变频节能技术在机电设备的应用

变频节能技术在机电设备的应用
变频节能技术在机电设备的应用

变频节能技术在机电设备的应用

摘要:随着我国科技的发展,以及经济水平的快速提高,变频节能技术的发展越来越快。变频节能技术具有控制、调节等特点,在矿井生产中应用变频节能技术,可改善采矿环境,在运输、选择、提升、通风以及采矿等环节应用该技术均取得了显著的效果。文章简单阐述了变频节能这一技术的基本原理,并对该技术在矿山机电设备中的应用进行了探讨。

关键词:变频节能技术;矿山机电设备;应用

将变频节能技术应用于矿山机电设备中,可以促进采矿环境的改善,增加工作效率,减小采矿成本,实现环境的保护,推动我国矿山机电设备的发展。

1变频节能技术概述

1.1变频节能技术内涵。变频节能技术是指通过科技手段和高科技设备改变设备当前频率的技术。在这个技术中,变频器负责控制设备的频率,变频器具有复杂的结构,有很多相关的组件,包括电源板、控制面板、电极等。因此,有效收集相关组件可以使电动机总是运行在节电状态。传统机电设备的频率是不能改变的,因此在操作过程中设备的速度是不能控制、改变的,这就使得机电设备处于恒定运行状态,不可以结合实际需要对速度进行调整,严重的影响设备使用时间,增加设备能耗。然而,应用变频节能技术可以促使机电设备更加灵活,能够结合实际生产需要调整设备运行状态,达到节能的目的[1]。1.2变频节能技术工作原理。变频器工作原理可以简述为交-直-交,整流器将交流电源转换成直流电源,然后把直流电源再转变为电压、频率,对交流电源进行有效控制,然后输送给发电机。控制、整流、逆变以及直流电共同组成了变频器的电路。其中,整流部分使用的整流器是三相桥式不可控制型的,直流部分主要起到滤波功能,其中直流储能、缓冲是没有功率的;逆变器部分采用IGBT三相桥式逆变器,可调整其输出的脉冲宽度,对变频器的功能有重要影响,也是变频器的核心部分。变频节能技术主要通过变频调速系统调整电机转速,达到节能目的。变速系统中电机转速变化的公式为:n=50f(1-S)/P,其中f为电源频率,P为电机极对的数量,S为滑差。

2变频节能技术在矿山机电设备中的应用

2.1在矿井提升机中的应用分析。提升机在矿井中的主要作用是对施工人员、施工材料进行安全的输送,在矿山生产中具有决定性的地位。一般传统的方法是先将金属电阻器连接到电机转子电路的内部,再利用接触器、鼓控制器将电阻器切断,进而达到调速的目的。不可避免地会产生一些问题,比如过度消耗电阻、散热不好等。因为电阻调速的速度范围太小,这就造成了精确度不够的现象。在进行分散、减速的工况下,应当具备相应的低频电源或者动力制动直流电源,这就非常容易导致设备损坏,并造成巨大的电能浪费。此时,矿井生产安全性的遭到质疑,这就会影响矿井生产以及经济效益。将变频节能这一技术应用于矿井提升机中,可以从根本上避免很多问题,达到无极平稳的减速、加速,提高系统性能,加强保护,其优势有:第一,制动、速度是用过电气进行控制的,降低了冲击与机械磨损,增加设备使用时间;第二,回馈制动,如果提升机是在负力状态下,那么电机会将产生的再生能量直接反馈给电网,这样不仅节省了电能,增加制动力矩,提高绞车安全;第三,对精确度的控制较高,并且其可扩展性能非常好,通过修改内部程序能够对系统的功能参数进行相应的调节,这样就不用更改硬件接线,便可以实施柔性控制[2]。2.2变频节能技术在铜矿井下通风系统的应用。在工频情况下,大电机频繁启动和停止是非常困难的,同时会导致电能的损失和电流冲击,对电动机安全、使用寿命造成不利影响。变频器可对风机频率进行调节,进而调节风机运行功率,减小不必要的功率损耗。此外,可减小电动机发生故障的频率,增加电动机使用时间,减小电网的无功功率的损失以及对容量的要求。为了发挥变频器支持井下风机的功能,科学地利用风机的变频调速,需要采用适合矿井通风机井下调速的节能控制系统。因为矿井下空气流量不断变化,所以不适合使用闭环控制。一般传感器等反馈设施很难使用保护设施,再加上矿井下灰尘多、比较潮湿,所以传感器极易受到放炮等的影响,因此,可使用开环控制。2.3变频控制技术在通风机中的应用。随着开挖不断加深,风压井继续增加,风机要求的功率增加。然而,风机功率已成为矿山开发的一个重要问题。矿井通风设备采用变频调速后,可根据巷道的风量要求调整速度,避免功耗,具有非常明显的效果。通过改造逆变器,风机能够进行变频软启动,避免了启动电流造成的不良影响,并且不会影响到设备,也可以随意启动和停止。在大多数情况下,通风机运行速率比较小,所以减小了通风机工作量,延长其使用时间,降

低不必要的检修。另外,为保证与电机运行速率一致,一般要确保2台电机频率的一致性,防止风阻,确保通风机安全运行[3]。2.4在流体负荷设备中的应用。变频节能技术在流载设备中的应用主要体现在风机和泵的变频调速中。变频调速技术在风机中的应用不断增加,同时也针对铜矿环境设计出专门的变频调速装置。在风机改造后,实际转速比改进前的最小速度降低了很多。电机的实际输出功率是在前导器半关闭时的高1/3风量与风压,更适合于矿井的特点,每年可节省大量的电力。该变频调速在采区供水和液压泵中灵活应用,降低了设备的机械影响,提高了工艺系统控制的灵活性,促进产品质量的增加。可以控制泵的平稳起动和停止,及时加速和减速。它保证了井下液位的恒定水平,减少了泵的空闲时间所带来的大量的能量消耗,同时也减少了机械设备不必要的损耗,从而确保了生产的安全高效运行[4]。2.5变频控制技术在电控绞车系统中的应用。在电控或者保护系统中,使用变频控制技术一般需要把电压波动维持在-15%~+10%范围内,把频率波动维持在±2.5%范围内,输出功率、频率以及输入电压分别为200kW、50Hz、660V,同时具备连续、可调节的特点。在电控绞车系统中使用变频控制技术,可促进系统过载能力的提高,将额定负载控制在-120%~+120%范围内,可以更好的满足运行条件,对元件过热、欠压等起到良好的保护作用;促进自动转矩低频运转能力的提高,达到额定转矩的目的。

3结束语

现阶段,在采矿行业应用变频技术依然处于起步阶段,在大型机器中对变频技术的应用还是比较少的,然而在采矿企业产品更新、改造的过程中,应用变频技术已经实现了节能、自动化生产,且效果非常显著。在采矿生产过程中,积极应用变频技术是目前采矿企业实现节能降耗的重要手段,同时也是促进企业经济增长的重要途径。在采矿机电设备中,变频技术具有非常高的科技含量,且与企业经济效益密切相关。

参考文献:

[1]张伟.变频节能技术在矿山设备中的应用探讨[J].能源与节能,2018(01):71-72.

