2007-2008八年级(上)数学竞赛试题及答案(4)
数学竞赛试题及答案

数学竞赛试题及答案一、选择题(每题3分,共30分)1. 下列哪个数是最小的正整数?A. 0B. 1C. 2D. 3答案:B2. 如果一个数除以3的余数是2,那么这个数加1后除以3的余数是多少?A. 0B. 1C. 2D. 3答案:B3. 一个长方体的长、宽、高分别是8cm、6cm和5cm,其体积是多少立方厘米?A. 240B. 180C. 120D. 100答案:A4. 一个数的75%是150,那么这个数是多少?A. 200B. 300D. 500答案:B5. 一个班级有21个男生和一些女生,班级总人数是42人,那么这个班级有多少女生?A. 21B. 20C. 19D. 18答案:B6. 下列哪个分数是最接近1的?A. 1/2B. 3/4C. 4/5D. 9/10答案:D7. 一个数的1/3与它的1/4的和等于这个数的1/2,那么这个数是多少?A. 12B. 24C. 36D. 48答案:B8. 一个正方形的面积是64平方厘米,它的周长是多少厘米?A. 32B. 48C. 64答案:B9. 一个数的3倍加上12等于这个数的7倍,求这个数是多少?A. 4B. 6C. 8D. 10答案:C10. 下列哪个数是质数?A. 15B. 29C. 35D. 50答案:B二、填空题(每题4分,共20分)11. 一个长方形的长是15cm,宽是长的1/3,那么这个长方形的宽是_______cm。
答案:5cm12. 一本书的价格是35元,如果打8折,那么现价是______元。
答案:28元13. 一个数的1/2与它的1/4的差等于3,那么这个数是______。
答案:1214. 一个数的倒数是1/7,那么这个数是______。
答案:715. 一个数的1/5加上它的1/3,和是这个数的______。
答案:8/15三、解答题(每题10分,共40分)16. 一块地的面积是300平方米,如果长是30米,那么这块地的宽是多少米?答案:这块地的宽是300平方米除以30米,即10米。
初中数学竞赛模拟题50题-含参考答案

初中数学竞赛模拟题50题含答案一、单选题1.已知2πx <,x 是整数,则符合条件的x 的值有( )A .5个B .6个C .11个D .13个 2.已知a ,b 为正整数,满足2240ab b a ---=,则a b +的最大值为( ) A .7 B .18 C .29 D .30 3.若x a =,代数式22x x +的值为1-,则当x a =-时,代数式22x x +的值为( )A .1-B .1C .2D .3 4.在实数范围内,方程x 4﹣16=0的实数根的个数是( )A .1B .2C .3D .4 5.若a ,b ,c ,d 为整数,且a <2b ,b <3c ,c <4d ,d <100,则a 可能取的最大值是( )A .2367B .2375C .2391D .2399 6.关于x的方程1x x -=的根的个数为( ). A .0个 B .1个C .3个D .4个 7.若方程22320x px p +--=的两个不相等的实数根1x ,2x 满足()232311224x x x x +=-+,则实数p 的所有可能的值之和为( )A .0B .34-C .-1D .54- 8.已知22211148()34441004A =⨯+++---,则3A 的整数部分[]3A 是( ) A .72 B .73 C .74D .75 9.已知a ,b 满足(a +1)2﹣(b ﹣2c ﹣3|=0,则a +b +c 的值等于( ) A .2 B .3 C .4 D .5 10.若2(3)(5)15x x x mx -+=+-,则m 的值为( )A .-8B .2C .-2D .-511x 的取值范围是( )A .>4xB .x ≥5x ≠C .>4x 且5x ≠D .45x << 12.已知a ,b 满足|a ﹣3|+(b +2)2=0,则单项式﹣5axa ﹣by 的系数和次数分别是( )A .﹣15,6B .﹣15,5C .﹣5,6D .﹣5,5 13.已知333411112212221A =++++++-,则A 与1的大小关系是( ). A .1A >B .1A =C .1A <D .无法确定 14.111100011000100011000n n n n ---⋅⋅⋅⨯⋅⋅⋅-⋅⋅⋅-⋅⋅⋅=个个个个( ) A .10n B .210n + C .210n D .2210n +15.在11,,0.2020,722πn 是大于3的整数)这5个数中,分数的个数为( )A .2B .3C .4D .516.点D 、E 、F 分别在ABC 的三边BC 、AB 、AC 上,且AD 、BF 、CE 相交于一点M ,若5AB AC BE CF+=,则AM MD =( ) A .72 B .3 C .52 D .217.计算=( )A 1B .1CD .218.有2014个数排成一行,其中任意相邻三个数中,中间的数等于它前后两数的和,若第一个数和第二个数都是1,则这2014个数的和等于( )A .2014B .1C .0D .-119.若p 为质数,33p +仍为质数,则3333p +的末位数字是( ).A .5B .7C .9D .不能确定 20.若1059,1417,2312分别被自然数x 除时,所得余数都是y ,则x y -=( ). A .15 B .1 C .164 D .179二、填空题21.能使2256n +是完全平方数的正整数n 的值为__________.22.在一张冬景照片上,人们分别戴着帽子、系着围巾和戴着手套.只戴帽子的人数等于只系围巾和只戴手套的人数之和;只有4人没有戴帽子;戴着帽子和系着围巾,但没有戴手套的有5人;只戴帽子的人数两倍于只系围巾者;未戴手套有8人,未系围巾有7人;三样东西都用的人数比只戴帽子的人数多一个.那么:(1)有______人同时用上了帽子、围巾和手套;(2)有______人只戴了手套;(3)有______人只系了围巾;(4)有______人既戴了帽子,又戴了手套,但没有系围巾;(5)有______人戴着手套.23.如图,ABC 中,90ACB ∠=︒,D 、E 分别在AC 、BC 边上,BE AD =,AE 、BD 相交于点F ,且4tan 3AFD ∠=,若13AE =,15BD =,则AD 的长为______.24.如图所示,正方形ABCD 的边长为10cm ,点E 在边CB 的延长线上且10cm EB =,点P 在边CD 上运动,EP 与AB 的交点为F .设cm DP x =,EFB △与四边形AFPD 的面积和为2cm y ,那么y 与x 之间的函数关系式是________.25.若方程219990x x a -+=有两个质数根,则=a ______.26.若实数,x y 满足333333331,134365456x y x y +=+=++++,则x y +=_____. 27.一组同学被分派去给1775棵小树苗浇水,每位同学每小时浇完30棵小树苗.1小时后,一些同学被分派去做其它工作;2小时后,相同数量的同学被分派去做其它工作;3小时后,又有相同数量的同学被分派去做其它工作;浇完这些小树苗共用3小时10分钟.则在开始的1.5小时内浇完的小树苗数为______.28.将若干个红、黑两种颜色的球摆成一行,要求两种颜色的球都要出现,且任意中间夹有5个或10个球的两个球必为同一种颜色的球.按这种要求摆放,最多可以摆放____个球.29.如果某数可以表示成91的某个倍数的数字和,就把这个数叫做“和谐数”那么,在1,2,…,2008中,和谐数的个数是_________.30.边长为整数,周长为12的三角形的面积的最大值是_________.31.如图,正方形ABCD 中,点E 在AB 边上且2AE BE =.连接CE ,取CE 边上中点G ,作GH CG ⊥且CG GH =,连接.CH 将CGH 绕着点C 逆时针旋转得到''.CG H当'H 恰好落在AH 的延长线上时,连接'.'HG CG 与'HH 交于F ,若AH =FH =______.32.有8个整数,它们都不是5的倍数,那么它们的4次方的和被5除,得到的余数是__________.33.4444412319901991+++++的个位数字是_________.34.已知k 为不超过50的正整数,使得对任意正整数n ,6312321n n k +⨯+⨯-都能被7整除.则这样的正整数k 有______个.35.如图,在△ABC 中,△B =△CAD ,32BD AC =,则ABD CADS S ∆∆=______36.1998年某人的年龄恰等于他出生的公元年数的数字之和,那么他的年龄是__________岁.37.若a ,b ,c ,d 为非负整数,且()()22221993a b c d ++=,则a b c d +++=_________.38.已知19921991199031555522A =+⋅+⋅+为自然数,则A 被3除的余数为______. 39.已知整数13456ab (a ,b 各表示一个数字)能被198整除,那么=a ______,b =_____.三、解答题40.分解因式:222222()()x x a a x a x a ++++.41.某项工程,甲工程队先做20天后,由于另有任务不做,由乙工程队接替,结果乙队再做50天就恰好完成任务.已知乙队单独完成任务的时间是甲队的2.5倍.