力和空间观念,下面我就两种概型的意义、两种概型的主要区别以及怎样应用它们发展学生的诸多能力加以简单介绍。

一、古典概型和几何概型的意义(一).几何概型的定义:如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型,简称为几何概型.1.几何概型的特点:(1)试验中所有可能出现的基本事件有无限多个.(2)每个基本事件出现的可能性相等.2.几何概型求事件A的概率公式:P(A)=构成事件A的区域长度(面积或体积)/ 实验的全部结果所构成的区域长度(面积或体积)(二)古典概型的意义大家都很熟知,此处不在介绍1. 古典概型的特点:(1)试验中所有可能出现的基本事件只有有限个.(2)每个基本事件出现的可能性相等.2. 古典概型求事件A的概率公式:P(A)=事件A可能发生的结果数/实验发生的所有等可能的结果数二. 古典概型与几何概型的主要区别几何概型是另一类等可能概型,它与古典概型的区别在于试验的结果不是有限个,利用几何概型可以很容易举出概率为0的事件不是不可能事件的例子,概率为1的事件不是必然事件的例子。

三.利用不同概率模型,培养学生的建模能力及实际应用能力(一)结合实例进行建模题组一:情境1、抛掷两颗骰子,求出现两个“6点”的概率情景2、1号口袋中装有两只红球一只白球,2号口袋中装有一只红球一只白球,这些球处颜色不同外,其他都相同,小明从两个袋各摸一球,问摸出的两球异色的概率是多少?情景3、一口袋中装有3只红球2只白球,小明从口袋里摸出一球放回去,摇匀后,在摸出一球,问两次摸出的球为异色的概率是多少?情景4、一口袋中装有3只红球2只白球,小明从口袋里一次摸出2球,问两球异色的概率是多少?说明:第一组题是古典概型,(1)通过解题让学生从多角度理解古典概型的特征;(2)通过作树状图,让学生领略各题之间存在的不同;(3)体会应用古典概型解决实际问题时应注意的事项(如:元素是否重复利用、元素间有无顺序;实验出现的结果确保等可能性)。

第10篇 第5节 古典概型与几何概型课件 理 新人教A版 课件

第10篇 第5节 古典概型与几何概型课件 理 新人教A版 课件

转化与化归思想在几何概型中的应用 [典例] 甲、乙两人约定在6时到7时之间在某处会面, 并约定先到者应等候另一人一刻钟,过时即可离去.求两 人能会面的概率.
分析:(1)考虑甲、乙两人分别到达某处的时间.在平 面直角坐标系内用x轴表示甲到达约会地点的时间,y轴表 示乙到达约会地点的时间,用0分到60分表示6时到7时的时 间段,则横轴0到60与纵轴0到60的正方形中任一点的坐标 (x,y)就表示甲、乙两人分别在6时到7时时间段内到达的时 间.(2)两人能会面的时间必须满足:|x-y|≤15.这就将问题 化归为几何概型问题.
解析:以x轴和y轴分别表示甲、乙两人到达约定地点 的时间,
则两人能够会面的充要条件是|x-y|≤15.
在如图所示平面直角坐标系下,(x,y)的所有可能结果 是边长为60的正方形区域,而事件A“两人能够会面”的可 能结果由图中的阴影部分表示.
由几何概型的概率公式得: P(A)=S阴 S影=6026-02452=36003- 6020025=176. 所以,两人能会面的概率是176.
第5节 古典概型与几何概型
基础梳理
1.古典概型 (1)基本事件的特点 ①任何两个基本事件是 互斥 的; ②任何事件(除不可能事件)都可以表示成基本事件的 和.
(2)古典概型 ①定义:具有以下两个特点的概率模型称为古典概率 模型,简称为古典概型. a.试验中所有可能出现的基本事件只有 有限 个; b.每个基本事件出现的可能性 相等 .
即时突破1 (2013年高考江苏卷)现有某类病毒记作 XmYn,其中正整数m,n(m≤7,n≤9)可以任意选取,则m, n都取到奇数的概率为________.
解析:因为正整数m,n满足m≤7,n≤9, 所以(m,n)所有可能的取值一共有7×9=63(种), 其中m,n都取到奇数的情况有4×5=20(种), 因此所求概率为P=2603. 答案:2603

