(完整版)指数函数知识点总结
指数函数知识点总结

指数函数知识点总结指数函数是数学中非常重要的一个概念,广泛应用于自然科学、工程技术和经济学等领域。
它具有许多独特的特性和性质,对于我们理解和应用数学具有重要的意义。
本文将对指数函数的定义、性质及其应用进行总结。
一、指数函数的定义和性质指数函数定义为以自然数e为底数的幂函数,即f(x)=a^x,其中a为底数,x为指数。
其中,底数a是正数且不等于1的任何实数。
指数函数的图像呈现出递增或递减的特点,取决于底数a的大小。
1. 当底数a大于1时,指数函数呈现递增的特性。
以a=2为例,f(x)=2^x的图像在坐标系中逐渐上升,呈现出指数增长的趋势。
指数函数在此情况下,也被称为增长函数。
2. 当底数a小于1且大于0时,指数函数呈现递减的特性。
以a=0.5为例,f(x)=0.5^x的图像在坐标系中逐渐下降,呈现出指数衰减的趋势。
指数函数在此情况下,也被称为衰减函数。
3. 当底数a等于1时,指数函数的值始终为1,即f(x)=1^x=1。
在此情况下,指数函数的图像为一条水平线,没有任何变化。
指数函数具有很多独特的性质,其中一些重要的性质如下:1. 指数函数的定义域为实数集。
任何实数都可以作为指数函数的自变量。
2. 指数函数的值域为正实数集。
由于底数a为正数,指数函数的幂结果始终大于0。
3. 当指数函数的底数a大于1时,映射为一对一。
即不同的指数x 对应不同的函数值f(x)。
4. 指数函数的图像都通过点(0,1)。
这是因为任何数的零次幂都等于1。
5. 指数函数具有对称轴的性质。
即f(x)=a^x的图像关于y轴对称。
二、指数函数的应用指数函数在自然科学、工程技术和经济学等领域应用广泛,主要体现在以下几个方面:1. 人口增长模型:指数函数可以用来描述人口的增长趋势。
如果一个国家的人口增长率呈现出指数增长,即人口每年以固定比例增加,那么可以使用指数函数来建立人口增长模型,预测未来的人口数量。
2. 金融利率计算:指数函数在金融学中有广泛的应用。
指数函数应用知识点总结

指数函数应用知识点总结一、指数函数的基本概念和性质1.1 指数函数的定义指数函数是具有x为独立变量的函数,其定义域为实数集合,通常表示为y = a^x,其中a 为底数,x为指数,a为正实数且不等于1。
1.2 指数函数的基本性质指数函数的基本性质包括:(1)当底数a大于1时,指数函数呈增长趋势;当底数a小于1且大于0时,指数函数呈现下降趋势。
(2)指数函数的图像是以点(0,1)为对称轴的。
(3)当x=0时,指数函数的值始终为1。
(4)指数函数是连续且严格递增或递减的。
1.3 指数函数的导数和积分指数函数的导数为其自身的基数乘以lna,即f'(x)=a^x*lna;而指数函数的不定积分为其自身的函数值除以lna再加上常数项,即∫a^xdx=a^x/lna+C。
1.4 指数函数与对数函数的关系指数函数与对数函数是互为反函数的关系,即a^x=y,当且仅当x=loga(y)。
指数函数和对数函数之间可以相互转化。
1.5 指数函数的极限性质当x趋向无穷大时,指数函数a^x的极限为正无穷;当x趋向负无穷大时,指数函数a^x 的极限为0。
二、指数函数在现实生活中的具体应用2.1 指数函数在金融领域的应用(1)复利计算:复利是利息按期计算并加到本金中再计算利息的计息方式。
其数学模型即为指数函数,为A=P*(1+r/n)^(nt)其中,P为本金,r为年利率,n为计息次数,t为存款年限,A为本金加利息后的总额。
(2)经济增长模型:指数函数也常用于描述国民经济的增长趋势,GDP增长率等指标都可以用指数函数来描述其增长趋势。