请问:(1)甲队单独做需要多少天才能完成任务?(2)若甲工程队先做x 天后,由乙工程队接替,结果乙队再做y 天就恰好完成任务.其中x ,y 都是正整数,且甲队做的时间不到15天,乙队做的时间不到70天,那么两队实际各做了多少天?42.如图(1),大正方形的面积可以表示为()2a b +,同时大正方形的面积也可以表示成两个小正方形面积与两个长方形的面积之和,即222a ab b ++.同一图形(大正方形)的面积,用两种不同的方法求得的结果应该相等,从而验证了完全平方公式:()2222a b a ab b +=++.把这种“同一图形的面积,用两种不同的方法求出的结果相等,从而构建等式,根据等式解决相关问题”的方法称为“面积法”.(1)用上述“面积法”,通过如图(2)中图形的面积关系,直接写出一个等式:______;(2)如图(3),Rt ABC △中,90ACB ∠=︒,3CA =,4CB =,5AB =,CH 是斜边AB 边上的高.用上述“面积法”求CH 的长;(3)如图(4),等腰ABC 中,AB AC =,点O 为底边BC 上任意一点,OM AB ⊥,ON AC ⊥,CH AB ⊥,垂足分别为点M ,N ,H ,连接AO ,用上述“面积法”求证:OM ON CH +=.43.设,,,a b x y 满足2233443,7,16,42ax by ax by ax by ax by +=+=+=+=,求55ax by +的值.44.试比较1111(1)13521x n n =+++++-与1111()242y n n =+++的大小. 45.已知()1n n >个整数(可以相同)12,,,n x x x ,满足12129111n n x x x x x x +++==.求当n 取最小值时,12,,,n x x x 中的最大值. 46.计算:(1)2222123n +++⋯+;(2)3333123n +++⋯+.47.将8个数14,30,33,75,143,169,4445,4953分成两组,每组4个数,使一组中4个数的乘积与另一组中4个数的乘积相等,应该怎样分组?48.任给20个互不相等的正整数,每一个数都不大于100.证明:把这20个正整数两两相减(大减小)所得的差中至少有三个相等.49.如图.已知ABC 为等腰直角三角形,90A ∠=︒,D 、E 分别为AC BC 、上的两点,CD ,连接DE ,将DE 绕点E 逆时针旋转90︒得EF ,连接DF 与AB 交于点M .(1)如图1,当30DEC ∠=︒时,若2BC =AD 的长;(2)如图2,连接CF ,N 为CF 的中点,连接MN ,求证:MN =; (3)如图3,连接AF ,将AF 绕点A 顺时针旋转60︒得AG ,连接FG 、BG 、CG ,若4AC =,当ACG 周长取得最小值时,直接写出BCG 的面积.参考答案:1.D【分析】利用去绝对值符号,得出关于x 的解集范围,再根据整数的定义,求出符合条件的值的个数.【详解】解:||2x π<,22x ππ∴-<<,3.14π≈,6.28 6.28x ∴-<<, x 是整数,x ∴可取6,5,4,3,2,1,0,1,2,3,4,5,6------有13个,故选:D .【点睛】本题考查了去绝对值符号及无理数,解题的关键是:会去绝对值符号求解不等式的解集.2.D【详解】由2240ab b a ---=得2426122a b a a +==+--. a ,b 为正整数,226a ∴-∣. △3a =,27b = △4a =,14b = △15a =,3b = △28a =,2b =a b ∴+最大为30.3.D【分析】将等式变形可得()210a +,然后利用非负数性质得出12a n =-=,,然后将当1x =时,代入代数式求值即可.【详解】解:△x a =,代数式22x x +的值为1-,△221a a +=-,△()210a +=,△()210a +≥,△1020a n +=-=,,解得12a n =-=,, 当1x =时,代数式22123x x +=+=.故选择D .【点睛】本题考查完全平非负数性质,算术平方根非负性质,完全平方公式,代数式求值,掌握完全平非负数性质,算术平方根非负性质,完全平方公式,代数式求值是解题关键.4.B【分析】先移项得出x 4=16,再根据四次方根的定义求出方程的解即可.【详解】解:x 4-16=0,x 4=16,x =±2,即方程x 4-16=0的实数根的个数是2,故选:B .【点睛】本题考查了解高次方程,能求出x5.A【分析】需要根据题意确定d 的取值,然后依次可得出c 、b 、a 的最大值,继而可得出答案.【详解】解:△d <100,d 为整数,△d 的最大值为99,△4499396c d <=⨯=,c 为整数,△c 的最大整数为395,△333951185b c <=⨯=,b 为整数,△b 的最大整数为1184,△2211842368a b <=⨯=,a 为整数,△a 的最大整数为2367.故选:A【点睛】本题考查了整数问题,解答本题的关键是根据题意确定d 的值.6.B【详解】依题意0x ≥且2x ≥,故2x ≥,原方程化为1x x -1,所以3x =.故选B .7.B【详解】解:由一元二次方程的根与系数的关系可得122x x p +=-,1232x x p ⋅=--.△()22221212122464x x x x x x p p +=+-⋅=++, ()()()23321212121232496x x x x x x x x p p p ⎡⎤+=++-⋅=-++⎣⎦. △()232311224x x x x +=-+得()223312124x x x x +=-+,△()2246442496p p p p p ++=+++, △(43)(1)0p p p ++=,△10p =,234p =-,31=-p . 代入检验可知:以10p =,234p =-均满足题意,31=-p 不满足题意. 因此,实数p 的所有可能的值之和为1233044p p ⎛⎫+=+-=- ⎪⎝⎭. 故选B .8.B 【详解】因211111()4(2)(2)422n n n n n ==---+-+, 所以11111111148()()()()415263798102A ⎡⎤=⨯-+-+-++-⎢⎥⎣⎦ 1111111112()123499*********=⨯+++----11125121001011021()99=-⨯+++. 若设111112()99100101102B =⨯+++,则4163312 1.59911B <⨯⨯=<,且4243312 1.410217B >⨯⨯=>,故375373.5A B =->,且375373.6A B =-<,所以[]373A =.故选B9.C【分析】根据完全平方和算术平方根以及绝对值都是非负数,列出方程求解即可.【详解】解:根据题意,得,2(1)|3|0a c +-=,△a +1=0,2﹣b =0,c ﹣3=0,解得a =﹣1,b =2,c =3,所以a +b +c =﹣1+2+3=4.故选:C .【点睛】本题考查了完全平方和算术平方根以及绝对值都是非负数,非负数的性质:几个非负数的和为0,那么这几个数都为0,掌握非负数的性质是解题的关键.10.B【分析】利用多项式乘以多项式法则展开,再根据对应项的系数相等列式求解即可.【详解】解:△22(3)(5)21515x x x x x mx -+=+-=-+,△2m =.故选:B .【点睛】本题主要考查了多项式乘以多项式,恒等原理等,熟练掌握多项式乘以多项式的法则,恒等的两个代数式对应项系数相等,是求解的关键.11.C【详解】依题意得270321544x x x x x x x x ⎧⎧-≥≤≥⎪⎪-≠⇒≠≠⎨⎨⎪⎪>>⎩⎩且,4x ⇒>且5x ≠.故选C . 12.A【分析】先根据绝对值和偶次方的非负数的性质得出a ﹣3=0,b +2=0,解方程求出a 与b ,然后代入单项式得出单项式,根据单项式的系数与次数定义求解即可.【详解】解:△|a ﹣3|+(b +2)2=0,|a ﹣3|≥0,(b +2)2≥0,△根据绝对值与偶次方非负数性质可得a ﹣3=0,b +2=0,解得a =3,b =-2,△单项式﹣15x5y 的系数为-15,次数为5+1=6次.故选择A .【点睛】本题考查绝对值与偶次方非负数性质,单项式的次数与系数,解一元一次方程,掌握非负数性质,和单项式相关定义是解题关键.13.C【详解】解 因11111818910158A =++++<⨯=.故选C 14.C 【详解】原式()()221011011010n n n n =+-+-= 15.B【分析】先把12【详解】解:1111222==-,当(3)n n >n 与2n -不可能同时取到完全平方数,设2n s =,22n t -=,有222s t -=,()()21s t s t +-=⨯, △2s t +=,1s t -=, △32s =,12t =不是整数解,不是分数. 2π是无理数,不是分数, 故分数有三个:17,0.2020,12. 故选:B .【点睛】本题考查的是实数的分类,把12进行化简是解答此题的关键.16.B 【详解】设AM t MD =,由题设可得AMC DMC BMC BMC S tS AE EB S S ==△△△△,AMB BMD BMCBMC S tS AF FC S S ==△△△△, 所以22DMC BMD BMC BMC tS tS AB AC AE AF BE CF EB FC S S ∆∆+=++=++△△ ()222DMC BMD BMC BMC BMCt S S tS t S S +=+=+=+△△△△△, 又已知5AB AC BE CF +=,所以25t +=,所以3t =,即3AM MD=. 