圆锥曲线的切线方程和切点弦方程
高中数学圆锥曲线性质与公式总结

1 r22
1 a2
1 b2
(r1 | OP |, r2
| OQ |)
.
16.若椭圆
x2 a2
y2 b2
1(a>b>0)上中心张直角的弦
L
所在直线方程为
Ax By
1
( AB
0)
,则(1)
1 a2
1 b2
A2 B2 ;(2)
L
2 a4 A2 b4B2 a2 A2 b2B2
或(o, m)为其对称轴上除中心,顶点外的任一点,过 M 引一
条直线与椭圆相交于 P、Q 两点,则直线 A1P、A2Q(A1 ,A2 为对称轴上的两顶点)的交点 N 在直线 l :x a2 (或 m
y b2 )上. m
40.设过椭圆焦点 F 作直线与椭圆相交 P、Q 两点,A 为椭圆长轴上一个顶点,连结 AP 和 AQ 分别交相
1
则直线
BC
有定向且 kBC
b2 x0 a2 y0
(常数).
x2 20.椭圆 a2
y2 b2
1
(a>b>0)的左右焦点分别为 F1,F 2,点 P 为椭圆上任意一点 F1PF2 ,则椭圆
的焦点三角形的面积为 SF1PF2
b2
tan 2
, P(
a c
c2 b2 tan 2 , b 2 tan ) 2c 2
应于焦点 F 的椭圆准线于 M、N 两点,则 MF⊥NF.
41.过椭圆一个焦点 F 的直线与椭圆交于两点 P、Q, A1、A2 为椭圆长轴上的顶点,A1P 和 A2Q 交于点 M,
A2P 和 A1Q 交于点 N,则 MF⊥NF.
圆锥曲线的切点弦方程培训资料

2011年江西高考一道试题解法的推广一圆锥曲线的切点弦方程圆锥曲线问题是高考的重点,曲线的切线又是近几年的热点,这类题对学生的要求比较高,充分考查学生的逻辑思维能力,本文在对江西高考试题分析的基础上归纳总结出圆、椭圆、抛物线、双曲线的切点弦方程的求法。
背景知识I I 2 2 2已知圆C:x y r r 0 ,点A x o,y o是圆C上一点,求以点A为切点的切线方程.分析:易知以A x o, y o为切点的直线方程为:xx o yy o r2r 0(2oii年江西高考理科第14题)2 2 i问题1:若椭圆笃爲1的焦点在x轴上,过点1,丄作圆x2 y21的切线,切a b 2点分别为A B,直线AB恰好经过椭圆的右焦点和上顶点,则椭圆方程是___________ .解:设A x1,y1 ,B x2, y2•••点A B在圆x2 y21上,则过点A为,屮的切线方程为L「X1X y1y 1.过点B x2,y2的切线方程为L2: x2x y2y 1.1 1 1由于L1, L2经过点1, 则捲y1 1x y 1.2 2 21故刘,如,x2,y2均为方程x y 1的解。
1经过A、B两点的直线方程AB : x — y 1 .22 2设椭圆务与1的右焦点为c,o,上顶点为o,b .a b由于直线AB经过椭圆右焦点和上顶点。
Kc 1,- 1 即b 222,22a b c 52 2故椭圆方程为—1.5 4由此题的解题方法,可得到如下推广: 结论一:(圆的切点弦方程)线MN 的方程为:ax by r 2.x 2问题2 :过椭圆一42y1外一点P 1,2作椭圆的两切线,切点为M 、N 求直线MN3的方程.1 a b 0外一点P X o ,y 0作椭圆的两切线,切点为M 、N 则直线MN 的方程为:Xo 2X耳 1a b2问题3:过抛物线y 4x 外一点P 1, 2作抛物线两切线,切点分别为 M 、N , 求直线MN 的方程。
切线换一半原则——由6种解法探究圆锥曲线的切点弦与应用

学习资料分享[公司地址]从一道模拟题来探究圆锥曲线的切点弦与应用题目:(江西省高考模拟试题)由点P(1,3)引圆922=+y x 的两条切线,求两切点所在的直线(即切点弦)方程.一、一题多解的教学价值剖析1:由题意和图可得,过点P(1,3)引圆922=+y x 的两条切线,其切线的斜率都存在,设过点P(1,3)引圆922=+y x 的两条切线为()13-=-x k y ,利用r d =,求出k ,进而求出切点坐标,利用直线的点斜式即可.尽管运算较复杂,但却是解析几何中最基础、最重要的方法.解法1:如图75—1所示,设过P(1,3)引圆922=+y x 的两条切线为:()13-=-x k y ⇒03=-+-k y kx .由题意易得r d =⇒3132=+-k k⇒0=k ,或43-=k .故设过点P(1,3)引圆922=+y x 的两条切线为:1l :3=y ,2l :01543=-+y x . 设两个切点分别为A 、B ,则联立3=y 与922=+y x ⇒)30(,A .01543=-+y x 与922=+y x ⇒B (51259,). 故由两点式或点斜式易得两切点A 、B 所在的直线方程为093=-+y x .剖析2:如图75—1所示,设两个切点分别为A 、B ,利用逆向思维及抽象思维,由点P(1,3)引圆922=+y x 的两条切线,亦可看作分别过A 、B 作圆922=+y x 的两条切线相交于P .解法2:设切点A(11y x ,),切点B(22y x ,),则过A ,B 的圆的切线方程为:3l :0911=-+y y x x ,4l :0922=-+y y x x .又3l 及4l 都过P(1,3),由此得到09311=-+y x , 09322=-+y x .从具体到抽象,则过两个切点的直线方程为093=-+y x .剖析3:因为过P(1,3)引922=+y x 的两条切线切线分别为PA 、PB ,则有2π=∠PAO ,2π=∠PBO .联想到初中的四点共圆,得到巧解.解法3:如图75—1所示,由图和题意及上面的剖析得到四点P 、A 、O 、B 共圆,且圆的直径为OP ,以直径的OP 为直径的圆的方程为:0322=--+y x y x .那么过A ,B 的直线就是圆0322=--+y x y x 与圆922=+y x 的公共弦,两圆方程相减即得所求,则过两个切点分别为A 、B 的直线方程为093=-+y x .剖析4:由上述解法3得到启示,切点弦其实就是以P 点为圆心,以PA 为半径的圆与圆922=+y x 的公共弦.解法4:由题意易得PO =10,在P O A Rt ∆中,PA =1,则以P 点为圆心,以PA 为半径的圆的方程为1)3()1(22=-+-y x ,两圆方程相减即得所求,则过两个切点分别为A 、B 的直线方程为093=-+y x .剖析5:利用初中的切割线性质及其三角形相似性质.解法5:设两个切点分别为A 、B ,连接AB 与PO 相交于Q ,则有=OQ k OP k 30103=--=31-=⇒AB k . 由于直线OQ 的方程为x y 3=,于是令)3(x x Q ,,利用OBP ∆∽OQB ∆⇒OBOQOP OB =⇒3)30()0()30()10(32222x x -+-=-+-⇒109=x ⇒)1027109(,Q⇒⎪⎭⎫⎝⎛--=-109311027x y ⇒093=-+y x . 这正是所要求的切点弦AB 的直线方程.剖析6:利用定比分点公式得到一种很少人使用的好方法.解法6:如图75—1所示,连接AB ,PO ,设AB 与PO 相交于点C ,则由平面几何中的射影定理等知识得到=COPC =POCO PO PC 22OAPA =91⇒λ=91. 由定比分点公式得到C x =9111+=109,C y =9113+=1027.上述解法5已得31-=AB k ,由直线的点斜式得到 ⎪⎭⎫⎝⎛--=-109311027x y ⇒093=-+y x . 二、一题多结论的教学价值我们知道:切点弦所在直线就是二个切点的连线,而切点是直线与圆锥曲线相切得到的交点,因此我们先从圆锥曲线的切线入手来展开探究.结论1:点M (0x ,0y )在圆222R y x =+上,过点M 作圆的切线方程为200R y y x x =+.结论2:点M (0x ,0y )在圆222R y x =+外,过点M 作圆的两条切线,切点分别为A ,B ,则切点弦AB 的直线方程为200R y y x x =+.结论2:(补充)点M (0x ,0y )在圆222R y x =+内,过点M 作圆的弦AB (不过圆心),分别过B A 、作圆的切线,则两条切线的交点P 的轨迹方程为直线200R y y x x =+.证明:由上述结论2可得过)(p p y x P ,的圆的切点弦AB 的直线方程为2R y y x x P P =+.又弦AB 过点M (0x ,0y ),即200R y y x x P P =+,则两条切线的交点P 的轨迹方程为直线200R y y x x =+.上述结论能推广到圆心不在原点的情况吗?回答是肯定的!结论3:点M (0x ,0y )在圆222)()(R b y a x =-+-上,过点M 作圆的切线方程为200))(())((R b y b y a x a x =--+--.结论4:点M (0x ,0y )在圆222)()(R b y a x =-+-外,过点M 作圆的两条切线,切点分别为A ,B ,则切点弦AB 的直线方程为200))(())((R b y b y a x a x =--+--.结论4:(补充)点M (0x ,0y )在圆222)()(R b y a x =-+-内,过点M 作圆的弦AB (不过圆心),分别过B A 、作圆的切线,则两条切线的交点P 的轨迹方程为直线:200))(())((R b y b y a x a x =--+--.那么对于圆的一般方程呢?也会得到同样的结论吗?结论5:点M (0x ,0y )在圆022=++++F Ey Dx y x 上,过点M 作圆的切线方程为0220000=++++++F yy E x x Dy y x x . 结论6:点M (0x ,0y )在圆022=++++F Ey Dx y x 外,过点M 作圆的两条切线,切点分别为A ,B ,则切点弦AB 的直线方程为0220000=++⋅++⋅++F yy E x x D y y x x . 结论6:(补充)点M (0x ,0y )在圆022=++++F Ey Dx y x 内,过点M 作圆的弦AB (不过圆心),分别过B A 、作圆的切线,则两条切线的交点P 的轨迹方程为直线:0220000=++⋅++⋅++F yy E x x D y y x x . 运用类比推理,那么椭圆会有相似的结论吗?回答是肯定的!我们知道:椭圆方程可以通过变换得到圆的方程,于是得到结论7:点M (0x ,0y )在椭圆12222=+by a x (0>>b a )上,过点M 作椭圆的切线方程为12020=+byy a x x . 结论8:点M (0x ,0y )在椭圆12222=+by a x (0>>b a )外,过点M 作椭圆的两条切线,切点分别为A ,B ,则切点弦AB 的直线方程为12020=+byy a x x . 结论8:(补充)点M (0x ,0y )在椭圆12222=+by a x (0>>b a )内,过点M 作椭圆的弦AB (不过椭圆中心),分别过B A 、作椭圆的切线,则两条切线的交点P 的轨迹方程为直线:12020=+byy a x x . 证明:由上述结论8可得过)(p p y x P ,的椭圆的切点弦AB 的直线方程为122=+b yy a x x P P ,又弦AB 过点M (0x ,0y ),即12020=+by y a x x P P ,则两条切线的交点P 的轨迹方程为直线12020=+byy a x x . 我们知道圆与椭圆均属于封闭曲线,那对于非封闭曲线,如双曲线是否也有同样的性质呢?回答也是肯定的!结论9:点M (0x ,0y )在双曲线12222=-by a x (0,0>>b a )上,过点M 作双曲线的切线方程为12020=-byy a x x . 结论10:点M (0x ,0y )在双曲线12222=-by a x (0,0>>b a )外,过点M 作双曲线的两条切线,切点分别为A ,B ,则切点弦AB 的直线方程为12020=-byy a x x . 结论10:(补充)点M (0x ,0y )在双曲线12222=-by a x (0,0>>b a )内,过点M 作双曲线的弦AB (不过双曲线中心),分别过B A 、作双曲线的切线,则两条切线的交点P 的轨迹方程为直线:12020=-byy a x x . 我们知道圆、椭圆及双曲线均属于有心二次曲线,那对于无心二次曲线,如抛物线来说,上述性质能继续得到延伸吗?回答还是肯定的!结论11:点M (0x ,0y )在抛物线px y 22=(0>p )上,过点M 作抛物线的切线方程为)(00x x p y y +=.结论12:点M (0x ,0y )在抛物线px y 22=(0>p )外,过点M 作抛物线的两条切)(00x x p y y +=.