电涡流传感器应用实例
传感器与检测技术电涡流式传感器

08 电涡流探雷器——电涡流式传感器的测试项目描述•为排除地表下埋入的地雷,战士们常用便携式探雷器来探测地表,当探雷器探测到地表下的地雷时就会发出报警提示信号,然后进行排除地雷,如图8-1 所示。
•便携式探雷器是利用电涡流效应原理来工作的,所以又叫电涡流探雷器。
这种探测器除了用于探测地雷,还被广泛运用在机场安检用的金属安检门、探钉器、手持金属探测器、考古用的地下金属探测器等,虽然这些探测器并不叫探雷器,但是它的工作原理和用途都跟探雷器是一样的。
•通过本项目的学习,主要给大家介绍电涡流式探测器(电涡流式传感器)的工作原理及相关传感器。
4知识准备•(一)电涡流传感器工作原理• 1.电涡流效应•根据法拉第电磁感应原理, 块状金属导体置于变化的磁场中或在磁场中作切割磁力线运动时, 导体内将产生呈涡旋状的感应电流, 此电流叫电涡流, 以上现象称为电涡流效应。
——电涡流在我们日常生活中应用干净、高效的电磁炉电磁炉内部的励磁线圈电磁炉的工作原理图高频电流通过励磁线圈,产生交变磁场,在铁质锅底会产生无数的电涡流,使锅底自行发热,烧开锅内的食物。
»2.电涡流传感器的等效电路和工作原理•(1)等效电路•(2)工作原理•电涡流效应既与被测体的电阻率ρ、磁导率μ以及几何形状有关,又与线圈几何参数、线圈中激磁电流频率ω有关,还与线圈与导体间的距离x有关。
因此,传感器线圈受电涡流影响时的等效阻抗Z的函数关系式为•Z=F(ρ, μ, R,ω, x)•如果保持上式中其他参数不变,而只改变其中一个参数,传感器线圈阻抗Z就仅仅是这个参数的单值函数。
通过与传感器配用的测量电路测出阻抗Z的变化量,即可实现对该参数的测量。
(二)电涡流基本特性• 1. 电涡流的径向形成范围•当x一定时, 电涡流密度J与半径r的关系曲线•由图可知:•电涡流径向形成的范围大约在传感器线圈外径r as 的1.8~2.5 倍范围内, 且分布不均匀。
•电涡流密度在短路环半径r =0处为零。
电涡流传感器详解

电涡流传感器详解电涡流传感器详解一、电涡流传感器的基本类型分为高频反射式电涡流传感器和低频透射式电涡流传感器。
激励频率的选择原则为:待测导体的厚度大,应选择较低的激励频率以保证线性度,反之则使用较高激励频率以提高灵敏度。
二、电涡流传感器的典型应用电涡流传感器系统广泛应用于电力、石油、化工、冶金等行业和一些科研单位。
对汽轮机、水轮机、鼓风机、压缩机、空分机、齿轮箱、大型冷却泵等大型旋转机械轴的径向振动、轴向位移、键相器、轴转速、胀差、偏心、以及转子动力学研究和零件尺寸检验等进行在线测量和保护。
胀差测量斜坡式胀差测量补偿式胀差测量双斜面胀差测量振动测量轴位移测量轴心轨迹测量差动测量动力膨胀转子动平径向运动分析转速和相位差测试转速测量表面不平整度测量裂痕测量非导电材料厚度测量金属元件合格检测轴承测量换向片测量1、相对振动测量测量径向振动,可以由它分析轴承的工作状态,还可以看到分析转子的不平衡,不对中等机械故障。
电涡流传感器系统可以提供对于下列关键或是基础机械状态监测所需要的信息:●工业透平,蒸汽/燃气●压缩机,径向/轴向●膨胀机●动力发电透平,蒸汽/燃气/水利●发动马达●发动机●励磁机●齿轮箱●泵●风箱●鼓风机●往复式机械(1)相对振动测量(小型机械)振动测量同样可以用于对一般性的小型机械进行连续监测。