17.B【详解】1)(31=-+=.18.B【详解】由已知可知,前n 个数的排列顺序为1,1,0,-1,-1,0,1,1,0,…由此可见,从第7个数开始循环,即每隔6个数循环,这6个数的和等于0.又因为201463354=⨯+,所以这2014个数的和等于1,故选B .19.A【详解】由33p +为质数可知p 为偶数,又p 为质数,则2p =.故()833334332332233p +=+=⨯+. 因为()842的末位数字为6,故()8422⨯的末位数字为2.因此,3333p +的末位数字为5. 20.A【详解】设三数除以x 的商分别为a ,b ,c ,则可得1059,1417,2312.ax y bx y cx y +=⎧⎪+=⎨⎪+=⎩①②③ △-△得()3582179b a x -==⨯,△-△得()8955179c b x -==⨯,△-△得()12537179c a x -==⨯.即179,164x y ==.故15x y -=.21.11【详解】当8n <时,()82256212n n n -+=+,若它是完全平方数,则n 必为偶数.若2n =,则22256265n +=⨯;若4n =,则42256217n +=⨯;若6n =,则6225625n +=⨯;若8n =,则8225622n +=⨯.所以,当8n ≤时,2256n +都不是完全平方数.当8n >时,()882256221n n -+=+,若它是完全平方数,则821n -+为一奇数的平方.设8221(21)n k -+=+(k 为自然数),则102(1)n k k -=+.由于k 和1k +一奇一偶,所以1k =,于是1022n -=,故11n =.22. 3 1 1 4 10【详解】如图,按题目中条件顺序依次可列方程:(1)A C F =+;(2)4C E F ++=;(3)5B =;(4)2A C =;(5)8A B C ++=;(6)7A G F ++=;(7)1D A =+.可求出2,5,1,3,2,1,4A B C D E F G =======.于是,题目中各空白区应填入的数依次是△3,△1,△1,△4,△10.23.【分析】作出辅助线,由AAS 证明△ADM ≅△BEH ,再由4tan tan 3DM BH AFD BFH FM FH ∠∠====,设DM =4x ,FM =3x ,BH =4y ,FH =3y ,利用勾股定理列式计算即可求解.【详解】解:过B 作BH △AE 交AE 的延长线于H ,过D 作DM △AE 于M ,△△ACB =△AHB =90︒,△A 、C 、H 、B 四点共圆,△△CAH =△CBH ,即△DAM =△EBH ,△BE =AD ,△DMA =△EHB =90︒,△△ADM ≅△BEH (AAS ),△DM =EH ,AM =BH , △4tan tan 3DM BH AFD BFH FM FH ∠∠====, 设DM =4x ,FM =3x ,BH =4y ,FH =3y ,△DM =EH =4x ,AM =BH =4y ,EF =FH -EH =3y -4x ,AE =AM +MF +FE =4y +3x +(3y -4x )=7y -x =13,△BD =DF +BF 5515x y +=,△由△△解得:1x =,2y =,△DM =4,AM =8,△AD=故答案为:【点睛】本题考查了全等三角形的判定和性质,锐角三角函数的定义,勾股定理等知识,解题的关键是学会利用参数构建方程组解决问题,24.550(010)y x x =+<<【详解】解 由DP x =得10PC x =-. 又12BF BE PC EC ==,即11(10),10(10)22BF x AF BF x =-=-=+, 所以EFB AFPD y S S =+四边形11()22BE BF AF DP AD =⨯⨯++⨯ 111110(10)(10)102222x x x ⎡⎤=⨯⨯-+++⨯⎢⎥⎣⎦550(010)x x =+<<.故应填550(010)y x x =+<<.25.3994【详解】设219990x x a -+=的两根为12,x x ,则12121999,x x x x a +==.因1999必是一个偶数与一个奇数之和,且偶数中只有2为质数,故12,x x 中必有一个为2,另一个为199921997-=,所以219973994a =⨯=.故填3994.26.432【详解】解 因题目中条件去分母整理后可写为:()()()223323333346364460x y x y -+--⋅-+-⋅=, (()()()223323333546564460x y x y -+--⋅-+-⋅=,故依题目条件知33t =或35t =是关于t 的方程()()23333334664460t x y t x y -+---+-⋅=的两根.由韦达定理,得33333546x y +=+--,所以33333456432x y +=+++=.27.945【详解】设开始有n 位同学,每次有k 位同学被分派去做其它工作.因为每位同学浇完一棵小树苗需要2分钟,所以10分钟内每位同学浇完5棵小树苗.因此,3030()30(2)5(3)1775n n k n k n k +-+-+-=即21355.19k n +=. 因为n 和k 都是正整数,所以21355k +必须是19的倍数.并且使得n ,n k -,2n k -和3n k -也是正整数的k 值仅有一个,即3k =,从而22n =.故在开始的1.5小时内浇完的小树苗数为30221519945.⨯+⨯=28.15个球【详解】解:先画一个“初始图”:○ A B C D E ○ A B C D E ○按照题目要求,逐一确定各个字母的颇色,得到:○ ○ ○ ○ D ○ ○ ○ ○ ○ D ○显然,D 应为黑色.即:○ ○ ○ ○ ● ○ ○ ○ ○ ○ ● ○再按要求尝试增加小球,确定最后结果如下:○ ○ ○ ○ ● ○ ○ ○ ○ ○ ● ○ ○ ○ ○29.2007【详解】理由:注意到91713=⨯.数字和为1的数不是91的倍数.1001,10101,10011001,101011001,100110011001,1010110011001,…都是91的倍数,而它们的数字和依次是2,3,4,5,6,7,…因此,在1,2,…,2008中,能够表示成91的某个倍数的数字和的数的个数是2007.故答案为:2007.30.【详解】设三角形的三边长分别为a ,b ,c ,且a b c ≤≤,则12a b c ++=.可得312c ≥,即4c ≥.又因为a b c +>,所以212c <,即6c <.故46c ≤<,c 可取4或5.当4c =时,4,8a b a b ≤≤+=,所以4a b ==.此时三角形面积为214S == 当5c =时,7a b +=.当1a =时,6b =.此时a c b +=,不合题意.当2a =时,5b =.此时三角形面积为2122S =⋅ 当3a =时,4b =. 此时三角形为直角三角形,三角形面积为313462S =⋅⋅=.显然132S S S >>,所以所求最大面积为31【分析】连接BH ,EH ,设CG 、BH 交于点O ,证明B 、C 、H 、E 四点共圆,CBH △ABH ,求得BC 、AE 的长,过点E 作EM AH ⊥于点M ,作G 关于CH 的对称点J ,连接CJ 交AH 于点T ,过点T 作TN CH ⊥于点N ,则四边形CGHJ 是正方形,设AM a =,则HM AH a ==,由勾股定理及全等三角形的判定与性质即可得到答案.【详解】连接BH ,EH ,设CG 、BH 交于点O ,四边形ABCD 是正方形,90ABC ∴∠=︒,BA BC =,GH CG ⊥且CG GH =,CGH ∴是等腰直角三角形, G 是CE 边上的中点,CG GE ∴=,HC HE ∴=,CHE ∴是等腰直角三角形,B ∴、C 、H 、E 四点共圆,△CH CH =,45CBH CEH ∴∠=∠=︒,45HBA HBC ∴∠=∠=︒,在CBH 和ABH 中,CB AB CBH ABH BH BH =⎧⎪∠=∠⎨⎪=⎩,CBH ∴≌()ABH SAS ,CH AH ∴=,正方形ABCD 中,点E 在AB 边上且2AE BE =,3BC BE ∴=,CE ∴,CHE △是等腰直角三角形,CH ∴==,CH AH ==,2BE ∴=,36BC BE ∴==,4AE =,过点E 作EM AH ⊥于点M ,作G 关于CH 的对称点J ,连接CJ 交AH 于点T ,过点T 作TN CH ⊥于点N ,则四边形CGHJ 是正方形,设AM a =,则HM AH a ==,在Rt AME 中,222EA AM EM -=,在Rt HME 中,222HE HM EM -=,2222EA AM HE HM ∴-=-,即22224)a a -=-,MA ∴=HM∴==EM∴==3tan4HMHEMEM∴∠==,3sin5HMHEMHE∠==,90CHE∠=︒,90CHJ EHM∴∠+∠=︒,90EHM HEM∠+∠=︒,CHJ HEM∴∠=∠,CJ AH⊥,EM AH⊥,90EMH HJC∴∠=∠=︒,在CJH和HME中,EMH HJCCHJ HEMCH