结论12:(补充)点M (0x ,0y )在抛物线px y 22=(0>p )内,过点M 作抛物线的弦AB ,分别过B A 、作抛物线的切线,则两条切线的交点P 的轨迹方程为直线:)(00x x p y y +=.上述研究的都是圆锥曲线的标准形式,那么对于圆锥曲线的非标准形式是否也有类似的结论呢?结论13:点M (0x ,0y )在椭圆()()12222=-+-b n y a m x 上,过点M 作椭圆的切线方程为1))(())((2020=--+--b n y n y a m x m x .结论14:点M (0x ,0y )在双曲线()()12222=---b n y a m x 上,过点M 作双曲线的切线方程为()()()()12020=-----b n y n y a m x m x .结论15:点M (0x ,0y )在抛物线()()m x p n y -=-22上,过点M 作抛物线的切线方程为()()()m x x p n y n y 200-+=--.结论16:点M (0x ,0y )在椭圆()()12222=-+-b n y a m x 外,过点M 作椭圆的两条切线,切点分别为A ,B ,则切点弦AB 的直线方程为1))(())((2020=--+--b n y n y a m x m x .结论17:点M (0x ,0y )在双曲线()()12222=---b n y a m x 外,过点M 作双曲线的两条切线,切点分别为A ,B ,则切点弦AB 的直线方程为()()()()12020=-----b n y n y a m x m x .结论18:点M (0x ,0y )在抛物线()()m x p n y -=-22外,过点M 作抛物线的两条切()()()m x x p n y n y 200-+=--.结论16:(补充)点M (0x ,0y )在椭圆()()12222=-+-b n y a m x 内,过点M 作椭圆的弦AB (不过椭圆中心),分别过B A 、作椭圆的切线,则两条切线的交点P 的轨迹方程为直线:1))(())((2020=--+--b n y n y a m x m x .结论17:(补充)点M (0x ,0y )在双曲线()()12222=---bn y am x 内,过点M 作双曲线的弦AB (不过双曲线中心),分别过B A 、作双曲线的切线,则两条切线的交点P 的轨迹方程为直线:()()()()12020=-----bn y n y am x m x .结论18:(补充)点M (0x ,0y )在抛物线()()m x p n y -=-22内,过点M 作抛物线的弦AB ,分别过B A 、作抛物线的切线,则两条切线的交点P 的轨迹方程为直线:()()()m x x p n y n y 200-+=--.由上述结论8、10、12及结论16、17、18可得:结论19:过椭圆准线上一点M 作椭圆的两条切线,切点分别为A ,B ,则切点弦AB 的直线必过相应的焦点F ,且MF 垂直切点弦AB .结论20:过双曲线准线上一点M 作双曲线的两条切线,切点分别为A ,B ,则切点弦AB 的直线必过相应的焦点F ,且MF 垂直切点弦AB .结论21:过抛物线准线上一点M 作抛物线的两条切线,切点分别为A ,B ,则切点弦AB 的直线必过焦点F ,且MF 垂直切点弦AB .以下证明结论19:证明如下:设椭圆方程为12222=+by a x ,M⎪⎪⎭⎫⎝⎛t c a ,2,由结论8可得切点弦AB 的直线方程为12=+btyc x ,显然过焦点)0(,c F .当然容易验证:1-=⋅MF AB k k . 同理可证结论20、21.事实上,结论19、20、21的逆命题也是成立的.由此得到:结论22: AB 为椭圆的焦点弦,则过A ,B 的切线的交点M 必在相应的准线上. 结论23: AB 为双曲线的焦点弦,则过A ,B 的切线的交点M 必在相应的准线上. 结论24: AB 为抛物线的焦点弦,则过A ,B 的切线的交点M 必在准线上.以下证明结论22:证明如下:设M (0x ,0y ),由结论8可得切点弦AB 的直线方程为12020=+byy a x x ,因过焦点)0(,c F ,则有120=acx ,即c a x 20=,故点M 必在相应的准线c a x 2=上. 同理可证结论23、24.结论25:点M 是椭圆准线与长轴的交点,过点M 作椭圆的两条切线,切点分别为A ,B ,则切点弦AB 就是通径.结论26: 点M 是双曲线准线与实轴的交点,过点M 作双曲线的两条切线,切点分别为A ,B ,则切点弦AB 就是通径.结论27:M 为抛物线的准线与其对称轴的交点,过点M 作抛物线的两条切线,切点分别为A ,B ,则切点弦AB 就是其通径.以下证明结论27:证明如下:由结论21可得AB 必为切点弦,因点M 在对称轴上,由对称性可得A ,B 也关于对称轴对称,故AB 就是通径.同理可证结论25、26. 结论28:过抛物线px y 22=(0>p )的对称轴上任意一点)0,(m M -(0>m )作抛物线的两条切线,切点分别为A ,B ,则切点弦AB 所在的直线必过点)0,(m N .证明如下:如图所示,令A (1x ,1y ),),(22y x B ,由结论11得到切线AM 的方程为)(11x x p y y +=.又切线AM 过)0,(m M -(0>m ),代入推出m x =1,同理m x =2,即切点弦AB 所在的直线方程为m x =,故必过点)0,(m N .结论29:过椭圆12222=+by a x (0>>b a )的对称轴上任意一点),(n m M 作椭圆的两条切线,切点分别为A ,B .(1)当0=n ,a m >时,则切点弦AB 所在的直线必过点)0,(2m a P ;(2)当0=m ,b n >时,则切点弦AB 所在的直线必过点),0(2nb Q .证明如下:如图所示,令A (1x ,1y ),),(22y x B ,由结论7得到切线AM 的方程为12121=+byy a xx .又由于切线AM 过点),(n m M ,则得到12121=+bny a mx . (1)当0=n ,a m >时,即点M 在x 轴时,代入得到m a x 21=,同理m a x 22=,即切点弦AB 所在的直线方程为m a x 2=,故必过点)0,(2ma P .(2))当0=m ,b n >时,即点M 在y 轴时,代入得到n b y 21=,同理n b y 22=,即切点弦AB 所在的直线方程为n b y 2=,故必过点),0(2nb Q .结论30:过双曲线12222=-by a x (0,0>>b a )的实轴上任意一点)0,(m M (a m <)作双曲线(单支)的两条切线,切点分别为A ,B ,则切点弦AB 所在的直线必过点)0,(2ma P .证明如下:如图所示,令A (1x ,1y ),),(22y x B ,由结论9得到切线AM 的方程为12121=-byy a xx . 又由于切线AM 过点)0,(m M ,则得到m a x 21=,同理m a x 22=,即切点弦AB 所在的直线方程为m a x 2=,故必过点)0,(2ma P .结论31:过抛物线px y 22=(0>p )外任意一点M 作抛物线的两条切线,切点分别为A ,B ,弦AB 的中点为N ,则直线MN 必与其对称轴平行.证明如下:如图所示,令),2(121y p y A ,),2(222y py B ,则221y y y N +=,又由结论11得到切线AM ,BM 的方程分别为:)2(211p y x p y y +=,)2(222pyx p y y +=⇒)(21y y y -=⎥⎦⎤⎢⎣⎡+-p y y y y p 2))((2121⇒M y 221y y +=⇒N M y y =.故直线MN 必与其对称轴平行.结论32:若椭圆12222=+by a x (0>>b a )与双曲线12222=-n y m x (0>m ,0>n )共焦点,则在它们交点处的切线相互垂直.证明如下:由题意易得2222n m b a +=-⇒2222n b m a +=-.令其交点M (0x ,0y ),则代入上述椭圆及双曲线方程得到1220220=+b y a x ,1220220=-n y m x ⇒220y x =)()(22222222m a n b n b m a -+. 依据结论7及结论9得到过点M 的椭圆与双曲线的切线方程分别为:12020=+b y y a x x ,12020=-nyy m x x ⇒21k k =20202222y x m a n b ⋅-=2222ma nb -+-=1-. 结论33:过椭圆外一定点P 作其一条割线,交点为A ,B ,则满足BP AQ BQ AP ⋅=⋅的动点Q 的轨迹就是过P 作椭圆两条切线形成的切点弦所在的直线方程上.证明如下:如图所示,不妨设椭圆方程为:12222=+by a x (0>>b a )由已知条件易得BQAQ BPAP =,令P 分有向线段AB 所成的比为λ,结合图便知Q 分有向线段AB 所成的比为λ-,设),(00y x P ,),(11y x A ,),(22y x B ,),(y x Q ,由定比分点公式推出⎪⎩⎪⎨⎧++=++=λλλλ11210210y y y x x x ⇒⎩⎨⎧+=++=+210210)1()1(y y y x x x λλλλ.⎪⎩⎪⎨⎧--=--=λλλλ112121y y y x x x ⇒⎩⎨⎧-=--=-2121)1()1(y y y x x x λλλλ. 由上述两式结合并相乘得到⎩⎨⎧-=--=-22221202222120)1()1(y y yy x x xx λλλλ ⇒⎩⎨⎧-=--=-)()1()()1(222212220222212220y y a a yy x x b b xx λλλλ. ① 事实上,两个交点A ,B 都在椭圆上,则有⎪⎪⎩⎪⎪⎨⎧=+=+11222222221221b y a x b y a x ⇒⎪⎪⎩⎪⎪⎨⎧=+=+22222222221221)(1λλb y a x b y a x . 由上述两式结合并相减整理得到+-)(222212x x b λ)(222212y y a λ-=)1(222λ-b a . ②由①及②推出12020=+byy a x x . 由结论33及圆锥曲线的共性同理可得:结论34:过双曲线外一定点P 作其一条割线,交点为A ,B ,则满足BP AQ BQ AP ⋅=⋅的动点Q 的轨迹就是过P 作双曲线两条切线形成的切点弦所在的直线方程上.结论35:过抛物线外一定点P 作其一条割线,交点为A ,B ,则满足BP AQ BQ AP ⋅=⋅的动点Q 的轨迹就是过P 作抛物线两条切线形成的切点弦所在的直线方程上.关于结论33及其结论34的证明完全雷同于结论33的证明过程.结论36:过双曲线外一点P 作其一条割线,交点为A ,B ,过A ,B 分别作双曲线的切线相交于点Q ,则动点Q 的轨迹就是过P 作双曲线两条切线形成的切点弦所在的直线方程上.证明如下:如图所示,不妨设双曲线方程为:12222=-by a x (00>>b a ,),我们令),(00y x P , ),(''y x Q ,由前面结论10可得切点弦AB 所在的直线方程为12'2'=-byy a xx ,又点P 在直线AB 上,则12'02'0=-b y y a x x ,即),(''y x Q 在直线12020=-byy a x x ,故动点Q的轨迹就是过P 作双曲线两条切线形成的切点弦所在的直线方程上.由结论36及圆锥曲线的共性同理可得:结论37:过椭圆外一点P 作其一条割线,交点为A ,B ,过A ,B 分别作椭圆的切线相交于点Q ,则动点Q 的轨迹就是过P 作椭圆两条切线形成的切点弦所在的直线方程上. 结论38:过抛物线外一点P 作其一条割线,交点为A ,B ,过A ,B 分别作抛物线的切线相交于点Q ,则动点Q 的轨迹就是过P 作抛物线两条切线形成的切点弦所在的直线方程上.关于结论37及其结论38的证明完全雷同于结论36的证明过程.结论39:从椭圆12222=+by a x (0>>b a )的右焦点向椭圆的动切线引垂线,则垂足的轨迹为圆:222a y x =+.结论40:从12222=-by a x (00>>b a ,)的右焦点向双曲线的动切线引垂线,则垂足的轨迹为圆:222a y x =+.三、一题多用的教学价值应用1.(补充)(2011年江西省高考试题)椭圆12222=+b y a x 的焦点在x 轴上,过点⎪⎭⎫⎝⎛211,作圆122=+y x 的切线,切点分别为A 、B ,直线AB 恰好过椭圆的右焦点和上顶点,求椭圆的方程.