工程光学第3版第二章习题10

工程光学第3版第二章习题10

工程光学第3版第二章习题10

工程光学练习题(英文题加中文题含答案)

English Homework for Chapter 1 ancient times the rectilinear propagation of light was used to measure the height of objects by comparing the length of their shadows with the length of the shadow of an object of known length. A staff 2m long when held erect casts a shadow long, while a building’s shadow is 170m long. How tall is the building Solution. According to the law of rectilinear propagation, we get, 4.32170= x x=100 (m) So the building is 100m tall. from a water medium with n= is incident upon a water-glass interface at an angle of 45o. The glass index is . What angle does the light make with the normal in the glass Solution. According to the law of refraction, We get, ' 'sin sin I n I n = 626968 .05.145 sin 33.1sin =?= ' I 8.38='I So the light make 3. A goldfish swims 10cm from the side of a spherical bowl of water of radius 20cm. Where does the fish appear to be Does it appear larger or smaller Solution. According to the equation. r n n l n l n -'=-'' and n ’=1 , n=, r=-20 we can get 11416.110133 .15836.8)(5836.81165.02033.01033.11>-=??-=''= -='∴-=--+-=-'+='l n l n cm l r n n l n l β A

第三版工程光学答案

第一章 3、一物体经针孔相机在屏上成一60mm大小得像,若将屏拉远50mm,则像得大小变为70mm,求屏到针孔得初始距离。 解:在同种均匀介质空间中光线直线传播,如果选定经过节点得光线则方向不变,令屏到针孔得初始距离为x,则可以根据三角形相似得出: 所以x=300mm 即屏到针孔得初始距离为300mm。 4、一厚度为200mm得平行平板玻璃(设n=1、5),下面放一直 径为1mm得金属片。若在玻璃板上盖一圆形得纸片,要求在玻璃板上方任何方向上都瞧不到该金属片,问纸片得最小直径应为多少? 解:位于光纤入射端面,满足由空气入射到光纤芯中,应用折射定律则有: n0sinI1=n2sinI2 (1) 而当光束由光纤芯入射到包层得时候满足全反射,使得光束可以在光纤内传播,则有: (2) 由(1)式与(2)式联立得到n0、

16、一束平行细光束入射到一半径r=30mm、折射率n=1、5得玻璃球上,求其会聚点得位置。 如果在凸面镀反射膜,其会聚点应在何处?如果在凹面镀反射膜,则反射光束在玻璃中得会聚点又在何处?反射光束经前表面折射后,会聚点又在何处?说明各会聚点得虚实。 解:该题可以应用单个折射面得高斯公式来解决, 设凸面为第一面,凹面为第二面。 (1)首先考虑光束射入玻璃球第一面时得状态,使用高斯公 式: 会聚点位于第二面后15mm处。 (2) 将第一面镀膜,就相当于凸面镜 像位于第一面得右侧,只就 是延长线得交点,因此就是虚像。 还可以用β正负判断: (3)光线经过第一面折射:, 虚像 第二面镀膜,则:

得到: (4) 在经过第一面折射 物像相反为虚像。 18、一直径为400mm,折射率为1、5得玻璃球中有两个小气泡,一个位于球心,另一个位于1 /2半径处。沿两气泡连线方向在球两边观察,问瞧到得气泡在何处?如果在水中观察,瞧到得气泡又在何处? 解: 设一个气泡在中心处,另一个在第二面与中心之间。 (1)从第一面向第二面瞧 (2)从第二面向第一面瞧 (3)在水中

工程光学习题参考答案第十一章 光的干涉和干涉系统

第十一章 光的干涉和干涉系统 1. 双缝间距为1mm,离观察屏1m,用钠光灯做光源,它发出两种波长的单色光 nm 0.5891=λ和nm 6.5892=λ,问两种单色光的第十级亮条纹之间的间距是多 少? 解:由题知两种波长光的条纹间距分别为 9 6 113 158910 5891010 D e m d λ---??= = =? 9 6 223 1589.610 589.61010 D e m d λ---??= = =? ∴第十级亮纹间距()()6 5 211010589.6589100.610e e m -?=-=?-?=? 2. 在杨氏实验中,两小孔距离为1mm,观察屏离小孔的距离为50cm,当用一片折射率为 1.58的透明薄片贴住其中一个小孔时(见图11-17),发现屏上的条纹系统移动了 0.5场面,试决定试件厚度。 解:设厚度为h ,则前后光程差为()1n h ?=- ()1x d n h D ??∴-= 2 3 0.510 10 0.580.5 h --??= 2 1.7210h mm -=? 3. 一个长30mm 的充以空气的气室置于杨氏装置中的一个小孔前,在观察屏上观察到 稳定的干涉条纹系。继后抽去气室中的空气,注入某种气体,发现条纹系移动了25个条纹,已知照明光波波长nm 28.656=λ,空气折射率000276.10=n 。试求注入气室内气体的折射率。 解:设气体折射率为n ,则光程差改变()0n n h ?=- 图11-47 习题2 图