HE∠=∠⎧⎪∠=∠⎨⎪=⎩,CJH∴≌()HME AAS,JH EM∴=,THN THC HEM∴∠=∠=∠,3tan4THN∴∠=,3sin5THN∠=,3tan4TNTHNNH∴=∠=,3sin5TNTHNTH=∠=,设3TN b=,则4NH b=,353sin5TN bTH bTHN===∠,45HCG∠=︒,四边形CGHJ是正方形,45TCN∴∠=︒,3CN TN b==,7CH b∴=,b∴=,JT JH TJ ∴=-== 将CGH 绕着点C 逆时针旋转得到''CG H ,'CH CH ∴=,'45HCG HCG ∠=∠=︒,45FCH TCH ∴∠=∠=︒,'CH CH =,'FH C THC ∴∠=∠,在THC 和'FH C 中,''FH C THC CH CH FCH TCH ∠=∠⎧⎪=⎨⎪∠=∠⎩, THC ∴≌()'FH C ASA ,'H F HT ∴=,'CH CH =,'CJ HH ⊥,'JH JH ∴=,''JH TH JH FH ∴-=-,即FJ TJ JH =+==【点睛】此题考查了直径所对的圆周角是直角,解直角三角形,全等三角形的判定与性质,添加辅助线并求得正方形的边长是解题的关键.32.3【详解】一个整数不是5的倍数,它的个位数字可能是1,2,3,4,6,7,8,9,把它们4次方后,研究它们的个位数字,分别是:444411;216;381;4256====;444461296;72401;84096;96561====.即它们的个位数字不是1就是6,并且6被5除也是余1.所以一个不是5的倍数的整数,它的4次方被5除一定余1.这8个整数,它们的4次方的和被5除所得余数为3.33.8【详解】理由:4444123101616561613(mod10)++++≡++++++++≡, 4441112203(mod10)+++≡,……4441981198219903(mod10)+++≡,从而4444123199031997(mod10)++++≡⨯≡,则4444412319901991718(mod10)+++++≡+≡. 所以4444412319901991+++++的个位数字是8.34.7 【详解】填7.理由:6312321n n k +⨯+⨯-2227281n n k =⨯+⨯-22(1)21n k ≡⨯-+-21(mod7)k ≡+.但63123210(mod 7)n n k +⨯+⨯-≡,则210(mod7)k +≡,即217k m +=(m 为奇数).因为150k ≤≤,所以,37101m ≤≤. 故1,3,,13m =,相应的3,10,,45k =,共7个.35.3【分析】由题中条件可得△ACD △△BCA ,得出AC 2=CD •BC ,利用等式的性质进行恒等变式,可得221=0DC BD DC AC AC AC+⋅-,设DC x AC =,建立方程,解方程可求得1=2DC AC ,再根据相似三角形的性质,可求得1=4ADC ABC S S △△,可得3=4ABD ABC S S △△,据此即可求得. 【详解】解:△△B =△CAD ,△C =△C , △△ACD △△BCA , △=AC DC BC AC,即AC 2=DC •BC ,得()22==AC BD DC DC BD DC DC +⋅⋅+, 可得222=1BD DC DC AC AC⋅+, 得221=0DC BD DC AC AC AC+⋅-, 设DC x AC=, 32BD AC =, 23102x x ∴+-=, 解得112x =,22x =-(舍去), 1=2DC AC ∴, 2==4ABC ADC S AC S DC ⎛⎫ ⎪⎝⎭△△, 1=4ADC ABC S S ∴△△, 3==4ABD ABC ADC ABC S S S S ∴-△△△△, 34314ABC ABDCAD ABC S S S S ∆∆==△△, 故答案为:3.【点睛】本题考查了相似三角形的判定与性质,等式的恒等变式,利用方程求解,解题的关键是利用等式的性质进行恒等变式.36.18【详解】设某人出生于19xy 年,则他的年龄应为1910x y x y +++=++(岁).所以19981910xy x y -=++,即981010x y x y --=++,得11288x y +=,则88112x y -=. 又易知x 只能取偶数取0,2,4,6,8x =,相应地,44,33,22,11,0y =.只有8,0x y ==满足条件.所以所求年龄为18岁.37.56【详解】因为1993是质数,22a b +与22c d +都是正整数,所以22a b +与22c d +分别取值1与1993.若22221,1993a b c d +=+=.(1)221a b +=.可知0,1a b ==或1,0a b ==.因此1a b +=.(2)221993c d +=.若31,31c d ≤≤,则22223119921993c d +≤⨯=<.所以c ,d 中至少有一个大于31.又由于24520251993=>.因此,若设c 为c ,d 中较大的一个,则3244c ≤≤.依次取32,33,,43,44c =,可得只有2199343-是完全平方数.所以43,12c d ==或12,43c d ==,则55c d +=.因此,15556a b c d +++=+=.当22221993,1a b c d +=+=,同样可得所求和为56.38.2【详解】填2.理由:199219901990199219903155555585522A =+⋅⋅+⋅+=+⋅+. 因为45被3除余数为1,所以199219905252A ≡+⋅+()()49849744252522≡+⋅⋅+498349712112≡+⋅⋅+5≡2(mod3)≡.所以A 被3除的余数为2.39. 8 0【详解】解 设13456n ab =.因为1982911=⨯⨯,所以n 被9整除,即1345619a b a b ++++++=++能被9整除,所以8a b +=或17a b +=.因为n 能被11整除,所以(146)(35)3a b a b +++-++=-+能被11整除.所以8a b -=或3a b -=-.联立方程组8,8a b a b +=⎧⎨-=⎩;8,3;a b a b +=⎧⎨-=-⎩17,8;a b a b +=⎧⎨-=⎩17,3.a b a b +=⎧⎨-=-⎩ 可得只有第1个和第4个方程组有整数解8,0,a b =⎧⎨=⎩和7,10.a b =⎧⎨=⎩ 而10b =不合题意,所以8,0a b ==.40.222()x ax a ++【详解】解法一 原式222222[()()]x x a a x a a x =++++22222()()x a x a a x ++=+222222()(2)x a x ax a a x =++++222222()2()()x a ax x a ax =++++222()x a ax =++222()x ax a =++.解法二 原式22222[()]()x x a a a x a =++++22222(22)()x x ax a a x a =++++2222()2()[()]x x a x a a x a =++++⋅22[()]x a x a =++222()x ax a =++.41.(1)甲队单独做需要40天才能完成任务;(2)甲队实际做了14天,乙队做了65天.【分析】(1)甲队单独做需要x 天才能完成任务,则乙队单独做需要2.5x 天才能完成任务,总任务量为1,根据题意列分式方程,求解即可得到答案;(2)根据题意列分式方程,整理得到51002y x =-,再根据x 、y 的取值范围得不等式,求整数解即可得到答案.【详解】(1)解:甲队单独做需要x 天才能完成任务,则乙队单独做需要2.5x 天才能完成任务,由题意得:11205012.5x x⨯+⨯=, 解得:40x =,2.5100x =, 经检验,40x =是原方程的解,答:甲队单独做需要40天才能完成任务;(2)解:由题意得:11140100x y +=, 整理得:51002y x =-,70y <,5100702x ∴-<, 12x ∴>,15x <且为整数,13x ∴=或14,当13x =时,51100136722y =-⨯=,不是整数,不符合题意,舍去,当14x =时,510014652y =-⨯=,答:甲队实际做了14天,乙队做了65天.【点睛】本题考查了分式方程的应用,不定方程求特殊解。
数学竞赛初中试题及答案

数学竞赛初中试题及答案一、选择题(每题3分,共30分)1. 下列哪个数是最小的正整数?A. 0B. 1C. -1D. 2答案:B2. 计算下列表达式的值:(3x^2 - 2x + 1) + (x^2 + 4x - 3) = ?A. 4x^2 + 2x - 2B. 4x^2 + 2x + 2C. 5x^2 + 2x - 2D. 5x^2 + 2x + 2答案:D3. 一个圆的半径是5厘米,那么它的周长是多少?A. 10π厘米B. 20π厘米C. 25π厘米D. 30π厘米答案:C4. 如果一个数的平方是36,那么这个数是?A. 6B. ±6C. 36D. ±36答案:B5. 以下哪个分数是最简分数?A. 6/8B. 9/12C. 5/10D. 7/14答案:B6. 一个等差数列的第一项是2,公差是3,那么第5项是多少?A. 17B. 14C. 11D. 8答案:A7. 下列哪个图形的面积是最大的?A. 边长为4的正方形B. 半径为2的圆C. 长为5,宽为3的矩形D. 底为6,高为2的三角形答案:B8. 一个正方体的体积是27立方厘米,那么它的表面积是多少?A. 54平方厘米B. 63平方厘米C. 81平方厘米D. 108平方厘米答案:A9. 一个数的立方根是2,那么这个数是?A. 6B. 8C. 2D. 4答案:D10. 下列哪个方程的解是x=2?A. x^2 - 4x + 4 = 0B. x^2 - 3x + 2 = 0C. x^2 - 5x + 6 = 0D. x^2 - 6x + 9 = 0答案:A二、填空题(每题4分,共20分)11. 一个数的相反数是-5,那么这个数是________。