古典概型与几何概型课件

P(A)=_试__验__的__全__部__结__果__所__构__成__的__区__域__长__度__(__面__积__或__体__积__)__.
6
一、思考辨析(正确的打“√”,错误的打“×”) (1)随机模拟方法是以事件发生的频率估计概率.( ) (2)从区间[1,10]内任取一个数,取到 1 的概率是110.( ) (3)概率为 0 的事件一定是不可能事件.( ) (4) 从市场上出售的标准为 500±5 g 的袋装食盐中任取一袋测其 重量,属于古典概型.( )
4
3.古典概型的概率计算公式: P(A)=A包含基的本基事本件事的件总的数个数. 4.几何概型的定义 如果每个事件发生的概率只与构成该事件区域的 长度(面积或体积) 成比例,则称这样的概率模型为几何概率模型,简称几何概型.
5
5.几何概型的两个基本特点
6.几何概型的概率公式 构成事件A的区域长度(面积或体积)
∴所求概率 P=1205=25.故选 D.
18
(3)由 6 个爻组成的重卦种数为 26=64,在所有重卦中随机取一重 卦,该重卦恰有 3 个阳爻的种数为 C36=6×56×4=20.根据古典概型的 概率计算公式得,所求概率 P=6240=156.故选 A.]
19
古典概型中基本事件个数的探求方法 (1)枚举法:适合于给定的基本事件个数较少且易一一列举出的问 题. (2)树状图法:适合于较为复杂的问题,注意在确定基本事件时(x, y)可看成是有序的,如(1,2)与(2,1)不同,有时也可看成是无序的, 如(1,2)与(2,1)相同. (3)排列组合法:在求一些较复杂的基本事件个数时,可利用排列 或组合的知识.
30
移动公司拟在国庆期间推出 4G 套餐,对国庆节当日办理 套餐的客户进行优惠,优惠方案如下:选择套餐 1 的客户可获得优惠 200 元,选择套餐 2 的客户可获得优惠 500 元,选择套餐 3 的客户可 获得优惠 300 元.国庆节当天参与活动的人数统计结果如图所示,现 将频率视为概率.

古典概型与几何概型

古典概型与几何概型【知识点梳理】一、古典概型1.基本事件:一次试验连同其中可能出现的每一个结果,称为一个基本事件。

基本事件是试验中不能再分的最简单的随机事件。

基本事件有以下两个特点:(1)任何两个基本事件是互斥的;(2)任何事件(除不可能事件)都可以表示成基本事件的和。

2.等可能性事件:如果一次试验中可能出现的结果有n 个,而且所有结果都是等可能的,这种事件叫等可能性事件3.古典概型:具有以下两个特征的随机试验的概率模型称为古典概型。

(1)试验中所有可能出现的基本事件只有有限个;(2)每个基本事件出现的可能性相等。

4.古典概型的概率计算公式: 对于古典概型,若试验的所有基本事件数为n ,随机事件A包含的基本事件数为m ,那么事件A 的概率定义为()m P A n=。

二、几何概型1. 几何概型的概念:如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成正比,则称这样的概率模型为几何概型。

2. 几何概型试验的两个基本特征:(1)无限性:指在一次试验中,可能出现的结果有无限多个;(2)等可能性:每个结果的发生具有等可能性。

3. 几何概型事件的概率计算公式:积)的区域长度(面积或体实验的全部结果所构成积)的区域长度(面积或体构成事件A A P =)(【典型例题分析】题型一、古典概型的概率求法例1.单选题是标准化考试中常用的题型,一般是从A ,B ,C ,D 四个选项中选择一个正确答案。

如果考生掌握了考查的内容,他可以选择唯一正确的答案。

假设考生不会做,他随机地选择一个答案,问他答对的概率是_________.例2.在6瓶饮料中,有2瓶已过了保质期。

从中任取2瓶,取到已过保质期的饮料的概率是_______.例3. 将一枚质地均匀的硬币连掷三次,观察落地后的情形(1)写出这个试验的所有的基本事件;(2)“出现一枚正面朝上,两枚反面朝上”这一事件包含了哪几个基本事件?(3)求事件“出现一枚正面朝上,两枚反面朝上”的概率。