[2]王凤.变频技术在煤矿机电设备节能改造中的应用探究[J].科学技术创新,2017(23):97-98.

[3]李小艳.变频节能技术在煤矿机电设备中的应用[J].机械管理开发,2016,31(06):172-173+185.

[4]王李鹏.变频节能技术在煤矿机电设备中的应用[J].中国高新技术企业,2015(28):97-98.

[5]王星星.变频调速装置在矿山通风系统中的节能应用[J].河南科技,2013(12):98.

[6]兰明立.浅议变频节能技术在矿山设备中的应用[J].广东科技,2013,22(02):91+27.

[7]王治江.变频节能技术在矿山风机、水泵上的应用[J].变频器世界,2008(10):82-84.

交流变频调速技术发展的现状及趋势

交流变频调速技术发展的现状及趋势 概述 交流电动机变频调速技术是在近几十年来迅猛发展起来的电力拖动先进技术,其应用领域十分广泛。为了适应科技的发展,将先进技术推广到生产实践中去,交流变频调速技术已成为应用型本科、高职高专电类专业的必修或选修课程。 变频调速技术概述,常用电力电子器件原理及选择,变频调速原理,变频器的选择,变频调速拖动系统的构建,变频技术应用概述,变频器的安装、维护与调试和变频器的操作实验。 在理论上以必需、够用为原则;精心选材,努力贯彻少而精、启发式的教学思想; 变频调速技术是一种以改变交流电动机的供电频率来达到交流电动机调速目的的技术。大家知道,从大范围来分,电动机有直流电动机和交流电动机。由于直流电动机调速容易实现,性能好,因此,过去生产机械的调速多用直流电动机。但直流电动机固有的缺点是,由于采用直流电源,它的滑环和碳刷要经常拆换,故费时费工,成本高,给人们带来不少的麻烦。因此人们希望,让简单可靠价廉的笼式交流电动机也能像直流电动机那样调速。这样就出现了定子调速、变极调速、滑差调速、转子串电阻调速和串极调速等交流调速方式;由此出现了滑差电机、绕线式电机、同步式交流电机。但其调速性能都无法和直流电动机相比。直到20世纪80年代,由于电力电子技术、微电子技术和信息技术的发展,才出现了变频调速技术。它的出现就以其优异的性能逐步取代其他交流电动机调速方式,乃至直流电动机调速系统,而成为电气传动的中枢。 要学习交流电动机的变频调速技术,必须有电力拖动系统的知识。因此,先温习电力拖动系统的基础知识。电力拖动系统由电动机、负载和传动装置三部分组成。描写电力拖动系统的物理量主要是转速,n和转矩T(有时也用电流,因转矩和电动机的电枢电流成正比)。两者之间的关系式称为机械特性。 交流电动机是电力拖动系统中重要的能量转换装置,用来实现将电能转换为机械能。长期以来人们一直在寻求对电动机转速进行调节和控制的方法,起初由于直流调速系统的调速性能优于交流调速系统,直流调速系统在调速领域内长期占居主导地位。 变频调速是通过变频器来实现的,对于变频器的容量确定至关重要。合理的容量选择本身就是一种节能降耗措施。根据现有资料和经验,比较简便的方法有三 种 对于可调速的电力拖动系统,工程上往往根据电动机电流形式分为直流调速系统和交流调速系统两类。它们最大的不同之出主要在于交流电力拖动免除了改变直流电机电流流向变化的机械向器——整流子。 20世纪70年代后,大规模集成电路和计算机控制技术的发展,以及现代控制理论的应用,使得交流电力拖动系统逐步具备了宽的调速范围、高的稳速范围、高的稳速精度、快的动态响应以及在四象限作可逆运行等良好的技术性能,在调速性能方面可以与直流电力拖动媲美。在交流调速技术中,变频调速具有绝对优

同步电机变频节能改造

550kW/10kV同步电机变频节能改造 The Energy-saving transform of the inverter in synchronism motor 550KW/10kV 吴加强成都佳灵电气制造有限公司四川成都610041 Wu jiaqiang (Chengdu Jialing Electric manufacture corporation Chengdu city Sichuan 610041) 摘要:现阶段采用IGBT电压型高压变频器实现高压同步电机的速度及位置开环控制是很困难的。本文根据客户现场工况,提出了采用专用的JCS型IGBT高压变频器,实现高压同步电机拖动活塞式空压机的变频调速改造,取得了良好的运行效果和节能效果。关键词:高压同步电机;高压变频器;速度和位置开环控制;励磁;恒压力;节能Abstract: It difficult of Adopt HV inverter realize HV synchronous speed and position of synchronism motor open-loop controls at the present. Customer's on-the-spot operating mode of the foundation of this paper, has proposed adopting the special Model JCS IGBT HV inverter, realize HV synchronous motor pull piston type frequency conversion of air compressor adjust and transform rapidly, have made the good operation result and energy-saving result. Keyword: HV Synchronous motor; HV inverter; speed and position open-loop control; Excitation; constant pressure; Energy-saving 1、前言现阶段采用IGBT电压型高压变频器实现高压同步电机的速度、位置开环控制是很困难的;目前在国内基本应用无相关案例。我们根据客户现场工况,提出了采用专用的JCS型IGBT高压变频器,实现了高压同步电机拖动活塞式空压机的变频调速改造,取得了良好的运行效果和节能效果。包头铝厂电解四公司空压车间现有五台活塞式空压机,主要用于为后级生产设备提供高压气源,其适配电机为TK550-12/1430(10kV/550kW)同步电机。正常生产时,五台空压机三用两备。工艺要求设备恒压力运行,风压在0.5-0.6Mpa之间。实际上,在工频条件下,设备往往运行在低于0.45Mpa,高于0.8Mpa的风压范围,不能满足正常的生产工艺要求,生产用风量极不稳定。风压调节采用风门手动调节,这样的运行操作方式,既耗能又操作慢而复杂。风压高时将风门开度增大,并及时排空降压,反之减小;当后级设备用风量需求大时,开三台空压机且要求风门开度很小才能满足要求,而用风量小时则开两台空压机就能满足要求。由于该系统负荷变化范围较大,采用变频调速具有很大的改造节能空间。 2、节能分析空压机是耗电量大的机械流体性质设备。采用不同的流量调节方式,所耗的电能不同;风机为典型的平方减转矩负载,下面以风机的工作特性来分析节能原理。风机的电动机轴功率P与其流量Q,风压H之间的关系式如下: P∝Q×H 当电动机的转速为n1、n2时,流量Q1变化到Q2,此时Q、H、P相对于转速的关系:Q2=Q1×(n2/n1)(1)H2=H1×(n2/n1)2 (2)P2=P1×(n2/n1)3 (3)由式(1)(2)(3)式可以看出,调节电机转速即可调节流量,风压与转速的2次方成正比, 风机轴功率(功率输出)与转速的3次方成正比,从理论上讲,速度降低10%时会带来30%左右的功率下降,由于功率的大幅度降低,可获得显著的节能效果显著。下表为调速后与调速前功率理论比值表:n2/n1 100%90%85%80%70%60%50%P2/P1 100%73%61.4% 51% 34% 21.6% 13.0% 节电率0 27% 38.6% 49% 66% 78.4% 87% (a)(b)压力转速N2时转速N1时阻力曲线0 Q1 H1 H2 功率P 转矩T 功率与转速的立方成正比转矩与转速的平方成正比0 Q2 转速100% 图1(a) 风机的压力与流量的关系曲线图1(b) 转矩与电机速度的关系曲线根据上述的节能分析表明,采用变频

