七年级数学-平面直角坐标系练习题含答案

七年级数学-平面直角坐标系练习题含答案
七年级数学-平面直角坐标系练习题含答案

七年级数学-平面直角坐标系练习题

B 卷?能力训练级级高

班级 姓名 得分

一、选择题(3×6=18分)

1.坐标平面内下列各点中,在x 轴上的点是 ( ) A 、(0,3) B 、)0,3(- C 、)2,1(- D 、)3,2(--

2.如果

y

x

<0,),(y x Q 那么在( )象限 ( ) A 、 第四 B 、 第二 C 、 第一、三 D 、 第二、四 3.已知03)2(2

=++-b a ,则),(b a P --的坐标为 ( ) A 、 )3,2( B 、 )3,2(- C 、 )3,2(- D 、 )3,2(-- 4.若点),(n m P 在第三象限,则点),(n m Q --在 ( ) A、第一象限 B、第二象限 C、第三象限 D、第四象限 5. 如图:正方形ABCD 中点A 和点C 的坐标分别为

)3,2(-和)2,3(-,则点B 和点D 的坐标分别为(

A 、)2,2(和)3,3(

B 、)2,2(--和)3,3(

C 、 )2,2(--和)3,3(--

D 、 )2,2(和)3,3(--

6.已知平面直角坐标系内点),(y x 的纵、横坐标满足2

x y =,则点),(y x 位 于( )

A 、 x 轴上方(含x 轴)

B 、 x 轴下方(含x 轴)

C 、 y 轴的右方(含y 轴)

D 、 y 轴的左方(含y 轴)

二、填空(1×28=28分)

7.有了平面直角坐标系,平面内的点就可以用一个 来表示了。点)4,3(-的横坐标是 ,纵坐标是 。

8.若)4,2(表示教室里第2列第4排的位置,则)2,4(表示教室里第 列 第 排的位置。

9.设点P 在坐标平面内的坐标为),(y x P ,则当P 在第一象限时x 0 y 0, 当点P 在第四象限时,x 0,y 0。

10.到x 轴距离为2,到y 轴距离为3的坐标为 11.按照下列条件确定点),(y x P 位置:

⑴ 若x=0,y ≥0,则点P 在 ⑵ 若xy=0,则点P 在

⑶ 若02

2

=+y x ,则点P 在 ⑷ 若3-=x ,则点P 在 ⑸ 若y x =,则P 在

12.温度的变化是人们经常谈论的话题。请你根据右图,讨论某地某天温度变化

的情况:

⑴上午9时的温度是 度 12时的温度是 度

⑵这一天最高温度是 度, 是在 时达到的;

最低温度是 度, 是在 时达到的,

/时

度/c ?

3735

33

25242118

15

12

9

6

3

⑶这一天最低温度是 ℃, 从最低温度到最高温度 经过了 小时;

⑷温度上升的时间范围为 , 温度下降的时间范围为 ⑸图中A 点表示的是 , B 点表示的是 ⑹你预测次日凌晨1时的 温度是 。

三、解下列各题(共54分)

13.(6分)

(2,1) (6,1) (6,3) (7,3)

观察得到的图形,你觉得它像什么?

14.如图:铅笔图案的五个顶点的坐标分别是(0,1) (4,1) (5,1.5) (4,2) (0,2移后相应5点的坐标。(10分)

15.建立适当的直角坐标系,表示边长为3的正方形各顶点的坐标。(8分)

16.(10分)如图:左右两幅图案关于轴对称,左图案中左右眼睛的坐标分别是

(-,)1,4

(-

(-,嘴角左右端点的坐标分别是)1,2

(-,)3,4

)3,2

⑴试确定右图案的左右眼睛和嘴角左右端点的坐标

17.(10分)如图:三角形DEF 是三角形ABC 经过某种变换后得到的图形,分

别写出A 与点D ,点B 与点E ,点C 与点F 的坐标,并观察它们的关系,如果三角形ABC 中任一点M

么?

18.(10分) 在如图所示的直角坐标系中,四边形ABCD的各个顶点的坐标

分别是A(0,0),B(2,5),C(9,8)D(12,0)确定这个四边形的面积。你是怎样做的?

第六章平面直角坐标B卷答案

一、1 B 、2D 、3B 、4A 、5 B、 6A

二、 7.坐标(或有序数对),3,-4; 8. 4,2; 9. >、>、>、<;

10. (3,2)(3,-2)(-3,2)(-3,-2) 11。⑴ y轴

的正半轴上

⑵在x轴或y轴上⑶原点⑷y轴的左侧,距离y轴3单位且平

行y轴的直线上,⑸在第一、三象限的角平分线上;

12. ⑴27 31 ⑵37 15 23 3 ⑶37~23,12 ⑷ 3时到15时,0

时至3时及15时刻24日,⑸ 21时温度为31度,0时温度为26

度⑹ 24度左右。

三、13. 图略,图形象小房子

14. 图略平移后五个顶点的相应坐标分别为(0,-1)(4,-1)

(5,-0.5),(4,0)(0,0)

15. 略

16. 右图案的左右眼睛的坐标分别是(2,3)(4,3),嘴角左

右端点的坐标分别是(2,1)(4,1)将左图案向右平移6个单位长度得到右图案或画左图案关于y轴的对称图案得到右图案等。

17 .A(4,3) D(-4,-4);B(3,1) E(-3,-1);

C(1,2) F(-1,-2) N (-x,-y)

18. 附加题面积为9+10.5+35+12=66.5 用分割法

2020年八年级数学 平面直角坐标系(提高)知识讲解

平面直角坐标系(提高) 【学习目标】 1.理解平面直角坐标系概念,能正确画出平面直角坐标系. 2.能在平面直角坐标系中,根据坐标确定点,以及由点求出坐标,掌握点的坐标的特征. 3.由数轴到平面直角坐标系,渗透类比的数学思想. 【要点梳理】 要点一、有序数对 定义:把有顺序的两个数a与b组成的数对,叫做有序数对,记作(a,b). 要点诠释: 有序,即两个数的位置不能随意交换,(a,b)与(b,a)顺序不同,含义就不同,如电影院的座位是6排7号,可以写成(6,7)的形式,而(7,6)则表示7排6号. 要点二、平面直角坐标系与点的坐标的概念 1.平面直角坐标系 平面内两条互相垂直的数轴构成平面直角坐标系,简称直角坐标系.水平的数轴称为x 轴或横轴,向右为正方向;铅直方向的数轴称为y轴或纵轴,向上为正方向,两轴的交点O 是原点(如图1). 要点诠释:平面直角坐标系是由两条互相垂直且有公共原点的数轴组成的. 2.点的坐标 在平面直角坐标系中,一对有序实数可以确定一个点的位置;反过来,任意一点的位置都可以用一对有序实数来表示.这样的有序实数对叫做点的坐标.平面内任意一点P,过点P 分别向x轴、y轴作垂线,垂足在x轴、y轴上对应的数a,b分别叫做点P的横坐标、纵坐标,横坐标写在纵坐标的前面.有序数对(a,b)叫做点P的坐标,记作:P(a,b),如图2.