2.2 指数函数在生物学领域的应用(1)细菌繁殖模型:细菌在合适的环境条件下,其繁殖数量会呈指数增长。
这种繁殖数量可以用指数函数来描述。
(2)人口增长模型:在一个封闭的系统中,人口增长也可以通过指数函数来描述。
2.3 指数函数在物理学领域的应用(1)放射性衰变模型:放射性元素的衰变可以用指数函数来描述。
指数与指数函数知识点

指数与指数函数知识点一、指数运算的基本性质1.任何数的0次方等于12.非零数的负指数等于该数的倒数。
3.相同底数的指数之间的乘方运算,底数保持不变,指数相加。
4.相同指数的指数之间的乘方运算,指数保持不变,底数相乘。
二、指数运算的规律1.法则1:a的m次方乘以a的n次方,等于a的m加n次方。
2.法则2:a的m次方除以a的n次方,等于a的m减n次方。
3.法则3:(a的m次方)的n次方,等于a的m乘n次方。
4.法则4:a的m次方的p次方,等于a的m乘p次方。
5.法则5:零的任何正次方都是0,零的0次方没有意义,规定为1三、指数函数的定义与性质指数函数的定义为:y=a^x,其中a>0且a≠1,a为底数,x为指数。
指数函数可以看作是以底数为底,自变量为指数的函数。
指数函数的性质如下:1.底数a大于1时,指数函数是递增的,即自变量x的增大,函数值y也增大。
2.底数a介于0和1之间时,指数函数是递减的,即自变量x的增大,函数值y也减小。
3.指数函数的图象都经过点(0,1),即当x=0时,y=14.指数函数的图象在直线x=0和y=0上均没有交点。
5.指数函数的图象没有水平渐近线,但有一条过点(0,0)的铅直渐近线。
指数函数常见的应用有:1.在金融领域中,指数函数可以用来描述货币的增长规律,例如复利计算。
2.在自然科学领域中,指数函数可以用来描述人口增长、病原体传播等现象。
3.在电路中,指数函数可以用来描述电容、电感等元件的充放电过程。
4.在计算机领域中,指数函数可以用来描述算法的时间复杂度、空间复杂度等特性。
总结:。
指数函数知识点总结

指数函数知识点总结指数函数是高中数学中的重要内容,也是数学课本上的一个章节。
本文将从定义、性质、图像、运算等方面对指数函数的知识点进行总结,以帮助读者更好地理解和掌握指数函数的相关内容。
一、定义指数函数是以一个正常数b(b>0,b≠1)为底的幂函数,函数公式为f(x)=b^x,其中b称为底数,x称为指数,f(x)称为指数函数。
指数函数在生活中的例子有人口增长、细菌繁殖等。
二、性质1.定义域:指数函数的定义域是所有实数。
2.值域:对于b>1的指数函数,值域为(0,+∞);对于0<b<1的指数函数,值域为(0,+∞)。
3.奇偶性:指数函数当底数为奇函数时为奇函数,当底数为偶函数时为偶函数。
4.单调性:对于b>1的指数函数,其在定义域上是增函数;对于0<b<1的指数函数,其在定义域上是减函数。
5.渐近线:指数函数没有水平渐近线,但有垂直渐近线x=0。
6.交点与性质:当x=0时,指数函数的值为1,表示该点在y轴上;当b>1时,指数函数经过(1,b)点,当0<b<1时,指数函数经过(1,1/b)点。
三、图像1.b>1的指数函数的图像:在x轴左侧(负半轴)逐渐趋于0,在x轴右侧(正半轴)逐渐增大,图像位于y轴的上方。
2.0<b<1的指数函数的图像:在x轴左侧(负半轴)逐渐减小,在x轴右侧(正半轴)逐渐趋于0,图像位于y轴的下方。
四、运算1.指数函数的乘法法则:b^m*b^n=b^(m+n),底数相同的指数函数相乘时,指数相加。
2.指数函数的除法法则:(b^m)/(b^n)=b^(m-n),底数相同的指数函数相除时,指数相减。
3.指数函数的幂次法则:(b^m)^n=b^(m*n),指数函数的幂次公式,即指数的指数等于底数的两个指数相乘。