电涡流传感器系统可为如下各种机械故障的早期判别提供重要信息:●轴的同步振动●油膜失稳●转子摩擦●部件松动●轴承套筒松动●压缩机踹振●滚动部件轴承失效●径向预载,内部/外部包括不对中●轴承巴氏合金磨损●轴承间隙过大,径向/轴向●平衡(阻气)活塞●联轴器“锁死”磨损/失效●轴裂纹●轴弯曲●齿轮咬合问题●电动马达空气间隙不匀●叶轮通过现象●透平叶片通道共振(2)偏心测量偏心是在低转速的情况下,电涡流传感器系统可对轴弯曲的程度进行测量,这些弯曲可由下列情况引起:●原有的机械弯曲●临时温升导致的弯曲●重力弯曲●外力造成的弯曲偏心的测量,对于评价旋转机械全面的机械状态,是非常重要的。
实验二:电涡流式传感器的静态标定

实验二电涡流式传感器的静态标定
一实验目的:
了解电涡流式传感器的原理及工作性能
二实验原理:
通以高频电流的线圈产生磁场, 当有导体接近时, 因导体涡流效应产生涡流损耗, 而涡流损耗与导电体的材料及线圈的距离有关, 因此可以进行位移测量。
三实验器材:
涡流变换器、F/V表、测微头、铁测片、涡流传感器、示波器、振动平台、主、副电源。
四实验步骤:
(1)装好传感器(传感器对准铁测片安装)和测微头。
(2)观察传感器的结构, 它是一个扁平线圈。
(3)用导线将传感器接入涡流变换器输入端, 将输出端接至F/V表, 电压表置于20V档, 见图1, 开启主、副电源。
图1
(4)用示波器观察涡流变换器输入端的波形。
如发现没有振荡波形出现, 再将被测体移开一些。
适当调节传感器的高度, 使其与被测铁片接触, 从此开始读数, 记下示波器及电压表的数值, 填入下表:
建议每隔0.10mm读数, 到线性严重变坏为止。
根据实验数据。
在座标纸上画出V-X曲线, 指出大致的线性范围, 求出系统灵敏度。
(最好能用误差理论的方法求出线性范围内的线性度、灵敏度)。
五实验结果
六注意事项:
被测体与涡流传感器测试探头平面尽量平行, 并将探头尽量对准被测体中间, 以减少涡流损失。
七实验心得
涡流传感器灵敏度和分辨率高, 线性度也很好, 在涉及到一些导体的位置移位等相关测量时, 使用涡流传感器可以很好的实现不接触测量, 而且电涡流传感器利用涡流效应, 可以用其测量导体内部的一些性质。
电涡流传感器系列实验

电涡流传感器系列实验电涡流传感器是用来检测金属零件表面及内部缺陷、裂纹、腐蚀程度、变形等信息的一种非接触式电磁传感器。
本次实验室课程将分为三个部分,分别为电涡流传感器原理的介绍、实验步骤以及实验数据的分析处理。
一、原理介绍电涡流传感器是利用电磁感应的原理来检测金属零件表面及内部缺陷、裂纹、腐蚀程度、变形等信息的一种传感器。
它是将激励信号通过探头送入被测件表面,经过被测件表面和内部微小变形后,产生涡流和磁场,利用敏感元件检测产生的电磁信号,从而检测出被测件的变形情况。
二、实验步骤1. 实验器材(1)y 波示波器;(2)电源;(3)电容式电压表;(4)电涡流传感器;(5)接线器件。
2. 实验步骤(1)将电涡流传感器连接在信号发生器上,设定信号发生器输出频率为 100kHz;(2)将电涡流传感器沿着被测件轮廓轻轻地刷过,实验人员可根据实验需求自行选择角度和方向;(3)将信号输出到 y 波示波器,观察并记录不同条件下的波形;(4)通过记录的数据进行分析和图表绘制。
三、实验数据的分析处理通过实验,我们可以得到电涡流传感器的检测结果。
这些结果包括了被测件表面质量、材料状态、表面裂纹等的信息。
我们可以将这些信息度量出来,并绘制成图表,描绘出被测件产生的涡流磁场。
通过这些图表,我们可以比较出不同被测件的质量差异,可以帮助我们进行一些维护和修理工作。
总的来说,电涡流传感器是一种重要的非接触式电磁传感器,它可以帮助我们了解被测件表面质量、材料状态、表面裂纹等信息。
这些信息可以帮助我们进行更好的维护和修理工作,确保零件的有效性和长期安全性。
请简述电涡流的原理及应用