()02525x d d n n h e D D λ??∴-= =? = 9 025656.2810 1.000276 1.0008230.03 m n n h λ-??= += += 4. ** 垂直入射的平面波通过折射率为n 的玻璃板,投射光经投射会聚到焦点上。玻 璃板的厚度沿着C 点且垂直于图面(见图11-18)的直线发生光波波长量级的突变 d ,问d 为多少时,焦点光强是玻璃板无突变时光强的一半。 解:无突变时焦点光强为04I ,有突变时为02I ,设',.d D 2 00'4cos 2xd I I I D πλ== ()' 104xd m m D λ? ?∴?= =+≥ ?? ? 又()1n d ?=- 114d m n λ ? ?∴= + ?-?? 5. 若光波的波长为λ,波长宽度为λ?,相应的频率和频率宽度记为ν和ν?,证明 λ λ νν ?=?,对于nm 8.632=λ的氦氖激光,波长宽度nm 8 102-?=?λ,求频 率宽度和相干长度。 解:c λν= λ ν λ ν ??∴ = 对于632.8c nm λνλ =?= 8 9 8 4 18 21010 310 1.4981063 2.8632.810 c Hz λ λ ννλ λ λ ---??????∴?= ?= ? = =??? C 图11-18

(完整版)工程光学第三版课后答案1

第一章 2、已知真空中的光速c =3*108m/s ,求光在水(n=1.333)、冕牌玻璃(n=1.51)、火石玻璃(n=1.65)、加拿大树胶(n=1.526)、金刚石(n=2.417)等介质中的 光速。 解: 则当光在水中,n=1.333 时,v=2.25*108m/s, 当光在冕牌玻璃中,n=1.51 时,v=1.99*108m/s, 当光在火石玻璃中,n =1.65 时,v=1.82*108m/s , 当光在加拿大树胶中,n=1.526 时,v=1.97*108m/s , 当光在金刚石中,n=2.417 时,v=1.24*108m/s 。 3、一物体经针孔相机在屏上成一60mm 大小的像,若将屏拉远50mm ,则像的大小变为70mm,求屏到针孔的初始距离。 解:在同种均匀介质空间中光线直线传播,如果选定经过节点的光线则方向 不变,令屏到针孔的初始距离为x ,则可以根据三角形相似得出: 所以x=300mm 即屏到针孔的初始距离为300mm 。 4、一厚度为200mm 的平行平板玻璃(设n=1.5),下面放一直径为1mm 的金属片。若在玻璃板上盖一圆形纸片,要求在玻璃板上方任何方向上都看不到该金属片,问纸片最小直径应为多少? 解:令纸片最小半径为x, 则根据全反射原理,光束由玻璃射向空气中时满足入射角度大于或等于全反射临界角时均会发生全反射,而这里正是由于这个原因导致在玻璃板上方看不到金属片。而全反射临界角求取方法为: (1) 其中n2=1, n1=1.5, 同时根据几何关系,利用平板厚度和纸片以及金属片的半径得到全反射临界角的计算方法为: (2) 联立(1)式和(2)式可以求出纸片最小直径x=179.385mm , 所以纸片最小直径为358.77mm 。 8、.光纤芯的折射率为1n ,包层的折射率为2n ,光纤所在介质的折射率为0n ,求光纤的数值孔径(即10sin I n ,其中1I 为光在光纤内能以全反射方式传播时在入射端面的最大入射角)。 解:位于光纤入射端面,满足由空气入射到光纤芯中,应用折射定律则有: n 0sinI 1=n 2sinI 2 (1) 而当光束由光纤芯入射到包层的时候满足全反射,使得光束可以在光纤内传播,则有:

工程光学习题解答第十章_光的干涉

第十一章 光的干涉 1. 双缝间距为1mm,离观察屏1m,用钠光灯做光源,它发出两种波长的单色光 nm 0.5891=λ和nm 6.5892=λ,问两种单色光的第十级亮条纹之间的间距是多 少? 解:由题知两种波长光的条纹间距分别为 ∴第十级亮纹间距()()65211010589.6589100.610e e m -?=-=?-?=? 2. 在杨氏实验中,两小孔距离为1mm,观察屏离小孔的距离为50cm,当用一片折射率为 1.58的透明薄片贴住其中一个小孔时(见图11-17),发现屏上的条纹系统移动了0.5场面,试决定试件厚度。 解:设厚度为h 3. 一个长30mm 定的干涉条纹系。继后抽去气室中的空气,注入某种气体,发现条纹系移动了25 解:设气体折射率为n ,则光程差改变0n n h ?=- 4. ** 垂直入射的平面波通过折射率为n 的玻璃板,投射光经投射会聚到焦点上。玻 璃板的厚度沿着C 点且垂直于图面(见图11-18)的直线发生光波波长量级的突变d ,问d 为多少时,焦点光强是玻璃板无突变时光强的一半。 解:无突变时焦点光强为04I ,有突变时为02I ,设',.d D 又 ()1n d ?=- 5. 若光波的波长为λ,波长宽度为λ?,相应的频率和频率宽度记为ν和ν?,证明 λλ ν ν ?= ?,对于nm 8.632=λ的氦氖激光,波长宽度nm 8 102-?=?λ,求频率宽度和相干长度。 解: c λν= λ ν λ ν ??∴ = 对于632.8c nm λνλ =?= 6. 直径为0.1mm 的一段钨丝用作杨氏实验的光源,为使横向相干宽度大于1mm ,双孔 必须与灯相距离多少? 解:设钨灯波长为λ,则干涉孔径角bc λ β= 又∵横向相干宽度为1d mm = 图11-47 习题2 图 C 图11-18