五、常用函数2. 对数函数:对数函数是指指数函数的反函数,记作y = logb(x),其中b为底数,x为指数。
指数函数知识点归纳

指数函数知识点归纳指数函数是一种常见的数学函数,它以底数为常数且大于零的实数来表示自变量的幂。
指数函数有着重要的数学性质和应用。
在这篇文章中,我们将归纳指数函数的一些重要知识点。
1.定义和表示:指数函数可以写成f(x)=a^x的形式,其中a是底数,x是指数。
2.基本性质:(1)当底数a大于1时,指数函数呈现增长态势,即函数值随着自变量的增加而增加;(2)当底数a等于1时,指数函数保持恒定,即f(x)=1;(3)当底数a介于0和1之间时,指数函数呈现减少态势,即函数值随着自变量的增加而减少。
3.导数:指数函数的导数与其本身成正比。
具体地,f'(x) = a^x * ln(a),其中ln(a)是以自然对数e为底的对数。
4.指数函数的图像和性质:(1)当底数a大于1时,指数函数的图像在x轴的右侧逐渐上升;(2)当底数a等于1时,指数函数的图像是一条恒定值的水平直线;(3)当底数a介于0和1之间时,指数函数的图像在x轴的右侧逐渐下降;(4)指数函数的图像通过点(0,1),即f(0)=15.指数函数的性质:(1)指数函数具有不断增长或不断减少的性质;(2)指数函数的图像关于y轴对称;(3)当底数a大于1时,函数值在正无穷大和负无穷大之间无限逼近;(4)当底数a介于0和1之间时,函数值在0和正无穷大之间无限逼近。
6.指数函数和对数函数的关系:指数函数和对数函数是互为反函数的。
即,f(x) = a^x 和 g(x) = loga(x)是一对互为反函数的指数函数和对数函数。
函数f(x) = a^x的定义域是实数集R,值域是正实数集R+;函数g(x) = loga(x)的定义域是正实数集R+,值域是实数集R。
7.指数函数的应用:指数函数在各个领域有着广泛的应用,例如经济增长模型、无线电活动强度计算、化学反应速率、放射性衰变等。
指数函数在实际问题中能够提供一种简洁而有效的数学模型。
综上所述,指数函数是一种基于底数为常数的幂函数,具有增长、恒定或减少的性质。
《指数函数》经典讲义(完整版)

指数函数讲义经典整理(含答案)一、同步知识梳理知识点1:指数函数函数(01)xy a a a =>≠且叫做指数函数,其中x 是自变量,函数的定义域是R知识点2:指数函数的图像和性质知识点3:指数函数的底数与图像的关系指数函数在同一直角坐标系中的图像的相对位置与底数大小的关系 如图所示,则01c d a b <<<<<,在y 轴右侧,图像从下到上相应的底数也由小变大, 在y 轴左侧,图像从上到下相应的底数也由小变大 即无论在y 轴左侧还是右侧,底数按逆时针方向变大在第一象限内,“底大图高”知识点4:指数式、指数函数的理解① 分数指数幂与根式或以互化,通常利用分数指数幂进行根式的运算② 根式的运算、变形、求值、化简及等式证明在数学中占有重要的地位,是研究方程、不等式和函数的基础,应引起重视③ 在有关根式、分数指数幂的变形、求值过程中,要注意运用方程的观点处理问题,通过解方程或方程组来求值④ 在理解指数函数的概念时,应抓住定义的“形式”,像1223,,21xx y y x y y =⋅===- 等函数均不符合形式()01x y a a a =>≠且,因此,它们都不是指数函数⑤ 画指数函数x y a =的图像,应抓住三个关键点:()()11,,0,1,1,a a ⎛⎫- ⎪⎝⎭二、同步题型分析题型1:指数函数的定义、解析式、定义域和值域例1:已知函数,且. (1)求m 的值;(2)判定f (x )的奇偶性;(3)判断f (x )在(0,+∞)上的单调性,并给予证明.