答案:512. 一个等腰三角形的底边长是6厘米,两腰长分别是8厘米,那么这个三角形的周长是________厘米。
答案:2213. 如果一个数除以3余1,除以5余2,那么这个数最小是________。
(完整word版)初二数学竞赛试题及答案一,文档

初二数学竞赛试题及答案一〔说明:本卷可使用计算器,考试时间120 分钟,总分值120 分〕一、选择题〔每题 5 分,共 30 分〕1、使a b a b 成立的条件是〔〕A 、 ab> 0B、 ab> 1C、 ab≤ 0 D 、 ab≤ 12、某商品的标价比本钱价高p%,当该商品降价出售时,为了不亏损本钱,售价的折扣〔即降价的百分数〕不得超过 d%,那么 d 可用 p 表示为〔〕A 、pp B 、 p C、 100 p D、 100 p100100 p100 p3、有一种足球由32 块黑白相间的牛皮缝制而成,黑皮为正五边形,白皮为正六边形,且边长都相等,那么白皮的块数是〔〕A 、 22B 、 20C、 18 D 、 164、某个班的全体学生进行短跑、跳高、铅球三个工程的测试,有5 名学生在这三个工程的测试中都没有到达优秀,其余学生到达优秀的工程、人数如下表:短跳铅短跑、跳高、跑高球跳高铅球铅球、短跑短跑、跳高、铅球1718156652那么这个班的学生总数是〔〕A 、 35B 、 37C、 40 D 、 485、甲、乙、丙三个学生分别在 A 、B 、C 三所大学学习数学、物理、化学中的一个专业,假设:①甲不在 A 校学习;②乙不在 B 校学习;③在 B 校学习的学数学;④在 A 校学习的不学化学;⑤乙不学物理,那么〔〕A 、甲在B 校学习,丙在 A 校学习B、甲在 B 校学习,丙在C 校学习C、甲在 C 校学习,丙在 B 校学习 D 、甲在 C 校学习,丙在 A 校学习6、: a、b 是正数,且 a+b=2,那么a21b2 4 的最小值是〔〕A 、13B 、5C、25 D 、7二、填空题〔每题 5 分,共30 分〕7、2x=a, 3x=t,那么24x=(用含 a,t 的代数式表示 )8、△ ABC 中, AB=AC=5 , BC=6 ,点 F 在 BC 上,那么点 F 到另外两边的距离和是21999( x 2) 3( x 1) 211 的值为9、x5x0 ,那么代数式x2C 10、如图,正方形ABCD 的面积为 256,D点 F 在 AD 上,点 E 在 AB 的延长线上,F 直角△ CEF 的面积为200,那么 BE =.11、把 7 本不同的书分给甲、乙两人,A BE 甲至少要分到 2 本,乙至少要分到 1 本,两人的本数不能只相差1,那么不同的分法共有种 .12、如果用两个 1,两个2,两个3,两个 4,要求排成具有以下特征的数列:一对 1 之间正好有一个数字,一对2之间正好有两个数字,一对3之间正好有三个数字,一对 4 之间正好有四个数字,请写出一个正确答案.三、解答〔每小15 分,共 60 分〕13、某商店有 A 种本出售,每本零售0.30 元,一打〔 12 本〕售价 3.00 元, 10 打以上的,每打可以按2.70 元付款 .(1〕初二〔 1〕班共 57 人,每人需要 1 本 A 种本,班集体去,最少需要付多少元?(2〕初三年共 227 人,每人需要 1 本 A 种本,年集体去,最少需付多少元?14、察式子1×2× 3× 4+ 1=5 22× 3×4× 5+ 1=112B3× 4×5× 6+ 1=192⋯⋯〔1〕猜测 20000× 20001× 20002× 20003+1=〔〕2〔2〕写出一个具有普遍性的,并出明. 15、如:四形ABCD 中, AD = DC,∠ ABC = 30°,∠ADC = 60° .探索以 AB 、 BC、 BD ,能否成直角三角形,并明理由 .AC16、四位数abcd是一个完全平方数,且D ab 2cd 1,求个四位数.[参答 ]1、C2、C3、 B4、C5、 A6、A7、a3 t8、9、 200410、 1211、 4912、 41312432 或 2342131413、〔1〕可买 5 打或 4 打 9 本,前者需付款× 5=,后者只需付款× 4+× 9= 14.7 元 .故该班集体去买时,最少需付14.7 元.〔2〕227= 12×18+11,可买 19 打或 18 打加 11 本,前者需付款×19=;后者需付款 2.70 ×18+×11=51.9 元,比前者还要多付 0.6 元.故该年级集体去买,最少需付 51.3 元.14、〔1〕 400060001〔2〕对于一切自然数n,有 n〔n+1〕 (n+2)(n+3)+1=(n2+3n+1)2.证略故20000×20001×20002× 20003+1=〔 200002+3×20000+1〕2.=400060001215、明:以BC 作等△ BCE , AE 、 AC.因∠ ABC = 30°,∠ CBE = 60°,所以∠ ABE =90°,所以 AB 2+ BE2=AE 2①, AD = DC ,∠ ADC = 60°,所以△ ADC 是等三角形.因在△ DCB 和△ ACE 中, DC= AC ,∠DCB =∠ DCA +∠ ACB =∠ ECB +∠ ACB =∠ ACE ,而BC =CE,所以△ DCB ≌△ ACE ,所以 BD = AE,而 BC =BE ,由①式,得BD 2=AB 2+ BC 2BA ECD16、设abcd m 2,那么32≤m≤99.又设 cd x ,那么 ab 2x 1.于是100〔2x+1〕+x=m2,201x= m2-100即67×3x=〔 m+10〕 (m-10).由于 67 是质数,故 m+10 与 m- 10 中至少有一个是67 的倍数 .〔1〕假设 m+10=67k〔k 是正整数〕,因为 32≤m≤99,则m+10=67,即 m=57.检验知 572=3249,不合题意,舍去 .〔2〕假设 m-10=67k〔k 是正整数〕,那么 m-10=67, m=77.所以, abcd 77 25929.。
奥数-2008学年第二学期八年级数学全科竞赛试卷(含答案)-

2008学年第二学期八年级数学全科竞赛试卷(满分120分,考试时间90分钟)一、仔细选一选 (共30分)1.下列计算正确的是( )A .(13-)2=-13B .32-22=1C .-35+5=-25 D.36=±62.李师傅在检验一座雕塑底座(如图)正面时,测得CD=AB=40cm, AD=BC=30cm,AC=DB=50cm,那么可以判断四边形ABCD 是( )A.平行四边形B.矩形C.菱形D.正方形3.下列命题中,真命题的是( )A.两条对角线相等的四边形是矩形;B.两条对角线垂直且相等的四边形是正方形;C.两条对角线垂直的四边形是菱形;D.两条对角线相等的平行四边形是矩形.4.剪纸是中国的民间艺术,剪纸方法很多,下面是一咱剪纸方法的图示(先将纸折叠,然后再剪,展开后即得到图案):下列四幅图案,不能用上述方法剪出的是:5.下面是李刚同学在一次测验中解答的填空题,其中答对的是( )A.若2,42==x x 则 B.方程()1212-=-x x x 的解是1=x C.若直角三角形有两边长分别是3和4,则第三边的长为5.D.若分式23221x x x x -+=-的值为零,则6.一次统计八(1)班若干名学生每分钟跳绳次数的频数分布直方图如上图所示.由这个直方图可知;这若干名学生平均每分钟跳绳的次数(结果精确到个位)是( ).个A.数据不全无法计算B.103C.104D.1057.如图,以正方形ABCD 的对角线AC 为边,延长AB 到E,使AE=AC,以AE 为一边作菱形AEFC,若正方形的边长为2,则菱形AEFC 的面积为( ).A.24B.4C.22D.28.用反证法证明:已知在Rt △ABC 中,∠C=90°,求证: ∠A, ∠B 中至少有一个角不大于45°,应假设 ( )A.∠A > 45°B.∠B > 45°C.∠A > 45°,∠B > 45°D.∠A< 45°,∠B <45°9.在平面直角坐标系中,直线l 分别交x 轴、y 轴的正半轴于点N 、M ,正方形ABCD 内接于 Rt △MON ,点A 、B 分别在线段MO 、NO 上,点C 、D 在线段MN 上。
八年级上册数学竞赛试题及答案

八年级上册数学竞赛试题及答案 ①计算:定义一种新运算 a☆b 满足:a☆b=b×10+a×2.那么2020☆130=_____________.
②从 1999 年到2020 年的12 年中,物价涨幅为150%(即1999 年用100 元能购买的物品,2020 年要比原来多花150 元才能购买).若某个企业的一线员工这12 年来工资都没变,按购买力计算,相当于工资下降了 %.
③右图中大圆的半径是 20 厘米,7 个小圆的半径都是10 厘米.那么阴影图形的面积是 平方厘米(π取3.14).
