八年级数学 例谈求一次函数解析式的常见题型
一次函数与几何压轴(十大题型)(解析版)—2024-2025学年八年级数学上册(浙教版)

一次函数与几何压轴(十大题型)【题型1 一函数中面积问题】【题型2 一次函数中等腰三角形的存在性问题】【题型3 次函数中直角三角形的存在性问题】【题型4 一次函数中等腰直角三角形的存在性问题】【题型5 一次函数中平行四边形存在性问题】【题型 6 一次函数中菱形的存在性问题】【题型7 一次函数中矩形的存在性问题】【题型8 一次函数中正方形的存在性问题】【题型9 一次函数与相等角/2倍角的问题】【题型10 一次函数中45°角问题】【技巧点睛1】铅锤法求三角形面积【技巧点睛2】处理与一次函数相关的面积问题,有三条主要的转化途径:①知底求高、转化线段;②图形割补、面积和差;③平行交轨、等积变换。
【技巧点睛3】处理线段问题(1)在平面直角坐标系中,若线段与y轴平行,线段的长度时端点纵坐标之差(上减下,不确定时相减后加绝对值),若线段与x轴平行,线段的长度时端点横坐标之差(右减左,不确定时相减后加绝对值);(2)线段相关计算注意使用”化斜为直”思想。
【技巧点睛4】角度问题(1)若有角度等量关系,不能直接用时,我们要学会角度转化,比如借助余角、补角、外角等相关角来表示,进行一些角度的和差和角度的代换等,直到转化为可用的角度关系。
(2)遇45°角要学会先构造等腰直角三角形,然后构造“三垂直”全等模型,一般情况下是以已知点作为等腰直角三角形的直角顶点【技巧点睛5】最值问题(1)求线段和最值,可以从“两点之间线段最短”“垂线段最短”“三角形两边之和大于第三边,两边之差小于第三边”的模型去考虑;(2)注意“转化思想”的运用,将不可用线段进行转化,变成我们熟悉的模型【技巧点睛6】特殊三角形存在问题等腰三角形存在性问题1、找点方法:①以AB 为半径,点A 为圆心做圆,此时,圆上的点(除 D 点外)与A、B构成以 A 为顶点的等腰三角形(原理:圆上半径相等)②以AB 为半径,点B 为圆心做圆,此时,圆上的点(除 E 点外)与A、B构成以 B 为顶点的等腰三角形(原理:圆上半径相等)③做AB 的垂直平分线,此时,直线上的点(除F 点外)与A、B 构成以C 为顶点的等腰三角形(原理:垂直平分线上的点到线段两端的距离相等)2、求点方法:二、直角三角形存在性问题若▲ABC是直角三角形,则分三种情况分类讨论:∠A=90°,∠B=90°,∠C=90°,然后利用勾股定理解题。
初中数学八年级-一次函数解析式求法-一次函数经典例题

一次函数的性质与应用•一次函数的定义和图像:(1)定义:一般地,形如y=kx+b(k、b为常数,k≠0)的函数,叫做一次函数,其中正比例函数是一次函数的特殊情况。
(2)图象:一次函数的图像是一条直线,过(0,b),(,0)两点,其中k 叫做该直线的斜率,b叫做该直线在y轴上的截距。
•一次函数的性质:(1)当k>0时,y随x的增大而增大;(2)当k<0时,y随x的增大而减小。
(3)当b=0时,一次函数变为正比例函数,是奇函数;当b≠0时,它既不是奇函数也不是偶函数。
(4)k的大小表示直线与x轴的倾斜程度•一次函数y=kx+b(k不等于零)的图像:当k>0时,若b=0,则图像过第一、三象限;若b>0,则图像过第一、二、三象限;若b<0,则图像过第一、三、四象限。
当k>0时,若b=0,则图像过第二、四象限;若b>0,则图像过第一、二、四象限;若b<0,则图像过第二、三、四象限。
应用:应用一次函数解应用题,一般是先写出函数解析式,在依照题意,设法求解。
求一次函数的解析式及一次函数的应用•待定系数法求一次函数的解析式:先设出函数解析式,再根据条件确定解析式中的未知系数,从而得到函数的解析式的方法。
一次函数的应用:应用一次函数解应用题,一般是先写出函数解析式,在依照题意,设法求解。
(1)有图像的,注意坐标轴表示的实际意义及单位;(2)注意自变量的取值范围。
•用待定系数法求一次函数解析式的四个步骤:第一步(设):设出函数的一般形式。
(称一次函数通式)第二步(代):代入解析式得出方程或方程组。
第三步(求):通过列方程或方程组求出待定系数k,b的值。
第四步(写):写出该函数的解析式。
一次函数的应用涉及问题:一、分段函数问题分段函数是在不同区间有不同对应方式的函数,要特别注意自变量取值范围的划分,既要科学合理,又要符合实际。
二、函数的多变量问题解决含有多变量问题时,可以分析这些变量的关系,选取其中一个变量作为自变量,然后根据问题的条件寻求可以反映实际问题的函数三、概括整合(1)简单的一次函数问题:①建立函数模型的方法;②分段函数思想的应用。