考点:指数函数的定义、解析式、定义域和值域;函数单调性的判断与证明. 专题: 计算题. 分析:(1)欲求m 的值,只须根据f (4)=的值,当x=4时代入f (x )解一个指数方程即可;(2)求出函数的定义域x|x≠0},利用奇偶性的定义判断f (x )与f (﹣x )的关系,即可得到答案; (3)利用单调性的定义证明即可.任取0<x1<x2,只要证明f (x1)>f (x2),即可. 解答: 解:(1)因为,所以,所以m=1.(2)因为f (x )的定义域为{x|x≠0},又,所以f (x )是奇函数. (3)任取x1>x2>0,则,因为x1>x2>0,所以,所以f (x1)>f (x2),所以f(x)在(0,+∞)上为单调增函数.点评:本题主要考查了函数单调性的判断、函数奇偶性的判断,与证明及指数方程的解法.在判定函数奇偶性时,一定注意函数的定义域关于原点对称,属于基础题.例2:已知函数,(1)讨论函数的奇偶性;(2)证明:f(x)>0.考点:指数函数的定义、解析式、定义域和值域;函数奇偶性的判断;函数奇偶性的性质.专题:计算题.分析:(1)由2x﹣1≠0解得义域为{x|x≠0},关于原点对称.f(﹣x)=()(﹣x)=()x=f(x),故该函数为偶函数.(2)任取x∈{x|x≠0},当x>0时,2x>20=1且x>0,故,从而.当x<0时,﹣x>0,故f(﹣x)>0,由函数为偶函数,能证明f(x)>0在定义域上恒成立.解答:解:(1)该函数为偶函数.由2x﹣1≠0解得x≠0即义域为{x|x≠0}关于原点对称…(2分)f(﹣x)=()(﹣x)=﹣(+)x=()x=()x=()x=f(x)(6分)故该函数为偶函数.…(7分)(2)证明:任取x∈{x|x≠0}当x>0时,2x>20=1且x>0,∴2x﹣1>0,故从而…(11分)当x<0时,﹣x>0,∴f(﹣x)>0,…(12分)又因为函数为偶函数,∴f(x)=f(﹣x)>0,…(13分)∴f(x)>0在定义域上恒成立.…(14分)点评:本题考查函数的奇偶性的判断和证明f(x)>0.解题时要认真审题,注意指数函数性质的灵活运用.例3:已知函数y=ax(a>0且a≠1)在[1,2]上的最大值与最小值之和为20,记.(1)求a的值;(2)求f(x)+f(1﹣x)的值;(3)求的值.考点:指数函数的定义、解析式、定义域和值域.专题:综合题;函数的性质及应用.分析:(1)由y=ax单调得a+a2=20,由此可求a;(2)写出f(x),代入运算可得;(3)借助(2)问结论分n为奇数、偶数讨论可求;解答:解:(1)∵函数y=ax(a>0且a≠1)在[1,2]上的最大值与最小值之和为20,且y=ax单调,∴a+a2=20,得a=4,或a=﹣5(舍去);(2)由(1)知,∴====1;(3)由(2)知f(x)+f(1﹣x)=1,得n为奇数时,=×1=;n为偶数时,=+f()==;综上,=.点评:本题考查指数函数的单调性、最值等知识,属中档题.题型2:指数函数的图像变换.例1:已知函数y=|2x﹣2|(1)作出其图象;(2)由图象指出函数的单调区间;(3)由图象指出当x取何值时,函数有最值,并求出最值.考点:指数函数的图像变换.专题:综合题;函数的性质及应用.分析:(1)函数y=|2x﹣2|图象是由y=2x的图象向下平移2个单位,再将x轴下方的部分翻着到x轴上方得到.(2)结合函数的图象,可得函数的减区间和增区间.(3)数形结合可得,当x=1时,ymiin=0.解答:解:(1)函数y=|2x﹣2|图象是由y=2x的图象向下平移2个单位,再将x轴下方的部分翻着到x轴上方得到,如图所示:(2)结合函数的图象,可得函数的减区间为(﹣∞,1],增区间为(1,+∞).(3)数形结合可得,当x=1时,ymiin=0.