调速永磁同步电动机的电磁设计与磁场分析

调速永磁同步电动机的电磁设计与磁场分析 1 引言 与传统的电励磁电机相比,永磁同步电动机具有结构简单,运行稳定;功率 密度大;损耗小,效率高;电机形状和尺寸灵活多变等显著优点,因此在航空航 天、国防、工农业生产和日常生活等各个领域得到了越来越广泛的应用。 随着电力电子技术的迅速发展以及器件价格的不断下降,越来越多的直流电 动机调速系统被由变频电源和交流电动机组成的交流调速系统所取代,变频调速 永磁同步电动机也应运而生。变频调速永磁同步电动机可分为两类,一类是反电 动势波形和供电电流波形都是理想矩形波(实际为梯形波)的无刷直流电动机,另 一类是两种波形都是正弦波的一般意义上的永磁同步电动机。这类电机通常由变 频器频率的逐步升高来起动,在转子上可以不用设置起动绕组。 本文使用Ansoft Maxwell 软件中的RMxprt 模块进行了一种调速永磁同步电 动机的电磁设计,并对电机进行了性能和参数的计算,然后将其导入到Maxwell 2D 中建立了二维有限元仿真模型,并在此模型的基础上对电机的基本特性进行 了瞬态特性分析。 2 调速永磁同步电动机的电磁设计 2.1 额定数据和技术要求 调速永磁同步电动机的电磁设计主要包括主要尺寸和气隙长度的确定、定子 冲片设计、定子绕组的设计、永磁体的设计等。通过改变电机的各个参数来提高 永磁同步电动机的效率η、功率因数cos ?、起动转矩st T 和最大转矩max T 。本例所设计永磁同步电动机的额定数据及其性能指标如下: 额定数据 数值 额定功率 N 30kw P = 相数 =3m 额定线电压 N1=380V U 额定频率 =50Hz f 极对数 =3p 额定效率 N =0.94η 额定功率因数 N cos =0.95? 绝缘等级 B 级 计算额定数据:

变频调速技术的作用和节能原理

一、变频调速技术的作用和节能原理 1、变频节能: 为了保证生产的可靠性,各种生产机械在设计配用动力驱动时,都留有一定的富余量。电机不能在满负荷下运行,除达到动 力驱动要求外,多余的力矩增加了有功功率的消耗,造成电能的 浪费,在压力偏高时,可降低电机的运行速度,使其在恒压的同 时节约电能。 当电机转速从 N1 变到 N2时,其电机轴功率(P)的变化关系如下: P2/ P1 = (N2/N1)3 ,由此可见降低电机转速可得到立方级的节能效果。 2、动态调整节能: 迅速适应负载变动,供给最大效率电压。变频调速器在软件上设有 5000次/秒的测控输出功能,始终保持电机的输出高效率运行。 3、通过变频自身的V/F功能节电: 在保证电机输出力矩的情况下,可自动调节V/F曲线。减少电机的输出力矩,降低输入电流,达到节能状态。 4、变频自带软启动节能: 在电机全压启动时,由于电机的启动力矩需要,要从电网吸收 7 倍的电机额定电流,而大的启动电流即浪费电力,对电网的电压波动损害也很大,增加了线损和变损。采用软启动后,启动电流可从0 -- 电机额定电流,减少了启动电流对电网的冲击,节约了电费,也减少了启动惯性对设备的大惯量的转速冲击,延长了设备的使用寿命。 5、提高功率因数节能: 电动机由定子绕组和转子绕组通过电磁作用而产生力矩。绕组由于其感抗作用。对电网而言,阻抗特性呈感性,电机在运行时吸收大量的无功功率,造成功率因数很低。 采用变频节能调速器后,由于其性能已变为: AC-- DC --AC,在整流滤波后,负载特性发生了变化。变频调速器对电网的阻抗特性呈阻性,功率因数很高,减少了无功损耗 根据负载转速的变化要求,通过改变电动机工作电源频率达到改变电机转速的目的,以获得合理的电机运行工况。在不同的转速情况下,均保持较高的运行效率,不仅降低了电能消耗,同时能改善启动性能,保护电机及负载设备免受瞬