一次函数解析式的常见求法

一次函数解析式的常见求法同学们在上一章的知识复习中,我们已经学会了利用待定系数法求一次函数解析式。
现在让我们来探讨一下其它几种求解析式的方法吧!方法一:取对数,因式分解。
比如,设一次函数解析式为y=ax2+bx+c,对x=a和b两个变量进行讨论,分别得出解析式。
先把ax2=b代入到函数式中,解得a=-4和b=0;再将两边同时开平方,就可以得到函数解析式。
或者按照提示作法直接代入公式即可,则一次函数解析式为y=ax2+bx+c。
第一种解析式,虽然我们利用解析式得到了a和b的值,但由于c的符号和a、 b不相符,所以用方程思想解决不了问题。
可以采用配方法进行简化。
此外,有些一次函数的图像可以直接看出结果,而且与x轴交点为固定的解析式,只要用求根公式就可以算出来。
所以不必考虑对x 轴的斜率,只要考虑对称轴的问题即可。
例1:如图1所示,设一次函数解析式为y=-3/2+7/6,将x=-4代入解析式可得a=4和b=-1。
第二种解析式,对解析式各个变量进行讨论后,其值应该等于-2,所以用求根公式可得函数解析式为y=2/3-6/7。
第三种解析式,关键是用配方法化成解析式为y=x-5/3,对x = -2、 3、 6、 9进行讨论后得出解析式。
或者对x = 2和3进行讨论,则y=-2。
因此,一次函数的解析式为y=-x-5/3。
下面是求函数y=4,在图形上的表达式为y=4/3-3/2,再利用解析式进行计算,可得x=-2,解得a=-1, b=3,解析式为y=4/3-3/2=x-1。
3。
注意事项。
如图2,首先观察函数图像是否对称。
若对称,说明已知条件已满足,求得的解析式就是函数的解析式;若不对称,说明条件未满足,则再看看是否存在另一个点,通过运动变换找出。
这里的关键是看图像与x轴的交点是否唯一。
如果交点多,那么得到的就是两个解析式;若交点少,那么就需要运动变换,找出第三个交点。
这里的关键是熟练掌握运动变换。
在求一次函数解析式时,还有一种解析式较为简便,就是把一次函数看做是y=kx+b,对于图像都能直接看出来,比如y=5/3-3/2,函数值在图像上是两个点,不好找交点。
初中数学求一次函数解析式的常见题型.docx

xx学校xx学年xx学期xx试卷姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx 题xx题xx题总分得分一、xx题评卷人得分(每空xx 分,共xx分)试题1:已知函数是一次函数,求其解析式。
试题2:已知一次函数的图像过点(2,-1),求这个函数的解析式。
试题3:已知一次函数,当时,y=-1,求这个函数的解析式。
试题4:已知某个一次函数的图像与x轴、y轴的交点坐标分别是(-2,0)、(0,4),则这个函数的解析式为_____________。
试题5:已知某个一次函数的图像如图所示,则该函数的解析式为__________。
试题6:已知直线与直线平行,且在y轴上的截距为2,则直线的解析式为___________。
试题7:把直线向下平移2个单位得到的图像解析式为___________。
试题8:某油箱中存油20升,油从管道中匀速流出,流速为0.2升/分钟,则油箱中剩油量Q(升)与流出时间t(分钟)的函数关系式为___________。
试题9:已知直线与两坐标轴所围成的三角形面积等于4,则直线解析式为__________。
试题10:若直线与直线关于x轴对称,y轴对称,原点对称,直线对称,直线y=x对称的解析式是----试题11:若直线l与直线关于y轴对称,则直线l的解析式为____________。
试题12:已知函数的图像过点A(1,4),B(2,2)两点,请写出满足上述条件的两个不同的函数解析式,并简要说明解答过程。
试题13:如图,在平面直角坐标系中,A、B是x轴上的两点,,,以AO、BO为直径的半圆分别交AC、BC于E、F两点,若C点的坐标为(0,3)。
(1)求图像过A、B、C三点的二次函数的解析式,并求其对称轴;(2)求图像过点E、F的一次函数的解析式。
试题14:若方程的两根分别为,求经过点P(,)和Q(,)的一次函数图像的解析式试题15:已知抛物线的顶点D在双曲线上,直线经过点D和点C(a、b)且使y随x的增大而减小,a、b满足方程组,求这条直线的解析式。
(新人教版八年级数学下册)《 用待定系数法求一次函数解析式》

练一练
1. 已知一次函数的图象过点 (3,5) 与 (-4,-9),
求这个一次函数的解析式.