古典概型和几何概型

一、古典概型1)基本事件:一次试验中所有可能得结果都就是随机事件,这类随机事件称为基本事件.2)基本事件得特点:①任何两个基本事件就是互斥得;②任何事件(除不可能事件)都可以表示成基本事件得与.3)我们将具有这两个特点得概率模型称为古典概率模型,其特征就是:①有限性:即在一次试验中所有可能出现得基本事件只有有限个。

②等可能性:每个基本事件发生得可能性就是均等得;称这样得试验为古典概型.4)基本事件得探索方法:①列举法:此法适用于较简单得实验.②树状图法:这就是一种常用得方法,适用于较为复杂问题中得基本事件探索。

5)在古典概型中涉及两种不通得抽取放方法,下列举例来说明:设袋中有个不同得球,现从中一次模球,每次摸一只,则有两种摸球得方法:①有放回得抽样每次摸出一只后,任放回袋中,然后再摸一只,这种模球得方法称为有放回得抽样,显然对于有放回得抽样,依次抽得球可以重复,且摸球可以无限地进行下去.②无放回得抽样每次摸球后,不放回原袋中,在剩下得球中再摸一只,这种模球方法称为五放回抽样,每次摸得球不会重复出现,且摸球只能进行有限次.二、古典概型计算公式1)如果一次试验中可能出现得结果有个,而且所有结果出现得可能性都相等,那么每一个基本事件得概率都就是;2)如果某个事件包括得结果有个,那么事件得概率.3)事件与事件就是互斥事件4)事件与事件可以就是互斥事件,也可以不就是互斥事件。

古典概型注意:①列举法:适合于较简单得试验。

②树状图法:适合于较为复杂得问题中得基本事件得探求、另外在确定基本事件时,可以瞧成就是有序得,如与不同;有时也可以瞧成就是无序得,如与相同、三、几何概型事件理解为区域得某一子区域,得概率只与子区域得几何度量(长度、面积或体积)成正比,而与得位置与形状无关,满足此条件得试验称为几何概型.四、几何概型得计算1)几何概型中,事件得概率定义为,其中表示区域得几何度量,表示区域得几何度量。