第三版工程光学答案[1]

第一章 3、一物体经针孔相机在 屏上成一60mm 大小的像,若将屏拉远50mm ,则像的大小变为70mm,求屏到针孔的初始距离。 解:在同种均匀介质空间中光线直线传播,如果选定经过节点的光线则方向不变, 令屏到针孔的初始距离为x ,则可以根据三角形相似得出: 所以x=300mm 即屏到针孔的初始距离为300mm 。 4、一厚度为200mm 的平行平板玻璃(设n =),下面放一直径为1mm 的金属片。若在玻璃板上盖一圆形的纸片,要求在玻璃板上方任何方向上都看不到该金属片,问纸片的最小直径应为多少 2211sin sin I n I n = 66666.01 sin 2 2== n I 745356.066666.01cos 22=-=I 88.178745356 .066666 .0* 200*2002===tgI x mm x L 77.35812=+= 1mm I 1=90? n 1 n 2 200mm L I 2 x

8、.光纤芯的折射率为1n ,包层的折射率为2n ,光纤所在介质的折射率为0n ,求光纤的数 值孔径(即10sin I n ,其中1I 为光在光纤内能以全反射方式传播时在入射端面的最大入射角)。 解:位于光纤入射端面,满足由空气入射到光纤芯中,应用折射定律则有: n 0sinI 1=n 2sinI 2 (1) 而当光束由光纤芯入射到包层的时候满足全反射,使得光束可以在光纤内传播,则有: (2) 由(1)式和(2)式联立得到n 0 . 16、一束平行细光束入射到一半径r=30mm 、折射率n=的玻璃球上,求其会聚点的位置。如 果在凸面镀反射膜,其会聚点应在何处如果在凹面镀反射膜,则反射光束在玻璃中的会聚点又在何处反射光束经前表面折射后,会聚点又在何处说明各会聚点的虚实。 解:该题可以应用单个折射面的高斯公式来解决, 设凸面为第一面,凹面为第二面。 (1)首先考虑光束射入玻璃球第一面时的状态,使用高斯公式:

工程光学_郁道银_光学习题解答[1]

第一章习题 1、已知真空中的光速c=3 m/s,求光在水(n=1.333)、冕牌玻璃(n=1.51)、火石玻璃(n=1.65)、加拿大树胶(n=1.526)、金刚石(n=2.417)等介质中的光速。 解: 则当光在水中,n=1.333时,v=2.25 m/s, 当光在冕牌玻璃中,n=1.51时,v=1.99 m/s, 当光在火石玻璃中,n=1.65时,v=1.82 m/s, 当光在加拿大树胶中,n=1.526时,v=1.97 m/s, 当光在金刚石中,n=2.417时,v=1.24 m/s。 2、一物体经针孔相机在屏上成一60mm大小的像,若将屏拉远50mm,则像的大小变为70mm,求屏到针孔的初始距离。 解:在同种均匀介质空间中光线直线传播,如果选定经过节点的光线则方向不变,令屏到针孔的初始距离为x,则可以根据三角形相似得出: 所以x=300mm 即屏到针孔的初始距离为300mm。 3、一厚度为200mm的平行平板玻璃(设n=1.5),下面放一直径为1mm的金属片。若在玻璃板上盖一圆形纸片,要求在玻璃板上方任何方向上都看不到该金属片,问纸片最小直径应为多少? 解:令纸片最小半径为x, 则根据全反射原理,光束由玻璃射向空气中时满足入射角度大于或等于全反射临界角时均会发生全反射,而这里正是由于这个原因导致在玻璃板上方看不到金属片。而全反射临界角求取方法为: (1) 其中n2=1, n1=1.5, 同时根据几何关系,利用平板厚度和纸片以及金属片的半径得到全反射临界角的计算方法为: (2) 联立(1)式和(2)式可以求出纸片最小直径x=179.385mm,所以纸片最小直径为358.77mm。

工程光学第三章

1. 平面镜的像,平面镜的偏转,双平面镜二次反射像特征及入、出射光线的夹角 2. 平行平板的近轴光成像特征 3. 常用反射棱镜及其展开、结构常数 4. 屋脊棱镜与棱镜组合系统,坐标判断 5. 角锥棱镜 6. 折射棱镜及其最小偏角,光楔 7. 光的色散 8. 光学材料及其技术参数
引言
球面系统能对任意位置的物体以要求的倍率成像。但有时为了起到透镜无法满足的作用, 球面系统能对任意位置的物体以要求的倍率成像。但有时为了起到透镜无法满足的作用,还常应用平面系 能对任意位置的物体以要求的倍率成像 透镜无法满足的作用 统。
平面镜
平行平板
反射棱镜
折射棱镜
§ 3-1 平面镜
我们日常使用的镜子就是平面镜 返回本章要点
? 平面镜的像 ---- 镜像 如图:
1