④某届“数学解题水平展示”读者评选活动初试共有12000 名学生参加,分为初中、小学高年级、小学中年级三个组别.小学的两个组共占总人数的___________.
⑤右图是一个除法竖式.这个除法竖式的被除数是___________. ⑥算式 1!×3-2!×4+3!×5-4!×6++2009!×2020-2020!×2020+2020!的计算结果是___________.
⑦春节临近,从2020 年1 月17 日(星期一)起工厂里的工人陆续回家过年,与家人团聚.若每天离厂的工人人数相同,到1 月31 日,厂里还剩下工人121 名,在这15 天期间,统计工厂工人的工作量是2020 个工作日(一人工作一天为1 个工作日,工人离厂当天及以后不需要统计).其中周六、日休息,且无人缺勤.那么截至到1 月31 日,回家过年的工人共有___________人.
⑧有一个整数,它恰好是它的约数个数的2020 倍.这个整数的最小值是___________.
⑨一个新建 5 层楼房的一个单元每层有东西2 套房;各层房号如右图所示,现已有赵、钱、孙、李、周五家入住.一天他们5 人在花园中聊天: 赵说:“我家是第3 个入住的,第1 个入住的就住我对门.” 钱说:“只有我一家住在层.”
孙说:“我家入住时,我家的同侧的上一层和下一层都已有人入住了.” 李说:“我家是五家中最后一个入住的,我家楼下那一层全空着.” 周说:“我家住在106 号,104 号空着,108 号也空着.”
2000-2017年(大同杯原新知杯)历年上海市初中数学竞赛试卷和参考答案
上海市大同杯(原新知杯、宇振杯)初中数学竞赛试题和参考答案目录2017年上海市初中数学竞赛(大同中学杯)试题 3 2017年上海市初中数学竞赛(大同中学杯)试题参考答案 6 2016年上海市初中数学竞赛(大同中学杯)试题11 2016年上海市初中数学竞赛(大同中学杯)试题参考答案14 2015年上海市初中数学竞赛(大同中学杯)试题18 2015年上海市初中数学竞赛(大同中学杯)试题详解22 2014年上海市初中数学竞赛(大同中学杯)试题29 2014年上海市初中数学竞赛(大同中学杯)试题参考答案31 2013年上海市初中数学竞赛(新知杯)试题35 2013年上海市初中数学竞赛(新知杯)试题参考答案38 2012年上海市初中数学竞赛(新知杯)试题43 2012年上海市初中数学竞赛(新知杯)试题详解46 2011年上海市初中数学竞赛(新知杯)试卷50 2011年上海市初中数学竞赛(新知杯)试卷详解53 2010年上海市初中数学竞赛(新知杯)试卷59 2010年上海市初中数学竞赛(新知杯)试卷详解61 2009年上海市初中数学竞赛(新知杯)试卷68 2009年上海市初中数学竞赛(新知杯)试卷参考答案71 2008年上海市初中数学竞赛(新知杯)试卷752008年上海市初中数学竞赛(新知杯)试卷参考答案79 2007年上海市初中数学竞赛(新知杯)试卷81 2007年上海市初中数学竞赛(新知杯)试卷答案详解83 2006年上海市初中数学竞赛(新知杯)试卷87 2006年上海市初中数学竞赛(新知杯)试卷答案详解90 2005年上海市初中数学竞赛(宇振杯)试卷94 2005年上海市初中数学竞赛(宇振杯)试卷参考答案97 2004年上海市初中数学竞赛(宇振杯)试卷99 2004年上海市初中数学竞赛(宇振杯)试卷参考答案101 2003年上海市初中数学竞赛(宇振杯)试卷104 2003年上海市初中数学竞赛(宇振杯)试卷参考答案106 2002年上海市初中数学竞赛(宇振杯)试卷107 2002年上海市初中数学竞赛(宇振杯)试卷参考答案108 2000年上海市初中数学竞赛(弘晟杯)试题110 2000年上海市初中数学竞赛(弘晟杯)试题参考答案1112017年上海市初中数学竞赛(大同中学杯)试卷一、 填空题(每题10分,共80分)1. 已知抛物线c bx ax y ++=2过点(0,0),(22.5,2020.5),(62.5,1812.5),则抛物线与x 轴的另一交点的横坐标为 (精确到0.001)。
全国数学竞赛初二试题及答案
全国数学竞赛初二试题及答案一、选择题(每题5分,共20分)1. 已知a,b,c是三角形的三边长,且满足a^2 + b^2 = c^2,那么这个三角形是:A. 锐角三角形B. 直角三角形C. 钝角三角形D. 不规则三角形2. 一个数的平方根是4,这个数是:A. 16B. -16C. 正负16D. 正负43. 一个正数的倒数是1/5,这个正数是:A. 5B. 1/5C. 5/1D. 14. 一个数的绝对值是3,这个数可能是:A. 3B. -3C. 3或-3D. 不能确定二、填空题(每题4分,共16分)1. 已知一个等差数列的首项是2,公差是3,那么第5项的值是________。
2. 一个圆的半径是5厘米,那么它的周长是________厘米。
3. 一个长方体的长、宽、高分别是2厘米、3厘米和4厘米,那么它的体积是________立方厘米。
4. 一个分数的分子是8,分母是15,化简后是________。
三、解答题(每题8分,共24分)1. 解方程:2x + 5 = 13。
2. 已知一个长方体的长、宽、高分别是a、b、c,求证:长方体的对角线长度为√(a^2 + b^2 + c^2)。
3. 一个直角三角形的两条直角边分别是6厘米和8厘米,求斜边的长度。
四、证明题(每题10分,共20分)1. 证明:在直角三角形中,斜边的中线等于斜边的一半。
2. 证明:勾股定理的逆定理:如果三角形的三边长a、b、c满足a^2 + b^2 = c^2,则这个三角形是直角三角形。
五、综合题(每题20分,共20分)1. 一个长方体的长、宽、高分别是5厘米、4厘米和3厘米,求这个长方体的表面积和体积。
答案:一、选择题1. B2. A3. A4. C二、填空题1. 2 + 4 * (5-1) = 142. 2πr = 2 *3.14 * 5 = 31.43. 长 * 宽 * 高 = 2 * 3 * 4 = 244. 8/15三、解答题1. 2x = 13 - 5 => x = 42. 证明略3. 根据勾股定理,斜边长度= √(6^2 + 8^2) = √(36 + 64) = √100 = 10厘米四、证明题1. 证明略2. 证明略五、综合题1. 表面积 = 2(5*4 + 4*3 + 5*3) = 2(20 + 12 + 15) = 2 * 47 = 94平方厘米体积 = 5 * 4 * 3 = 60立方厘米结束语:本次全国数学竞赛初二试题涵盖了基础数学知识与应用,旨在考察学生的数学思维和解决问题的能力。
历年初中希望杯数学竞赛试题大全
历年初中希望杯数学竞赛试题大全][ 真诚为您服务试试题希望杯”全国数学邀请赛初二第 2 ·2009 年第20 届“次·161 ·[4-30]★ 详细简介请参考下载页]·[ 竞赛 2 试试题届“希望杯”全国数学邀请赛初一第年第·200920 次·153 ·[4-28]详细简介请参考下载页★]·[ 竞赛数学大赛初赛试卷(扫描版)届5“希望杯”年湖北省黄冈市第·2009 ·76 次·[4-17]★ 详细简介请参考下载页]·[ 竞赛试试题”全国数学邀请赛初二第1·2009 年第20 届“希望杯次·133 ·[4-7]对不起,尚无简介☆]竞赛·[ 试试题全国数学邀请赛初一第 1 届“希望杯”20 ·2009年第·122 次·[4-7]详细简介请参考下载页★]·[ 竞赛全国数学邀请赛初二训练题”第十四届“希望杯·次·44 ·[9-9]详细简介请参考下载页★]竞赛·[ 2 试试题“希望杯”全国数学邀请赛初一第19 ·2008年第届次·203 ·[9-4]详细简介请参考下载页★]·[ 竞赛 1 ”“19 ·2008 年第届希望杯全国数学邀请赛初一第试试题次·169 ·[9-4]详细简介请参考下载页★]竞赛·[ 