变频调速技术与应用试卷A卷

湖北交通职业技术学院2011-2012学年第二学期 变频调速技术与应用 试题(A 卷) 一、 1、 正弦波脉冲宽度调制英文缩写是(A )。 A :PWM B :PAM C :SPWM D :SPAM 2、对电动机从基本频率向上的变频调速属于( A )调速。 A :恒功率 B :恒转矩 C :恒磁通 D :恒转差率 3、下列哪种制动方式不适用于变频调速系统( C )。 A :直流制动 B :回馈制动 C :反接制动 D :能耗制动 4、对于风机类的负载宜采用( A )的转速上升方式。 A :直线型 B :S 型 C :正半S 型 D :反半S 型 5、N2系列台安变频器频率控制方式由功能码(C )设定。 A :F009 B :F010 C :F011 D :F012 6、型号为N2-201-M 的台安变频器电源电压是( A )V 。 A : 200 B :220 C :400 D :440 7、三相异步电动机的转速除了与电源频率、转差率有关,还与(B )有关系。 A :磁极数 B :磁极对数 C :磁感应强度 D :磁场强度 8、目前,在中小型变频器中普遍采用的电力电子器件是(D )。 A :SCR B :GTO C :MOSFET D :IGBT 9、IGBT 属于(B )控制型元件。 A :电流 B :电压 C :电阻 D :频率 10、变频器的调压调频过程是通过控制( B )进行的。 A :载波 B :调制波 C :输入电压 D :输入电流 二:填空题(每空2分,20分) 1. 目前变频器中常采用 IGBT 作为主开关器件。 2. 三相异步电动机拖动恒转矩负载进行变频调速时,为了保证过载能力和主磁通不变,则U1应随f1 U1\F1=常数 按规律调节。 3. 矢量控制的规律是 3/2变换 、 矢量旋转变换 、 坐标变换 。 4. 变频调速系统的抗干扰措施有: 合理布线,消弱干扰源,隔离干扰 ,准确接地 三:判断题(10分) ( 1 )1. 变频器的主电路不论是交-直-交变频还是交-交变频形式,都是采用电力电子 器。 ( 0 )2.电流型变频器多用于不要求正反转或快速加减速的通用变频器中。 ( 0 )3. 变频器调速主要用于三相异步电动机。 ( 1 )的智能化表现为可以实现控制、保护、接口3大功能,构成混合式功率集成电路。 ( 1 )5.转差率是指三相异步电动机同步转速与转子转速的差值比上同步转速 ( 1 )6. 通过通讯接口可以实现变频器与变频器之间进行联网控制。 ( 1 )7.电磁转矩的基本公式为9550M P T n = ( 1 )8.电动机的反电动势E1=1114.44f k N m N Φ ( 1 )9.交-交变频由于输出的频率低和功率因数低,其应用受到限制。 ( 0 )脉宽调制型变频,是靠改变脉冲频率来控制输出电压。

DB13_T2025-2014电动机系统变频调速节能改造规程

ICS03.080.01 A 12 DB13 河北省地方标准 DB 13/T 2025—2014 电动机系统变频调速节能改造规程 2014-07-07发布2014-07-31实施河北省质量技术监督局发布

DB13/T 2025—2014 前言 本标准按照GB/T 1.1-2009给出的规则起草。 本标准由石家庄市质量技术监督局提出。 本标准起草单位:河北玖翔节能技术有限公司、河北省冶金行业协会、石家庄经济学院、河北省产 品质量监督检验院、石家庄市节能监察中心。 本标准主要起草人:刘庆荣、焦辉广、王大勇、刘勇军、杨计延、陈俊芬、秦彭、于洋、刘东水、 王孟。

电动机系统变频调速节能改造规程 1 范围 本标准规定了电动机系统变频调速节能改造的总则、改造、验收与维护服务。 本标准适用于电动机系统变频调速节能改造项目。 2 规范性引用文件 下列文件对于本文件的应用是必不可少的。凡是注日期的引用文件,仅所注日期的版本适用于本文件。凡是不注日期的引用文件,其最新版本(包括所有的修改单)适用于本文件。 GB/T 24915 合同能源管理技术通则 GB/T 13471-2008 节电技术经济效益计算与评价方法 GB 50168 电气装置安装工程 电缆线路施工及验收规范 GB/T 19012-2008质量管理 顾客满意 组织处理投诉指南 3 总则 3.1 基本原则 电动机系统节能改造应遵守国家法律法规及产业政策要求,执行国家、行业和地方相关技术标准的规定,遵循安全、环保、节能、适用的原则。 3.2 基本要求 3.2.1 节能改造单位应具备电动机系统能耗基准确定及测试能力,并与之相匹配的技术人员和检测仪器。 3.2.2 现场设备工况采集时须遵守用能企业相关安全操作规程。 4 改造 4.1 改造准备 4.1.1 确定改造意向 根据用能单位电动机系统的能耗管理现状、拟改造的节能项目需求,确定改造意向。 4.1.2 采集电动机系统设备工况 统计了解用能企业电动机系统的运行情况,采集各设备数据。采集数据时应以实测数据为主,同时采集额定数据及1年内运行记录。工况采集表参见附录A。 4.1.3 进行节能诊断 4.1.3.1 计算、分析采集数据,确定节能潜力。

11KW调速永磁同步电动机电磁设计程序2

11KW变频起动永磁同步电动机电磁设计程序 及电磁仿真 1永磁同步电动机电磁设计程序 1.1额定数据和技术要求 除特殊注明外,电磁计算程序中的单位均按目前电机行业电磁计算时习惯使用的单位,尺寸以cm(厘米)、面积以cm2(平方厘米)、电压以V (伏)、电流以A (安八功率和损耗以(瓦)、电阻和电抗以门(欧姆)、磁通以Wb(韦伯)、磁密以T(特斯拉)、磁场强度以A/cm(安培/厘米)、转矩以N (牛顿)为单位。 1额定功率P n =11kW 2相数叶=3 3额定线电压U N1 =380V 额定相电压丫接法U N =U N1 / 3 = 219.39V 4额定频率f =50HZ 5电动机的极对数P=2 6额定效率N =0.87 7额定功率因数cos N =0.78 8失步转矩倍数T;°N =22 9起动转矩倍数T;N =22 10起动电流倍数I;N =2.2 12 额定转速n N =1000r/min 13额定转矩T N二9.55P N 103二 9.55 11 二105.039N.m n N 11额定相电流I N P N X105 0U N N COS N 11 105 3 219.39 0.87 0.78 A-24.62

14绝缘等级:B级 15绕组形式:双层叠绕Y接法 1.2主要尺寸 16铁心材料DW540-50硅钢片 17转子磁路结构形式:表贴式 18气隙长度:=0.07cm 19定子外径D1 =26cm 20定子内径D i1 =18cm 21 转子外径D2二D H—2、=(18 -2 0.07)cm =17.86 22转子内径D i2 =6cm 23定,转子铁心长度h日2 =15cm 24铁心计算长度l a J =15cm 铁心有效长度l ef =la 2、=(15 2 0.07)cm = 15.14cm 25定子槽数Q1 = 36 26定子每极每相槽数q =Q1 /2gp =36/2 3 3=2 27极距巨p =蔥D i1/2P =3.14 18/2 9.728cm 28定子槽形:梨形槽定子槽尺寸 h01= 0.08cm b01= 0.38cm bi = 0.78cm r1 二 0.53cm h o2 = 1.72cm 巧“18^ 29定子齿距t1卩 1.5708cm Q136