2)两种类型线型几何概型:当基本事件只受一个连续得变量控制时。

第五节 古典概型与几何概型

第五节古典概型与几何概型1.古典概型(1)古典概型的特征:①有限性:在一次试验中,可能出现的结果是有限的,即只有有限个不同的基本事件;,②等可能性:每个基本事件出现的可能性是相等的.一个试验是否为古典概型,在于这个试验是否具有古典概型的两个特征——有限性和等可能性.(2)古典概型的概率计算的基本步骤:①判断本次试验的结果是否是等可能的,设出所求的事件为A;②分别计算基本事件的总数n和所求的事件A所包含的基本事件个数m;③利用古典概型的概率公式P(A)=mn,求出事件A的概率.(3)频率的计算公式与古典概型的概率计算公式的异同(1)概念:如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型,简称为几何概型.(2)几何概型的基本特点:①试验中所有可能出现的结果(基本事件)有无限多个;②每个基本事件出现的可能性相等.(3)计算公式:P(A)=构成事件A的区域长度(面积或体积)试验的全部结果所构成的区域长度(面积或体积).几何概型应用中的关注点(1)关键是要构造出随机事件对应的几何图形,利用图形的几何度量来求随机事件的概率.(2)确定基本事件时一定要选准度量,注意基本事件的等可能性.[小题查验基础]一、判断题(对的打“√”,错的打“×”)(1)与面积有关的几何概型的概率与几何图形的形状有关.( )(2)几何概型与古典概型中的基本事件发生的可能性都是相等的,其基本事件个数都有限.( )(3)掷一枚硬币两次,出现“两个正面”“一正一反”“两个反面”,这三个事件是等可能事件.( )(4)在古典概型中,如果事件A 中基本事件构成集合A ,所有的基本事件构成集合I ,则事件A 的概率为card (A )card (I ).( )答案:(1)× (2)× (3)× (4)√ 二、选填题1.一枚硬币连掷2次,只有一次出现正面的概率为( ) A.23 B.14 C.13D.12解析:选D 一枚硬币连掷2次可能出现(正,正)、(反,反)、(正,反)、(反,正)四种情况,只有一次出现正面的情况有两种,故P =24=12.2.某路公共汽车每5分钟发车一次,某乘客到乘车点的时刻是随机的,则他候车时间不超过2分钟的概率是( )A.35 B.45 C.25D.15解析:选C 试验的全部结果构成的区域长度为5,所求事件的区域长度为2,故所求概率为P =25.3.已知四边形ABCD 为长方形,AB =2,BC =1,O 为AB 的中点,在长方形ABCD 内随机取一点,取到的点到O 的距离大于1的概率为( )A.π4B.1-π4C.π8D.1-π8解析:选B 如图,依题意可知所求概率为图中阴影部分与长方形的面积比,即所求概率P =S 阴影S 长方形ABCD=2-π22=1-π4.4.从1,2,3,4,5中任意取出两个不同的数,其和为5的概率是________.解析:两数之和等于5有两种情况(1,4)和(2,3),总的基本事件有(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5),共10种,故所求概率P =210=15.答案:155.袋中有形状、大小都相同的4只球,其中1只白球,1只红球,2只黄球.从中一次随机摸出2只球,则这2只球颜色不同的概率为________.解析:P =1-C 22C 24=1-16=56.答案:56考点一 古典概型[师生共研过关][典例精析](1)(2018·全国卷Ⅱ)我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如30=7+23.在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是( )A.112 B.114 C.115D.118(2)(2019·武汉调研)将一枚质地均匀的骰子投掷两次,得到的点数依次记为a 和b ,则方程ax 2+bx +1=0有实数解的概率是( )A.736B.12C.1936D.518[解析] (1)不超过30的所有素数为2,3,5,7,11,13,17,19,23,29,共10个,随机选取两个不同的数,共有C 210=45种情况,而和为30的有7+23,11+19,13+17这3种情况,所以所求概率P =345=115.(2)投掷骰子两次,所得的点数a 和b 满足的关系为⎩⎪⎨⎪⎧1≤a ≤6,a ∈N *,1≤b ≤6,b ∈N *,所以a 和b 的组合有36种.若方程ax 2+bx +1=0有实数解, 则Δ=b 2-4a ≥0,所以b 2≥4a .当b =1时,没有a 符合条件;当b =2时,a 可取1;当b =3时,a 可取1,2;当b =4时,a 可取1,2,3,4;当b =5时,a 可取1,2,3,4,5,6;当b =6时,a 可取1,2,3,4,5,6.满足条件的组合有19种,则方程ax 2+bx +1=0有实数解的概率P =1936.[答案] (1)C (2)C[解题技法]1.古典概型的概率求解步骤 (1)求出所有基本事件的个数n .(2)求出事件A 包含的所有基本事件的个数m . (3)代入公式P (A )=mn 求解. 2.基本事件个数的确定方法(1)列举法:此法适合于基本事件个数较少的古典概型.(2)列表法:此法适合于从多个元素中选定两个元素的试验,也可看成坐标法. (3)树状图法:树状图是进行列举的一种常用方法,适用于有顺序的问题及较复杂问题中基本事件数的探求.(4)运用排列组合知识计算.[过关训练]1.(2019·益阳、湘潭调研)已知a ∈{-2,0,1,2,3},b ∈{3,5},则函数f (x )=(a 2-2)e x +b 为减函数的概率是( )A.310B.35C.25D.15解析:选C 若函数f (x )=(a 2-2)e x +b 为减函数,则a 2-2<0,又a ∈{-2,0,1,2,3},故只有a =0,a =1满足题意,又b ∈{3,5},所以函数f (x )=(a 2-2)e x +b 为减函数的概率是2×25×2=25.2.