要点诠释: (1)表示点的坐标时,约定横坐标写在前,纵坐标写在后,中间用“,”隔开. (2)点P(a,b)中,|a|表示点到y轴的距离;|b|表示点到x轴的距离. (3)对于坐标平面内任意一点都有唯一的一对有序数对(x,y)和它对应,反过来对于任意一对有序数对,在坐标平面内都有唯一的一点与它对应,也就是说,坐标平面内的点与有序数对是一一对应的. 要点三、坐标平面 1.象限 建立了平面直角坐标系以后,坐标平面就被两条坐标轴分成如图所示的Ⅰ、Ⅱ、Ⅲ、Ⅳ四个区域,按逆时针顺序分别记为第一、二、三、四象限,如下图. 要点诠释: (1)坐标轴x轴与y轴上的点(包括原点)不属于任何象限. (2)按方位来说:第一象限在坐标平面的右上方,第二象限在左上方,第三象限在左下方,第四象限在右下方. 2.坐标平面的结构 坐标平面内的点可以划分为六个区域:x轴,y轴、第一象限、第二象限、第三象限、第四象限.这六个区域中,除了x轴与y轴有一个公共点(原点)外,其他区域之间均没有公共点. 要点四、点坐标的特征 1.各个象限内和坐标轴上点的坐标符号规律 要点诠释: (1)对于坐标平面内任意一个点,不在这四个象限内,就在坐标轴上. (2)坐标轴上点的坐标特征:x轴上的点的纵坐标为0;y轴上的点的横坐标为0. (3)根据点的坐标的符号情况可以判断点在坐标平面上的大概位置;反之,根据点在坐标平面上的位置也可以判断点的坐标的符号情况. 2.象限的角平分线上点坐标的特征 第一、三象限角平分线上点的横、纵坐标相等,可表示为(a,a); 第二、四象限角平分线上点的横、纵坐标互为相反数,可表示为(a,-a). 3.关于坐标轴对称的点的坐标特征 P(a,b)关于x轴对称的点的坐标为(a,-b); P(a,b)关于y轴对称的点的坐标为(-a,b);

七年级第六章平面直角坐标系基础训练题

七年级第六章平面直角坐标系基础训练题 一、填空题 1、原点O 的坐标是 ,x 轴上的点的坐标的特点是 ,y 轴上的点的坐标的特点是 ;点M (a ,0)在 轴上。 2、点A (﹣1,2)关于y 轴的对称点坐标是 ;点A 关于原点的对称点的坐标是 。点A 关于x 轴对称的点的坐标为 3、已知点M ()y x ,与点N ()3,2--关于x 轴对称,则______=+y x 。 4、已知点P ()3,3b a +与点Q ()b a 2,5+-关于x 轴对称,则___________==b a 。 5、点P 到x 轴的距离是2,到y 轴的距离是3,则P 点的坐标是 。 6、线段CD 是由线段AB 平移得到的。点A (–1,4)的对应点为C (4,7),则点B (–4,–1)的对应点D 的坐标为______________。 7、在平面直角坐标系内,把点P (-5,-2)先向左平移2个单位长度,再向上平移4个单位长度后得到的点的坐标是 。 8、将点P(-3,y)向下平移3个单位,向左平移2个单位后得到点Q(x ,-1),则xy=___________ 。 9、已知AB ∥x 轴,A 点的坐标为(3,2),并且AB =5,则B 的坐标为 。 10、A (– 3,– 2)、B (2,– 2)、C (– 2,1)、D (3,1)是坐标平面内的四个点,则线段AB 与CD 的关系是_________________。 11、在平面直角坐标系内,有一条直线PQ 平行于y 轴,已知直线PQ 上有两个点,坐标分别为(-a ,-2)和(3,6),则=a 。 12 、点A 在x 轴上,位于原点左侧,距离坐标原点7个单位长度,则此点的坐标为 ; 13、在Y 轴上且到点A (0,-3)的线段长度是4的点B 的坐标为___________________。 14、在坐标系内,点P (2,-2)和点Q (2,4)之间的距离等于 个单位长度。线段PQ 的中点的坐标是________________。 15、已知P 点坐标为(2-a ,3a +6),且点P 到两坐标轴的距离相等,则点P 的坐标是_________________________________________________。 16、已知点A (-3+a ,2a+9)在第二象限的角平分线上,则a 的值是____________。 17、已知点P (x ,-y )在第一、三象限的角平分线上,由x 与y 的关系是_____________。 18、若点B(a ,b)在第三象限,则点C(-a+1,3b -5) 在第____________象限。 19、如果点M (x+3,2x -4)在第四象限内,那么x 的取值范围是______________。 20、已知点P 在第二象限,且横坐标与纵坐标的和为1,试写出一个符合条件的点P 。点K 在第三象限,且横坐标与纵坐标的积为8,写出两个符合条件的点 。 21、已知点A (a ,0)和点B (0,5)两点,且直线AB 与坐标轴围成的三角形的面积等于10,则a 的值是________________。 22、已知0=mn ,则点(m ,n )在 。 二、选择题 1、在平面直角坐标系中,点() 1,12+-m 一定在( ) A 、第一象限 B 、第二象限 C 、第三象限 D 、第四象限 2、如果点A (a.b )在第三象限,则点B (-a+1,3b -5)关于原点的对称点是( ) A 第一象限 B 第二象限 C 第三象限 D 第四象限 3、点P (a ,b )在第二象限,则点Q(a-1,b+1)在( ) (A ) 第一象限 (B ) 第二象限 (C ) 第三象限 (D)第四象限 4、若4,5==b a ,且点M (a ,b )在第二象限,则点M 的坐标是( )