电涡流的原理及应用1. 电涡流的原理电涡流是一种特殊的电磁现象,它是由于导体中的涡流产生的巨大磁场与外部磁场相互作用而产生的。
当导体中的电流变化时,会产生涡流。
涡流会生成一个和导体相关的磁场,这种磁场会与外部磁场相互作用,产生一种阻力或者功率损耗的效应。
电涡流的原理可以概括为以下几个方面:•麦克斯韦方程和洛伦兹力定律指出,当导体中有电流通过时,会产生磁场。
•当电流变化时,导体中的磁场也随之变化。
•导体中的磁场的变化会导致涡流产生。
•电涡流会产生一个反向的磁场,与外部磁场相互作用产生阻力或功率损耗效应。
2. 电涡流的应用电涡流在工业界有广泛的应用。
下面列举了一些典型的应用场景:2.1. 非接触传感器电涡流被广泛应用于非接触传感器中。
通过测量电涡流产生的阻力或功率损耗效应,可以实现对物体的非接触测量。
例如,电涡流传感器可以用于测量导体中的裂缝、缺陷或者尺寸大小等参数。
在汽车行业,电涡流传感器常用于刹车盘和发动机零件的检测和测量。
2.2. 电磁制动器电涡流的阻力效应可以应用于电磁制动器中。
利用电涡流产生的阻力,可以实现对轴或转子的制动。
电磁制动器适用于需要精确控制运动的场合,比如电动汽车、电动机械等。
2.3. 磁悬浮技术电涡流也被广泛应用于磁悬浮技术中。
通过电涡流产生的反向磁场,可以实现对物体的悬浮和操控。
磁悬浮技术被应用于高速列车、磁悬浮旋转机械和风洞实验室等领域。
2.4. 电动磁铁利用电涡流的阻力效应,可以制造电动磁铁。
电动磁铁可以实现对物体的牢固吸附或释放控制。
它被广泛应用于自动化生产线、机器人工业、磁选设备等。
2.5. 磁阻传感器电涡流的阻力效应可以用于磁阻传感器。
磁阻传感器可以感知或测量物体的位置、速度、轨迹等参数。
它在机械加工、自动化、无人机和汽车等领域有广泛的应用。
3. 总结电涡流作为一种特殊的电磁现象,在工业界有着广泛的应用。
它的原理是基于导体中产生的涡流和外部磁场相互作用产生阻力或功率损耗效应。
电涡流传感器基本原理以及转速测量的完整实例演示含原理图复习过程

电涡流传感器基本原理以及转速测量的完整实例演示含原理图电涡流传感器原理图1、什么是电涡流效应?电感线圈产生的磁力线经过金属导体时,金属导体就会产生感应电流,且呈闭合回路,类似于水涡流形状,故称之为电涡流也叫做电涡流效应,其实是电磁感应原理的延伸。
注意:电涡流传感器要求被测体必须是导体。
传感器探头里有小型线圈,由控制器控制产生震荡电磁场,当接近被测体时,被测体表面会产生感应电流,而产生反向的电磁场。
这时电涡流传感器根据反向电磁场的强度来判断与被测体之间的距离。
2、电涡流传感器的工作原理与结构主要由一个安置在框架上的扁平圆形线圈构成。
此线圈可以粘贴于框架上,或在框架上开一条槽沟,将导线绕在槽内。
下图为涡流传感器的结构原理,它采取将导线绕在聚四氟乙烯框架窄槽内,形成线圈的结构方式。
传感器线圈由高频信号激励,使它产生一个高频交变磁场φi,当被测导体靠近线圈时,在磁场作用范围的导体表层,产生了与此磁场相交链的电涡流ie,而此电涡流又将产生一交变磁场φe阻碍外磁场的变化。
从能量角度来看,在被测导体内存在着电涡流损耗(当频率较高时,忽略磁损耗)。
能量损耗使传感器的Q值和等效阻抗Z降低,因此当被测体与传感器间的距离d改变时,传感器的Q值和等效阻抗Z、电感L均发生变化,于是把位移量转换成电量。