试试题全国数学邀请赛初二第219 年第届“希望杯”·2008 次·156 ·[9-2]详细简介请参考下载页★]·[ 竞赛 1 试试题希望杯”全国数学邀请赛初二第“·2008 年第19 届·146 次·[9-2]详细简介请参考下载页★]竞赛·[ 2 试试题”届“希望杯全国数学邀请赛初二第18 ·2007年第·101 次·[9-2]详细简介请参考下载页★]竞赛·[ 1 全国数学邀请赛初二第试试题” “18 ·2007 年第届希望杯次·95 ·[9-2]详细简介请参考下载页★]竞赛·[ 试试题”全国数学邀请赛初二第2·2006 年第17 届“希望杯次·76 ·[9-2]详细简介请参考下载页★]竞赛·[ 1 试试题“希望杯”全国数学邀请赛初二第届·2006年第17 ·76 次·[9-2]详细简介请参考下载页★]竞赛·[ 试试题全国数学邀请赛初二第 2 希望杯·2005 年第16 届“”次·65 ·[9-1]详细简介请参考下载页★]·[ 竞赛 1 试试题全国数学邀请赛初二第届·2005 年第16“希望杯”次·52 ·[9-1]详细简介请参考下载页★]·[ 竞赛试试题全国数学邀请赛初二第希望杯”2·2004 年第15 届“次·47 ·[9-1]详细简介请参考下载页★]竞赛·[ 试试题全国数学邀请赛初二第115 届“希望杯”年第·2004 次·38 ·[9-1]详细简介请参考下载页★]·[ 竞赛 2 试试题希望杯”全国数学邀请赛初二第届·2003 年第14 “次·30 ·[9-1]详细简介请参考下载页★]竞赛·[ 1 试试题希望杯届“”全国数学邀请赛初二第年第·200314 ·26 次·[9-1]详细简介请参考下载页★]竞赛·[ 2 试试题全国数学邀请赛初二第希望杯届年第·200213 “”·31 次·[9-1]详细简介请参考下载页★]竞赛·[ 试试题全国数学邀请赛初二第 1 ”年第13 届“希望杯·2002 次·23 ·[9-1]详细简介请参考下载页★]竞赛·[ 2 试试题“希望杯”全国数学邀请赛初二第·2001 年第12 届·17 次·[9-1]详细简介请参考下载页★]]·[ 竞赛试试题”全国数学邀请赛初二第1“·2000 年第11 届希望杯次·15 ·[9-1]详细简介请参考下载页★]竞赛·[ 试试题全国数学邀请赛初二第210 届“希望杯”·1999年第次·13 ·[9-1]详细简介请参考下载页★]·[ 竞赛试试题 1 希望杯”全国数学邀请赛初二第·1999 年第10 届“次·15 ·[9-1]详细简介请参考下载页★]竞赛·[ 2 试试题“希望杯”全国数学邀请赛初二第9 ·1998年第届次·11 ·[8-29]详细简介请参考下载页★]·试题[ 竞赛 1 ”“9·1998 年第届希望杯全国数学邀请赛初二第试竞赛·[ 试试题全国数学邀请赛初二第112 年第届“希望杯”·2001 ·17 次·[9-1]详细简介请参考下载页★]竞赛·[ 试试题2“届希望杯”全国数学邀请赛初二第11 ·2000 年第次·15 ·[9-1]★详细简介请参考下载页次·10 ·[8-29]详细简介请参考下载页★]竞赛·[ 试试题全国数学邀请赛初二第28 年第届“希望杯”·1997 次·13 ·[8-29]详细简介请参考下载页★]·[ 竞赛 1 试试题希望杯”全国数学邀请赛初二第“·1997 年第8 届·10 次·[8-29]详细简介请参考下载页★]竞赛·[ 2 试试题”届“希望杯全国数学邀请赛初二第7·1996年第·11 次·[8-29]详细简介请参考下载页★]竞赛·[ 1 全国数学邀请赛初二第试试题” “7·1996 年第届希望杯次·10 ·[8-29]详细简介请参考下载页★]·[ 竞赛试试题”希望杯全国数学邀请赛初二第2·1995 年第6 届“次·14 ·[8-29]详细简介请参考下载页★]竞赛·[ 试试题全国数学邀请赛初二第16 届“希望杯”·1995年第次·14 ·[8-29]★详细简介请参考下载页]·[ 竞赛 2 试试题希望杯”全国数学邀请赛初二第5·1994 年第届“次·12 ·[8-29]详细简介请参考下载页★]竞赛·[ 1 试试题“届希望杯”全国数学邀请赛初二第·1994年第5 ·12 次·[8-29](每一、选择题: 年第五届希望杯全国数学邀请赛1994 初中二年级第一试试题[] Ax 1.303 小题分,共分)使等式成立的的值是.是]·[ 竞赛试试题初二第 2 ”年第4 届“希望杯全国数学邀请赛·1993 次·9 ·[8-29]详细简介请参考下载页★]竞赛·[ 试试题全国数学邀请赛初二第14 届“希望杯”·1993年第次·10 ·[8-29]详细简介请参考下载页★]·[ 竞赛试试题2 希望杯”全国数学邀请赛初二第·1992 年第3 届“次·11 ·[8-29]详细简介请参考下载页★]竞赛·[ 1 试试题“希望杯”全国数学邀请赛初二第 3 ·1992年第届次·9 ·[8-29]详细简介请参考下载页★]·[ 竞赛 2 ”“2·1991 年第届希望杯全国数学邀请赛初二第试试题·14 次·[8-28]详细简介请参考下载页★]·[ 竞赛试试题”全国数学邀请赛初二第 1 年第·19912 届“希望杯次·12 ·[8-28]详细简介请参考下载页★]竞赛·[ 试试题全国数学邀请赛初二第21 届“希望杯”·1990年第·13 次·[8-28]详细简介请参考下载页★]·[ 竞赛试试题”全国数学邀请赛初二第 1 希望杯·1990 年第1 届“次·11 ·[8-28]分,(每题1 ”全国数学邀请赛初二第一试一、选择题: “1990 年第一届希望杯() 倍,那么这个角是 1 .一个角等于它的余角的 5 分)共10]竞赛·[ 2 试试题全国数学邀请赛初一第希望杯届年第·200718 “”·94 次·[8-28]详细简介请参考下载页★]竞赛·[ 试试题全国数学邀请赛初一第118 届“希望杯”·2007年第次·42 ·[8-28]详细简介请参考下载页★]·[ 竞赛试试题”希望杯全国数学邀请赛初一第2·2006 年第17 届“次·41 ·[8-28]详细简介请参考下载页★]竞赛·[ 试试题 1 希望杯”全国数学邀请赛初一第“·2006 年第17 届次·43 ·[8-28]试第1 全国数学邀请赛初一希望杯年第十七届2006 “”中考资源网,竞赛试题任你选!更多数学竞赛试题请点击。
初二上学期数学竞赛试题
2008—2009学年度初二第一学期数学竞赛试题 1、比较大小:32_______23。(填>,=,<)(1—9题,每题5分) 2、21a的最小值是________,此时a的取值是________. 3、找规律,选答案( )
4、找规律,选答案( )
5、请在下列一组图形符号中找出它们所蕴含的内在规律,然后把图形空白处填上恰当的图形。 6、对任意一个自然数,先将其各位数字求和,再将其和乘以3后加上1,多次重复这种操作运算,运算结果最终会得到一个固定不变的数R,它会掉进一个数字“陷阱”,永远也别想逃出来,没有一个自然数能逃过它的“魔掌”。那么最终掉进“陷阱”的这个固定不变的数R=_________ 7、如图,三角形纸片ABC,10cm7cm6cmABBCAC,,,沿过点B的直线折叠这个三角形,使顶点C落在AB边上的点E处,折痕为BD,则AED△的周长为 ________cm. 8、实数a、b在数轴上如图所示,.)()2()1(222baba=_________。
9、我们平常用的数是十进制数,如:2639=2×103+6×102+3×101+9×100,要表示十进 制的数要10个数码(又叫数字):0,1,2,3,4,5,6,7,8,9,在电子计算机中用的是二进制,只要两个数码:0,1。如:二进制中 101=1×22+0×21+1×20等于十进制中的5, 1101=1×23+1×22+0×21+1×20等于十进制中的13,(其中任何一个数的0次方为1) 那么二进制中的10111等于十进制中的数 .