实物成虚像
虚物成实像
成镜像

当 n'=-n 时 且

得:
表明物像位于异侧
成正像
物像关于镜面对称,成像完善,但右手坐标系变成左手坐标系,成镜像。
由图可见: 平面镜能改变光轴方向,将较长的光路压缩在较小空间内,但成镜像,会造成观察者的错觉。 因此在绝大多数观察用的光学仪器中是不允许的。
奇次反射成镜像 偶次反射成一致像
? 平面镜的偏转
返回本章要点
若入射光线不动, 平面镜偏转 α 角,则反射光线转 过 2α 角 ( 因为入射角与反射角同时变化 了 α 角 ) 该性质可用于测量物体的微小转角或位移
当测杆处于零位时,平面镜处于垂直于光轴的状态
,此时
点发出的光束 点。
经物镜后与光轴平行,再经平面镜反射原路返回,重被聚焦于
2

工程光学习题参考答案第十章 光的电磁理论基础

第十章 光的电磁理论基础 解:(1)平面电磁波cos[2()]E A t c πν?=-+ 对应有14 62,10,,3102 A Hz m π ν?λ-=== =?。 (2)波传播方向沿z 轴,电矢量振动方向为y 轴。 (3)B E → → 与垂直,传播方向相同,∴0 By Bz == 814610[210()] z Bx CEy t π π===??-+ 解:(1)215 cos[2()]10cos[10()]0.65E A t t c c πν?π=-+=- ∴15 14 210510v Hz πνπν=?=? 72/2/0.65 3.910n k c m λππ-===? (2)8 714310 1.543.910510 n c c n v λν-?====??? 3.在与一平行光束垂直的方向上插入一片透明薄片,薄片的厚度0.01h mm =,折射率n=1.5, 若光波的波长为500nm λ=,试计算透明薄片插入前后所引起的光程和相位的变化。 解:光程变化为 (1)0.005n h mm ?= -= 相位变化为)(202500 10005.026 rad πππλδ=??= ? = 4. 地球表面每平方米接收到来自太阳光的功率为 1.33kw,试计算投射到地球表面的太阳光 的电场强度的大小。假设太阳光发出波长为600nm λ=的单色光。 解:∵2201 2 I cA ε= = ∴1 320 2()10/I A v m c ε= 5. 写出平面波8 100exp{[(234)1610]}E i x y z t =++-?的传播方向上的单位矢量0k 。

解:∵ exp[()]E A i k r t ω=- x y z k r k x k y k z ?=?+?+? 0000000000 2,3,4234x y z x y z k k k k k x k y k z x y z k x y z ===∴=?+?+?=++=+ 6. 一束线偏振光以45度角从空气入射到玻璃的界面,线偏振光的电矢量垂直于入射面,试 求反射系数和透射系数。设玻璃折射率为1.5。 解:由折射定律 1 2211221122111122sin sin cos 1.5cos cos 0.3034cos cos 22cos 0.6966cos cos s s n n n r n n n t n n θθθθθθθθθθ= =∴=--∴==-+===+ 7. 太阳光(自然光)以60度角入射到窗玻璃(n=1.5)上,试求太阳光的透射比。 解: 22 2221 2 1112222221 22 111212sin sin 212111.54cos 4sin cos 30.8231cos sin () 2 cos 4sin cos 0.998cos sin ()cos ()() 0.91 2 s p s p n n ocs n n n n θθθθθθτθθθθθθτθθθθθτττ==∴=??= ?==+=?=+-+∴= = 8. 光波以入射角1θ从折射率为1n 介质入射到折射率为2n 的介质,在两介质的表面上发生反

工程光学习题解答第三章平面与平面系统

第三章 平面系统 1. 人照镜子时,要想看到自己的全身,问镜子要多长?人离镜子的距离有没有关系? 解: 镜子的高度为1/2人身高,和前后距离无关。 2有一双面镜系统,光线平行于其中一个平面镜入射,经两次反射后,出射光线与另一平面 镜平行,问两平面镜的夹角为多少? 解: OA M M //32 3211M M N M ⊥∴1''1I I -= 又 2' '2I I -=∴α 同理:1''1I I -=α 321M M M ?中 ? =-+-+180)()(1''12''2I I I I α O