这便是电涡流传感器的基本原理3、电涡流传感器的实际应用n=(f/N)*604、使用电涡流传感器时的注意事项对被测体的要求为了防止电涡流产生的磁场影响仪器的正常输出安装时传感器头部四周必须留有一定范围的非导电介质空间,如果在某一部位要同时安装两个以上的传感器,就必须考虑是否会产生交叉干扰,两个探头之间一定要保持规定的距离,被测体表面积应为探头直径3倍以上,当无法满足3倍的要求时,可以适当减小,但这是以牺牲灵敏度为代价的,一般是探头直径等于被测体表面积时,灵敏度降低至70%,所以当灵敏度要求不高时可适当缩小测量表面积。
对工作的温度的要求一般进口涡流传感器最高温度不大于180℃,而国产的只能达到120℃,并且这些数据来源于生产厂家,其中有很大的不可靠性,据相关的各种资料分析,实际上,工作温度超过70℃时,电涡流传感器的灵敏度会显著降低,甚至会造成传感器的损坏。
电涡流传感器实验报告
一、实验目的本次实验旨在了解电涡流传感器的工作原理,掌握其位移特性的测量方法,并验证电涡流传感器在实际应用中的可靠性和准确性。
二、实验原理电涡流传感器是利用电磁感应原理进行测量的传感器。
当导电体(被测物体)接近电涡流传感器的线圈时,线圈中产生的交变磁场会在导电体中感应出涡流。
涡流的大小与导电体的材料、电阻率、导磁率、厚度、温度以及与线圈的间距有关。
通过测量涡流的大小,可以计算出导电体与线圈的间距,从而实现位移的测量。
三、实验仪器与材料1. 电涡流传感器2. 信号发生器3. 示波器4. 金属样品5. 螺旋测微仪6. 电压表四、实验步骤1. 将电涡流传感器固定在实验台上,将金属样品放在传感器的检测区域内。
2. 连接信号发生器和示波器,设置合适的工作频率和幅度。
3. 使用螺旋测微仪测量金属样品与电涡流传感器线圈的距离。
4. 打开信号发生器,调节频率和幅度,使传感器产生稳定的涡流信号。
5. 使用示波器观察涡流信号的波形,记录不同距离下的信号幅度。
6. 将测得的距离和信号幅度数据填入表格,绘制V-X曲线。
7. 分析V-X曲线,确定传感器的线性范围和灵敏度。
五、实验结果与分析1. 通过实验,我们得到了电涡流传感器的V-X曲线。
从曲线可以看出,传感器的线性范围较宽,灵敏度较高。
2. 在线性范围内,传感器的输出电压与距离呈线性关系,满足实际应用的要求。
3. 通过对V-X曲线的分析,我们可以确定传感器的最佳工作频率和幅度。
六、实验结论1. 电涡流传感器是一种高精度、高灵敏度的位移测量传感器,在实际应用中具有广泛的应用前景。
2. 通过实验,我们掌握了电涡流传感器的工作原理和测量方法,为后续的实际应用奠定了基础。
七、实验注意事项1. 在实验过程中,应确保电涡流传感器与金属样品保持平行,避免因角度偏差导致测量误差。
2. 在调节信号发生器的工作频率和幅度时,应逐步进行,避免突然变化对实验结果的影响。
3. 在读取数据时,应注意记录准确,避免因记录错误导致分析结果不准确。
电涡流传感器的原理和应用
电涡流传感器的原理和应用1. 介绍电涡流传感器是一种非接触式传感器,广泛应用于工业领域。
它基于电涡流效应来检测目标物体的位置、形状和材料等信息。
本文将介绍电涡流传感器的工作原理以及其在工业领域的应用。
2. 工作原理电涡流传感器利用高频交流电磁场作用在导电物体上产生涡流。
涡流的大小和目标物体的性质有关。
当目标物体发生变化时,涡流的特性也会发生相应的改变。
电涡流传感器通过检测涡流的变化来确定目标物体的属性。
电涡流传感器由激励线圈和接收线圈组成。
激励线圈产生高频交流电磁场,而接收线圈用于检测目标物体上产生的涡流信号。
传感器输出的信号经过放大和处理后,可以得到目标物体的相关信息。
3. 应用领域电涡流传感器在工业领域有着广泛的应用。
以下是一些常见的应用领域:3.1. 金属材料检测电涡流传感器可以用来检测金属材料的质量和性质。
通过测量涡流的变化,可以对金属材料进行质量控制和排序。