节能空调技术介绍

技术背景介绍 ㈠、XX型热能产品技术——比燃油锅炉节约50%-90% 1、XX热能技术的四大优点 XX型热能技术节能产品,是基于逆卡诺循环原理,揉合XX公司自己研发的专利技术,建立起来的一种高效节能和优质环保的制热制冷技术产品,它整合和利用建筑物各体系热源资源,合理配置了建筑物冷暖热水系统中所有设备的优质效果,通过自然能获取低温热源,经系统高效集热整合后成为高温热源,用来制取热水和为制冷提供能源,整个系统集热和制冷效率甚高。 XX型热能技术有四大优点,第一是节能,有利于能源的综合利用;第二是无污染排放,有利于环境保护;第三是冷热结合,设备应用率高,节省投资,第四因为它是电驱动,所以它调控比较方便。因此XX型热能设备受到社会和市场的高度关注,它开辟了建筑物冷暖热水资源综合利用和节能技术之先河。 XX型热能技术是二十一世纪的一个能源技术,通过热泵利用自然能和XX公司专利技术,提高能效的利用。能效的利用有两个含义,从环境角度来讲,可以减少温室气体的排放,减少对环境的有害的因素,从另外一个方面来说,就是解决电力高峰负荷的一项技术整合。 2、产品特点 高效节能:集热效率高,运行成本低。

(同比用电量是电热水器五分之一) ●绿色环保:高新科技的结晶,代表未来发展方向。 ●安全节约:无后顾之忧,初装费低,一元钱当五元钱花。 ●四季制热:阴雨天或寒冷冬季,均能全天候合成高温热源。 ●时尚耐用:用料精选。(使用寿命在18年以上) ●设计精堪:全自动控制,免维护运行,代表制热高新精尖科技。 ●体积小巧:可置屋顶、阳台、庭院、室内等,并能与建筑物有 机结合。 3、产品发展 热泵技术从1924年发明到现在,在很长的一段时间里没有被人类充分地认识和运用面。供暖还是利用传统的燃气,或者电热这样一个传统的方法,因为它比较简单,比较直接。但到20世纪60年代,世界能源危机以后才给予充分的重视,世界经济持续发展,要给子孙后代留下能源,一定要注意能源的节约和合理的使用。所以世界各国纷纷加大了研发力度,推广热泵技术,所以目前热泵技术已经比较广泛地使用。

变频节能技术的研究与应用

变频节能技术的研究与应用 内容摘要 近十几年来,随着电力电子技术、计算机技术、自动控制技术的迅速发展,电气传动技术面临着一场历史革命,也就是说计算机数字控制技术以及交流调速技术已经取代了模拟控制技术和直流调速技术的时代,成为了新的发展趋势。当代社会用以推动技术进步、为提高产品质量而改善工艺流程、节约电能的重要手段就是采用电机交流变频调速技术。变频调速技术是国内外都非常认可的最有发展前途的调速方式,因为它具有适用范围广,拥有节能效果以及高功率因数、高效率,启制动性能和调速效果优异等等优点。 本文在总结前人研究的基础上,指出了变频技术的国内外研究现状,并对变频技术的基本理论进行相关的分析,为了对变频技术有一个细致的了解,本文以华能曲阜热电厂节能改造为例,详细的介绍了变频节能系统配置、变频控制系统的基本原理以及变频节能系统调试过程,并总结出改造的结果。 关键词:变频技术;节能改造;变频器;凝结水泵

目录 内容摘要 (1) 1 绪论 (3) 1.1 课题的背景及意义 (3) 1.2 国内外发展现状 (4) 1.2.1 国外变频技术发展现状 (4) 1.2.2 我国变频技术发展现状 (4) 1.3 论文主要工作 (5) 2 变频节能技术简介 (7) 2.1 变频器的基本结构 (7) 2.2 变频器的分类 (8) 2.3 变频节能原理 (8) 3 变频节能系统 (10) 3.1 变频节能系统配置 (10) 3.1.1 变频改造方案 (10) 3.1.2 变频改造设置 (11) 3.2 变频控制系统的基本原理 (12) 3.3 系统调试及参数 (13) 3.3.1 凝结水泵变频器操作 (13) 3.3.2 变频器运行操作 (14) 3.3.3 机组电机和水泵参数 (14) 4 变频节能改造效果分析 (16) 4.1 #2机组凝结水泵改造结果分析 (16) 4.2 #1机组凝结水泵改造结果分析 (16) 5 结论 (18) 5.1 结论 (18) 5.2 变频技术展望 (18)