七年级数学上册测试题及答案全套

七年级数学上册测试题及 答案全套

七年级(上)数学第一章有理数检测题 满分100分 答题时间 90分钟 班级 学号 姓名 成绩 一、填空题(每小题3分 共36分) 1、下面说法错误的是( ) (A))5(--的相反数是)5(- (B)3和3-的绝对值相等 (C)若0>a ,则 a 一定不为零 (D)数轴上右边的点比左边的点表示的数小 2、已知a a -=、b b =、0>>b a ,则下列正确的图形是( ) (A ) (B ) (C ) (D ) 3、若a a +-=+-55,则a 是( ) (A )任意一个有理数 (B )任意一个负数或0 (C )任意一个非负数 (D )任意一个不小于5的数 4、对乘积)3()3()3()3(-?-?-?-记法正确的是( ) (A )43-(B )4)3(-(C )4)3(+-(D )4)3(-- 5、下列互为倒数的一对是( ) (A )5-与5 (B )8与125.0 (C )321与2 3 1 (D )25.0与4- 6、互为相反数是指( ) (A )有相反意义的两个量。 (B )一个数的前面添上“-”号所得的数。 (C )数轴上原点两旁的两个点表示的数。 (D )相加的结果为O 的两个数。 7、下列各组数中,具有相反意义的量是( ) (A )节约汽油10公斤和浪费酒精10公斤 (B )向东走5公里和向南走5公里 (C )收入300元和支出500元 (D )身高180cm 和身高90cm 8、下列运算正确的是( ) (A )422=- (B )4)2(2-=- (C )6)2(3-=- (D )9)3(2=-

9、计算:22)2(25.03.0-÷?÷-的值是( ) (A )1009- (B )1009(C )4009(D )400 9- 10、下列的大小排列中正确的是( ) (A ))2 1 ()32(43)21(0+-<-+<--<--< (B ))2 1(0)21()32(43--<<+-<-+<- - (C ))21 ()32(043)21(+-<-+<<--<-- (D ))2 1 (043)32()21(--<<--<-+<+- 11、将边长为1的正方形对折5次后,得到图形的面积是( ) (A )0.03125 (B )0.0625 (C )0.125 (D )0.25 12、已知5=x 、2=y ,且0<+y x ,则xy 的值等于( ) (A )10和-10 (B )10 (C )-10 (D )以上答案都不对 二、填空题: 13、用计算器计算 6 8)2()9(-+-,按键顺序 是: 、 、 、 、 、 、 + 、 、 、 、 、 、 ;结果是 。 14、用计算器计算:=-+-÷--)10259()26()57.2(4.133 。 15、某公司去年的利润是-50万元,今年的利润是180万元;今年和去年相比,利润额相差 万元。 16、观察下面数的排列规律并填空:-57、49、-41、 、 。 17、已知,m 、n 互为相反数,则=--n m 3 。 18、一个零件的内径尺寸在图上标注的是05 .003.020+-(单位mm ) ,表示这种零件的标准尺寸是 ,加工要求最大不超过标准尺寸 ,最小不超过标准尺寸 。 19、若10032a a a a A ++++=Λ,则当1=a 时,=A ,当1-=a 时,

(完整版)平面直角坐标系经典题(难)含答案.doc

第六章平面直角坐标系水平测试题(一) 一、(本大题共 10 小题,每题 3 分,共 30 分 . 在每题所给出的四个选项中,只有一项是符合题意的. 把所选项前 的字母代号填在题后的括号内 . 相信你一定会选对!) 1.某同学的座位号为(2,4 ),那么该同学的位置是() ( A )第 2 排第 4 列( B )第 4 排第 2 列( C)第 2 列第 4 排(D )不好确定 2.下列各点中,在第二象限的点是() ( A )( 2, 3)( B )( 2,- 3)( C)(- 2,- 3)(D )(- 2, 3) 3. P 到y 轴的距离为 3, 则点 P 的坐标为() 若 x 轴上的点 ( A )( 3,0)( B)( 0,3)(C)( 3,0)或(- 3,0)( D)( 0,3)或( 0,-3) 4.点M(m 1,m 3)在x轴上,则点 M 坐标为(). ( A )( 0,- 4)( B )( 4, 0)( C)(- 2, 0)( D)( 0,- 2) 5.一个长方形在平面直角坐标系中三个顶点的坐标为(- 1,- 1),(- 1,2),( 3,- 1)?,则第四个顶点的坐标为() ( A )( 2,2)( B)( 3,2)( C)( 3,3)( D)( 2,3) 6.线段 AB 两端点坐标分别为 A (1,4 ),B(4,1),现将它向左平移 4 个单位长度,得到线段 A 1B1,则 A 1、 B 1 的坐标分别为() ( A ) A 1(5,0 ),B1(8, 3 )( B) A 1(3,7), B1( 0, 5) ( C) A 1(5,4 )B1 (- 8, 1)(D ) A 1(3,4) B 1(0,1) 7、点 P( m+3, m+1)在 x 轴上,则 P 点坐标为() A .( 0, -2) B .( 2, 0)C.( 4, 0)D.( 0, -4) 8、点 P( x,y )位于 x 轴下方, y 轴左侧,且x =2 , y =4,点P的坐标是() A.( 4, 2) B .(- 2,- 4) C .(- 4,- 2) D .( 2, 4) 9、点 P( 0,- 3),以 P 为圆心, 5 为半径画圆交 y 轴负半轴的坐标是() A.( 8, 0) B .( 0 ,- 8) C .(0, 8) D .(- 8, 0) 10、将某图形的横坐标都减去2,纵坐标保持不变,则该图形() A.向右平移 2 个单位 B .向左平移 2 个单位 C .向上平移 2 个单位 D .向下平移 2 个单位 11、点 E(a,b )到 x 轴的距离是4,到 y 轴距离是3,则有() A. a=3, b=4 B . a=± 3,b= ± 4 C . a=4, b=3 D . a=± 4,b= ± 3 12、如果点 M到 x 轴和 y 轴的距离相等,则点M横、纵坐标的关系是() A.相等 B .互为相反数 C .互为倒数 D .相等或互为相反数 13、已知 P(0 , a) 在 y 轴的负半轴上,则Q( a2 1, a 1)在( ) A、 y 轴的左边, x 轴的上方 B 、y 轴的右边, x 轴的上方

初一数学平面直角坐标系讲义

第六章 平面直角坐标系 一 平面直角坐标系. 1.定义:平面上互相垂直且有公共原点的两条数轴构成平面直角坐标系,简称为直角坐标系。 要求:画平面直角坐标系时,χ轴、y 轴上的单位长度通常应相同,但在实际应用中,有时会遇到取相同的单位长度有困难的情况,这时可灵活规定单位长度,但必须注意的是,同一坐标轴上相同长度的线段表示的单位数量相同。 1 2 3 -1 -2 -3 y x 1 2 3 -1 -2 -3 - 4 O 在平面内有公共原点而且互相垂直的两条数轴,构成了平面直角坐标系.