从分别标有1,2,…,9的9张卡片中不放回地随机抽取2次,每次抽取1张,则抽到的2张卡片上的数奇偶性不同的概率是( )A.518B.49C.59D.79解析:选C 由题意得,所求概率P =5×4×29×8=59.3.将A ,B ,C ,D 这4名同学从左至右随机地排成一排,则“A 与B 相邻且A 与C 之间恰好有1名同学”的概率是( )A.12 B.14 C.16D.18解析:选B A ,B ,C ,D 4名同学排成一排有A 44=24种排法.当A ,C 之间是B 时,有2×2=4种排法,当A ,C 之间是D 时,有2种排法,所以所求概率P =4+224=14.考点二 几何概型[全析考法过关][考法全析]类型(一) 与长度有关的几何概型[例1] (2019·濮阳模拟)在[-6,9]内任取一个实数m ,设f (x )=-x 2+mx +m ,则函数f (x )的图象与x 轴有公共点的概率等于( )A.215 B.715 C.35D.1115[解析] ∵f (x )=-x 2+mx +m 的图象与x 轴有公共点,∴Δ=m 2+4m ≥0,∴m ≤-4或m ≥0,∴在[-6,9]内取一个实数m ,函数f (x )的图象与x 轴有公共点的概率P =[-4-(-6)]+(9-0)9-(-6)=1115,故选D. [答案] D类型(二) 与面积有关的几何概型[例2] (1)(2018·潍坊模拟)如图,六边形ABCDEF 是一个正六边形,若在正六边形内任取一点,则该点恰好在图中阴影部分的概率是( )A.14B.13C.23D.34(2)(2019·洛阳联考)如图,圆O :x 2+y 2=π2内的正弦曲线y =sin x 与x 轴围成的区域记为M (图中阴影部分),随机往圆O 内投一个点A ,则点A 落在区域M 内的概率是( )A.4π2B.4π3C.2π2 D.2π3 [解析] (1)设正六边形的中心为点O ,BD 与AC 交于点G ,BC =1,则BG =CG ,∠BGC =120°,在△BCG 中,由余弦定理得1=BG 2+BG 2-2BG 2cos 120°,得BG =33,所以S △BCG =12×BG ×BG ×sin 120°=12×33×33×32=312,因为S六边形ABCDEF =S △BOC ×6=12×1×1×sin 60°×6=332,所以该点恰好在图中阴影部分的概率P =1-6S △BCG S 六边形ABCDEF =23.(2)由题意知圆O 的面积为π3,正弦曲线y =sin x ,x ∈[-π,π]与x 轴围成的区域记为M ,根据图形的对称性得区域M 的面积S =2∫π0 sin x d x =-2cos x |π0 =4,由几何概型的概率计算公式可得,随机往圆O 内投一个点A ,则点A 落在区域M 内的概率P =4π3.[答案] (1)C (2)B类型(三) 与体积有关的几何概型[例3] 已知在四棱锥P -ABCD 中,PA ⊥底面ABCD ,底面ABCD 是正方形,PA =AB =2,现在该四棱锥内部或表面任取一点O ,则四棱锥O -ABCD 的体积不小于23的概率为________.[解析] 当四棱锥O -ABCD 的体积为23时,设O 到平面ABCD 的距离为h ,则13×22×h =23,解得h =12.如图所示,在四棱锥P -ABCD 内作平面EFGH 平行于底面ABCD ,且平面EFGH 与底面ABCD 的距离为12.因为PA ⊥底面ABCD ,且PA =2,所以PH PA =34,又四棱锥P -ABCD 与四棱锥P -EFGH 相似,所以四棱锥O -ABCD 的体积不小于23的概率P =V 四棱锥P -EFGH V 四棱锥P -ABCD =⎝⎛⎭⎫PH PA 3=⎝⎛⎭⎫343=2764. [答案]2764类型(四) 与角度有关的几何概型[例4] 如图,四边形ABCD 为矩形,AB =3,BC =1,以A 为圆心,1为半径作四分之一个圆弧,在∠DAB 内任作射线AP ,则射线AP 与线段BC 有公共点的概率为________.[解析] 连接AC ,如图, 因为tan ∠CAB =BC AB =33,所以∠CAB =π6,满足条件的事件是直线AP 在∠CAB 内,且AP 与AC 相交时,即直线AP 与线段BC 有公共点,所以射线AP 与线段BC 有公共点的概率P =∠CAB ∠DAB =π6π2=13.[答案]13[规律探求]要特别注意“长度型”与“角度型”的不同.解题的关键是构建事件的区域(长度或角度类型(二)是与面积有关的几何概型.求解与面积有关的几何概型时,关键是弄清某事件对应的面积,必要时可根据题意构造1.(2019·豫东名校联考)一个多面体的直观图和三视图如图所示,点M 是AB 的中点,一只蝴蝶在几何体ADF -BCE 内自由飞翔,则它飞入几何体F -AMCD 内的概率为( )A.34 B.23 C.13D.12解析:选D 由题图可知V F -AMCD =13×S 四边形AMCD ×DF =14a 3,V ADF -BCE =12a 3, 所以它飞入几何体F -AMCD 内的概率P =14a 312a 3=12.2.在区间[0,π]上随机取一个数x ,则事件“sin x +cos x ≥22”发生的概率为________. 解析:由题意可得⎩⎪⎨⎪⎧sin x +cos x ≥22,0≤x ≤π,即⎩⎪⎨⎪⎧sin ⎝⎛⎭⎫x +π4≥12,0≤x ≤π,解得0≤x ≤7π12,故所求的概率为7π12π=712.答案:7123.(2018·唐山模拟)向圆(x -2)2+(y -3)2=4内随机投掷一点,则该点落在x 轴下方的概率为________.解析:如图,连接CA ,CB ,依题意,圆心C 到x 轴的距离为3,所以弦AB 的长为2.又圆的半径为2,所以弓形ADB 的面积为12×23π×2-12×2×3=23π-3,所以向圆(x -2)2+(y -3)2=4内随机投掷一点,则该点落在x 轴下方的概率P =16-34π.答案:16-34π。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