点评:本题主要考查指数函数的图象和性质综合,体现了数形结合的数学思想,属于中档题.题型3:指数函数单调性例1:已知函数f(x)=a•2x+b•3x,其中常数a,b满足a•b≠0(1)若a•b>0,判断函数f(x)的单调性;(2)若a=﹣3b,求f(x+1)>f(x)时的x的取值范围.考点:指数函数的单调性与特殊点;函数单调性的判断与证明;函数单调性的性质.专题:函数的性质及应用.分析:(1)分a>0,b>0和a<0,b<0两种情况讨论,运用单调性的定义可作出判断;(2)当a=﹣3b时,f(x)=﹣3b•2x+b•3x=b(3x﹣3•2x),分b>0,b<0两种情况进行讨论,整理可得指数不等式解出即可;解答:解:(1)当a>0,b>0时,任意x1,x2∈R,且x1<x2,则f(x1)﹣f(x2)=a(﹣)+b(﹣),∵<,<,a>0,b>0,∴a(﹣)<0,b(﹣)<0,∴f(x1)﹣f(x2)<0,即f(x1)<f(x2),故函数f(x)在R上是增函数;当a<0,b<0时,同理,可判断函数f(x)在R上是减函数;(2)当a=﹣3b时,f(x)=﹣3b•2x+b•3x=b(3x﹣3•2x),则f(x+1)>f(x)即化为b(3x+1﹣3•2x+1)>b(3x﹣3•2x),若b>0,则有3x+1﹣3•2x+1>3x﹣3•2x,整理得,解得x>1;若b<0,则有3x+1﹣3•2x+1<3x﹣3•2x,整理得,解得x<1;故b>0时,x的范围是x>1;当b<0时,x的范围是x<1.点评:本题考查函数单调性的判断、指数函数的单调性的应用,考查分类讨论思想,属基础题.例2:已知定义在(﹣1,1)上的奇函数f(x).在x∈(﹣1,0)时,f(x)=2x+2﹣x.(1)试求f(x)的表达式;(2)用定义证明f(x)在(﹣1,0)上是减函数;(3)若对于x∈(0,1)上的每一个值,不等式t•2x•f(x)<4x﹣1恒成立,求实数t的取值范围.考点:指数函数综合题;奇偶性与单调性的综合.专题:计算题;函数的性质及应用.分析:(1)由f(x)是定义在(﹣1,1)上的奇函数可得f(0)=0,x∈(0,1)时,f(x)=﹣f(﹣x)=﹣(2x+2﹣x);从而写出f(x)的表达式;(2)取值,作差,化简,判号,下结论五步;(3)对于x∈(0,1)上的每一个值,不等式t•2x•f(x)<4x﹣1恒成立转化为对于x∈(0,1)上的每一个值,不等式t>﹣恒成立,从而可得.解答:解:(1)∵f(x)是定义在(﹣1,1)上的奇函数,∴f(0)=0,设∈(0,1),则﹣x∈(﹣1,0),则f(x)=﹣f(﹣x)=﹣(2x+2﹣x),故f(x)=;(2)任取x1,x2∈(﹣1,0),且x1<x2,则f(x1)﹣f(x2)=+﹣(+)=,∵x1<x2<0,∴﹣<0,0<<1,故f(x1)﹣f(x2)>0,故f(x)在(﹣1,0)上是减函数;(3)由题意,t•2x•f(x)<4x﹣1可化为t•2x•(﹣(2x+2﹣x))<4x﹣1,化简可得,t>﹣,令g(x)=﹣=﹣1+,∵x∈(0,1),∴g(x)<﹣1+=0,故对于x∈(0,1)上的每一个值,不等式t•2x•f(x)<4x﹣1恒成立可化为t≥0.点评:本题考查了函数的性质的综合应用及恒成立问题的处理方法,属于难题.例3:已知函数f(x)=|2x﹣1﹣1|,(x∈R).(1)证明:函数f(x)在区间(1,+∞)上为增函数,并指出函数f(x)在区间(﹣∞,1)上的单调性;(2)若函数f(x)的图象与直线y=t有两个不同的交点A(m,t),B(n,t),其中m<n,求m+n 的取值范围.考点:指数函数综合题.专题:计算题;证明题.