二.各个象限内点的特征: 第一象限:(+,+)点P (x ,y ),则x >0,y >0; 第二象限:(-,+)点P (x ,y ),则x <0,y >0; 第三象限:(-,-)点P (x ,y ),则x <0,y <0; 第四象限:(+,-)点P (x ,y ),则x >0,y <0; 练习 1.已知点A(a,0)在x 轴正半轴上,点B(0,b)在y 轴负半轴上,那么点C(-a, b)在第_____象限. 2..如果点M(a+b,ab)在第二象限,那么点N(a,b)在第_____象限 3.若点A 的坐标为(a2+1, -2–b2),则点A 在第____ 象限. 第四象限 1 2 3 -1 -2 -3 y x 1 2 3 -1 -2 -3 - 4 O 若点P (x ,y )在第一象限,则 x > 0,y > 0 若点P (x ,y )在第二象限,则 x < 0,y > 0 若点P (x ,y )在第三象限,则 x < 0,y < 0 若点P (x ,y )在第四象限,则 x > 0,y < 0 第一象限 第三象限 第二象限

完整word版平面直角坐标系基础知识讲解

平面直角坐标系(基础)知识讲解 【学习目标】 1.理解平面直角坐标系概念,能正确画出平面直角坐标系. 2.能在平面直角坐标系中,根据坐标确定点,以及由点求出坐标,掌握点的坐标的特征. 3.由数轴到平面直角坐标系,渗透类比的数学思想. 【要点梳理】 要点一、有序数对 定义:把有顺序的两个数a与b组成的数对,叫做有序数对,记作(a,b). 要点诠释: 有序,即两个数的位置不能随意交换,(a,b)与(b,a)顺序不同,含义就不同,如电影院的座位是6排7号,可以写成(6,7)的形式,而(7,6)则表示7排6号. 要点二、平面直角坐标系与点的坐标的概念 1. 平面直角坐标系 在平面内画两条互相垂直、原点重合的数轴就组成平面直角坐标系.水平的数轴称为x轴或横轴,习惯上取向右为正方向;竖直的数轴称为y轴或纵轴,取向上方向为正方向,两坐标轴的交点为平面直角坐标系的原点(如图1). 要点诠释:平面直角坐标系是由两条互相垂直且有公共原点的数轴组成的. 2. 点的坐标 平面内任意一点P,过点P分别向x轴、y轴作垂线,垂足在x轴、y轴上对应的数a,b分别叫做点P的横坐标、纵坐标,有序数对(a,b)叫做点P的坐标,记作:P(a,b),如图2. 要点诠释:)表示点的坐标时,约定横坐标写在前,纵坐标写在后,中间用“,(1”隔开.

(2)点P(a,b)中,|a|表示点到y轴的距离;|b|表示点到x轴的距离. (3) 对于坐标平面内任意一点都有唯一的一对有序数对(x,y)和它对应,反过来对于任意一对有序数对,在坐标平面内都有唯一的一点与它对应,也就是说,坐标平面内的点与有序数对是一一对应的. 要点三、坐标平面 1. 象限 建立了平面直角坐标系以后,坐标平面就被两条坐标轴分成如图所示的Ⅰ、Ⅱ、Ⅲ、Ⅳ四个部分,分别叫做第一象限、第二象限、第三象限和第四象限,如下 图. 要点诠释: (1)坐标轴x轴与y轴上的点(包括原点)不属于任何象限. (2)按方位来说:第一象限在坐标平面的右上方,第二象限在左上方,第三象限在左下方,第四象限在右下方. 2. 坐标平面的结构 坐标平面内的点可以划分为六个区域:x轴,y轴、第一象限、第二象限、第三象限、第四象限. 这六个区域中,除了x轴与y轴有一个公共点(原点)外,其他区域之间均没有公共点. 要点四、点坐标的特征 1.各个象限内和坐标轴上点的坐标符号规律 要点诠释: (1)对于坐标平面内任意一个点,不在这四个象限内,就在坐标轴上. (2)坐标轴上点的坐标特征:x轴上的点的纵坐标为0;y轴上的点的横坐标为0. (3)根据点的坐标的符号情况可以判断点在坐标平面上的大概位置;反之,根据点在坐标平面上的位置也可以判断点的坐标的符号情况. 2.象限的角平分线上点坐标的特征 第一、三象限角平分线上点的横、纵坐标相等,可表示为(a,a); 第二、四象限角平分线上点的横、纵坐标互为相反数,可表示为(a,-a). 3.关于坐标轴对称的点的坐标特征 P(a,b)关于x轴对称的点的坐标为 (a,-b); P(a,b)关于y轴对称的点的坐标为 (-a,b); P(a,b)关于原点对称的点的坐标为 (-a,-b). 4.平行于坐标轴的直线上的点