传感器可以检测金属材料中的缺陷、裂纹、硬度等参数,用于判断材料是否合格。
3.2. 无损检测电涡流传感器可以进行无损检测,用于检测金属零件中的表面缺陷、裂纹及其它内部问题。
传感器对目标物体进行扫描并检测涡流的变化,从而确定目标物体是否存在缺陷。
3.3. 位移测量电涡流传感器可以用于测量目标物体的位移。
传感器可以检测目标物体与传感器之间的距离变化,从而确定位移大小。
这种位移测量方法适用于需要高精度和非接触的测量场合。
3.4. 非铁磁材料检测电涡流传感器不仅适用于金属材料的检测,还可以应用于非铁磁材料的检测。
例如,在玻璃、陶瓷、塑料等材料的生产过程中,电涡流传感器可以用来检测材料的密度、厚度和质量等参数。
4. 优势和局限电涡流传感器具有以下优势: - 非接触式测量,无需直接接触目标物体,不会对目标物体造成损伤。
- 高精度测量,可以实现微小尺寸变化的检测。
- 快速响应速度,适用于高速生产线上的应用。
- 抗干扰能力强,对环境中的干扰信号具有较好的抑制能力。
电涡流式位移传感器实验报告
电涡流式位移传感器实验报告一、引言电涡流式位移传感器是一种常用的非接触式位移测量装置,它基于涡流效应原理,可用于测量金属物体的位移变化。
本实验旨在探究电涡流式位移传感器的原理和性能,并通过实验验证其在位移测量中的应用。
二、实验原理电涡流效应是指当导体在磁场中运动或受力时,由于磁场的变化而在导体中产生涡流的现象。
在电涡流式位移传感器中,传感器探头由线圈和磁铁构成。
当探头靠近金属物体时,磁铁产生的磁场会感应出涡流,并改变线圈的电阻。
通过测量线圈的电阻变化,可以确定金属物体的位移大小。
三、实验步骤1. 准备实验装置:将电涡流式位移传感器固定在测量平台上,将金属物体放置在传感器上方,并调整传感器与金属物体的距离。
2. 连接电路:将传感器的线圈接入测量电路中,保证电路的可靠连接。
3. 调节参数:根据实际情况,调节传感器的灵敏度和滤波器的参数,以获得准确的位移测量结果。
4. 进行位移测量:通过改变金属物体的位置或距离,记录传感器输出的电阻值,并计算出相应的位移值。
5. 数据分析:根据实验数据,分析位移测量的准确性和稳定性,评估电涡流式位移传感器的性能。
四、实验结果经过多次实验测量,我们得到了一系列位移测量数据,并计算出相应的位移值。
实验结果表明,电涡流式位移传感器具有较高的测量精度和稳定性,在不同位移范围内均能提供准确的测量结果。
五、实验讨论1. 影响位移测量精度的因素:在实验中,我们发现传感器与金属物体的距离、金属物体的材料和形状等因素都会对位移测量结果产生影响。
通过合理调整传感器的参数和选择合适的金属物体,可以提高位移测量的精度。
2. 传感器的应用范围:电涡流式位移传感器广泛应用于工业自动化、机械制造和航天航空等领域,用于测量零件的位移、振动和变形等参数,为工程设计和质量控制提供重要的数据支持。
六、结论通过本次实验,我们深入了解了电涡流式位移传感器的原理和性能,并验证了其在位移测量中的应用。
实验结果表明,电涡流式位移传感器具有高精度、稳定性好的优点,适用于各种位移测量场景。
常用传感器工作原理(电涡流式)(课堂PPT)
1 线圈 2 框架 3 衬套 4 支架 5 电缆 6 插头
6
5
7
型号
线性范围 线圈外径 分辨力
/m
/mm
/m
线性误差 (%)
使用温度 /C
CZF1-1000 1000
7
1
<3
-15+80
CZF1-3000 3000
15ቤተ መጻሕፍቲ ባይዱ
3
<3
-15+80
CZF1-5000 5000
28
5
<3
-15+80
分析上表请得出结论: 线圈外径与测量范围及分辨力之间有何关系?