解:设这个一次函数的解析式为 y = kx + b. 把点 (3,5) 与 (-4,-9) 分别代入,得:
3k b 5
4k b 9
解方程组得
k 2 b 1
∴这个一次函数的解析式为 y = 2x - 1.
{5x (0≤x≤2)
y= 4x + 2 (x > 2)
叫做分段函数. 注意:1.它是一个函数; 2.要写明自变量取值范围
{5x (0≤x≤2)
y=
的函数图象为:
4x + 2 (x > 2)
y
14
y = 4x + 2 (x > 2)
10
y = 5x (0≤x≤2)
O 123
x
思考:你能由上面的函数解析式或函数图
象解决以下问题吗?
(1) 7.5 元.
(1) 一次购买 1.5 kg 种子,需付款多少元?
(2) 30 元最多能购买多少种子?(2) 6 kg.
解析:由函数图象也能解决这些问题. (1) 过 x 轴上表示数 1.5 的点作 x 轴的垂线与函数图象 交于一点,这点的纵坐标就是需付款的钱数. (2) 过 y 轴上表示数 30 的点作 y 轴的垂线与函数图象 交于一点,这点的横坐标就是需购买种子的重量.
∴ b = 2.
∵ 一次函数的图象与 x 轴的交点是( 2 ,0),
则 1 2 2 2, 解得 k = 1 或 -1. k
2
k
故此一次函数的解析式为 y = x + 2 或 y = - x + 2.
知识点 2:一次函数与实际问题
人教版待定系数法求一次函数解析式

解出
选取
从形到数
一次函数的
l 图象直线
数学的基本思想方法: 数形结合
【拓广探索】
近年以来,塔城地区电力公司为倡导能源节约、鼓励市民 节约用电,采取按月用电量分段收费的方法:若某户居民 每月应缴电费y(元)与用电量x(千瓦时)的函数图像是一 条折线(如图所示),根据图像解下列问题:
y/元
89 65
所以b=-2
所以直线的解析式为y=x-2。
.
【跟踪训练】
8、声音在空气中传播的速度y(m/s)是气温x(。 c )的一次
函数,下表列出了一组不同气温的音速:
.
求y与x之间的函数关系式。
.
整理归纳:例3与例4从两方面说明:
函数解析 式y=kx&条件的两定点
(x1, y1)与(x2, y2)
【跟踪训练】
6、已知某个一次函数的图象如图所示,则该函 数的解析式为 y=-2x+2 。
y 4
3
2
1
0 1 23
x
【跟踪训练】
7、若直线y=-kx+b与直线y=-x平行,且与y轴交点的纵坐
标为-2;求直线的解析式。
.
分析:因为直线y=-kx+b与直线y=-x平行
所以k=1
又因为直线与y轴交点的纵坐标为-2;
1、已知一次函数的图象经过点(9,0)与(24,20), 求出 一次函数的解析式.
大家有疑问的,可以询问和交流
可以互相讨论下,但要小声点
【跟踪训练】
2、已知y是x的一次函数,当x=2时y=4,当x=-2时y=-2,求 y与x的一次函数解析式.