分析如下:由上述结论2可得切点弦AB 的直线方程为121=+y x ,因此可得右焦点为 )01(,,上顶点为)20(,,即1=c ,1=b ,故椭圆的方程为14522=+y x . 应用2:(补充)(2012年福建省厦门一中模拟试题)设P 是抛物线x y 22=上的一个动点,过点P 作抛物线的切线与圆:122=+y x 相交于M 、N ,分别过M 、N 作圆的切线相交于Q ,求动点Q 的轨迹方程.分析如下:设)(00y x P ,,)(11y x Q ,,显然0202x y =,由上述结论11可得过点)(00y x P ,的抛物线的切线MN 方程为00x x y y +=,再由上述结论2可得过点)(11y x Q ,的圆的切点弦MN 直线方程为111=+y y x x ,依据两条直线重合,则对应项系数成比例得到101x x -=,110x y y -=,并代入0202x y =得到1212x y -=.联立方程组:122=+y x 与00x x y y +=得到012)1(2000220=-+-+x y y x y y ,利用判别式可得0>∆,即2100+<<x ,即211-<x ,故动点Q 的轨迹方程1212x y -=,且211-<x ,即动点Q 的轨迹方程x y 22-=(21-<x ).应用1.(2010年浙江省高中会考试题)设点)(n m P ,在圆222=+y x 上,l 是过点P 的圆的切线,且切线l 与抛物线k x x y ++=2相交于A ,B .(1)若2-=k ,点P 恰好是线段A B 的中点,求点P 坐标;(2)是否存在实数k ,使得以A B 为底边的等腰三角形AOB 恰有3个?若存在,求出k 的取值范围;若不存在,说明理由.分析如下:(1)由结论1可得切线l 的方程为2=+ny mx (0≠n ),设)(11y x A ,,)(22y x B ,,将切线l 的方程与抛物线方程联立可得0)1(2)(2=+-++n x n m nx⇒m nm x x =+-=+221⇒mn n m -=+. 将之与222=+n m 联立解得⎩⎨⎧-=-=11n m ,或⎪⎪⎩⎪⎪⎨⎧+=-=231231n m ,或⎪⎪⎩⎪⎪⎨⎧-=+=231231n m . 代入0>∆验证可得)11(--,P ,)231231(+-,P . (2)由(1)可得以A B 为底边的等腰三角形AOB 当且仅当点P 恰好是线段A B 的中点,等腰三角形AOB 恰有3个可相应地转化为点P 有三解,故只要(1)中的三个解都满足0>∆,可得2331--<k .应用2.(课本习题)求证:椭圆192522=+y x 与双曲线111522=-y x 在其交点处的切线相互垂直.证明如下:易得椭圆与双曲线的焦点相同,由结论32即可得证.应用3.(2008年安徽省高考试题压轴题第22题)设椭圆C :12222=+by a x (0>>b a )过点)1,2(M ,且左焦点)0,2(1-F .(1)求该椭圆的方程;(2)当过点)1,4(P 的动直线l 与椭圆C 相交于不同两点A ,B ,在线段AB 上任取一点Q =,证明点Q 总在某条定直线上.分析如下:(1)由已知易得所求椭圆的方程为12422=+y x . (2)直接利用结论33即可得证.应用4.(2008年江西省高考试题第21题)设点()00,P x y 在直线(),01x m y m m =≠±<<上,过点P 作双曲线221x y -=的两条切线PA PB 、,切点为A B 、,定点M (m1,0). (1)过点A 作直线0x y -=的垂线,垂足为N ,试求△AMN 的重心G 所在的曲线方程;(2)求证:A M B 、、三点共线.分析如下:(1)(略).(2)由结论10显然可得切点弦AB 所在的直线方程为100=-y y x x ,由于点P 的坐标为(m ,0y ),即m x =0,于是切点弦AB 所在的直线方程为10=-y y mx ,显然定点M (m1,0)满足该方程,于是三点A M B 、、共线. 值得注意的是: 其实,纵观近几年的高考试题,不难发现一个共同之处,那就是如果压轴题是解析几何,几乎其结论都是带有规律的普遍性结论,如2008年江西省高考试题第21题就是结论36的特例,2008年安徽省高考试题压轴题第22题就是结论33的一个特例.应用5.(2008年南通市第一次调研试题)已知点)10(,F ,点P 在x 轴上运动,点M 在y 轴上,N 为动点,且满足:0=⋅PF PM ,PN PM +=0. (1)求动点N 的轨迹C 的方程;(2)由直线1-=y 上一点Q 向曲线C 引两条切线,切点分别为A ,B ,求证:AQ ⊥BQ .分析如下:(1)设)(y x N ,代入已知条件易得动点N 的轨迹C 的方程为y x 42=. (2)显然直线1-=y 就是抛物线y x 42=的准线,由结论21可得AQ ⊥BQ . 应用6.(2006全国高考试题)已知抛物线x 2=4y 的焦点为F ,A 、B 是抛物线上的两动点,且AF →=λFB →(λ>0).过A 、B 两点分别作抛物线的切线,设其交点为M .(1)证明FM →·AB →为定值;(2)设△ABM 的面积为S ,写出S =f (λ)的表达式,并求S 的最小值.证明如下:(1) F 点的坐标为(0,1)设点A 、点B 的坐标分别为211,4x x ⎛⎫ ⎪⎝⎭、222,4x x ⎛⎫ ⎪⎝⎭,由(0).AF FB λλ=>可得221212,1,144x x x x λ⎛⎫⎛⎫--=- ⎪ ⎪⎝⎭⎝⎭⇒1222121(1)44x x x x λλ-=⎧⎪⎨-=-⎪⎩.由上述结论11可得过A 点、B 点的切线方程分别为2111()42x x y x x -=-,2222()42x xy x x -=-.联立可得点M 的坐标,代入得到FM →·AB →=0. (2)由(1)可得FM AB ⊥,我们易得2FM AB ==⇒2)(ABFM f S ⋅==λ=41213≥⎪⎪⎭⎫⎝⎛+λλ(当且仅当1λ=时取等号).应用7.(2008年广东省(理科)高考试题)椭圆方程122222=+by b x (0>b ),抛物线方程为)(82b y x -=.如图所示,过点)20(+b F ,作x 轴的平行线,与抛物线在第一象限的交点为G ,已知抛物线在点G 处的切线经过椭圆的右焦点1F . (1)求满足条件的椭圆与抛物线方程;(2)设A ,B 分别是椭圆长轴的左、右端点,试探究在抛物线上是否存在点P ,使得ABP ∆为直角三角形?若存在,请指出共有几个这样的点?并说明理由.分析如下:(1)事实上,点)20(+b F ,就是抛物线的焦点,易得)24(+b G ,,由上述结论15易得抛物线在点G 处的切线方程为2-+=b x y ,显然椭圆的右焦点1F )0(,b ,代入得到1=b ,故椭圆方程11222=+y x ,抛物线方程为)1(82-=y x .(2)因为过点A 作x 轴的的垂线与抛物线只有一个交点P ,所以以PAB ∠为直角三角形只有一个;同理以PBA ∠为直角三角形也只有一个.若以APB ∠为直角,设⎪⎭⎫ ⎝⎛+1812x x P ,,因为)02(,-A ,)02(,B ,则有 PB PA ⋅=14564124-+x x =0. 易得上述方程只有两解,即以APB ∠为直角的三角形存在两个.综上所述,抛物线上存在四个这样的点P ,使得ABP ∆为直角三角形.应用8.证明结论39.证明如下:设椭圆上切点M )sin cos (ααb a ,,由结论7可得过点M 的切线方程为1sin cos 22=+b yb a x a αα⇒ab y a x b =+ααsin cos . 过右焦点且垂直于切线的直线方程为αααsin cos sin ac y b x a =-. 上述两式平方相加即可得证.四、一组巩固训练题练习1.从191622=-y x 的右焦点向双曲线的动切线引垂线,求垂足的轨迹图形的面积.练习2.在直角坐标系中,O 为坐标原点,点)10(,B ,点)0(,a A (0≠a )是x 轴上的动点,过点A 作线段AB 的垂线交y 轴于点D ,在直线AD 上取点P ,使得AD AP =. (1)求动点P 的轨迹C 的方程;(2)点Q 是直线1-=y 上的一个动点,过点Q 向曲线C 引两条切线,切点分别为M ,N ,求证:MQ ⊥NQ .练习3.(2005年江西省高考试题)如图,设抛物线2:x y C =的焦点为F ,动点P 在直线02:=--y x l 上运动,过P 作抛物线C 的两条切线PA 、PB ,且与抛物线C 分别相切于A 、B 两点.(1)求△APB 的重心G 的轨迹方程; (2)证明∠PFA=∠PFB .练习4.(2010年江西省九江一中模拟试题)开口向上的抛物线2:ax y C =与经过点)0,3(A 且斜率为)0(<k k 的直线l 相交于点M 、N ,已知抛物线C 在点M 、N 处的切线所成的角为55arccos,并且18||||=AN AM ,求直线l 与抛物线C 的方程. 练习5.证明结论40.练习6.(2004年济南市高考模拟试题)过椭圆C :14822=+y x 上一点)(00y x P ,向圆O :422=+y x 引两条切线PA ,PB ,切点为A ,B ,若直线AB 与x 轴、y 轴相交于M 、N .(1)试用0x ,0y 来表示直线AB 的方程; (2)求MON ∆面积的最小值.练习7.(2005年福建省模拟试题)从直线x y =上任一点P 引抛物线12+=x y 两条切线,切点分别为A ,B ,求弦AB 的中点Q 的轨迹方程.五、巩固训练题参考答案1.分析如下:由结论40可得垂足的轨迹方程为1622=+y x ,则图形面积为π16. 2.分析如下:(1)易得动点P 的轨迹C 的方程为y x 42=(0≠y ).(2)显然直线1-=y 就是抛物线y x 42=的准线,由结论可得MQ ⊥NQ .3.分析如下:(1)设切点A 、B 坐标分别为))((,(),(0121120x x x x x x ≠和,由上述结论11可得切线AP ,BP 的方程分别为为:02200=--x y x x ,02211=--x y x x ,解得10102x x y x x x P P =+=, ⇒P PG x x x x x =++=310,3310212010x x x x y y y y P G ++=++=343)(210210p P y x x x x x -=-+=⇒243GG p x y y +-=. 由点P 在直线l 上运动,从而得到重心G 的轨迹方程为:02)43(2=-+--x y x ⇒)24(312+-=x x y .(2)).41,(),41,2(),41,(2111010200-=-+=-=x x FB x x x x FP x x FA由于P 点在抛物线外,则0||≠FP ,由此可得||||cos FA FP AFP =∠||41)1)(1(102010010FP x x x x x x x x +=--+⋅+=. 同理可得||41cos 10FP x x BFP +=∠,故∠AFP=∠PFB .4.分析如下:设),(211ax x M 、),(222ax x N ,不妨设M 在第一象限,N 在第二象限,由结论11可得抛物线在点M 处的切线斜率为12ax ,点N 处的切线斜率为22ax ,设两条切线所成的角为α,则2tan =α,即241)(221212=+-x x a x x a ⇔)(4112212x x a x x a -=+. ① 由于M 、N 、A 共线,所以33222121-=-x ax x ax ⇒)(32121x x x x += . ② 由已知18||||=⋅AN AM ,则有18),3(),3(222211=-⋅-ax x ax x ⇒933222122121=+--x x a x x x x .将②代入得到922212=x x a ,又0>a ,01>x ,02>x ,则有321-=x ax ,a x x 321-=. ③将③代入②得到a x x 121-=+. ④将③代入①得到12112-=-ax x . ⑤将③、④、⑤代入21221212)(4)(x x x x x x +=+-得到22)1()3(4)121(a a a -=-+-⇒41=a ,0=a (舍去). 将41=a 代入④、⑤得6,221-==x x .故直线l 的方程为:3+-=x y ,抛物线C 的方程:241x y =.5.证明如下:设双曲线上切点M )tan sec (ααb a ,,由结论9可得过点M 的切线方程为1tan sec 22=-byb a x a αα⇒ab y a x b =-ααtan sec . 过右焦点且垂直于切线的直线方程为αααtan sec tan ac y b x a =+.上述两式平方相加即可得证.6.分析如下:(1)由结论2可得直线AB (切点弦)的方程为400=+y y x x .(2)由(1)易得⎪⎪⎭⎫⎝⎛040,x M ,⎪⎪⎭⎫⎝⎛040y N ,,则三角形面积公式及均值不等式可得 =S 008y x =⎪⎭⎫ ⎝⎛⋅⎪⎭⎫ ⎝⎛22222200y x 224822220=+≥yx . 7.分析如下:设)(00y x P ,,)(y x Q ,,)(11y x A ,,)(22y x B ,,由结论12可得切点弦AB 的方程为1200+=+x x yx ,即02200=-+-x y x x ,与12+=x y 联立得到 012002=-+-x x x x ⇒0212x x x =+.)22()22(02001021x x x x x x y y -++-+=+=424020+-x x⇒⎪⎩⎪⎨⎧+-=+==+=222202021021x x y y y x x x x ⇒222+-=x x y .。