新人教版七年级上数学测试卷及答案完整版

新人教版七年级上数学 测试卷及答案 Document serial number【NL89WT-NY98YT-NC8CB-NNUUT-NUT108】

七年级数学第一单元测试卷 班级姓名分数 一、选择题:每题3分,共30分 2.为迎接即将开幕的广州亚运会,亚组委共投入了2198000000元人民币建造各项体育设施,用科学记数法表示该数据是() A 10100.2198?元 B 6102198?元 C 910198.2?元 D 1010198.2?元 3.下列计算中,错误的是()。 A 、3662-=- B 、16 1)41(2=±C 、64)4(3-=-D 、0)1()1(1000100=-+- 4.对于近似数0.1830,下列说法正确的是() A 、有两个有效数字,精确到千位 B 、有三个有效数字,精确到千分位 C 、有四个有效数字,精确到万分位 D 、有五个有效数字,精确到万分 8.若a=2,b=-3,c 是最大的负整数,则a+b+c=() A.-1 B.-2 C.5 D.4 9.若abc>0,则a,b,c 为() A.都是正数 B.两个负数一个正数 C.两个正数一个负数 D.三个正数或两个负数一个正数 10.两个有理数的商为正数,则() A.它们的和为正数 B.它们的和为负数 C.至少有一个数为正数 D.它们的积为正数 二、填空题:(每题3分,共18分) 11.若0<a <1,则a ,2a ,1a 的大小关系是 12.若a a =-那么2a 0 13.如图,点A B ,在数轴上对应的实数分别为 m n ,, 则A B ,间的距离是.(用含m n ,的式子表示) 14. 如果0xy ≠且x 2=4,y 2 =9,那么x +y = 16. 若a,b 互为倒数,c,d 互为相反数,则3ab 3)c d -+=4()( 17. 已知|m|=-m ,化简|m-1|-|m-2|所得的结果 18. 若x 、y 是两个负数,且x <y ,那么|x|()|y | 三、解答题:(每题4分,共24分) (4)-18÷(-3)2+5×(-)3 -(-15)÷ 5

平面直角坐标系经典题含答案

第六章 平面直角坐标系水平测试题(一) 一、(本大题共10小题,每题3分,共30分. 在每题所给出的四个选项中,只有一项是符合题意的.把所选项前的字母代号填在题后的括号内. 相信你一定会选对!) 1.某同学的座位号为(),那么该同学的位置是( ) (A )第2排第4列 (B )第4排第2列 (C )第2列第4排 (D )不好确定 2.下列各点中,在第二象限的点是( ) (A )(2,3) (B )(2,-3) (C )(-2,-3) (D )(-2,3) 3.若轴上的点到轴的距离为3,则点的坐标为( ) (A )(3,0) (B )(0,3) (C )(3,0)或(-3,0) (D )(0,3)或(0,-3) 4.点(,)在轴上,则点坐标为( ). (A )(0,-4) (B )(4,0) (C )(-2,0) (D )(0,-2) 5.一个长方形在平面直角坐标系中三个顶点的坐标为(-1,-1),(-1,2),(3,-1)?,则第四个顶点的坐标为( ) (A )(2,2) (B )(3,2) (C )(3,3) (D )(2,3) 6.线段AB 两端点坐标分别为A (),B (),现将它向左平移4个单位长度,得到线段A 1B 1,则A 1、B 1的坐标分别为( ) (A )A 1(),B 1() (B )A 1(), B 1(0,5) (C )A 1() B 1(-8,1) (D )A 1() B 1() 7、点P (m+3,m+1)在x 轴上,则P 点坐标为( ) A .(0,-2) B .(2,0) C .(4,0) D .(0,-4) 8、点P (x,y )位于x 轴下方,y 轴左侧,且x =2 ,y =4,点P 的坐标是( ) A .(4,2) B .(-2,-4) C .(-4,-2) D .(2,4) 9、点P (0,-3),以P 为圆心,5为半径画圆交y 轴负半轴的坐标是 ( ) A .(8,0) B .( 0,-8) C .(0,8) D .(-8,0) 10、将某图形的横坐标都减去2,纵坐标保持不变,则该图形 ( ) A .向右平移2个单位 B .向左平移2 个单位 C .向上平移2 个单位 D .向下平移2 个单位 11、点 E (a,b )到x 轴的距离是4,到y 轴距离是3,则有 ( ) A .a=3, b=4 B .a=±3,b=±4 C .a=4, b=3 D .a=±4,b=±3 12、如果点M 到x 轴和y 轴的距离相等,则点M 横、纵坐标的关系是( ) A .相等 B .互为相反数 C .互为倒数 D .相等或互为相反数 13、已知P(0,a)在y 轴的负半轴上,则Q(2 1,1a a ---+)在( ) A 、y 轴的左边,x 轴的上方 B 、y 轴的右边,x 轴的上方 14.七年级(2)班教室里的座位共有7排8列,其中小明的座位在第3排第7列,简记为(3,7),小华坐在第5排第2列,则小华的座位可记作__________. 15. 若点P (,)在第二象限,则点Q (,)在第_______象限. 16. 若点P 到轴的距离是12,到轴的距离是15,那么P 点坐标可以是________. 17.小华将直角坐标系中的猫的图案向右平移了3个单位长度,平移前猫眼的坐标为(-4,3),(-2,3),则移动后

初中数学平面直角坐标系教案

初中数学平面直角坐标 系教案 Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998

第七章平面直角坐标系 .1有序数对 教学目标:1、理解有序数对的应用意义,了解平面上确定点的常用方法 2、培养学生用数学的意识,激发学生的学习兴趣. 教学重点:有序数对及平面内确定点的方法. 教学难点:利用有序数对表示平面内的点. 教学过程 一.创设问题情境,引入新课 1.一位居民打电话给供电部门:“卫星路第8根电线杆的路灯坏了,”维修人员很快修好了路灯。 2.地质部门在某地埋下一个标志桩,上面写着“北纬°,东经°”。 3.某人买了一张8排6号的电影票,很快找到了自己的座位。 你能举出生活中利用数据表示位置的例子吗 二、新课讲授 1、由学生回答以下问题: (1)引入:影院对观众席所有的座位都按“几排几号”编号,以便确定每个座位在影院中的位置, 观众根据入场券上的“排数”和“号数”准确入座。 (2)根据下面这个教室的平面图你能确定某同学的坐位吗对于下面这个根据教师平面 图写的通知,你明白它的意思吗“今天以下座位的同学放学后参加数学问题讨论:(1,5),(2,4),(4,2),(3,3),(5,6)。” 学生通过合作交流后得到共识:规定了两个数所表示的含义后就可以表示座位的位置. 思考: (1)怎样确定教室里坐位的位置 (2)排数和列数先后顺序对位置有影响吗(2,4)和(4,2)在同一位置。 (3)假设我们约定“列数在前,排数在后”,你在图书6 1-1上标出被邀请参加讨论的同学的座位。 让学生讨论、交流后得到以下共识: (1)可用排数和列数两个不同的数来确定位置。

(完整)平面直角坐标系练习题(巩固提高篇)