并联谐振回路 f
1
2 LC
是以传感线圈与调谐电容组成并联LC谐振回路,由石英震荡器提供高频
激磁电流,测量电路的输出电压正比于LC谐振电路的阻抗Z
因而传感线圈与被测体之间距离δ的变化,引起Z的变化,使输出电压 跟随变化,从而实现位移量的测量,故称调幅法
13
调频电路
调频法是以LC振荡回路的频率作为输出量。 当金属板至传感器之间的距离δ发生变化时,将引起线圈电感的变 化,从而使振荡器的频率发生变化,再通过鉴频器进行频率-电压 转换,即可得到与δ 成比例的输出电压。
10
低 频 透 射 式
发射线圈L1和接收线圈L2分置于被测金属板的上下方。由于低频磁场集肤
效应小,渗透深,当低频(音频范围)电压e1加到线圈L1的两端后,所产生
磁力线的一部分透过金属板,使线圈L2产生感应电动势e2。但由于涡流消
耗部分磁场能量,使感应电动势e2减少,当金属板越厚时,损耗的能量越
大,输出电动势e2越小。因此,e2的大小与金属板的厚度及材料的性质有
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电涡流传感器应用实例
电涡流传感器是一种非接触式传感器,可以用于测量金属表面的缺陷、厚度、硬度等参数。
它的工作原理是利用交变磁场在金属表面产生涡流,通过测量涡流的强度和相位来得到所需的参数。
下面介绍几个电涡流传感器的应用实例。
1. 汽车制动盘检测
汽车制动盘是一种重要的安全零部件,其质量直接影响到车辆的制动性能。
传统的制动盘检测方法是使用人工测量,效率低、精度不高。
而采用电涡流传感器可以实现自动化检测,大大提高了检测效率和精度。
传感器可以检测制动盘表面的缺陷、厚度和硬度等参数,从而判断制动盘是否符合要求。
2. 航空发动机叶片检测
航空发动机叶片是一种高精度零部件,其质量直接影响到发动机的性能和寿命。
传统的叶片检测方法是使用人工测量,效率低、精度不高。
而采用电涡流传感器可以实现自动化检测,大大提高了检测效率和精度。
传感器可以检测叶片表面的缺陷、厚度和硬度等参数,从而判断叶片是否符合要求。
3. 钢轨检测
钢轨是铁路运输的重要组成部分,其质量直接影响到铁路运输的安
全和效率。
传统的钢轨检测方法是使用人工测量,效率低、精度不高。
而采用电涡流传感器可以实现自动化检测,大大提高了检测效率和精度。
传感器可以检测钢轨表面的缺陷、厚度和硬度等参数,从而判断钢轨是否符合要求。
电涡流传感器具有广泛的应用前景,可以用于各种金属表面的检测和测量。
随着技术的不断发展,电涡流传感器的应用范围将会越来越广泛。