切线换一半原则——由6种解法探究圆锥曲线的切点弦与应用

560从一道模拟题来探究圆锥曲线的切点弦与应用 题目:(江西省高考模拟试题)由点P(1,3)引圆922=+y x 的两条切线,求两切点所在的直线(即切点弦)方程.一、一题多解的教学价值剖析1:由题意和图可得,过点P(1,3)引圆922=+y x 的两条切线,其切线的斜率都存在,设过点P(1,3)引圆922=+y x 的两条切线为()13-=-x k y ,利用r d =,求出k ,进而求出切点坐标,利用直线的点斜式即可.尽管运算较复杂,但却是解析几何中最基础、最重要的方法.解法1:如图75—1所示,设过P(1,3)引圆922=+y x 的两条切线为:()13-=-x k y ⇒03=-+-k y kx .由题意易得r d =⇒3132=+-k k⇒0=k ,或43-=k .故设过点P(1,3)引圆922=+y x 的两条切线为:1l :3=y ,2l :01543=-+y x . 设两个切点分别为A 、B ,则联立3=y 与922=+y x ⇒)30(,A .01543=-+y x 与922=+y x ⇒B (51259,). 故由两点式或点斜式易得两切点A 、B 所在的直线方程为093=-+y x .剖析2:如图75—1所示,设两个切点分别为A 、B ,利用逆向思维及抽象思维,由点P(1,3)引圆922=+y x 的两条切线,亦可看作分别过A 、B 作圆922=+y x 的两条切线相交于P .解法2:设切点A(11y x ,),切点B(22y x ,),则过A ,B 的圆的切线方程为:3l :0911=-+y y x x ,4l :0922=-+y y x x .又3l 及4l 都过P(1,3),由此得到09311=-+y x , 09322=-+y x .从具体到抽象,则过两个切点的直线方程为093=-+y x .561剖析3:因为过P(1,3)引922=+y x 的两条切线切线分别为PA 、PB ,则有2π=∠PAO ,2π=∠PBO .联想到初中的四点共圆,得到巧解.解法3:如图75—1所示,由图和题意及上面的剖析得到四点P 、A 、O 、B 共圆,且圆的直径为OP ,以直径的OP 为直径的圆的方程为:0322=--+y x y x .那么过A ,B 的直线就是圆0322=--+y x y x 与圆922=+y x 的公共弦,两圆方程相减即得所求,则过两个切点分别为A 、B 的直线方程为093=-+y x .剖析4:由上述解法3得到启示,切点弦其实就是以P 点为圆心,以PA 为半径的圆与圆922=+y x 的公共弦.解法4:由题意易得PO =10,在POA Rt ∆中,PA =1,则以P 点为圆心,以PA 为半径的圆的方程为1)3()1(22=-+-y x ,两圆方程相减即得所求,则过两个切点分别为A 、B 的直线方程为093=-+y x .剖析5:利用初中的切割线性质及其三角形相似性质.解法5:设两个切点分别为A 、B ,连接AB 与PO 相交于Q ,则有=OQ k OP k 30103=--=31-=⇒AB k . 由于直线OQ 的方程为x y 3=,于是令)3(x x Q ,,利用OBP ∆∽OQB ∆⇒OBOQOP OB =⇒3)30()0()30()10(32222x x -+-=-+-⇒109=x ⇒)1027109(,Q ⇒⎪⎭⎫⎝⎛--=-109311027x y ⇒093=-+y x . 这正是所要求的切点弦AB 的直线方程.剖析6:利用定比分点公式得到一种很少人使用的好方法.解法6:如图75—1所示,连接AB ,PO ,设AB 与PO 相交于点C ,则由平面几何中的射影定理等知识得到562=COPC =POCO PO PC 22OAPA =91⇒λ=91. 由定比分点公式得到C x =9111+=109,C y =9113+=1027.上述解法5已得31-=AB k ,由直线的点斜式得到 ⎪⎭⎫⎝⎛--=-109311027x y ⇒093=-+y x . 二、一题多结论的教学价值我们知道:切点弦所在直线就是二个切点的连线,而切点是直线与圆锥曲线相切得到的交点,因此我们先从圆锥曲线的切线入手来展开探究.结论1:点M (0x ,0y )在圆222R y x =+上,过点M 作圆的切线方程为200R y y x x =+.结论2:点M (0x ,0y )在圆222R y x =+外,过点M 作圆的两条切线,切点分别为A ,B ,则切点弦AB 的直线方程为200R y y x x =+.结论2:(补充)点M (0x ,0y )在圆222R y x =+内,过点M 作圆的弦AB (不过圆心),分别过B A 、作圆的切线,则两条切线的交点P 的轨迹方程为直线200R y y x x =+.证明:由上述结论2可得过)(p p y x P ,的圆的切点弦AB 的直线方程为2R y y x x P P =+.又弦AB 过点M (0x ,0y ),即200R y y x x P P =+,则两条切线的交点P 的轨迹方程为直线200R y y x x =+.结论3:点M (0x ,0y )在圆222)()(R b y a x =-+-上,过点M 作圆的切线方程为200))(())((R b y b y a x a x =--+--.结论4:点M (0x ,0y )在圆222)()(R b y a x =-+-外,过点M 作圆的两条切线,切点分别为A ,B ,则切点弦AB 的直线方程为563200))(())((R b y b y a x a x =--+--.结论4:(补充)点M (0x ,0y )在圆222)()(R b y a x =-+-内,过点M 作圆的弦AB (不过圆心),分别过B A 、作圆的切线,则两条切线的交点P 的轨迹方程为直线:200))(())((R b y b y a x a x =--+--.结论5:点M (0x ,0y )在圆022=++++F Ey Dx y x 上,过点M 作圆的切线方程为0220000=++++++F yy E x x Dy y x x . 结论6:点M (0x ,0y )在圆022=++++F Ey Dx y x 外,过点M 作圆的两条切线,切点分别为A ,B ,则切点弦AB 的直线方程为0220000=++⋅++⋅++F yy E x x D y y x x . 结论6:(补充)点M (0x ,0y )在圆022=++++F Ey Dx y x 内,过点M 作圆的弦AB (不过圆心),分别过B A 、作圆的切线,则两条切线的交点P 的轨迹方程为直线:0220000=++⋅++⋅++F yy E x x D y y x x .我们知道:椭圆方程可以通过变换得到圆的方程,于是得到结论7:点M (0x ,0y )在椭圆12222=+by a x (0>>b a )上,过点M 作椭圆的切线方程为12020=+byy a x x . 结论8:点M (0x ,0y )在椭圆12222=+by a x (0>>b a )外,过点M 作椭圆的两条切线,切点分别为A ,B ,则切点弦AB 的直线方程为12020=+byy a x x . 结论8:(补充)点M (0x ,0y )在椭圆12222=+by a x (0>>b a )内,过点M 作椭圆564的弦AB (不过椭圆中心),分别过B A 、作椭圆的切线,则两条切线的交点P 的轨迹方程为直线:12020=+byy a x x . 证明:由上述结论8可得过)(p p y x P ,的椭圆的切点弦AB 的直线方程为122=+b yy a x x P P ,又弦AB 过点M (0x ,0y ),即12020=+b y y a x x P P ,则两条切线的交点P 的轨迹方程为直线12020=+byy a x x .结论9:点M (0x ,0y )在双曲线12222=-by a x (0,0>>b a )上,过点M 作双曲线的切线方程为12020=-byy a x x . 结论10:点M (0x ,0y )在双曲线12222=-by a x (0,0>>b a )外,过点M 作双曲线的两条切线,切点分别为A ,B ,则切点弦AB 的直线方程为12020=-byy a x x . 结论10:(补充)点M (0x ,0y )在双曲线12222=-by a x (0,0>>b a )内,过点M 作双曲线的弦AB (不过双曲线中心),分别过B A 、作双曲线的切线,则两条切线的交点P 的轨迹方程为直线:12020=-byy a x x .结论11:点M (0x ,0y )在抛物线px y 22=(0>p )上,过点M 作抛物线的切线方程为)(00x x p y y +=.结论12:点M (0x ,0y )在抛物线px y 22=(0>p )外,过点M 作抛物线的两条切线,切点分别为A ,B ,则切点弦AB 的直线方程为)(00x x p y y +=.565结论12:(补充)点M (0x ,0y )在抛物线px y 22=(0>p )内,过点M 作抛物线的弦AB ,分别过B A 、作抛物线的切线,则两条切线的交点P 的轨迹方程为直线:)(00x x p y y +=.结论13:点M (0x ,0y )在椭圆()()12222=-+-bn y am x 上,过点M 作椭圆的切线方程为1))(())((2020=--+--bn y n y a m x m x . 结论14:点M (0x ,0y )在双曲线()()12222=---bn y am x 上,过点M 作双曲线的切线方程为()()()()12020=-----bn y n y am x m x .结论15:点M (0x ,0y )在抛物线()()m x p n y -=-22上,过点M 作抛物线的切线方程为()()()m x x p n y n y 200-+=--.结论16:点M (0x ,0y )在椭圆()()12222=-+-bn y am x 外,过点M 作椭圆的两条切线,切点分别为A ,B ,则切点弦AB 的直线方程为1))(())((2020=--+--bn y n y a m x m x . 结论17:点M (0x ,0y )在双曲线()()12222=---bn y am x 外,过点M 作双曲线的两条切线,切点分别为A ,B ,则切点弦AB 的直线方程为()()()()12020=-----bn y n y am x m x .结论18:点M (0x ,0y )在抛物线()()m x p n y -=-22外,过点M 作抛物线的两条切线,切点分别为A ,B ,则切点弦AB 的直线方程为()()()m x x p n y n y 200-+=--.566结论16:(补充)点M (0x ,0y )在椭圆()()12222=-+-bn y am x 内,过点M 作椭圆的弦AB (不过椭圆中心),分别过B A 、作椭圆的切线,则两条切线的交点P 的轨迹方程为直线:1))(())((2020=--+--bn y n y a m x m x . 结论17:(补充)点M (0x ,0y )在双曲线()()12222=---b n y a m x 内,过点M 作双曲线的弦AB (不过双曲线中心),分别过B A 、作双曲线的切线,则两条切线的交点P 的轨迹方程为直线:()()()()12020=-----b n y n y a m x m x .结论18:(补充)点M (0x ,0y )在抛物线()()m x p n y -=-22内,过点M 作抛物线的弦AB ,分别过B A 、作抛物线的切线,则两条切线的交点P 的轨迹方程为直线:()()()m x x p n y n y 200-+=--.