平面直角坐标系练习题(巩固提高篇) 一、选择题: 1、下列各点中,在第二象限的点是() A.(2,3) B.(2,-3) C.(-2,3) D.(-2, -3) 2、已知点M(-2,b)在第三象限,那么点N(b, 2 )在() A.第一象限 B.第二象限 C.第三象限 D.第四象限 3、若点P(a,b)在第四象限,则点M(b-a,a-b)在() A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限 4、已知点P(a,b),且ab>0,a+b<0,则点P在() A.第一象限 B.第二象限 C.第三象限 D.第四象限 5、如果点P(a,b)在第二象限内,那么点P(ab,a-b)在() A、第一象限 B、第二象限 C、第三象限 D、第四象限 6、若点P(x ,y)的坐标满足xy=0(x≠y),则点P在() A.原点上 B.x轴上 C.y轴上 D.x轴上或y轴上 7、平面直角坐标中,和有序实数对一一对应的是() A.x轴上的所有点 B.y轴上的所有点 C.平面直角坐标系内的所有点 D.x轴和y轴上的所有点 8、将点A(-4,2)向上平移3个单位长度得到的点B的坐标是() A. (-1,2) B. (-1,5) C. (-4,-1) D. (-4,5) 9、线段CD是由线段AB平移得到的,点A(–1,4)的对应点为C(4,7),则点B(-4,–1)的对应点D的 坐标为() A.(2,9) B.(5,3) C.(1,2) D.(– 9,– 4) 10、点P(m+3,m+1)在x轴上,则P点坐标为() A.(0,-2)B.(2,0)C.(4,0)D.(0,-4) 11、点P的横坐标是-3,且到x轴的距离为5,则P点的坐标是() A. (5,-3)或(-5,-3) B. (-3,5)或(-3,-5) C. (-3,5) D. (-3,-5) 12、已知点P(x,y)在第四象限,且│x│=3,│y│=5,则点P的坐标是() A.(-3,5)B.(5,-3)C.(3,-5)D.(-5,3) 13、点P(x,y)位于x轴下方,y轴左侧,且x=2 ,y=4,点P的坐标是() A.(4,2) B.(-2,-4) C.(-4,-2) D.(2,4) 14、点P(0,-3),以P为圆心,5为半径画圆交y轴负半轴的坐标是() A.(8,0) B.( 0,-8) C.(0,8) D.(-8,0) 15、点E(a,b)到x轴的距离是4,到y轴距离是3,则有() A.a=3, b=4 B.a=±3,b=±4 C.a=4, b=3 D.a=±4,b=±3

七年级上数学试卷及答案

2003-2004学年七年级(上)数学试题 题 号 一二三四五六总分 1~8 9~20 21 22 23 24 25 26 27 28 29 得 分 信你在小学原有的基础上又掌握了许多新的数学知识与能力,变得更加聪明了,更加懂得应用数学来解决实际问题了。现在让我们一起走进考场,仔细思考,认真作答,成功将属于你——数学学习的主人。] 一、精心选一选!(只有一个正确答案,每小题4分,计32分) 1、下面几组数中,不相等的是( ) A、-3和+(-3) B、-5和-(+5) C、-7和-(-7) D、+2和│-2│ 2、平面上有任意三点,过其中两点画直线,共可以画() A、1条 B、3条 C、1条或3条 D、无数条 3、在数轴上表示a、b两数的点如图所示,则下列判断正确的是() A、a+b>0 B、a+b<0 C、ab>0 D、│a│>│b│ 4、下列图形中,哪一个是正方体的展开图() 5、2002年11月23—29日在泉州销售8000万元即开型福利彩票(每张面额2元),特等奖100万元,结果中一百万元者有15名,假如你花10元买5张,下列说法正确的是写() A、中一百万元是必然事件 B、中一百万元是不可能事件 C、中一百万元是可能事件,但可能性很小 D、因为5÷15=1/3,所以中一百万元的可能性是33.3% 6、计算(-1)1001÷(-1)2002所得的结果是() A、1/2 B、-1/2 C、1 D、-1 7、任何一个有理数的平方() A、一定是正数 B、一定不是负数 C、一定大于它本身 D、一定不大于它的绝对值 8、如图,AOC ∠和BOD ∠都是直角,如果 A C B O D

(完整版)初一平面直角坐标系动点问题(经典难题)

平面直角坐标系动点问题 (一)找规律 1.如图1,一只跳蚤在第一象限及x轴、y轴上跳动,在第一秒钟,它从原点跳动到(0,1),然后接着按图中箭头所示方向跳动[即(0,0)→(0,1)→(1,1)→(1,0)→…],且每秒跳动一个单位,那么第35秒时跳蚤所在位置的坐标是() 图1 A.(4,0)B.(5,0)C.(0,5)D.(5,5) 图2 2、如图2,所有正方形的中心均在坐标原点,且各边与x轴或y轴平行.从内到外,它们的边长依次为2,4,6,8,…,顶点依次用A1,A2,A3,A4,…表示,则顶点A55的坐标是() A、(13,13) B、(﹣13,﹣13) C、(14,14) D、(﹣14,﹣14) 3.如图3,在平面直角坐标系中,有若干个横、纵坐标分别为整数的点, 其顺序按图中点的坐标分别为(1,0),(2,0),(2,1),(1,1),(1,2), (2,2),…的规律排列,根据这个规律,第2015个点的横坐标 为. 4.在平面直角坐标系中,一蚂蚁从原点O出发,按向上、向右、向下、 向右的方向依次不断移动,每次移动1个单位,其行走路线如下图所示。 图3

(1)填写下列各点的坐标: 1 A(____,____), 3 A(____,____), 12 A(____,____); (2)写出点 n A 4 的坐标(n是正整数); (3)指出蚂蚁从点 100 A到 101 A的移动方向. 5.观察下列有序数对:(3,﹣1)(﹣5,)(7,﹣)(﹣9,)…根据你发现的规律,第100个有序数对是. 6、观察下列有规律的点的坐标: 依此规律,A11的坐标为,A12的坐标为. 7、以0为原点,正东,正北方向为x轴,y轴正方向建立平面直角坐标系,一个机器人从原点O点出发,向正东方向走3米到达A1点,再向正北方向走6米到达A2,再向正西方向走9米到达A3,再向正南方向走12米到达A4,再向正东方向走15米到达A5,按此规律走下去,当机器人走到A6时,A6的坐标是. 8、如图,将边长为1的正三角形OAP沿x轴正方向连续翻转2008次,点P依次落在点1232008 P P P P ,,,,的位置,则点 2008 P的横坐标为. 9、如图,在平面直角坐标系上有个点P(1,0),点P第1次向上跳动1个单位至点P1(1,1),紧接着第2次向左跳动2个单位至点P2(﹣1,1),第3次向上跳动1个单位,第4次向右跳动3个单位,第5次又向上跳动1个单位,第6次向左跳动4个单位,…,依此规律跳动下去,点P第100次跳动至点P100的坐标是.点P第2009次跳动至点P2009的坐标是. 1 P A O y x P