变频节能技术应用分析

变频节能技术应用分析 发表时间:2009-12-04T11:31:02.450Z 来源:《中小企业管理与科技》2009年10月下旬刊供稿作者:王栋 [导读] 变频技术,就是通过技术手段,来改变用电设备的供电频率,进而达到控制设备输出功率的目的 王栋(广东电网公司惠州供电局) 摘要:变频技术,就是通过技术手段,来改变用电设备的供电频率,进而达到控制设备输出功率的目的。变频技术随着微电子学、电力电子、计算机和自动控制理论等的发展,已经进入了一个崭新的时代,完全成熟的技术,也使其应用进入了一个新的高潮。它是通过变频调速改变轴输出功率,达到减少输入功率节省电能的目的。是感应式异步电动机节能的重要技术手段之一。 关键词:变频器节能技术 0 引言 对于异步电动机通过调速达到节能目的方法很多,如:调压调速,又称为滑差调速;变极对数调速和品闸管串极调速等等,根据不同的负载性质,有针对性的选择。在各种调速节能中,利用变频调速,是异步电动机调速效果最好、最成熟、最有发展前途的节能技术。 1 变频器控制对像: 变频器应用,可分为两大类:一种是用于传动调速,另一种是各种静止电源(静止电源暂且不讲)。变频传动调速,其应用目的就是通过对电机调速来达到节约能源。控制对象就是在动力设备上实现电—机转换的电动机。这是由感应式异步电动机的性能和特征决定,其次是由于所带的负载对电机调速的负荷适应性所决定。由电机转速的数学公式我们知道,电机的实际转速,主要取决于电机定子的旋转磁场(n1=t*f/p)。对一个绕制好的电机,其旋转磁场转速完全取决供电频率,t 为时间常数,P为电机的极对数,n1正比电源频率f,从电机的结构上我们看到定、转子之间没有任何电的连接,基于磁场感应和机械惯性,转子的转速和定子旋转磁场的转速总是不同步,差一个转差数(一般为n1的1%-1.8%,)称为转差率S,由此可见电机的转速也正比于电源的频率。n2=t*f(1-s)/p从异步电动机变频时机械特性曲线中,我们不难看出转速的变化对电机的转矩影响较小,对于传动机械功率要求完全可以满足。变频调速控制是在降低输出频率的同时输出电压也相应降低,转矩正比输出电压。转矩也会有些减少。这种纯电气调速系统是人为地改变电动机的机械特性来获得不同的转速,直接与拖动机械相连接不需原机械设备做任何调整,这对于节能改造成本,保持原有机械性能都大有好处。变频传动调速的特点是:①不用改动原有设备包括电机本身;②可实现无级调速,满足传动机械要求;③变频器软启、软停功能,可以避免启动电流冲击对电网的不良影响,减少电源容量的同时还可以减少机械惯动量,减少机械损耗;④不受电源频率的影响,可以开环、闭环手动/自动控制;⑤低速时,定转矩输出、低速过载能力较好;⑥电机的功率因数随转速增高功率增大而提高,使用效果较好。 2 节能变频控制 机电设备配合设计原则:电机的最大功率必须满足负载下的机械功率和转矩,对于不同的负载,最大值并非时时刻刻都发生、负载的变化是非线性的,而电机的输出功率却是恒定的,这就意味着在非最大负载时电机输出了相当一部分多余功率,电能也就白白浪费掉了。风机、水泵类就是较典型例子。 风机、水泵类风量和流量的控制在过去很少采用转速控制方式,基本上都是由鼠笼型异步电动机拖动,进行恒速运转,当需要改变风量或流量时,事实上都采用调节挡风板或节流阀。这种控制虽然简单易行,能满足流量要求,但对电机来讲,从节省能源的角度来看是非常不经济的。生产中很容易检测出来。 这类设备一般都是长时间运行,甚至很久不停机。在实际检测中发现,除在极短时间流量最大值外,近90%时间运行在中等或较低负荷状态,总用电量至少有40%以上被浪费掉。采用变频调速控制,对风机、水泵类机械进行转速控制来调节流量的方法,对节约能源,提高经济效益具有非常重要意义。 3 风机、水泵的节能方法 从流量控制原理上讲,风机、水泵的结构和工作原理基本相同. 3.1 具体测试某工厂炉底风机散热控制系统,冶炼炉根据不同材料、需要不同的炉底冷却温度,设计满足最大冷却风量设计为四台18.5KW4极叶轮式风机,全功率运转,但用最大冷却风量的概率极低。冶炼常用几种材料,四台风机对开风量过大;对开两台时,达不到冷却要求;对开一对再侧开一台,冷却不均、无法满足工艺要求;原设计4台对开风机靠调节挡风板可满足冷却要求,但对电机来讲,浪费电能。风板全开时,运行电流24A,全关闭时22A,输入功率从17.0KW—18.5KW变化,节电率不足8%。针对这一特殊要求制定方案,对其中两台对开电机进行开环变频调速控制,配合两台全速风机,即满足不同材料的温控要求,又能节约电能。按照这一方案进行改造后,节电效果非常明显。针对其中一种材料需固定频率控制进行冷却,几个月才换一次,设定频率在25—35之间,完全满足冷却要求。工频下运行时一台18.5KW风机(经变频器输出),每小时耗电为11.9度/小时,日耗电量为:285.6度/24小时。在正常运行时根据不同材料的温度要求,设定频率分别为:25Hz、30Hz、35Hz、40Hz和45Hz。 需要指出的是:变频器当输出频率降低时,输出电压也相应降低,输入功率明显减少,对应频率降低时电压降低电机不会有温升,若频率不变时电压降低至浮动电压下限值时,电机就会有温升。 3.2 水泵节电:同风机原理很相近。以某酒店750TRT中央空调冷水机组水系统90KW冷冻泵和55KW冷却泵为例:主机制冷是根据温度的变化而工作,是非线性负荷,而水泵电机基本上是线性恒功率输出。1台55KW冷却水泵靠调整阀门来改变流量,虽然能满足主机运行要求,但对于电机来讲节电意义不大,阀门的全开和全闭,电流从107A—97A之间变化,平均节电不足7%。通过改造采用温度控制为主,压力控制为铺进行闭环变频控制水泵电机,水泵电机平均节电率都在30%以上;90KW冷冻水泵电机靠调节阀门电流在163—148A之间变化,平均节电不足6%,经闭环控制变频调速改造后,节电率平均也在30%以上。为什么会有这么大节电空间呢,因为中央空调系统设计时的最大容量是以人流、气温、空间散热三项极限指标为依据计算的(即人流最大、气温最高、空间散热最差),平时出现这种情况的概率极低,从经验上讲不到10%,空调系统大部分运行时间都在中、低负荷状态,空调主机的负荷曲线是非线性的,而水系统的水泵负荷是线性恒功率的,以满足主机的最大负荷为标准。这样在主机非最大负荷时水泵就必然存在着电能浪费空间。通过变频调速控制使水泵电机的负载曲线符合或接近空调主机的负载曲线。 3.3 高压变频控制传动调速控制设备都是在3KV以上大容量电机,一般都在几百KW到几千KW,负载率大于0.5,节电效率较低压变频控制略低,在18—25%左右,电机容量大耗电也多,虽然节电率较低,但用电基数大,也是非常可观,高压变频设备技术复杂设备体积大,

变频调速器的节能节电技术原理及其应用技术

变频调速器的节能节电技术原理及其应用技术 什么叫变频调速技术,它是一种以改变电机频率和改变电压来达到电机调速目的的技术。大家都知道,目前,无论哪种机械调速,都是通过电机来实现的。从大范围来分,电机有直流电机和交流电机。过去的调速,多数用直流电机,由于直流机调速容易实现。但直流机固有的缺点:滑环和碳刷要经常拆换,给人们带来太大的麻烦。因此有人就想,如果把可靠简单的笼式交流电机用来调速那该多好!因而就出现了定子调速、变极调速、滑差调速、转子串电阻调速、串极调速、液力偶和调速等交流调速方式。当然也出现了滑差电机、绕线式电机、同步机、这些都是交流电机。 到20世纪80年代,由于电力电子技术、微电子技术和信息技术的发展,才出现了对交流机来说最好的变频调速技术,它一出现就以其优异的性能逐步取代其它交流电机调速方式,乃至直流电机调速,而成为电气传动的中枢。因而说变频调速是时代的产物,只有在技术高度发展的今天,才能实现。为什么说它是基于电力电子、微电子、信息技术发展的产物?一是它的逆变部分都基于电流很大、电压很高的SCR、GTR、IGBT、GTO、MCT等电力电子器件来完成的。什么叫逆变:就是直流变交流(DC-AC)那么交流变直流就叫整流(AC -DC)。二是它的控制部分和负载状态的检测是由CPU(32位计算机)来完成,这是微电子器件发展的结果。三是内置4-20mA 接口和RS485 接口可以和仪表、DCS 相接,通过总线Profibus、Interbus 通讯。 调速节能原理从二个方面来说明: 1、风机水泵的节电原理就是用调速控制代替挡风板或节流阀控制风流量,这是一个节电的有效途径。在用档风板控制额定风量Q1=100%输出时,则轴功率N1与面积AH1 OQ1成正比,若风量减半Q2 =50%输出时,则轴功率N2与面积BH2 OQ2成正比,它比N1减少不多,这是因为需要克服档风板阻力增大风压所致。如果采用调速控制同样风量减半输出时,转数由n1降至n2,按风机参数比例定律画出n2时的特性曲线,C点为新的工矿点,这时轴功率N2与面积CH3OQ2成正比,在满足同样风量Q2情况下,轴功能降低很多,节省的功率耗损△N与面积BH2H3C成正比,可见节电效果十分显著。 2、流体力学的观点 流量∝转速,压力∝转速^2,轴功率∝转速^3,若转速下降20%,则功率下降到51.2% ;若转速下降50%,则轴功率下降到12.5% ,即使考虑调速装置本身的损耗等因素,节电也是相当可观的。 为此,许多行业、如钢铁、有色、石油、石化、化工、纺织、机械、电力、建材、医药、煤炭、造纸、卷烟、酒店、自来水等行业都在许多设备中采用交流电机变频调速技术,产生节电及增产的效果,下面举几个例子: 实例1、空调类负载