由上述结论8、10、12及结论16、17、18可得:结论19:过椭圆准线上一点M 作椭圆的两条切线,切点分别为A ,B ,则切点弦AB 的直线必过相应的焦点F ,且MF 垂直切点弦AB .结论20:过双曲线准线上一点M 作双曲线的两条切线,切点分别为A ,B ,则切点弦AB 的直线必过相应的焦点F ,且MF 垂直切点弦AB .结论21:过抛物线准线上一点M 作抛物线的两条切线,切点分别为A ,B ,则切点弦AB 的直线必过焦点F ,且MF 垂直切点弦AB .以下证明结论19:证明如下:设椭圆方程为12222=+by a x ,M⎪⎪⎭⎫⎝⎛t c a ,2,由结论8可得切点弦AB 的直线方程为12=+b tyc x ,显然过焦点)0(,c F .当然容易验证:1-=⋅MF AB k k . 同理可证结论20、21.事实上,结论19、20、21的逆命题也是成立的.由此得到:结论22: AB 为椭圆的焦点弦,则过A ,B 的切线的交点M 必在相应的准线上. 结论23: AB 为双曲线的焦点弦,则过A ,B 的切线的交点M 必在相应的准线上. 结论24: AB 为抛物线的焦点弦,则过A ,B 的切线的交点M 必在准线上.以下证明结论22:证明如下:设M (0x ,0y ),由结论8可得切点弦AB 的直线方程为12020=+byy a x x ,567因过焦点)0(,c F ,则有120=acx ,即c a x 20=,故点M 必在相应的准线c a x 2=上. 同理可证结论23、24.结论25:点M 是椭圆准线与长轴的交点,过点M 作椭圆的两条切线,切点分别为A ,B ,则切点弦AB 就是通径.结论26: 点M 是双曲线准线与实轴的交点,过点M 作双曲线的两条切线,切点分别为A ,B ,则切点弦AB 就是通径.结论27:M 为抛物线的准线与其对称轴的交点,过点M 作抛物线的两条切线,切点分别为A ,B ,则切点弦AB 就是其通径.以下证明结论27:证明如下:由结论21可得AB 必为切点弦,因点M 在对称轴上,由对称性可得A ,B 也关于对称轴对称,故AB 就是通径.同理可证结论25、26. 结论28:过抛物线px y 22=(0>p )的对称轴上任意一点)0,(m M -(0>m )作抛物线的两条切线,切点分别为A ,B ,则切点弦AB 所在的直线必过点)0,(m N .证明如下:如图所示,令A (1x ,1y ),),(22y x B ,由结论11得到切线AM 的方程为)(11x x p y y +=.又切线AM 过)0,(m M -(0>m ),代入推出m x =1,同理m x =2,即切点弦AB 所在的直线方程为m x =,故必过点)0,(m N .结论29:过椭圆12222=+by a x (0>>b a )的对称轴上任意一点),(n m M 作椭圆的两条切线,切点分别为A ,B .(1)当0=n ,a m >时,则切点弦AB 所在的直线必过点)0,(2m a P ; (2)当0=m ,b n >时,则切点弦AB 所在的直线必过点),0(2nb Q .证明如下:如图所示,令A (1x ,1y ),),(22y x B ,由结论7得到切线AM 的方程为12121=+byy a xx . 又由于切线AM 过点),(n m M ,则得到56812121=+bny a mx . (1)当0=n ,a m >时,即点M 在x 轴时,代入得到m a x 21=,同理m a x 22=,即切点弦AB 所在的直线方程为m a x 2=,故必过点)0,(2ma P . (2))当0=m ,b n >时,即点M 在y 轴时,代入得到n b y 21=,同理n b y 22=,即切点弦AB 所在的直线方程为n b y 2=,故必过点),0(2nb Q .结论30:过双曲线12222=-b y a x (0,0>>b a )的实轴上任意一点)0,(m M (a m <)作双曲线(单支)的两条切线,切点分别为A ,B ,则切点弦AB 所在的直线必过点)0,(2ma P . 证明如下:如图所示,令A (1x ,1y ),),(22y x B ,由结论9得到切线AM 的方程为12121=-byy a xx . 又由于切线AM 过点)0,(m M ,则得到m a x 21=,同理m a x 22=,即切点弦AB 所在的直线方程为m a x 2=,故必过点)0,(2ma P . 结论31:过抛物线px y 22=(0>p )外任意一点M 作抛物线的两条切线,切点分别为A ,B ,弦AB 的中点为N ,则直线MN 必与其对称轴平行.证明如下:如图所示,令),2(121y p y A ,),2(222y pyB ,则221y y y N +=,又由结论11得到切线AM ,BM 的方程分别为:)2(211p y x p y y +=,)2(222p yx p y y +=⇒)(21y y y -=⎥⎦⎤⎢⎣⎡+-p y y y y p 2))((2121569⇒M y 221y y +=⇒N M y y =.故直线MN 必与其对称轴平行.结论32:若椭圆12222=+by a x (0>>b a )与双曲线12222=-n y m x (0>m ,0>n )共焦点,则在它们交点处的切线相互垂直.证明如下:由题意易得2222n m b a +=-⇒2222n b m a +=-.令其交点M (0x ,0y ),则代入上述椭圆及双曲线方程得到1220220=+b y a x ,122220=-n y m x ⇒220y x =)()(22222222m a n b n b m a -+. 依据结论7及结论9得到过点M 的椭圆与双曲线的切线方程分别为:12020=+b y y a x x ,12020=-nyy m x x ⇒21k k =2022222y x m a n b ⋅-=2222m a n b -+-=1-. 结论33:过椭圆外一定点P 作其一条割线,交点为A ,B ,则满足BP AQ BQ AP ⋅=⋅的动点Q 的轨迹就是过P 作椭圆两条切线形成的切点弦所在的直线方程上.证明如下:如图所示,不妨设椭圆方程为:12222=+by a x (0>>b a )由已知条件易得BQAQ BPAP =,令P 分有向线段AB 所成的比为λ,结合图便知Q 分有向线段AB 所成的比为λ-,设),(00y x P ,),(11y x A ,),(22y x B ,),(y x Q ,由定比分点公式推出⎪⎩⎪⎨⎧++=++=λλλλ11210210y y y x x x ⇒⎩⎨⎧+=++=+210210)1()1(y y y x x x λλλλ.570⎪⎩⎪⎨⎧--=--=λλλλ112121y y y x x x ⇒⎩⎨⎧-=--=-2121)1()1(y y y x x x λλλλ.由上述两式结合并相乘得到⎩⎨⎧-=--=-22221202222120)1()1(y y yy x x xx λλλλ ⇒⎩⎨⎧-=--=-)()1()()1(222212220222212220y y a a yy x x b b xx λλλλ. ① 事实上,两个交点A ,B 都在椭圆上,则有⎪⎪⎩⎪⎪⎨⎧=+=+11222222221221b y a x b y a x ⇒⎪⎪⎩⎪⎪⎨⎧=+=+22222222221221)(1λλb y a x b y a x . 由上述两式结合并相减整理得到+-)(222212x x b λ)(222212y y a λ-=)1(222λ-b a . ②由①及②推出12020=+byy a x x . 由结论33及圆锥曲线的共性同理可得:结论34:过双曲线外一定点P 作其一条割线,交点为A ,B ,则满足BP AQ BQ AP ⋅=⋅的动点Q 的轨迹就是过P 作双曲线两条切线形成的切点弦所在的直线方程上.结论35:过抛物线外一定点P 作其一条割线,交点为A ,B ,则满足BP AQ BQ AP ⋅=⋅的动点Q 的轨迹就是过P 作抛物线两条切线形成的切点弦所在的直线方程上.关于结论33及其结论34的证明完全雷同于结论33的证明过程.结论36:过双曲线外一点P 作其一条割线,交点为A ,B ,过A ,B 分别作双曲线的切线相交于点Q ,则动点Q 的轨迹就是过P 作双曲线两条切线形成的切点弦所在的直线方程上.证明如下:如图所示,不妨设双曲线方程为:12222=-b y a x (00>>b a ,),我们令),(00y x P , ),(''y x Q ,由前面结论10可得切点弦AB 所在的直线方程为12'2'=-byy a xx ,571又点P 在直线AB 上,则12'02'0=-b y y a x x ,即),(''y x Q 在直线12020=-by y a x x ,故动点Q的轨迹就是过P 作双曲线两条切线形成的切点弦所在的直线方程上.由结论36及圆锥曲线的共性同理可得:结论37:过椭圆外一点P 作其一条割线,交点为A ,B ,过A ,B 分别作椭圆的切线相交于点Q ,则动点Q 的轨迹就是过P 作椭圆两条切线形成的切点弦所在的直线方程上. 结论38:过抛物线外一点P 作其一条割线,交点为A ,B ,过A ,B 分别作抛物线的切线相交于点Q ,则动点Q 的轨迹就是过P 作抛物线两条切线形成的切点弦所在的直线方程上.关于结论37及其结论38的证明完全雷同于结论36的证明过程.结论39:从椭圆12222=+by a x (0>>b a )的右焦点向椭圆的动切线引垂线,则垂足的轨迹为圆:222a y x =+.结论40:从12222=-by a x (00>>b a ,)的右焦点向双曲线的动切线引垂线,则垂足的轨迹为圆:222a y x =+.三、一题多用的教学价值应用1.(补充)(2011年江西省高考试题)椭圆12222=+b y a x 的焦点在x 轴上,过点⎪⎭⎫⎝⎛211,作圆122=+y x 的切线,切点分别为A 、B ,直线AB 恰好过椭圆的右焦点和上顶点,求椭圆的方程.分析如下:由上述结论2可得切点弦AB 的直线方程为121=+y x ,因此可得右焦点为 )01(,,上顶点为)20(,,即1=c ,1=b ,故椭圆的方程为14522=+y x . 应用2:(补充)(2012年福建省厦门一中模拟试题)设P 是抛物线x y 22=上的一个动点,过点P 作抛物线的切线与圆:122=+y x 相交于M 、N ,分别过M 、N 作圆的切线相交于Q ,求动点Q 的轨迹方程.分析如下:设)(00y x P ,,)(11y x Q ,,显然0202x y =,由上述结论11可得过点)(00y x P ,的抛物线的切线MN 方程为00x x y y +=,再由上述结论2可得过点)(11y x Q ,572的圆的切点弦MN 直线方程为111=+y y x x ,依据两条直线重合,则对应项系数成比例得到101x x -=,110x y y -=,并代入0202x y =得到1212x y -=.联立方程组:122=+y x 与00x x y y +=得到012)1(2000220=-+-+x y y x y y ,利用判别式可得0>∆,即2100+<<x ,即211-<x ,故动点Q 的轨迹方程1212x y -=,且211-<x ,即动点Q 的轨迹方程x y 22-=(21-<x ).应用1.(2010年浙江省高中会考试题)设点)(n m P ,在圆222=+y x 上,l 是过点P 的圆的切线,且切线l 与抛物线k x x y ++=2相交于A ,B . (1)若2-=k ,点P 恰好是线段A B 的中点,求点P 坐标;分析如下:(1)由结论1可得切线l 的方程为2=+ny mx (0≠n ),设)(11y x A ,,)(22y x B ,,将切线l 的方程与抛物线方程联立可得0)1(2)(2=+-++n x n m nx⇒m nm x x =+-=+221⇒mn n m -=+. 将之与222=+n m 联立解得⎩⎨⎧-=-=11n m ,或⎪⎪⎩⎪⎪⎨⎧+=-=231231n m ,或⎪⎪⎩⎪⎪⎨⎧-=+=231231n m . 代入0>∆验证可得)11(--,P ,)231231(+-,P . (2)由(1)可得以A B 为底边的等腰三角形AOB 当且仅当点P 恰好是线段A B 的中点,等腰三角形AOB 恰有3个可相应地转化为点P 有三解,故只要(1)中的三个解都满足0>∆,可得2331--<k . 应用2.(课本习题)求证:椭圆192522=+y x 与双曲线111522=-y x 在其交点处的切线相互垂直.573证明如下:易得椭圆与双曲线的焦点相同,由结论32即可得证.应用3.(2008年安徽省高考试题压轴题第22题)设椭圆C :12222=+by a x (0>>b a )过点)1,2(M ,且左焦点)0,2(1-F .