平面直角坐标系基础篇

一、填空题 1.已知点O(0,0),B(1,2),点A在坐标轴上,且S =2,则满足条件的点A的坐标为. △OAB 2.已知AB∥x轴,且AB=3,若点A的坐标是(﹣1,2),则B点的坐标是. 3.已知:点A(0,5),B(0,2),在坐标轴上找点C,使△ABC的面积为5,则点C的坐标是 . 4.在平面直角坐标系中,若点M(﹣2,6)与点N(x,6)之间的距离是3,则x的值是. 5.在平面直角坐标系中,一个长方形的三个顶点坐标分别为(﹣1,﹣1),(﹣1,1),(5,﹣1),则第四个顶点的坐标是. 6.已知A(2,﹣6),B(2,﹣4),那么线段AB= . 二、解答题 7.已知:点P(2m-6,m-1).试分别根据下列条件,求出P点的坐标. (1)点P在y轴上; (2)点P在x轴上; (3)点P的纵坐标比横坐标大3;(4)点P到x轴的距离为2. (5)点P在过A(2,-3)点,且与x轴平行的直线上. (6)点P到坐标轴的距离之和为10. 8.在平面直角坐标系中描出下列各组点,并将各组内的点用线段依次连接起来: (1)(-5,0),(-4,3),(-3,0),(-2,3),(-1,0),(-5,0); (2)(2,1),(6,1),(6,3),(7,3),(4,6),(1,3),(2,3),(2,1). 观察得到的图形,你觉得它们像什么?求出所得到图形的面积. 9.在如图所示的平面直角坐标系中描出下面各点:A(0,3);B(1,﹣3);C(3,﹣5);D(﹣3,﹣5);E(3,5);F(5,7);G(5,0). (1)将点C向x轴的负方向平移6个单位,它与点重合. (2)连接CE,则直线CE与y轴是什么关系? (3)顺次连接D、E、G、C、D得到四边形DEGC,求四边形DEGC的面积.

2017初一数学上册期末试卷及答案

2017初一数学上册期末试卷及答案 一、选择题(共10小题,每小题3分,满分30分) 1.﹣2的相反数是() A.1+B.1﹣C.2D.﹣2 【考点】相反数. 【分析】根据只有符号不同的两个数互为相反数,可得一个数的相反数. 【解答】解:﹣2的相反数是2, 故选:C. 【点评】本题考查了相反数,在一个数的前面加上负号就是这个数的相反数. 2.埃及金字塔类似于几何体() A.圆锥B.圆柱C.棱锥D.棱柱 【考点】认识立体图形. 【专题】几何图形问题. 【分析】根据埃及金字塔的形状及棱锥的定义分析即可求解. 【解答】解:埃及金字塔底面是多边形,侧面是有公共顶点的三角形,所以是棱锥. 故选C. 【点评】本题主要考查棱锥的概念的掌握情况.棱锥的定义:如果一个多面体的一个面是多边形,其余各面是有一个公共顶点的三角形,那么这个多面体叫做棱锥. 3.用科学记数法表示9.06×105,则原数是() A.9060B.90600C.906000D.9060000 【考点】科学记数法—原数.

【分析】根据科学记数法的定义,由9.06×105的形式,可以得出原式等于 9.06×100000=906000,即可得出答案. 【解答】解:9.06×105=906000, 故选:C. 【点评】本题主要考查科学记数法化为原数,得出原式等于9.06×100000=906000是 解题关键. 4.利用一副三角尺不能画出的角的度数是() A.15°B.80°C.105°D.135° 【考点】角的计算. 【分析】根据角的和差,可得答案. 【解答】解:A、利用45°角与30°角,故A不符合题意; B、一副三角板无法画出80°角,故B符合题意; C、利用45°角与60°角,故C不符合题意; D、利用45°角与90°角,故C不符合题意; 故选:B. 【点评】本题考查了角的计算,利用了角的和差,熟悉一副三角板的各角是解题关键.5.下列调查,不适合抽样调查的是() A.想知道一大锅汤的味道 B.要了解我市居民节约用电的情况 C.香港市民对“非法占中”事件的看法 D.要了解“神舟6号”运载火箭各零件的正常情况 【考点】全面调查与抽样调查.

(完整版):平面直角坐标系经典例题解析

【平面直角坐标系重点考点例析】 考点一:平面直角坐标系中点的特征 例1 在平面直角坐标系中,点P(m,m-2)在第一象限内,则m的取值范围是.思路分析:根据第一象限的点的坐标,横坐标为正,纵坐标为正,可得出m的范围. 解:由第一象限点的坐标的特点可得: 20 m m > ? ? -> ? , 解得:m>2. 故答案为:m>2. 点评:此题考查了点的坐标的知识,属于基础题,解答本题的关键是掌握第一象限的点的坐标,横坐标为正,纵坐标为正. 例1 如果m是任意实数,则点P(m-4,m+1)一定不在() A.第一象限B.第二象限C.第三象限D.第四象限 思路分析:求出点P的纵坐标一定大于横坐标,然后根据各象限的点的坐标特征解答.解:∵(m+1)-(m-4)=m+1-m+4=5, ∴点P的纵坐标一定大于横坐标, ∵第四象限的点的横坐标是正数,纵坐标是负数, ∴第四象限的点的横坐标一定大于纵坐标, ∴点P一定不在第四象限. 故选D. 点评:本题考查了点的坐标,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).例2 如图,矩形BCDE的各边分别平行于x轴或y轴,物体甲和物体乙分别由点A(2,0)同时出发,沿矩形BCDE的边作环绕运动,物体甲按逆时针方向以1个单位/秒匀速运动,物体乙按顺时针方向以2个单位/秒匀速运动,则两个物体运动后的第2012次相遇地点的坐标是() A.(2,0)B.(﹣1,1)C.(﹣2,1)D.(﹣1,﹣1) 分析:利用行程问题中的相遇问题,由于矩形的边长为4和2,物体乙是物体甲的速度的2倍,求得每一次相遇的地点,找出规律即可解答. 解答:解:矩形的边长为4和2,因为物体乙是物体甲的速度的2倍,时间相同,物体甲与物体乙的路程比为1:2,由题意知: ①第一次相遇物体甲与物体乙行的路程和为12×1,物体甲行的路程为12×=4,物体乙行的路程为12×=8,在BC边相遇;