? =∴60α 答:α角等于60?。 3. 如图3-4所示,设平行光管物镜L 的焦距'f =1000mm ,顶杆离光轴的距离a =10mm 。如果推动顶杆使平面镜倾斜,物镜焦点F 的自准直象相对于F 产生了y =2mm 的位移,问平面镜的倾角为多少?顶杆的移动量为多少? 解: θ'2f y = rad 001.0100022=?= θ α θx = mm a x 01.0001.010=?=?=∴θ 图3-4 4. 一光学系统由一透镜和平面镜组成,如图3-29所示。平面镜MM 与透镜光轴垂直交于D 点,透镜前方离平面镜600mm 有一物体AB ,经透镜和平面镜后,所成虚像' 'A ''B 至 平面镜的距离为150mm,且像高为物高的一半,试分析透镜焦距的正负,确定透镜的位置和焦距,并画出光路图。

图3-29 习题4图 解: 由于平面镜性质可得' ' B A 及其位置在平面镜前150mm 处 ' '' 'B A 为虚像,' ' B A 为实像 则2 1 1-=β 21'1-==L L β 450150600'=-=-L L 解得 300-=L 150' =L 又 '1L -L 1=' 1f mm f 150' =∴ 答:透镜焦距为100mm 。 5.如图3-30所示,焦距为'f =120mm 的透镜后有一厚度为d =60mm 的平行平板,其折射 率n =1.5。当平行平板绕O 点旋转时,像点在像平面内上下移动,试求移动量△'y 与旋转角φ的关系,并画出关系曲线。如果像点移动允许有0.02mm 的非线形度,试求φ允许的最大值。

工程光学,郁道银,第二章习题及答案

第二章习题及答案 1、已知照相物镜的焦距f’=75mm,被摄景物位于(以F点为坐标原点)x=、-10m、-8m、-6m、-4m、-2m 处,试求照相底片应分别放在离物镜的像方焦面多远的地方。 解:(1)xx′=ff′,x= -∝得到:x′=0 (2)x= -10 ,x′= (3)x= -8 ,x′= (4)x= -6 ,x′= (5)x= -4 ,x′= (6)x= -2 ,x′= 2、已知一个透镜把物体放大-3x 投影在屏幕上,当透镜向物体移近18mm 时,物体将被放大-4x 试求透镜的焦距,并用图解法校核之。 解: 3.一个薄透镜对某一物体成实像,放大率为-1x,今以另一个薄透镜紧贴在第一个透镜上,则见像向透镜方向移动20mm,放大率为原先的3/4 倍,求两块透镜的焦距为多少 解:

4.有一正薄透镜对某一物成倒立的实像,像高为物高的一半,今将物面向透镜 移近 100mm ,则所得像与物同大小,求该正透镜组的焦距。 解: 5.希望得到一个对无限远成像的长焦距物镜,焦距 =1200mm ,由物镜顶点到 像面的距离 L =700 mm ,由系统最后一面到像平面的距离(工作距)为 ,按最简单结构的薄透镜系统考虑,求系统结构,并画出光路图。 解: 6.一短焦距物镜,已知其焦距为 35 mm ,筒长 L =65 mm ,工作距,按最简单结 构的薄透镜系统考虑,求系统结构。

解: 7.已知一透镜求其焦距、光焦度。 解: 8.一薄透镜组焦距为100 mm,和另一焦距为50 mm 的薄透镜组合,其组合焦距仍为100 mm,问两薄透镜的相对位置。 解: 9.长60 mm,折射率为的玻璃棒,在其两端磨成曲率半径为10 mm 的凸球面,试求其焦距。 解:

工程光学第三版课后答案样本

第一章 2、已知真空中的光速c=3*108m/s, 求光在水( n=1.333) 、冕牌玻璃 ( n=1.51) 、火石玻璃( n=1.65) 、加拿大树胶( n=1.526) 、金刚石( n=2.417) 等介质中的 光速。 解: 则当光在水中, n=1.333 时, v=2.25*108m/s, 当光在冕牌玻璃中, n=1.51 时, v=1.99*108m/s, 当光在火石玻璃中, n=1.65 时, v=1.82*108m/s, 当光在加拿大树胶中, n=1.526 时, v=1.97*108m/s, 当光在金刚石中, n=2.417 时, v=1.24*108m/s。 3、一物体经针孔相机在屏上成一60mm 大小的像, 若将屏拉远50mm, 则像的大小变为70mm,求屏到针孔的初始距离。 解: 在同种均匀介质空间中光线直线传播, 如果选定经过节点的光线则方向 不变, 令屏到针孔的初始距离为x, 则能够根据三角形相似得出: 因此x=300mm 即屏到针孔的初始距离为300mm。 4、一厚度为200mm 的平行平板玻璃( 设n=1.5) , 下面放一直径为1mm 的金属片。若在玻璃板上盖一圆形纸片, 要求在玻璃板上方任何方向上都看不到该金 属片, 问纸片最小直径应为多少? 解: 令纸片最小半径为x, 则根据全反射原理, 光束由玻璃射向空气中时满足入射角度大于或等于全 反射临界角时均会发生全反射, 而这里正是由于这个原因导致在玻璃板上方看 不到金属片。而全反射临界角求取方法为:

(1) 其中 n2=1, n1=1.5, 同时根据几何关系, 利用平板厚度和纸片以及金属片的半径得到全反射临界角的计算方法为: (2) 联立( 1) 式和( 2) 式能够求出纸片最小直径x=179.385mm, 因此纸片最小直径为358.77mm 。 8、 .光纤芯的折射率为1n , 包层的折射率为2n , 光纤所在介质的折射率为0n , 求光纤的数值孔径( 即10sin I n , 其中1I 为光在光纤内能以全反射方式传播时在入射端面的最大入射角) 。 解: 位于光纤入射端面, 满足由空气入射到光纤芯中, 应用折射定律则有: n 0sinI 1=n 2sinI 2 (1) 而当光束由光纤芯入射到包层的时候满足全反射, 使得光束能够在光纤内传播, 则有: (2) 由( 1) 式和( 2) 式联立得到n 0 . 16、 一束平行细光束入射到一半径r=30mm 、 折射率n=1.5 的玻璃球上, 求其会聚点的位置。如果在凸面镀反射膜, 其会聚点应在何处? 如果在凹面镀反射

最新工程光学第三版课后答案

工程光学第三版课后 答案

第一章 2、已知真空中的光速c =3*108m/s ,求光在水(n=1.333)、冕牌玻璃(n=1.51)、火石玻璃(n=1.65)、加拿大树胶(n=1.526)、金刚石(n=2.417)等介质中的 光速。 解: 则当光在水中,n=1.333 时,v=2.25*108m/s, 当光在冕牌玻璃中,n=1.51 时,v=1.99*108m/s, 当光在火石玻璃中,n =1.65 时,v=1.82*108m/s , 当光在加拿大树胶中,n=1.526 时,v=1.97*108m/s , 当光在金刚石中,n=2.417 时,v=1.24*108m/s 。 3、一物体经针孔相机在屏上成一60mm 大小的像,若将屏拉远50mm ,则像的大小变为70mm,求屏到针孔的初始距离。 解:在同种均匀介质空间中光线直线传播,如果选定经过节点的光线则方向 不变,令屏到针孔的初始距离为x ,则可以根据三角形相似得出: 所以x=300mm 即屏到针孔的初始距离为300mm 。 4、一厚度为200mm 的平行平板玻璃(设n=1.5),下面放一直径为1mm 的金属片。若在玻璃板上盖一圆形纸片,要求在玻璃板上方任何方向上都看不到该金属片,问纸片最小直径应为多少? 解:令纸片最小半径为x, 则根据全反射原理,光束由玻璃射向空气中时满足入射角度大于或等于全反射临界角时均会发生全反射,而这里正是由于这个原因导致在玻璃板上方看不到金属片。而全反射临界角求取方法为: (1) 其中n2=1, n1=1.5, 同时根据几何关系,利用平板厚度和纸片以及金属片的半径得到全反射临界角的计算方法为: (2) 联立(1)式和(2)式可以求出纸片最小直径x=179.385mm , 所以纸片最小直径为358.77mm 。 8、.光纤芯的折射率为1n ,包层的折射率为2n ,光纤所在介质的折射率为0n ,求光纤的数值孔径(即10sin I n ,其中1I 为光在光纤内能以全反射方式传播时在入射端面的最大入射角)。

工程光学第三章知识点

理想光学系统 第三章 理想光学系统 第一节 理想光学系统的共线理论 ● 理想光学系统:在任意大的空间内、以任意宽的光束都能成完善像的光学系统 ● 理想光学系统理论又称“高斯光学”,理想光学系统所成的完善像又称“高斯像” ● 描述理想光学系统必须满足的物像关系的理论称为“共线理论” 共线理论 (1)物空间的每一点对应像空间的相应一点,且只对应一点(点对应点) (2)物空间的每一条直线对应像空间的相应直线,且只对应一条直线(直线对应直线) (3)物空间的每一平面对应像空间的相应平面,且只对应一个平面(平面对应平面) ● 这种对应关系称为“共轭”,相应的点构成一对共轭点,直线构成一对共轭直线,平面构成一对共轭平面 ● 推论:物空间某点位于一条直线上,则像空间中该点的共轭点必定也位于这条直线的共轭直线上(点在线上对应点在线上) ● 共轴球面系统用结构参数(r 、d 、n )描述系统 ● 理想光学系统用“基点”和“基面”来描述系统 ● 基点基面就是理想光学系统的特征参数 第二节 无限远轴上物点与其对应像点F ’---像方焦点 ● 设有一理想光学系统 ● 有一条平行于光轴的光线A1E1入射到这个系统 ● 在像空间必有一条直线与之共轭,即PkF’,交光轴于F’点 ● 在物空间中平行于光轴入射的光线都将汇聚在F’点上,F’点称为“像方焦点” 共轴球面系统 焦点、焦平面、主平面示意图