【跟踪训练】
3、已知一次函数y=kx+3的图象经过点A(1,4),则这个
八年级数学《一次函数》基本题型归纳分析
八年级数学《一次函数》基本题型归纳分析题型一、点的坐标方法:x轴上的点纵坐标为0,y轴上的点横坐标为0;若两个点关于x轴对称,则他们的横坐标相同,纵坐标互为相反数;若两个点关于y轴对称,则它们的纵坐标相同,横坐标互为相反数;若两个点关于原点对称,则它们的横坐标互为相反数,纵坐标也互为相反数;若点A(m,n)在第二象限,则点(|m|,-n)在第____象限;若点P(2a-1,2-3b)是第二象限的点,则a,b的范围为______________________;已知A(4,b),B(a,-2),若A,B关于x轴对称,则a=_______,b=_________;若A,B关于y轴对称,则a=_______,b=__________;若若A,B关于原点对称,则a=_______,b=_________;若点M(1-x,1-y)在第二象限,那么点N(1-x,y-1)关于原点的对称点在第______象限。
题型二、关于点的距离的问题方法:点到x轴的距离用纵坐标的绝对值表示,点到y轴的距离用横坐标的绝对值表示;任意两点(,),(,)A AB BA x yB x y;若AB∥x轴,则(,0),(,0)A BA xB x的距离为A Bx x-;若AB∥y轴,则(0,),(0,)A BA yB y的距离为A By y-;点(,)A A A x y点B(2,-2)到x轴的距离是_________;到y轴的距离是____________;点C(0,-5)到x轴的距离是_________;到y轴的距离是____________;到原点的距离是____________;点D(a,b)到x轴的距离是_________;到y轴的距离是____________;到原点的距离是____________;已知点P(3,0),Q(-2,0),则PQ=__________,已知点110,,0,22M N⎛⎫⎛⎫-⎪ ⎪⎝⎭⎝⎭,则MQ=________;()()2,1,2,8E F--,则EF两点之间的距离是__________;已知点G(2,-3)、H(3,4),则G、H两点之间的距离是_________;两点(3,-4)、(5,a)间的距离是2,则a的值为__________;已知点A(0,2)、B(-3,-2)、C(a,b),若C点在x轴上,且∠ACB=90°,则C点坐标为___________.题型三、一次函数与正比例函数的识别方法:若y=kx+b(k,b是常数,k≠0),那么y叫做x的一次函数,特别的,当b=0时,一次函数就成为y=kx(k是常数,k≠0),这时,y叫做x的正比例函数,当k=0时,一次函数就成为若y=b,这时,y 叫做常函数。
八年级上册数学《待定系数法求一次函数的解析式》例题
一次函数的解析式有疑问的题目请发在“51加速度学习网”上,让我们来为你解答()51加速度学习网整理一、知识回顾1、把y=kx+b(k≠0,b为常数)叫做一次函数的标准解析式,简称标准式。
2、设y=kx+b中的k,b,最终求得他们的值,叫做待定系数;用此方法求一次函数的解析式叫用待定系数法求一次函数的解析式。
二、典型例题例1:若A(0,2),B(-2,1),C(6,a)三点在同一条直线上,则a的值为()A.-2 B.-5 C.2 D.5分析:三点在一条直线上,所以这个图像可以用一次函数的表达式来描述,设直线的解析式是y=kx+b,把A(0,2),B(-2,1)代入得到方程组,求出方程组的解即可得出直线的解析式,把C的坐标代入即可求出答案.解答:设直线的解析式是y=kx+b.把A(0,2),B(-2,1)代入得: {2=b{1=-2k+b解得:k=1/2 ,b=2,∴y=1/2 x+2,把C(6,a)代入得:a=5,故选D.例2:一条直线通过A(2,6),B(-1,3)两点,求此直线的解析式。
分析:题目中明确告知是一条直线,我们知道一次函数的图像是一条直线,所以“求此直线的解析式”,就是求这个一次函数的表达式,通过待定系数法来求。