(完整版)八年级数学《平面直角坐标系》经典例题

考点1:考点的坐标与象限的关系 知识解析:各个象限的点的坐标符号特征如下: (特别值得注意的是,坐标轴上的点不属于任何象限.) 1、在面直角坐标中,点M (-2,3)在( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 2、在平面直角坐标系中,点P (-2,2x +1)所在的象限是( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 3、若点P (a ,a -2)在第四象限,则a 的取值范围是( ). A .-2<a <0 B .0<a <2 C .a >2 D .a <0 4、点P (m ,1)在第二象限内,则点Q (-m ,0)在( ) A .x 轴正半轴上 B .x 轴负半轴上 C .y 轴正半轴上 D .y 轴负半轴上 5、若点P (a ,b )在第四象限,则点M (b -a ,a -b )在( ) A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限 6、在平面直角坐标系中,点(12)A x x --,在第四象限,则实数x 的取值范围是 . 7、对任意实数x ,点2(2)P x x x -,一定不在.. ( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 8、如果a -b <0,且ab <0,那么点(a ,b)在( ) A 、第一象限 B 、第二象限 C 、第三象限, D 、第四象限. 考点2:点在坐标轴上的特点 x 轴上的点纵坐标为0, y 轴上的点横坐标为0.坐标原点(0,0) 1、点P (m+3,m+1)在x 轴上,则P 点坐标为( ) A .(0,-2) B .(2,0) C .(4,0) D .(0,-4) 2、已知点P (m ,2m -1)在y 轴上,则P 点的坐标是 。 考点3:考对称点的坐标 知识解析: 1、关于x 轴对称: A (a ,b )关于x 轴对称的点的坐标为(a ,-b )。 2、关于y 轴对称: A (a ,b )关于y 轴对称的点的坐标为(-a , b )。

(完整版)平面直角坐标系基础练习(含答案).docx

第六章平面直角坐标系练习题 一、(本大题共10 小题,每题 3 分,共 30 分 .在每题所给出的四个选项中,只有一项 是符合题意的 . 把所选项前的字母代号填在题后的括号内.相信你一定会选对!) 1.某同学的座位号为(2,4 ),那么该同学的位置是() ( A)第 2 排第 4 列(B)第4排第2列(C)第2列第4排(D)不好确定2.下列各点中,在第二象限的点是() ( A)( 2, 3)(B)(2,-3)(C)(-2,-3)(D)(-2,3) 3.若x轴上的点P到y轴的距离为 3,则点P的坐标为() (A)( 3,0 )(B)(0,3)(C)(3,0)或(-3,0)(D)(0,3)或( 0,- 3) 4.M (m 1 , m 3 )在 x 轴上,则点 M 坐标为(). 点 (A)( 0,- 4)( B)( 4,0)(C)(- 2,0)( D)(0,- 2 ) 点在 x 轴上方, y 轴左侧,距离 x 轴 2 个单位长度,距离 y 轴 3 个单位长度,则点 5. C C 的坐标为() ( A)(2,3)(B)(2, 3 )(C)(3,2 )(D)(3, 2) 6.如果点P(5, y)在第四象限 ,则y的取值范围是() ( A)y0(B)y0(C)y0(D)y0 7.如图:正方形 ABCD 中点 A 和点 C 的坐标分别为( 2,3)和 Y 4 (3, 2) ,则点B和点D的坐标分别为() .A 3D 2 1 1 2 3 4X ( A)(2,2)和(3,3)(B)(2, 2) 和 (3,3)-3 -2 -1-1 B-2 -3 C

( C)( 2, 2)和(3, 3)(D)(2,2)和(3, 3) 8.一个长方形在平面直角坐标系中三个顶点的坐标为(-1,- 1) ,(- 1,2) ,(3,- 1)?, 则第四个顶点的坐标为() ( A)( 2,2)(B)( 3,2)( C)( 3,3)( D)( 2,3) 9.线段 AB 两端点坐标分别为A(1,4),B(4,1),现将它向左平移 4 个单位长度, 得到线段 A1111 ) B,则 A、 B 的坐标分别为( ( A)A1(5,0 ),B1(8, 3 )( B)A1(3,7), B1( 0,5) ( C) A1(5,4 )B1(-8,1)(D) A1(3,4)B1(0,1) 10.在方格纸上有 A、B 两点,若以 B 点为原点建立直角坐标系,则 A 点坐标为(2,5), 若以 A 点为原点建立直角坐标系,则 B 点坐标为(). (A)(- 2,- 5)( B)(- 2, 5)( C)( 2,- 5)( D)( 2,5) 二、细心填一填 : (本大题共有 8 小题,每题 3分,共 24 分.请把结果直接填在题中的 横线上.只要你理解概念,仔细运算,积极思考,相信你一定会填对的!) 11.七年级( 2)班教室里的座位共有 7 排 8 列,其中小明的座位在第 3排第 7 列,简记 为( 3 ,7),小华坐在第 5 排第 2列,则小华的座位可记作__________. 12.若点 P(a ,b)在第二象限,则点Q( ab , a b )在第_______象限. 13.若点 P 到x轴的距离是 12, 到y轴的距离是 15, 那么 P 点坐标可以是(写出 一个即可) . 14.小华将直角坐标系中的猫的图案向右平移了 3 个单位长度 , 平移前猫眼的坐标为(-4,3 ), (- 2,3 ) , 则移动后猫眼的坐标为 _________. 15.已知点 P (x, y )在第四象限,且|x|=3,| y |=5,则点 P 的坐标是______. 16.如图,中国象棋中的“象”,在图中的坐标为(1, 0), ?若“象”再走一步,试写 出下一步它可能走到的位置的坐标 ________.

相关文档
最新文档