焦点、焦平面、主平面示意图 ● 过F’点作垂直于光轴的平面,称为“像方焦平面” ● 像方焦平面与物方无限远处垂直于光轴的物平面共轭 ● 物方的任何平行光线若不与光轴平行,表示无限远处的轴外点,将汇聚在像方焦平面上的一点 2,无限远的轴上像点和它所对应的物方共轭点F ——物方焦点 ● 像方平行于光轴的光线,表示像方光轴上的无限远点 ● 在物方光轴上必定有一点F 与之共轭,F 点称为物方焦点,过F 点的垂轴平面称为物方焦平面 ● 物方焦点F 与像方焦点F’不是一对共轭点 3,垂轴放大率β=+1的一对共轭面——主平面 ● 在光学系统中存在着垂轴放大率β=+1的一对共轭平面,这一对共轭面称为“主平面”即物方主平面和像方主平面 ● 共轭垂轴平面QH 和Q’H’满足β=+1(因为高度h 相等) ● QH 为物方主平面,Q’ H’为像方主平面 ● H 为物方主点,H’为像方主点 ● 物方主平面QH 与像方主平面Q’H’共轭 ● 物方主点H 与像方主点H’共轭 ● 对于理想光学系统,不论其实际结构如何,只要知道了主点和焦点的位置,其特性就完全被决定了 4,光学系统焦距 ● 像方焦距:像方主点H ’到像方焦点F ’的距离f ’ ● 物方焦距:物方主点H 到物方焦点F 的距离f ● 焦距均以各自的主点为原点,与光线传播方向一致为正,相反为负 光学系统的焦距 计算式 tan tan h f U h f U '= '= 焦距包含了光学系统主点和焦点的相对位置,是描述光学系统性质的重要参数 像方焦距f ’>0的光组称为正光组,f ’<0的光组称为负光组 无限远轴外物点的共轭像点 焦点、焦平面、主平面示意图

工程光学习题一答案

第一章 习题答案 4. 一厚度为200mm 的平行平板玻璃(设n=1.5),下面放一直径为1mm 的金属薄片。若在玻璃板上盖一圆形的纸片,使得在玻璃板上方任何方向上都看不到该金属薄片,问纸片的最小直径应为多少? 解:如图所示,设纸片的最小直径为L ,考虑边缘光线满足全反射条件时 6667.090sin sin 02 12==n n I 74536.06667.01cos 22=-=I L=(2x+1)mm=358.77mm

16. 一束平行细光束入射到一半径mm r 30=、折射率n=1.5的玻璃球上,求经玻璃球折射后会聚点的位置。如果在凸面(第一面)镀反射膜,其会聚点应爱何处?如果在凹面(第二面)镀反射膜,则反射光束在玻璃中的会聚点又在何处?反射光束经前表面折射后,会聚点又在何处?说明各个会聚点的虚实。 解:(1)此时的成像过程如图(4)所示,平行细光束入射到玻璃球上,经左侧球面折射后形成中间像'1A ,它又是右侧球面的物2A ,经右侧球面再次成像于'2A 。 将-∞=1l ,11=n ,5.1' 1=n ,mm r 301=代入单个折射球面 成像公式 r n n l n l n -=-'' '得 mm mm n n r n l 905.0305.11 '1' 1'1=?=-= 由于1l 和'1l 异号,01 '1' 111<=l n l n β,故无限远物与像'1A 虚实相同,即'1A 为实像。但由于右侧球面的存在,实际光线不可能到达此处,故对于右侧球面2A 为虚物。 将 mm r n n mm mm r l l 30,1,5.1,30)6090(22' 22'12-====-=-= 再次代入单个折射球面成像公式得

工程光学习题参考答案第十一章 光的干涉和干涉系统

第十一章 光的干涉和干涉系统 1. 双缝间距为1mm,离观察屏1m,用钠光灯做光源,它发出两种波长的单色光 nm 0.5891=λ和nm 6.5892=λ,问两种单色光的第十级亮条纹之间的间距是多少 解:由题知两种波长光的条纹间距分别为 96113 1589105891010D e m d λ---??===? 9 6223 1589.610589.61010 D e m d λ---??===? ∴第十级亮纹间距()()6 5 211010589.6589100.610e e m -?=-=?-?=? 2. 在杨氏实验中,两小孔距离为1mm,观察屏离小孔的距离为50cm,当用一片折射率为的透明薄片贴住其中一个小孔时(见图11-17),发现屏上的条纹系统移动了场面,试决定试件厚度。 解:设厚度为h ,则前后光程差为()1n h ?=- ()1x d n h D ??∴-= 23 0.510100.580.5 h --??= 2 1.7210h mm -=? 3. 一个长30mm 的充以空气的气室置于杨氏装置中的一个小孔前,在观察屏上观察到 稳定的干涉条纹系。继后抽去气室中的空气,注入某种气体,发现条纹系移动了25 个条纹,已知照明光波波长nm 28.656=λ,空气折射率000276.10=n 。试求注入气室内气体的折射率。 解:设气体折射率为n ,则光程差改变()0n n h ?=- 图11-47 习题2 图