10、问题:你能比较两个数20072008和20082007的大小吗? 为了解决这个问题,我们先把它抽象成数学问题,写出它的一般形式,即比较nn+1和(n+1)n的大小(n是正整数),然后我们从分析n=1,n=2,n=3,„„这些简单情形入手,从中发现规律,经过归纳,猜想出结论. (1)通过计算,比较下列各组数的大小: ①12 21,②23 32,③34 43,④45 54,⑤56 65,„„(每空2分 (2)从第(1)题的结果经过归纳,可以猜想出nn+1和(n+1)n的大小关系是:(5分) . (3)根据上面猜想得到的一般结论,试比较两个数的大小:20072008 20082007 (5分) 11、从下图中最小的数开始,由小到大依次用线段连接各数,并将最大的数与最小的数也用线段连接,看看你画出了什么.(10分) -4.7 -4.5
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
只要献出一个资源,你将享有无数个资源——方方正正教育网 - 1 - 八年级(上)数学竞赛试卷 命题人:南康三中 朱萍、曾二生 考试时间:100分钟 总分:100分 一、精心填一填(本题共10题,每题3分,共30分)
1.函数y=1a中,字母a的取值范围是_____________、 2.如图1,∠1=∠2,由AAS判定△ABD≌△ACD,则需添加的条件是____________. 3.计算:20072-2006×2008=_________
图1 图2
4、写出一个图象经过点(-1,-1),且不经过...第一象限的函数表达式 5.已知点P1(a-1,5)和P2(2,b-1)关于x轴对称,则(a+b)2005的值为 . 6.如图2,△ABC中边AB的垂直平分线分别交BC、AB于点D、E,AE=3cm,△ADC•的周长为9cm,则△ABC的周长是_______ 7.如图3,AE=AF,AB=AC,∠A=60°,∠B=24°,则∠BOC=__________. 8、如图4,在△ABC中,AB=AC,∠A=36°,BD、CE分别为∠ABC与∠ACB的角平分线,且相交于点F,则图中的等腰三角形有 个。
9.如果用四则运算的加、减、除法定义一种新的运算,对于任意实数x、y有 yxyxyx 则31*191211
=
10.如图5所示,圆的周长为4个单位长度,在圆的4等分点处标上0,1,2,3.先让圆周上数字0所对应的数与数轴上的数-1所对应的点重合,再让数轴按逆时针方向绕在该圆上,那么数轴上的数-2007将与圆周上的数字_________重合.
FED
A
CB 图5 图4 二、相信你一定能选对!(本题共6题,每题3分,共18分) 11.下列各式成立的是( ) A.a-b+c=a-(b+c) B.a+b-c=a-(b-c) C.a-b-c=a-(b+c) D.a-b+c-d=(a+c)-(b-d) 12.已知一次函数y=kx+b的图象(如图6),当y<0时,x的取值范围是( ) (A)x>0 (B)x<0 (C)x<1 (D)x>1
-2 1 x y O
ABC
D12A E
B O F C 图3
2 3 0 1
-5 -4 -3 -2 -1 0 x 只要献出一个资源,你将享有无数个资源——方方正正教育网
- 2 - 图6 图7 13.在△ABC中,∠B=∠C,与△ABC全等的三角形有一个角是100°,那么在△ABC中与这100°角对应相等的角是 ( ) A.∠A B.∠B C.∠C D.∠B或∠C 14.某校八(2)班的全体同学喜欢的球类运动用图7所示的扇形统计图来表示,下面说法正确的是( )
A、从图中可以直接看出喜欢各种球类的具体人数; B、从图中可以直接看出全班的总人数; C、从图中可以直接看出全班同学初中三年来喜欢各种球类的变化情况; D、从图中可以直接看出全班同学现在喜欢各种球类的人数的大小关系 15.已知一次函数y=mx+│m+1│的图像与y轴交于点(0,3),且y随x的增大而减小,则m 的值为( ). A.2 B.-4 C.-2或-4 D.2或-4 16.设y=ax15+bx13+cx11-5(a、b、c为常数),已知当x=7时,y=7,则x= -7时,y的值等于( ) A、-7 B、-17 C、17 D、不确定 三、认真解答,一定要细心哟!(各6分,共18分) 17. 先化简再求值:yyxyxyx4)4()2)(2(2,其中x=5,y=2。
18.如图,要在河边修建一个水泵站,分别向张庄、李庄送水,修在河边什么地方,(1)到张庄、李庄的距离相等。(2)可使所用的水管最短?(请通过你所学的知识画出这个地点的位置)
第(1)题图 第(2)题图
19.如图所示,两根旗杆间相距12m,某人从B点沿BA走向A,一定时间后他到达点M,此时他仰望旗杆的顶点C和D,两次视线的夹角为90°,且CM=DM,已知旗杆AC的高为3m,该人的运动速度为1m/s,求这个人运动了多长时间? 只要献出一个资源,你将享有无数个资源——方方正正教育网
- 3 - 四、数学知识应用(20题、21题各8分,共16分) 20.已知,△ABC是等边三角形,D、E分别是BC、AC边上的点,AE=CD,连接AD、BE相交于点P,BQ⊥AD于Q (1)求∠BPD的度数; (2)若PQ=3,PE=1,求AD的长。
21.两个三位整数,它们的和加1得1000,如果把大数放在小数的左边,并在这两数之间点上一个小数点,则所成的数正好等于把小数放在大数的左边,中间点一个小数点所成的数的6倍,求这两个数。
五、探究题,努力就会成功(各9分,共18分) 22、某军加油飞机接到命令,立即给另一架正在飞行 的运输飞机进行空中加油.在加油的过程中, 设运输飞机的油箱余油量为Q1吨,加油飞机的 加油油箱的余油量为Q2吨,加油时间为t分钟, Q1、Q2与t之间的函数关系如图.回答问题: (1) 加油飞机的加油油箱中装载了多少吨油? 将这些油全部加给运输飞机需要多少分钟? (2) 求加油过程中,运输飞机的余油量Q1(吨) 与时间t(分钟)的函数关系式; (3) 运输飞机加完油后,以原速继续飞行,需10小时到达目的地,油料是否够用? 请通过计算说明理由.
23.如图所示,在△ABC中,∠ACB=90°,CD⊥AB于D,AE平分∠BAC交BC于E,交CD•于F,FG∥AB交BC于G.试判断CE,CF,GB的数量关系,并说明理由.(友情提示:角平分线上的点到这个角两边的距离相等)
GF
E
D
C
BA
CABD
EP
Q只要献出一个资源,你将享有无数个资源——方方正正教育网
- 4 - 一、精心填一填 1、a≥1 2、∠B=∠C 3、1 4、y=-x-2(答案不唯一)
5、-1 6、15厘米 7、108° 8、8 9、163/113 10、2 二、选择题 C CADBB
三、17、解:原式= [(x2-4y2)-(x2+8xy+16y2)]/4y (2分) =(-8xy-20 y2)/4y (3分) =-2x-5y (4分)
当x=5,y=2 时,原式=-2x-5y=-2*5-5*2=-20 (6分) 18、画图正确各2分,结论各1分。 19、解析:∵∠CMD=90°,
∴∠CMA+∠DMB=90°. 又∵∠CAM=90°, ∴∠CMA+∠ACM=90°,
∴∠ACM=∠DMB. (2分) 又∵CM=MD, ∴Rt△ACM≌Rt△BMD, (4分) ∴AC=BM=3, ∴他到达点M时,运动时间为3÷1=3(s).
这人运动了3s. (6分)
四、20、解(1)证得,△ABE≌△ACD-—-—-(3分)
∴∠ABE=∠CAD ∴∠BPQ=∠ABE+∠BAP =∠CAD+∠BAP =∠BAC=60° (5分) (2)在RT△BPQ中,∠BPQ=60°,∴∠PBQ=30° 又PQ=3,∴BP=2PQ=6 (7分) 又PE=1,∴BE=BP+PE=7
由(1)得△ABE≌△ACD ∴AD=BE=7 (8分)
21、解:设大数为x,则小数为999-x, (1分 ) 由题意得
)1000999(61000999xxxx (5分 )
解这个方程得:x=857, (7分 ) ∴999-x=142 答:大数为857,小数为142。 (8分) 只要献出一个资源,你将享有无数个资源——方方正正教育网 - 5 - 五、22、解 (1)由图象知,加油飞机的加油油箱中装载了30吨油,全部加给运输飞机需10分钟. (2分) (2)设Q1=kt+b,把(0,36)和(10,65)代入,得 b=36 10k+b=65 (3分) 解得 b=36
k=2.9 (5分) 所以Q1=2.9t+36(0≤t≤10). (6分) (3)根据图象可知运输飞机的耗油量为每分钟0.1吨. (7分) 所以10小时耗油量为:10×60×0.1=60(吨)<65(吨), (8分) 所以油料够用. (9分) 23.解析:CE=CF=GB. (1分) 理由:(1)∵∠ACB=90°, ∴∠BAC+∠ABC=90°. ∵CD⊥AB,∴∠ACD+∠CAD=90°. ∴∠ACD=∠ABC. ∵AE平分∠BAC,∴∠BAE=∠CAE. ∵∠CEF=∠BAE+∠ABC, ∠CEF=∠CAE+∠ACD, ∴∠CEF=∠CFE,∴CE=CF(等角对等边). (5分) (2)如答图,过E作EH⊥AB于H. (6分) ∵AE平分∠BAC,EH⊥AB,EC⊥AC. ∴EH=EC(角平分线上的点到角两边的距离相等). ∴EH=EC,∴EH=CF. ∵EG∥AB,∴∠CGF=∠EBH. ∵CD⊥AB,EH⊥AB,∴∠CFG=∠EHB=90°. 在Rt△CFG和Rt△EHB中, ∠CGF=∠EBH,∠CFG=∠EHB,CF=EH, ∴Rt△CFG≌Rt△EHB. ∴CG=EB,∴CE=GB. ∴CE=CF=GB. (9分)
其他方法酌情给分。