(1)求该椭圆的方程;(2)当过点)1,4(P 的动直线l 与椭圆C 相交于不同两点A ,B ,在线段AB 上任取一点Q=Q 总在某条定直线上.分析如下:(1)由已知易得所求椭圆的方程为12422=+y x . (2)直接利用结论33即可得证.应用4.(2008年江西省高考试题第21题)设点()00,P x y 在直线(),01x m y m m =≠±<<上,过点P 作双曲线221x y -=的两条切线PA PB 、,切点为A B 、,定点M (m1,0). (1)过点A 作直线0x y -=的垂线,垂足为N ,试求△AMN 的重心G 所在的曲线方程;(2)求证:A M B 、、三点共线.分析如下:(1)(略).(2)由结论10显然可得切点弦AB 所在的直线方程为100=-y y x x ,由于点P 的坐标为(m ,0y ),即m x =0,于是切点弦AB 所在的直线方程为10=-y y mx ,显然定点M (m1,0)满足该方程,于是三点A M B 、、共线. 值得注意的是: 其实,纵观近几年的高考试题,不难发现一个共同之处,那就是如果压轴题是解析几何,几乎其结论都是带有规律的普遍性结论,如2008年江西省高考试题第21题就是结论36的特例,2008年安徽省高考试题压轴题第22题就是结论33的一个特例.应用5.(2008年南通市第一次调研试题)已知点)10(,F ,点P 在x 轴上运动,点M 在y 轴上,N 为动点,且满足:0=⋅,PM +=. (1)求动点N 的轨迹C 的方程;(2)由直线1-=y 上一点Q 向曲线C 引两条切线,切点分别为A ,B ,求证:AQ ⊥BQ .分析如下:(1)设)(y x N ,代入已知条件易得动点N 的轨迹C 的方程为y x 42=.574(2)显然直线1-=y 就是抛物线y x 42=的准线,由结论21可得AQ ⊥BQ . 应用6.(2006全国高考试题)已知抛物线x 2=4y 的焦点为F ,A 、B 是抛物线上的两动点,且AF →=λFB →(λ>0).过A 、B 两点分别作抛物线的切线,设其交点为M .(2)设△ABM 的面积为S ,写出S =f (λ)的表达式,并求S 的最小值.证明如下:(1) F 点的坐标为(0,1)设点A 、点B 的坐标分别为211,4x x ⎛⎫ ⎪⎝⎭、222,4x x ⎛⎫ ⎪⎝⎭,由(0).AF FB λλ=>可得221212,1,144x x x x λ⎛⎫⎛⎫--=- ⎪ ⎪⎝⎭⎝⎭⇒1222121(1)44x x x x λλ-=⎧⎪⎨-=-⎪⎩.由上述结论11可得过A 点、B 点的切线方程分别为2111()42x x y x x -=-,2222()42x x y x x -=-.(2)由(1)可得FM AB ⊥,我们易得2FM AB ==⇒2)(ABFM f S ⋅==λ=41213≥⎪⎪⎭⎫⎝⎛+λλ(当且仅当1λ=时取等号).应用7.(2008年广东省(理科)高考试题)椭圆方程122222=+by b x (0>b ),抛物线方程为)(82b y x -=.如图所示,过点)20(+b F ,作x 轴的平行线,与抛物线在第一象限的交点为G ,已知抛物线在点G 处的切线经过椭圆的右焦点1F . (1)求满足条件的椭圆与抛物线方程;分析如下:(1)事实上,点)20(+b F ,就是抛物线的焦点,易得)24(+b G ,,由上述结论15易得抛物线在点G 处的切线方程为2-+=b x y ,显然椭圆的右焦点1F )0(,b ,575代入得到1=b ,故椭圆方程11222=+y x ,抛物线方程为)1(82-=y x . (2)因为过点A 作x 轴的的垂线与抛物线只有一个交点P ,所以以PAB ∠为直角三角形只有一个;同理以PBA ∠为直角三角形也只有一个.若以APB ∠为直角,设⎪⎭⎫ ⎝⎛+1812x x P ,,因为)02(,-A ,)02(,B ,则有 ⋅=14564124-+x x =0. 易得上述方程只有两解,即以APB ∠为直角的三角形存在两个.综上所述,抛物线上存在四个这样的点P ,使得ABP ∆为直角三角形.应用8.证明结论39.证明如下:设椭圆上切点M )sin cos (ααb a ,,由结论7可得过点M 的切线方程为1sin cos 22=+byb a x a αα⇒ab y a x b =+ααsin cos . 过右焦点且垂直于切线的直线方程为αααsin cos sin ac y b x a =-. 上述两式平方相加即可得证.四、一组巩固训练题练习1.从191622=-y x 的右焦点向双曲线的动切线引垂线,求垂足的轨迹图形的面积. 练习2.在直角坐标系中,O 为坐标原点,点)10(,B ,点)0(,a A (0≠a )是x 轴上的动点,过点A 作线段AB 的垂线交y 轴于点D ,在直线AD 上取点P ,使得AD AP =. (1)求动点P 的轨迹C 的方程;(2)点Q 是直线1-=y 上的一个动点,过点Q 向曲线C 引两条切线,切点分别为M ,N ,求证:MQ ⊥NQ .练习3.(2005年江西省高考试题)如图,设抛物线2:x y C =的焦点为F ,动点P 在直线02:=--y x l 上运动,过P 作抛物线C 的两条切线PA 、PB ,且与抛物线C 分别相切于A 、B 两点.(1)求△APB 的重心G 的轨迹方程; (2)证明∠PFA=∠PFB .练习4.(2010年江西省九江一中模拟试题)开口向上的抛物线2:ax y C =与经过点)0,3(A 且斜率为)0(<k k 的直线l 相交于点M 、N ,已知抛物线C 在点M 、N 处的切线所成的576角为55arccos,并且18||||=AN AM ,求直线l 与抛物线C 的方程. 练习5.证明结论40.练习6.(2004年济南市高考模拟试题)过椭圆C :14822=+y x 上一点)(00y x P ,向圆O :422=+y x 引两条切线PA ,PB ,切点为A ,B ,若直线AB 与x 轴、y 轴相交于M 、N .(1)试用0x ,0y 来表示直线AB 的方程; (2)求MON ∆面积的最小值.练习7.(2005年福建省模拟试题)从直线x y =上任一点P 引抛物线12+=x y 两条切线,切点分别为A ,B ,求弦AB 的中点Q 的轨迹方程.五、巩固训练题参考答案1.分析如下:由结论40可得垂足的轨迹方程为1622=+y x ,则图形面积为π16. 2.分析如下:(1)易得动点P 的轨迹C 的方程为y x 42=(0≠y ).(2)显然直线1-=y 就是抛物线y x 42=的准线,由结论可得MQ ⊥NQ .3.分析如下:(1)设切点A 、B 坐标分别为))((,(),(0121120x x x x x x ≠和,由上述结论11可得切线AP ,BP 的方程分别为为:02200=--x y x x ,02211=--x y x x ,解得10102x x y x x x P P =+=, ⇒P PG x x x x x =++=310,3310212010x x x x y y y y P G ++=++=343)(210210pP y x x x x x -=-+=⇒243GG p x y y +-=. 由点P 在直线l 上运动,从而得到重心G 的轨迹方程为:57702)43(2=-+--x y x ⇒)24(312+-=x x y .(2)).41,(),41,2(),41,(211101020-=-+=-=x x x x x x x x由于P 点在抛物线外,则0||≠,由此可得cos AFP =∠41)1)(1(102010010x x x x x x x x +=--+⋅+=. 同理可得||41cos 10FP x x BFP +=∠,故∠AFP=∠PFB .4.分析如下:设),(211ax x M 、),(222ax x N ,不妨设M 在第一象限,N 在第二象限,由结论11可得抛物线在点M 处的切线斜率为12ax ,点N 处的切线斜率为22ax ,设两条切线所成的角为α,则2tan =α,即241)(221212=+-x x a x x a ⇔)(4112212x x a x x a -=+. ① 由于M 、N 、A 共线,所以33222121-=-x ax x ax ⇒)(32121x x x x += . ②由已知18||||=⋅AN AM ,则有18),3(),3(222211=-⋅-ax x ax x ⇒933222122121=+--x x a x x x x .将②代入得到922212=x x a ,又0>a ,01>x ,02>x ,则有321-=x ax ,a x x 321-=. ③将③代入②得到a x x 121-=+. ④将③代入①得到12112-=-ax x . ⑤将③、④、⑤代入21221212)(4)(x x x x x x +=+-得到22)1()3(4)121(a a a -=-+-⇒41=a ,0=a (舍去). 将41=a 代入④、⑤得6,221-==x x .578故直线l 的方程为:3+-=x y ,抛物线C 的方程:241x y =. 5.证明如下:设双曲线上切点M )tan sec (ααb a ,,由结论9可得过点M 的切线方程为1tan sec 22=-byb a x a αα⇒ab y a x b =-ααtan sec . 过右焦点且垂直于切线的直线方程为αααtan sec tan ac y b x a =+.上述两式平方相加即可得证.6.分析如下:(1)由结论2可得直线AB (切点弦)的方程为400=+y y x x .(2)由(1)易得⎪⎪⎭⎫ ⎝⎛040,x M ,⎪⎪⎭⎫⎝⎛040y N ,,则三角形面积公式及均值不等式可得 =S 008y x =⎪⎭⎫ ⎝⎛⋅⎪⎭⎫ ⎝⎛22222200y x 224822220=+≥yx . 7.分析如下:设)(00y x P ,,)(y x Q ,,)(11y x A ,,)(22y x B ,,由结论12可得切点弦AB 的方程为1200+=+x x yx ,即02200=-+-x y x x ,与12+=x y 联立得到 012002=-+-x x x x ⇒0212x x x =+.)22()22(02001021x x x x x x y y -++-+=+=424020+-x x⇒⎪⎩⎪⎨⎧+-=+==+=222202021021x x y y y x x x x ⇒222+-=x x y .。
设而不求妙得方程_圆锥曲线中与切线有关的一些性质_严青

作椭圆C 的 两 条 切 线,且
切 点 分 别 为 M ,N ,则 切
图2
点弦 MN
所
在
直
线
的
方
程
为xa02x
y0y + b2
=1.
证明 设 M (x1,y1),N (x2,y2),则 过 点
M ,N
的切线方程 分 别 为xa12x
y1y + b2
=1,xa22x
+
y2y b2
=1.因
为
P
(x0,y0)在
y2 b2
=1(a
>0,b
>0)外
,过
点P
作
双
曲
线C
的
两
条切线,且切点分别为 M ,N ,则切点弦 MN 所在
直线
的
方
程
为xa02在直线方程
定理1 已知抛物线C:
y2=2px,过不在C 上的定点
Q(m ,n)的 任 一 直 线 与 曲 线
C 交于M ,N 两点,则过点 M
为
点
Q(-1,-1)
满足直线 AB 方程,所以点 Q 在直线AB 上.
不 少 学 生 处 理 圆 锥 曲 线 问 题 时 ,感 觉 会 做 ,但
似 乎 又 做 不 出 或 做 不 全 、做 不 完 甚 至 做 不 对 ,原 因
之 一 是 方 法 选 择 不 当 或 计 算 能 力 欠 缺 .因 此 ,在 平
=1(a
>b
>0),过
不
在C 上的定点Q(m,n)的
任一直 线 与 曲 线 C 交 于
图4
M ,N 两点,则过点 M 和N
的
切
线
的
交
点
高考数学二轮专题-圆锥曲线中的双切线问题+课件

y2
(x x1)
y
4 y1 y2
x
y1 y2 y1 y2
x2 4y
联立
y
4 y1
y2
x
y1 y2 ,整理可得( y1 y1 y2
y2 )x2
16x 4 y1 y2
0
又因为A1A2与x2 4 y相切,故 162 16( y1 y2 ) y1 y2 0即:y1 y22 y12 y2 16 0,
2 y1 y3 1 1 ( y1 y3)2
(2 y1 y2 )2 1 ( y1 y2 )2 整理可得:(y12 1) y22 2 y1 y2 3 y12 0
同理可得:(y12 1) y32 2 y1 y3 3 y12 0
即y2 , y3为方程( y12 1) y2 2 y1 y
课后作业
1、已知C :
x2 a2
y2 b2
1(a
b
0)的一个焦点为(
5,0),离心率
为 5.