古典概型和几何概型的联系和区别
古典模式和几何模式是几何学中最重要的概念,两者都拥有自己独特的性质和特点,古典模式在几何学中有着重要的地位,而几何模式的作用也是不可忽视的。

本文研究古典模式和几何模式之间的联系和区别,探究它们在几何学中的作用和分别。

古典模式概念的最初来源于古希腊的几何学家,他们提出一种建立在基本几何设定上的认识框架,把它们用来构建古典几何模式。

这种模式考察两个点之间的关系,即连续无穷的直线上可以放置无数个点,而不同点之间可以确定一个角度,即认为两个点之间可以构成一条线,并且可以求出两点之间的距离和它们的点积。

古典模式可以用来定义几何图形的形状,例如圆形和多边形,也可以用来计算各种平面或空间几何形状的面积和体积。

几何模式是20世纪出现的一种新型几何学,它从古典模式出发,使用现代数学理论构建出更为复杂的几何模型。

几何模式以向量论、线性代数和拓扑学作为基础,运用几何模型来分析和解决实际几何问题。

几何模式是一种抽象的模型,用于表示几何图形的抽象特征和性质,它利用数学函数和抽象空间概念来分析和解释几何形状和空间结构的属性。

这种模型主要用于几何学研究,目的在于更好地理解复杂的几何形状和空间结构。

古典模式和几何模式之间存在着某种关联,古典模式是几何模式的基础。

古典模式的概念在几何学中有着重要的作用,它们为几何学提供了基本的基础和理论,几何学家们可以利用它们来构建和
推导几何模型。

另外,古典模式也可以用来计算几何图形的面积和体积,而几何模式则可以深入分析几何形状和空间结构的抽象特征和性质。

虽然古典模式和几何模式有一定的关联,但它们之间也存在着明显的区别。

古典模式是以古希腊的几何学家所提出的一种框架为基础,主要用来定义几何图形形状和计算几何图形的面积和体积;而几何模式则是在古典模式基础上发展而来的,它建立在物理实验、向量论、线性代数和拓扑学等数学理论基础上,运用几何模型来分析和解决实际几何问题。

由此可见,古典模式主要是用来定义几何图形形状,而几何模式则是运用数学理论深入分析几何形状的性质。

综上所述,古典模式和几何模式是几何学中最重要的概念,它们之间存在着一定的关联,但它们之间也有着明显的差别,古典模式主要用来定义几何图形形状,而几何模式则是运用数学理论深入分析几何形状的性质。

两者都具有重要的意义,有助于我们更好地理解复杂的几何形状和空间结构。

相关文档
最新文档