变频调速系统技术原理及应用

变频调速系统技术原理及应用 0 引言 随着工业自动化技术的飞速发展,人们对自动化监控系统的要求越来越高,如要求界面简单明了,易于操作,实时性好,开发周期短,便于修改、扩充、升级。这些要求促使工控组态软件应运而生,组态是指通过专用的软件定义系统的过程,工控组态软件是利用系统软件提供的工具,通过简单形象的组态工作,构成系统所需的软件。国外软件商推出了各种工业控制软件包,如美国Wonderware 公司的In-Touch,美国Intellution 公司的iFIX,德国西门子公司的WinCC;国产工控组态软件则以北京亚控科技发展有限公司出品的“Kingview (组态王)”组态软件为代表[1]。 PLC 作为现代工业控制的三大支柱(PLC、机器人和CAD/CAM)之一,编程、操作简易方便,程序修改灵活,功能强大。被广泛应用于冶金、矿业、机械、轻工等领域,加速了机电一体化的进程。科威公司生产的EASY系列嵌入式PLC 是将PLC 内核构建于控制器内,运用PLC 语言开发用户所需产品,能提高开发速度,降低开发费用,提高控制器的稳定性[2]。嵌入式PLC 又称客制式PLC,即根据用户的控制需要定制硬件,以PLC 的应用方式解决对象控制问题的专用PLC。EASY嵌入式PLC软件平台具有开发通用、专用PLC 的基本功能,支持CAN bus现场总线、支持通用HMI、组态软件包。 变频器技术是一门综合性的技术,它建立在控制技术、电力电子技术、微电子技术和计算机技术的基础上。与传统的交流拖动系统相比,利用变频器对交流电动机进行调速控制,可以实现大范围内的高效连续精确调速控制。其完善的保护功能既能保护变频器,又能保护电机及相关用电设备[3]。富士系列变频器是高性能和多功能的理想结合,动态转矩矢量控制能在各种运行条件下实现对电动机的最佳控制。强大的功能和鲜明的特点使其广泛应用于工业场合。 1 Kingview组态软件 Kingview(组态王)完全基于网络概念,支持客户机- 服务器模式和Internet/Intranet 浏览器技术,并且是一种可伸缩的柔性结构,根据网络规模大小,可以将不同站点设计成I/O 服务器、报警服务器、数据服务器、登录服务器、校时服务器、客户机等,在系统扩展和变化时,有着极大的灵活性。组态王设计成全冗余结构,在五个层面上提供了冗余:I/O通道冗余、双设备冗余、双网冗余、双机冗余及双系统冗余。组态王被设计成一个完全意义上的软件平台,允许用户进行功能扩展和发挥,它也是一个ActiveX容器,无须编程即可将第三方控件直接连入组态王中[4]。

电机变频控制节能技术的应用探讨

电机变频控制节能技术的应用探讨 在我們国家不断繁荣发展过程中,人们环保意识不断增强,当今社会也是是倡导绿色技术的社会,其中电力企业作为社会中的重点企业,电力作为人们生活的来源,因此,电力设备节能方面已经成为人们关注的重点,也是建立节约型和环境友好型社会的关键。 标签:电机变频控制;节能技术;应用 引言 在我们国家各项经济不断攀升,科学技术不断发展的今天,电机变频控制节能技术的应用研究对电力效能有一定节约,让工作人员看到了电能中有效的节约点,并通过专业的技术增加对电机变频控制节能技术的研究,提高电机变频控制节能技术在实际中的作用,促进电能发展,增加工作人员实践中的工作经验,让电机变频控制节能技术变得更精良。 1电机变频控制节能技术概述 电机变频控制节能技术是一种包含了计算机技术、电力传动技术以及电子信息技术的综合性节能技术。电机变频控制节能技术在实践应用过程中,需要控制机械制备的强弱电,通过调整机械设备的电机转速和电流频率来实现节能的目的。电机变频控制节能技术可以把机械设备的工作电流频率转化为其它频率,并利用专业半导体构件将交流电转换为直流电,此时,机械设备的逆变器就可以完成对电流与电压的全面控制。通过调整电机的电流频率对电机转速进行控制,可以在保证电机功率满足运行要求的前提下,进一步提高电机的节能效率,减少电机在运行过程中产生的能源损耗。 2电机变频控制节能技术的应用 2.1在提升机中的应用(如图一) 在煤矿生产中,矿井是十分重要的生产要素,同时也由于其复杂性与危险性一直制约着煤矿生产的安全与稳定。近年来,我国矿井安全事故频发,对煤矿产业的可持续发展造成一定影响,人们也对矿井的安全生产提出更高的要求。矿井在煤矿生产中需要经历多次的启动与操作,在这个过程中很容易造成设备出现故障的问题。在变频节能技术的快速发展下,在矿井提升机中,该技术也得到广泛应用,这就使得提升机的整体性能进一步增强,并且在提升机系统中进行运行,促进提升机的工作性能与质量的提升,从而降低提升机运行中产生的能耗。在提升机中变频节能技术的应用得到进一步优化,具备更高的兼容性。在提升机的控制器中,核心是有32位数字信号的处理器进行运算实现的,在运算中要进行合理的设计,才能提升电机的运行性能。在人机界面中,以当下较为常见的显示界面为主,并能够对井下做业务实现远程监控。在提升机的开关设计中,以PLC