3
(1)求椭圆C的方程;
(2)若动点P(x0, y0)为椭圆C外一点,且点P到椭圆C的两 条切线相互垂直,求点P的轨迹方程.
课后作业
2、已知圆G : (x 2)2 y2 r2是椭圆 x2 y2 1的内接三角形
同理可得:y1 y32 y12 y3 16 0,所以y2,y3为方程y1 y2 y12 y 16 0的两根
y2 y2
y3
y3
16 y1
y1
,
而lA2
A3
:
y
y2
4
y3
x
y2 y3 y2 y3
4 y1
x
16 y12
x2 4y
联立
y
高中常用圆锥曲线常用的二级结论汇总
圆锥曲线常用的二级结论椭圆双曲线抛物线标准方程()012222>>=+b a by ax 焦点()()0021,,,c F c F -()0012222>>=-b a by ax ,焦点()()0021,,,c F c F -()022>=p px y 焦点⎪⎪⎭⎫⎝⎛02,p F 图像焦半径的坐标形式0201ex a PF ex a PF -=+=,e 为离心率,x 0为点P 的横坐标0201ex a PF ex a PF -=+=,e 为离心率,x 0为点P 的横坐标20p x PF +=x 0为点P 的横坐标焦半径的角度形式θcos 2c a b PF -=PFO∠=θac b PF ±=θcos 2PFO ∠=θ,同正异负θcos 1+=p PF PFO∠=θ通径ab 22ab 22p 2焦点弦的角度形式θ2222cos 2c aab PQ -=PFO ∠=θθ2222cos 2c aab PQ -=PFO∠=θθ2sin 2p PQ =PFO∠=θ两条焦半径的关系2211ba QF PF =+2211ba QF PF =±同正异负pQF PF 211=+椭圆双曲线抛物线焦三角形2tan221θb S F PF =∆离心率βαθsin sin sin +=e 2tan2cot 2221θθb b S F PF ==∆离心率βαθsin sin sin -=e θsin 22p S POQ =∆θ为直线PQ 倾斜角顶角范围21PF F ∠=θ点P 由长轴端点向短轴端点运动的过程中,θ逐渐增大21PF F ∠=θ点P 由实轴端点向远离实轴运动的过程中,θ逐渐减小点P 与点Q 由原点向远离原点运动的过程中,POQ ∠逐渐减小垂径定理22a b k k OC AB -=⋅C 为线段AB 的中点22a b k k OC AB =⋅C 为线段AB 的中点py k C AB =⋅y c 为点C 的纵坐标椭圆双曲线抛物线周角定理22ab k k PB P A -=⋅P 为椭圆上异于A 与B 的点22a b k k PB P A =⋅P 为双曲线上异于A 与B 的点无周角定理推广形式22ab k k PB P A -=⋅直线AB 过原点O P 为椭圆上异于A 与B 的点且P A k 与PB k 均存在22a b k k PB P A =⋅直线AB 过原点O P 为双曲线上异于A 与B 的点且P A k 与PB k 均存在无准线方程椭圆上任意一点P 到焦点F 和到准线L 的距离之比为e焦点F 与准线L 在y 轴的同侧ca x L 2±=:双曲线上任意一点P 到焦点F 和到准线L 的距离之比为e 焦点F 与准线L 在y 轴的同侧ca x L 2±=:抛物线的焦点F 与准线L 在y 轴的异侧2p x L -=:椭圆双曲线抛物线准线的性质=+PB P A k k 直线AB 过焦点F P 为准线L 与x 轴的交点焦点F 与准线L 在y 轴的同侧=+PB P A k k 直线AB 过焦点F P 为准线L 与x 轴的交点焦点F 与准线L 在y 轴的同侧=+PB P A k k 直线AB 过焦点F P 为抛物线准线L 与x 轴的交点切线方程点()00,y x P 在椭圆上椭圆在点P 处的切线方程为12020=+by y ax x 点()00,y x P 在双曲线上双曲线在点P 处的切线方程为12020=-by y ax x 点()00,y x P 在抛物线上抛物线在点()00,y x P 处的切线方程为()x x p y y +=00切点弦方程点()00,y x P 在椭圆外过点P 作椭圆的两条切线交椭圆于A 、B 两点则切点弦AB 的方程为12020=+by y ax x 点()00,y x P 在双曲线外过点P 作双曲线的两条切线交双曲线于A 、B 两点则切点弦AB 的方程为12020=-by y ax x 点()00,y x P 在抛物线外过点P 作抛物线的两条切线交抛物线于A 、B 两点则切点弦AB 的方程为()x x p y y +=00。
高考数学圆锥曲线部分重要公式及结论
高中数学圆锥曲线部分重要公式及结论(椭圆部分)● 点P 处的切线PT 平分△PF 1F 2在点P 处的外角.● PT 平分△PF 1F 2在点P 处的外角,则焦点在直线PT 上的射影H 点的轨迹是以长轴为直径的圆,除去长轴的两个端点.● 以焦点弦PQ 为直径的圆必与对应准线相离.● 以焦点半径PF 1为直径的圆必与以长轴为直径的圆内切.● 若000(,)P x y 在椭圆22221x y a b +=上,则过0P 的椭圆的切线方程是00221x x y y a b +=.● 若000(,)P x y 在椭圆22221x y a b +=外 ,则过Po 作椭圆的两条切线切点为P 1、P 2,则切点弦P 1P 2的直线方程是00221x x y ya b+=.● 椭圆22221x y a b+= (a >b >0)的左右焦点分别为F 1,F 2,点P 为椭圆上任意一点12F PF γ∠=,则椭圆的焦点角形的面积为122tan2F PF S b γ∆=.● 椭圆22221x y a b +=(a >b >0)的焦半径公式:10||MF a ex =+,20||MF a ex =-(1(,0)F c - , 2(,0)F c 00(,)M x y ).● 设过椭圆焦点F 作直线与椭圆相交 P 、Q 两点,A 为椭圆长轴上一个顶点,连结AP 和AQ 分别交相应于焦点F 的椭圆准线于M 、N 两点,则MF ⊥NF.● 过椭圆一个焦点F 的直线与椭圆交于两点P 、Q, A 1、A 2为椭圆长轴上的顶点,A 1P 和A 2Q 交于点M ,A 2P 和A 1Q 交于点N ,则MF ⊥NF.● AB 是椭圆22221x y a b+=的不平行于对称轴的弦,M ),(00y x 为AB 的中点,则22OM AB b k k a ⋅=-,即0202y a xb K AB -=。
● 若000(,)P x y 在椭圆22221x y a b +=内,则被Po 所平分的中点弦的方程是2200002222x x y y x y a b a b +=+.● 若000(,)P x y 在椭圆22221x y a b+=内,则过Po 的弦中点的轨迹方程是22002222x x y y x y a b a b +=+.● 椭圆22221x y a b+=(a >b >o )的两个顶点为1(,0)A a -,2(,0)A a ,与y 轴平行的直线交椭圆于P 1、P 2时A 1P 1与A 2P 2交点的轨迹方程是22221x y a b-=.● 过椭圆22221x y a b+= (a >0, b >0)上任一点00(,)A x y 任意作两条倾斜角互补的直线交椭圆于B,C 两点,则直线BC 有定向且2020BC b x k a y =(常数).● 若P 为椭圆22221x y a b+=(a >b >0)上异于长轴端点的任一点,F 1, F 2是焦点, 12PF F α∠=,21PF F β∠=,则tan t 22a c co a c αβ-=+. ● 设椭圆22221x y a b+=(a >b >0)的两个焦点为F 1、F 2,P (异于长轴端点)为椭圆上任意一点,在△PF 1F 2中,记12F PF α∠=, 12PF F β∠=,12F F P γ∠=,则有sin sin sin ce aαβγ==+.● 若椭圆22221x y a b+=(a >b >0)的左、右焦点分别为F 1、F 2,左准线为L ,则当0<e 1时,可在椭圆上求一点P ,使得PF 1是P 到对应准线距离d 与PF 2的比例中项.● P 为椭圆22221x y a b+=(a >b >0)上任一点,F 1,F 2为二焦点,A 为椭圆内一定点,则2112||||||2||a AF PA PF a AF -≤+≤+,当且仅当2,,A F P 三点共线时,等号成立.● 椭圆220022()()1x x y y a b--+=与直线0Ax By C ++=有公共点的充要条件是2222200()A a B b Ax By C +≥++.● 已知椭圆22221x y a b+=(a >b >0),O 为坐标原点,P 、Q 为椭圆上两动点,且OP OQ ⊥.(1)22221111||||OP OQ a b +=+;(2)|OP|2+|OQ|2的最大值为22224a b a b +;(3)OPQ S ∆的最小值是2222a b a b +. ● 过椭圆22221x y a b+=(a >b >0)的右焦点F 作直线交该椭圆右支于M,N 两点,弦MN 的垂直平分线交x 轴于P ,则||||2PF eMN =. ● 已知椭圆22221x y a b+=( a >b >0) ,A 、B 、是椭圆上的两点,线段AB 的垂直平分线与x 轴相交于点0(,0)P x , 则22220a b a b x a a---<<.● 设P 点是椭圆22221x y a b+=( a >b >0)上异于长轴端点的任一点,F 1、F 2为其焦点记12F PF θ∠=,则(1)2122||||1cos b PF PF θ=+.(2) 122tan 2PF F S b γ∆=.● 设A 、B 是椭圆22221x y a b+=( a >b >0)的长轴两端点,P 是椭圆上的一点,PAB α∠=,PBA β∠=,BPA γ∠=,c 、e 分别是椭圆的半焦距离心率,则有(1)22222|cos |||s ab PA a c co αγ=-.(2) 2tan tan 1e αβ=-.(3) 22222cot PABa b S b a γ∆=-. ● 已知椭圆22221x y a b+=( a >b >0)的右准线l 与x 轴相交于点E ,过椭圆右焦点F 的直线与椭圆相交于A 、B 两点,点C 在右准线l 上,且BC x ⊥轴,则直线AC 经过线段EF 的中点. ● 过椭圆焦半径的端点作椭圆的切线,与以长轴为直径的圆相交,则相应交点与相应焦点的连线必与切线垂直.● 过椭圆焦半径的端点作椭圆的切线交相应准线于一点,则该点与焦点的连线必与焦半径互相垂直.● 椭圆焦三角形中,内点到一焦点的距离与以该焦点为端点的焦半径之比为常数e(离心率). ● (注:在椭圆焦三角形中,非焦顶点的内、外角平分线与长轴交点分别称为内、外点.) ● 椭圆焦三角形中,内心将内点与非焦顶点连线段分成定比e. ● 椭圆焦三角形中,半焦距必为内、外点到椭圆中心的比例中项.(双曲线部分)● 点P 处的切线PT 平分△PF 1F 2在点P 处的内角.● PT 平分△PF 1F 2在点P 处的内角,则焦点在直线PT 上的射影H 点的轨迹是以长轴为直径的圆,除去长轴的两个端点.● 以焦点弦PQ 为直径的圆必与对应准线相交.● 以焦点半径PF 1为直径的圆必与以实轴为直径的圆相切.(内切:P 在右支;外切:P 在左支)● 若000(,)P x y 在双曲线22221x y a b-=(a >0,b >0)上,则过0P 的双曲线的切线方程是00221x x y ya b-=. ● 若000(,)P x y 在双曲线22221x y a b-=(a >0,b >0)外 ,则过Po 作双曲线的两条切线切点为P 1、P 2,则切点弦P 1P 2的直线方程是00221x x y ya b -=.● 双曲线22221x y a b-=(a >0,b >o )的左右焦点分别为F 1,F 2,点P 为双曲线上任意一点12F PF γ∠=,则双曲线的焦点角形的面积为122t2F PF S b co γ∆=.● 双曲线22221x y a b -=(a >0,b >o )的焦半径公式:(1(,0)F c - , 2(,0)F c● 当00(,)M x y 在右支上时,10||MF ex a =+,20||MF ex a=-. ● 当00(,)M x y 在左支上时,10||MF ex a =-+,20||MF ex a=--● 设过双曲线焦点F 作直线与双曲线相交 P 、Q 两点,A 为双曲线长轴上一个顶点,连结AP 和AQ 分别交相应于焦点F 的双曲线准线于M 、N 两点,则MF ⊥NF.● 过双曲线一个焦点F 的直线与双曲线交于两点P 、Q, A 1、A 2为双曲线实轴上的顶点,A 1P和A 2Q 交于点M ,A 2P 和A 1Q 交于点N ,则MF ⊥NF.● AB 是双曲线22221x y a b -=(a >0,b >0)的不平行于对称轴的弦,M ),(00y x 为AB 的中点,则0202y a x b K K AB OM =⋅,即0202y a x b K AB =。