()02525x d d n n h e D D λ??∴-= =?= 9 025656.2810 1.000276 1.0008230.03 m n n h λ-??=+=+= 4. ** 垂直入射的平面波通过折射率为n 的玻璃板,投射光经投射会聚到焦点上。玻 璃板的厚度沿着C 点且垂直于图面(见图11-18)的直线发生光波波长量级的突变d ,问d 为多少时,焦点光强是玻璃板无突变时光强的一半。 解:无突变时焦点光强为04I ,有突变时为02I ,设',.d D 2 00' 4cos 2xd I I I D πλ== ()'104xd m m D λ?? ∴?= =+≥ ??? 又()1n d ?=-Q 114d m n λ? ? ∴= + ?-?? 5. 若光波的波长为λ,波长宽度为λ?,相应的频率和频率宽度记为ν和ν?,证明 λ λ ν ν ?= ?,对于nm 8.632=λ的氦氖激光,波长宽度nm 8 102-?=?λ,求频 率宽度和相干长度。 解:c λν=Q λ ν λ ν ??∴ = 对于632.8c nm λνλ =?= 898 41821010310 1.49810632.8632.810 c Hz λ λννλλλ---??????∴?=?=?==??? C 图11-18

工程光学第二章

第二章习题答案 1.针对位于空气中的正透镜组 f 0及负透镜组 f 0,试用作图法分别对以下物距 f, f/2,0, f/2, f,,求像平面的位置。 解:1. f b l c l ,2f,

d l f /2 (g)i f'/2 f' (h )i

2 .(i) l f ' (a) l F T (b) l (c) l (d) l

(e) l (f)l (g) l (h) l (i) l

3.设一系统位于空气中,垂轴放大率 10 ,由物面到像面的距离(共轭距离)为7200mm 物镜两焦点间距离为 1140mm 求该物镜焦距,并绘出基点位置图。 ???系统位于空气中, 10 4,试求透镜的焦距,并用图解法校核之。 解:方法一: f' 216mm I ; 由已知条件:f f) 1140 I) 7200 解得:f 600mm 60mm 4.已知一个透镜把物体放大 3 投影到屏幕上, 当透镜向物体移近18mm 时, 物体将被放大 I 1 1/l 1 1/I 2 k I 1 I 2 I 2 18 1/I 1 1/I 2 1/ f' 1/ f' 将①②③代入④中得 I 2 I l I 2 I 1 270mm I 2 3I 1 3 I 2 18 4I 2 I 2 18 1/I 1 1/I 1 1/I 2 1/I 2 ④ 1080 mm

X 1 X 2 I f 216mm 6.有一正薄透镜对某一物成倒立的实像,像高为物高的一半,今将物面向物体移近 则所得像与物同大小,求该正透镜组的焦距。 方法二: X i 216mm X 2 X i X 2 18 方法三: 3)( 4) 12 12 18 216 100mm 解:由已知得: li l 2 11 I 2 100 由高斯公式: 1 I I 1 11 1 丄 I 2 I 2 解得:f 100mm

工程光学第三版下篇物理光学第十一章课后习题测验答案详解

第十一章 光的电磁理论基础 解:(1)平面电磁波cos[2()]z E A t c πν?=-+ 对应有14 62,10,,3102 A Hz m π ν?λ -=== =?。 (2)波传播方向沿z 轴,电矢量振动方向为y 轴。 (3)B E → → 与垂直,传播方向相同,∴0By Bz == 814610[210()] z Bx CEy t π π===??-+ 解:(1)215 cos[2()]10cos[10 ( )]0.65z z E A t t c c πν?π=-+=- ∴15 14 210510v Hz πνπν=?=? 72/2/0.65 3.910n k c m λππ-===? (2)8 714310 1.543.910510 n c c n v λν-?====??? 3.在与一平行光束垂直的方向上插入一片透明薄片,薄片的厚度0.01h mm =,折射率n=1.5, 若光波的波长为500nm λ=,试计算透明薄片插入前后所引起的光程和相位的变化。 解:光程变化为 (1)0.005n h mm ?=-= 相位变化为)(202500 10005.026 rad πππλδ=??= ? = 4. 地球表面每平方米接收到来自太阳光的功率为 1.33kw,试计算投射到地球表面的太阳 光的电场强度的大小。假设太阳光发出波长为600nm λ=的单色光。 解:∵2201 2 I cA ε= = ∴1 32 2()10/I A v m c ε= 5. 写出平面波8 100exp{[(234)1610]}E i x y z t =++-?的传播方向上的单位矢量0k 。

工程光学下习题库整理

1.在单缝衍射中,设缝宽为a ,光源波长为λ,透镜焦距为f ′,则其衍射暗条纹间距e 暗=f a λ ' ,条纹间距同时可称为线宽度。 3.光线通过平行平板折射后出射光线方向__不变_ ___ ,但会产生轴向位移量,当平面板厚度为d ,折射率为n ,则在近轴入射时,轴向位移量为1 (1)d n - 。 4.在光的衍射装置中,一般有光源、衍射屏、观察屏,则衍射按照它们距离不同可分为两类,一类为 菲涅耳衍射,另一类为 夫琅禾费衍射 。 5.光轴是晶体中存在的特殊方向,当光在晶体中沿此方向传播时不产生双折射。n e

相关文档
最新文档