解答:设:此直线的解析式为:y=kx+b(k≠0,b为常数),根据题意得:{ 6=2k+b ①{ 3=-k+b ②解得:k=1,b=4故这条直线的解析式为:y=x+4例3:若点A(2,4)在直线y=kx-2上,则k=()A.2 B.3 C.4 D.0分析:点A在直线y=kx-2,说明点A的坐标满足关系式y=kx-2,把点的坐标代入此关系式,即可求出k值.解答:根据题意:2k-2=4,解得k=3.故选B.例4:已知点M(4,3)和N(1,-2),点P在y轴上,且PM+PN最短,则点P的坐标是()A.(0,0) B.(0,1) C.(0,-1) D.(-1,0)分析:两点之间线段最短,先把画出N点关于Y轴的对称点Q,然后确定MQ的解析式,最后命x=0,即可求出纵坐标。
八年级数学经典题型汇编
人教版八年级数学校本教材 经 典 题 型 汇 编 求一次函数解析式常见方法归纳 一次函数解析式的求法在初中数学教学内容中占有举足轻重的作用,如何把这一部分内容学的扎实有效呢,整理了一下材料,给大家提供一些题型及解题方法,期望对同学门有所帮助。
一:定义型
例1. 已知函数是一次函数,求其解析式。
解:由一次函数定义知 ,故一次函数的解析式为
注意:利用定义求一次函数解析式时,要保证。如本例中应保证
二. 点斜型 例2. 已知一次函数的图像过点(2,-1),求这个函数的解析式。
解:一次函数的图像过点(2,-1),即 这个一次函数的解析式为变式问法:已知一次函数,当时,y=-1,求这个函数的解析式。
三. 两点型 已知某个一次函数的图像与x轴、y轴的交点坐标分别是(-2,0)、(0,4),则这个函数的解析式为————。
解:设一次函数解析式为 由题意得 故这个一次函数的解析式为 四. 图像型 例4. 已知某个一次函数的图像如图所示,则该函数的解析式为————。
解:设一次函数解析式为,由图可知一次函数的图像过点(1,0)、(0,2) 有 故这个一次函数的解析式为 五. 斜截型
例5. 已知直线与直线平行,且在y轴上的截距为2,则直线的解析式为————。
解析:两条直线:;:。当,时,
直线与直线平行,。又直线在y轴上的截距为2, 故直线的解析式为 六. 平移型 例6. 把直线向下平移2个单位得到的图像解析式为————。 解析:设函数解析式为,直线向下平移2个单位得到的直线与直线平行, 直线在y轴上的截距为,故图像解析式为 七. 实际应用型 例7. 某油箱中存油20升,油从管道中匀速流出,流速为0.2升/分钟,则油箱中剩油量Q(升)与流出时间t(分钟)的函数关系式为---------。
解:由题意得,即 。故所求函数的解析式为() 注意:求实际应用型问题的函数关系式要写出自变量的取值范围。 八. 面积型
八年级数学一次函数课件-求一次函数的解析式
数学
(2)∵△ABC的面积为4,
∴4=12BC×OA,即4=12BC×2. ∴BC=4. ∴OC=BC-OB=4-3=1. ∴C(0,-1). 设直线l2的解析式为y=kx+b. ቊ2kb+ =b-=10. ,解得ቐbk==-121,.
∴直线l2的解析式为y=12x-1.
八年级 下册
人教版
第4课时求一次函数的解析式
知识点1 待定系数法求一次函数的解析式 类型一 已知直线的解析式和图象上一点的坐标 【例题1】若函数y=3x+b的图象经过点(2,-6),求函数的 解析式. y=3x-12.
数学
八年级 下册
人教版
第4课时求一次函数的解析式
【变式1】若一次函数y=kx-3的图象经过点M(-2,1),求 这个一次函数的解析式. 解:∵一次函数y=kx-3的图象经过点 M(-2,1). ∴-2k-3=1.解得k=-2. ∴这个一次函数的解析式为y=-2x-3.
数学 人教版 八年级 下册
目 录
CONTENTS
数学
八年级 下册
人教版
第4课时求一次函数的解析式
第十九章 一次函数
19.2 一次函数 第4课时求一次函数的解析式
01 课标要求
02 基础梳理
03 典例探究
04 课时训练
数学
八年级 下册
人教版
第4课时求一次函数的解析式
了解待定系数法的含义;能根据已知条件确定一次函数 的表达式;会用待定系数法确定一次函数的表达式.
数学
八年级 下册
人教版
第4课时求一次函数的解析式
类型二 已知直线经过两个点的坐标 【例题2】一次函数y=kx+b的图象经过点(3,2)和点 (1,-2). (1)求这个函数的解析式; (2)判断(-5,3)是否在此函数的图象上.