调速永磁同步电动机的电磁设计与磁场分析

调速永磁同步电动机的电磁设计与磁场分析 1 引言 与传统的电励磁电机相比,永磁同步电动机具有结构简单,运行稳定;功率密度大;损耗小,效率高;电机形状和尺寸灵活多变等显著优点,因此在航空航天、国防、工农业生产和日常生活等各个领域得到了越来越广泛的应用。 随着电力电子技术的迅速发展以及器件价格的不断下降,越来越多的直流电动机调速系统被由变频电源和交流电动机组成的交流调速系统所取代,变频调速永磁同步电动机也应运而生。变频调速永磁同步电动机可分为两类,一类是反电动势波形和供电电流波形都是理想矩形波(实际为梯形波)的无刷直流电动机,另一类是两种波形都是正弦波的一般意义上的永磁同步电动机。这类电机通常由变频器频率的逐步升高来起动,在转子上可以不用设置起动绕组。 本文使用Ansoft Maxwell软件中的RMxprt模块进行了一种调速永磁同步电动机的电磁设计,并对电机进行了性能和参数的计算,然后将其导入到Maxwell 2D中建立了二维有限元仿真模型,并在此模型的基础上对电机的基本特性进行了瞬态特性分析。 2 调速永磁同步电动机的电磁设计 2.1 额定数据和技术要求 调速永磁同步电动机的电磁设计主要包括主要尺寸和气隙长度的确定、定子冲片设计、定子绕组的设计、永磁体的设计等。通过改变电机的各个参数来提高 T。本例所永磁同步电动机的效率η、功率因数cos?、起动转矩st T和最大转矩max 设计永磁同步电动机的额定数据及其性能指标如下: 计算额定数据:

(1) 额定相电压:N 220V U U == (2) 额定相电流:3 N N N N N 1050.9A cos P I mU η??== (3) 同步转速:160=1000r /min f n p = (4) 额定转矩:3 N N 1 9.5510286.5N m P T n ?==g 2.2 主要尺寸和气隙长度的确定 永磁电机的主要尺寸包括定子内径和定子铁心有效长度,它们可由如下公式 估算得到: 2 i11P D L C n '= N N N cos E K P P η?'=, 6.1p Nm dp C K K AB δ α=' 式中,i1D 为定子内径,L 为定子铁心长度,P '为计算功率,C 为电机常数。 E K 为额定负载时感应电势与端电压的比值,本例取0.96;p α'为计算极弧系数, 初选0.8;Nm K 为气隙磁场的波形系数,当气隙磁场为正弦分布时等于1.11;dp K 为电枢的绕组系数,初选0.92。A 为电机的线负荷,B δ为气隙磁密,A 和B δ的 选择非常重要,直接影响电机的参数和性能,应从电机的综合技术经济指标出发 来选取最合适的A 和B δ值,本例初选为200A/cm,0.7T A B δ==。 由上式可初步确定电机的2i1D L ,但要想进一步确定i1D 和L 各自的值,还应选择主要尺寸比i1i122L L pL D D p λπτπ===,其中τ为极距。通常,中小型同步电动机的0.6~2.5λ=,一般级数越多,λ也越大,本例初选1.4。 永磁同步电动机的气隙长度δ一般要比同规格的感应电动机的气隙大,主要 是因为适当的增加气隙长度可以在一定的程度上减小永磁同步电动机过大的杂 散损耗,减低电动机的振动与噪声和便于电动机的装配。所以设计永磁同步电动 机的气隙长度时,可以参照相近的感应电动机的气隙长度并加以适当的修改。本 例取=0.7mm δ。 确定电动机定子外径时,一般是在保证电动机足够散热能力的前提下,视具 体情况为提高电动机效率而加大定子外径还是为降低成本而减小定子外径。

变频器为什么可以节能

变频器节能节电原理及其应用 什么叫变频调速技术,它是一种以改变电机频率和改变电压来达到电机调速目的的技术。大家都知道,目前,无论哪种机械调速,都是通过电机来实现的。从大范围来分,电机有直流电机和交流电机。过去的调速,多数用直流电机,由于直流机调速容易实现。但直流机固有的缺点:滑环和碳刷要经常拆换,给人们带来太大的麻烦。因此有人就想,如果把可靠简单的笼式交流电机用来调速那该多好!因而就出现了定子调速、变极调速、滑差调速、转子串电阻调速、串极调速、液力偶和调速等交流调速方式。当然也出现了滑差电机、绕线式电机、同步机、这些都是交流电机。 到20世纪80年代,由于电力电子技术、微电子技术和信息技术的发展,才出现了对交流机来说最好的变频调速技术,它一出现就以其优异的性能逐步取代其它交流电机调速方式,乃至直流电机调速,而成为电气传动的中枢。因而说变频调速是时代的产物,只有在技术高度发展的今天,才能实现。为什么说它是基于电力电子、微电子、信息技术发展的产物?一是它的逆变部分都基于电流很大、电压很高的 SCR、GTR、IGBT、GTO、MCT等电力电子器件来完成的。什么叫逆变:就是直流变交流(DC-AC)那么交流变直流就叫整流(AC-DC)。二是它的控制部分和负载状态的检测是由CPU(32位计算机)来完成,这是微电子器件发展的结果。三是内置4-20mA 接口和 RS485 接口可以和仪表、DCS 相接,通过总线Profibus、Interbus 通讯。 调速节能原理从二个方面来说明: 1、风机水泵的节电原理就是用调速控制代替挡风板或节流阀控制风流量,这是一个节电的有效途径。在用档风板控制额定风量Q1=100%输出时,则轴功率N1与面积AH1 OQ1成正比,若风量减半Q2 =50%输出时,则轴功率N2与面积BH2 OQ2成正比,它比N1减少不多,这是因为需要克服档风板阻力增大风压所致。如果采用调速控制同样风量减半输出时,转数由n1降至n2,按风机参数比例定律画出n2时的特性曲线,C点为新的工矿点,这时轴功率N2与面积CH3OQ2成正比,在满足同样风量Q2情况下,轴功能降低很多,节省的功率耗损△N与面积BH2H3C成正比,可见节电效果十分显著。 2、流体力学的观点 流量∝转速,压力∝转速^2,轴功率∝转速^3,若转速下降20%,则功率下降到 51.2% ;若转速下降50%,则轴功率下降到12.5% ,即使考虑调速装置本身的损耗等因素,节电也是相当可观的。 为此,许多行业、如钢铁、有色、石油、石化、化工、纺织、机械、电力、建材、医药、煤炭、造纸、卷烟、酒店、自来水等行业都在许多设备中采用交流电机变频调速技术,产生节电及增产的效果,下面举几个例子: 实例 1、空调类负载 家庭用空调只有0.5HP、1HP、2HP、3HP等,而工厂和宾馆的空调容量要大的多,节电明显。 北京丽都假日饭店动力中心是一个集中供冷、供热的工厂,安装有 20吨/小时蒸汽锅炉3台,300万大卡溴化锂制冷机4台,负责动力厂周围的丽都假日饭店、燕翔饭

相关文档
最新文档