专题14圆锥曲线的切线问题
专题14 圆锥曲线的切线问题一、结论圆锥曲线的切线问题常用方法有几何法,代数法:比如求圆的切线,常用圆心到直线的距离等于半径来解决切线问题,也可以联立直线与圆的方程根据0∆=来求解;比如涉及到椭圆的切线问题,也常常联立直线与椭圆的方程根据0∆=来求解; 对于抛物线的切线问题,可以联立,有时也可以通过求导来求解. 而对于这些圆锥曲线也常常存在一些特殊的求切线公式:1.过圆C :222()()x a y b R -+-=上一点00(,)P x y 的切线方程为200()()()()x a x a y b y b R --+--=.2.过椭圆22221x y a b +=上一点00(,)P x y 的切线方程为00221x x y ya b +=.3.已知点,抛物线:和直线: (1)当点00(,)M x y 在抛物线C 上时,直线l 与抛物线C 相切,其中M 为切点,l 为切线.当点在抛物线外时,直线与抛物线相交,其中两交点与点的连线分别是抛物线的切线,即直线为切点弦所在的直线.当点在抛物线内时,直线与抛物线相离.二、典型例题1.(2021·安徽·六安一中高二期末(文))已知椭圆具有如下性质:若椭圆的方程为()222210x y a b a b +=>>,则椭圆在其上一点()00,A x y 处的切线方程为00221x x y y a b +=,试运用该性质解决以下问题;椭圆221:12x C y +=,点B 为1C 在第一象限中的任意一点,过B 作1C 的切线l ,l 分别与x 轴和y 轴的正半轴交于,C D 两点,则OCD 面积的最小值为( ) A .1 BCD .2【答案】C 【详解】设,由题意得,过点B 的切线l 的方程为: 令0y =,可得12(,0)C x ,令0x =,可得11(0,)D y ,所以OCD 面积111112112S x y x y =⨯⨯=,又点B 在椭圆上,所以221112x y +=,所以121111121111122x y S x y x y x x y y +===+≥当且仅当11112x yy x =,即111,x y ==时等号成立,所以OCD. 故选:C【反思】过椭圆上一点作切线,切线方程为:该结论可以在小题中直接使用,但是在解答题中,需先证后用,所以在解答题中不建议直接使用该公式.2.(2020·江西吉安·高二期末(文))已知过圆锥曲线221x y m n+=上一点()00,P x y 的切线方程为001x x y y m n +=.过椭圆221124x y +=上的点()3,1A -作椭圆的切线l ,则过A 点且与直线l 垂直的直线方程为( ) A .30x y --= B .-20x y += C .2330x y +-= D .3100x y --=【答案】B 【详解】过椭圆221124x y +=上的点()3, 1A -的切线l 的方程为()31124y x -+=,即40x y --=,切线l 的斜率为1.与直线l 垂直的直线的斜率为-1,过A 点且与直线l 垂直的直线方程为()13y x +=--,即20x y +-=.故选:B【反思】根据题中信息,直接代入公式,但是在代入切线方程为注意不要带错,通过对比本题信息,将这些数字代入公式,可求出切线,再利用直线垂直的性质求解. 3.(2022·江苏南通·一模)过点作圆的切线交坐标轴于点、则_________. 【答案】2- 【详解】 圆的圆心为,因为,则点在圆上,所以,所以,直线AB 的斜率为1AB k =-,故直线AB 的方程为()11y x -=--,即20x y +-=, 直线20x y +-=交x 轴于点()2,0A ,交y 轴于点()0,2B , 所以,因此,故答案为:另解:过圆:上一点的切线方程为.可知,代入计算得到过点作圆的切线为:整理得:直线交轴于点,交轴于点, 所以,因此, 故答案为:【反思】本题中提供了常规方法和使用二级结论的解法,特别提醒同学们,二级结论的公式代入数字时,最忌讳代入错误,所以需要特别仔细。
圆锥曲线的切点弦定理及其应用_于志洪
法, 因此就掌握各种基本数列所对应的函数及
其相关性质, 习惯于用函数的观点解题是很重 要的.
四川省苍溪中学 ( 628400)
p 于志洪
圆锥曲线的切点弦定理及其应用
所谓圆锥曲线的 / 切点弦 0, 就是从圆锥曲 线外一点向曲线作两条切线, 连接两切点的线 段. 所在直线的方程可由下面几个定理给出:
定理 1 过程 x2 + y2 = r2 外一点 P ( x0, y0 )
y0y = p ( x0 + x ),
即
y0y
=
p(
y22 2p
+
x ).
º
从而解 ¹ 和 º , 消去 x 可得
y2
-
2y0 y +
y
2 2
=
0.
因为 P1、P3 两点的纵坐标是这个二次方程的两
个根, 由韦达定理得 y1 y3 = y22, 故命题得证.
例3
自
双曲
线
x2 a2
-
y2 b2
=
1上任一点 P 向
= a2 + b2 上, 于 是 可 设 P ( a2 + b2 cosH,
a2 + b2 sinH). 从而切点弦 AB 的方程为
x b2 a2 + b2 cosH + ya2 a2 b2 = 0
a2 + b2 sinH -
所以 d1 =
a 2 b2 ( a2 + b2 ) ( b4 co s2 H+ a4 s in2 H)
5+
6 x
-
9 x
(x
\
1,
x
IR ),gc( x来自) = (5+
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
圆锥曲线的切线方程和切点弦方程课题:圆锥曲线的切线方程和切点弦方程
教学目标:
1) 掌握圆锥曲线在某点处的切线方程及切点弦方程。
2) 能够使用切线方程及切点弦方程解决一些问题。
3) 通过复渗透数形结合、类比的思想,逐步培养学生分析问题和解决问题的能力。
4) 掌握曲线与方程的关系。
教学重点:
切线方程及切点弦方程的应用
教学难点:
如何恰当使用切线方程及切点弦方程
教学过程:
1.引入:
通过09年安徽省高考题及近几年各省考察圆锥曲线的实例引出本节课。
2.知识点回顾:
1) 过圆$x^2+y^2=r^2$上一点$(x_0,y_0)$的切线方程为:$xx_0+yy_0=r^2$
2) 设$P(x,y)$为椭圆
$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$上的点,则过该点的切线方程为:$\frac{xx_0}{a^2}+\frac{yy_0}{b^2}=1$
3) 设$P(x,y)$为双曲线$\frac{x^2}{a^2}-
\frac{y^2}{b^2}=1$上的点,则过该点的切线方程为:
$\frac{xx_0}{a^2}-\frac{yy_0}{b^2}=1$
4) 设$P(x,y)$为抛物线$y^2=2px$上的点,则过该点的切线方程为:$y=y_0+p(x+x_0)$
圆锥曲线切线的几个性质:
1) 过椭圆的准线与其长轴所在直线的交点作椭圆的两条切线,则切点弦长等于该椭圆的通径。
同理,双曲线,抛物线也有类似的性质。
2) 过椭圆的焦点$F_1$的直线交椭圆于$A$,$B$两点,
过$A$,$B$两点作椭圆的切线交$PF_1\perp AB$于点$P$,则$P$点的轨迹是焦点$F_1$的对应的准线,并且同理,双曲线,抛物线也有类似的性质。
3.例题精讲:
1) 练1:
已知抛物线$y=ax^2(a>0)$与直线$x=1$围成的封闭图形的
面积为3,若直线$l$与抛物线相切,且平行于直线$2x-y+6=0$,则直线$l$的方程为。
2) 例1:
设抛物线$C:y=x^2$的焦点为$F$,动点$P$在直线$l:x-y-
2=0$上运动,过$P$作抛物线$C$的两条切线$PA$、$PB$,且
与抛物线$C$分别相切于$A$、$B$两点。
求$\triangle APB$的
重心$G$的轨迹方程。
4.圆锥曲线的切点弦方程:
1) 设$P(x,y)$为圆$x+y=r$外一点,则切点弦的方程为:$xx_0+yy_0=r^2$
2) 设$P(x,y)$为椭圆
$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$外一点,过该点作椭圆的两条切线,切点为$A$,$B$,则弦$AB$的方程为:
$\frac{x^2}{a^2}+\frac{y^2}{b^2}=\frac{x_0^2}{a^2}+\frac{y_0 ^2}{b^2}$
3) 过$P(x,y)$为双曲线$\frac{x^2}{a^2}-
\frac{y^2}{b^2}=1$的两支作两条切线,则切点弦方程为:$\frac{xx_0}{a^2}-\frac{yy_0}{b^2}=1$
设抛物线方程为y^2=2px,则P点坐标为(m,2m)。
对于切点A(x1,y1),B(x2,y2),由切线方程可得:
y1=mx1-p
y2=mx2-p
将y1和y2代入yy=p(x+x1)(x+x2)中,得到:
m^2(x1-x2)^2=(2m-p)(x1+x2)
将m=2/p代入,得到:
x1-x2)^2=2(x1+x2)
令x1+x2=s,x1-x2=t,则有:
t^2=2s
代入面积公式S=1/2*st,得到:
S=1/2*t^2/2=1/4*s^2/2=1/8*(x1+x2)^2
由于x1+x2=m,所以S=1/8*m^2.
因此,当PAB为等腰三角形时,面积最小,最小值为
1/8*m^2.
小结:
1.在判断直线与圆锥曲线的位置关系时,需要数形结合。
2.求曲线方程时,需要掌握不同的方法和思想。
作业:已知直线l:y=x+3上一点P(m,2m),过点P作抛物线y^2=2x的两条切线,切点分别为A和B。
求三角形PAB 的面积最小值。
解题思路:
1.求出切点A和B的坐标。
2.根据切点坐标求出三角形PAB的面积公式。
3.通过求导等方法,求出面积最小值。
4.验证得出的最小值是否正确。
具体步骤:
1.设切点A的坐标为(x1,y1),切点B的坐标为(x2,y2)。
由抛物线方程可得,切点的纵坐标为:
y1=y2=2mx1
将y1和y2代入抛物线方程中,得到:
x1=x2=m/2
将x1和x2代入切线方程中,得到:
y1=y2=3m/2
因此,切点A和B的坐标为(m/2,3m/2)。
2.三角形PAB的面积公式为:
S=1/2*PA*PB*sin∠APB
其中,XXX和PB分别为P点到A点和B点的距离,∠APB为角APB的度数。
由于PAB为等腰三角形,所以
PA=PB=√(m^2+(m/2)^2)=m√5/2.
APB为切线的夹角,由y^2=2x的对称性可得,
∠APB=45°。
因此,S=1/2*(m√5/2)^2*sin45°=5m^2/8.
3.对XXX求导,得到:
dS/dm=5m/4
令dS/dm=0,得到m=0,但这个解明显不符合题意。
因此,S的最小值为5m^2/8,当PAB为等腰三角形时取得。
4.验证:当m=1时,三角形PAB为等腰直角三角形,此时S=5/8.
当m=2时,三角形PAB为等腰钝角三角形,此时S=5.
因此,最小值为5m^2/8是正确的。