分析:(1)函数单调性的证明,通常依据定义,步骤为:取值,作差,变形,定号,下结论,由于与指数函数有关,求解时要利用到指数函数的单调性;(2)由(1)可知,函数的值域为(0,1),要使函数f(x)的图象与直线y=t有两个不同的交点,故有t∈(0,1)又函数f(x)的图象与直线y=t有两个不同的交点,所以A(m,t),B(n,t)分别位于直线x=1的两侧,由m<n,得m<1<n,故可以求出m+n,进而由t∈(0,1),可求m+n的取值范围.解答:解:(1)证明:任取x1∈(1,+∞),x2∈(1,+∞),且x1<x2,=,∵x1<x2,∴,∴,∴f(x1)<f(x2).所以f(x)在区间(1,+∞)上为增函数.(5分)函数f(x)在区间(﹣∞,1)上为减函数.(6分)(2)因为函数f(x)在区间(1,+∞)上为增函数,相应的函数值为(0,+∞),在区间(﹣∞,1)上为减函数,相应的函数值为(0,1),由题意函数f(x)的图象与直线y=t有两个不同的交点,故有t∈(0,1),(8分)易知A(m,t),B(n,t)分别位于直线x=1的两侧,由m<n,得m<1<n,故2m﹣1﹣1<0,2n ﹣1﹣1>0,又A,B两点的坐标满足方程t=|2x﹣1﹣1|,故得t=1﹣2m﹣1,t=2n﹣1﹣1,即m=log2(2﹣2t),n=log2(2+2t),(12分)故m+n=log2(2﹣2t)+log2(2+2t)=log2(4﹣4t2),当0<t<1时,0<4﹣4t2<4,﹣∞<log2(4﹣4t2)<2.因此,m+n的取值范围为(﹣∞,2).(17分)点评:本题的考点是指数函数综合问题,主要考查函数单调性的证明,考查函数图形的性质,有较强的综合性.依据定义,证明函数的单调性的步骤通常为:取值,作差,变形,定号,下结论三、课堂达标检测检测题1:已知函数f(x)=(其中e=2.71828…是一个无理数).(1)求函数f(x)的定义域;(2)判断奇偶性并证明之;(3)判断单调性并证明之.考点:指数函数的定义、解析式、定义域和值域;函数单调性的判断与证明;函数奇偶性的判断.专题:计算题;证明题.分析:(1)把分子整理变化成和分母相同的一部分,进行分子常数化,则变量只在分母上出现,根据分母是一个指数形式,恒大于零,得到函数的定义域是全体实数.(2)根据上一问值函数的定义域关于原点对称,从f(﹣x)入手整理,把负指数变化为正指数,就得到结果,判断函数是一个奇函数.(3)根据判断函数单调性的定义,设出两个任意的自变量,把两个自变量的函数值做差,化成分子和分母都是因式乘积的形式,根据指数函数的性质,判断差和零的关系.解答:解:f(x)==1﹣(1)∵e2x+1恒大于零,∴x∈R(2)函数是奇函数∵f(﹣x)==又由上一问知函数的定义域关于原点对称,∴f(x)为奇函数(3)是一个单调递增函数设x1,x2∈R 且x1<x2则f(x1)﹣f(x2)=1﹣=∵x1<x2,∴∴f(x1)﹣f(x2)<0即f(x1)<f(x2)∴f(x)在R是单调增函数点评:本题考查函数的定义域,考查函数的奇偶性的判断及证明.考查函数单调性的判断及证明,考查解决问题的能力,是一个综合题目.检测题2:已知函数f(x)=2ax+2(a为常数)(1)求函数f(x)的定义域.(2)若a=1,x∈(1,2],求函数f(x)的值域.(3)若f(x)为减函数,求实数a的取值范围.考点:指数函数的定义、解析式、定义域和值域;指数函数的单调性与特殊点.专题:常规题型;转化思想.分析:(1)利用指数函数的定义域来考虑.(2)利用函数f(x)在(1,2]上的单调性求函数的值域.(3)根据复合函数的单调性,函数u=ax+2必须为减函数.解答:解:(1)函数y=2ax+2对任意实数都有意义,所以定义域为实数集R.(2)因为a=1,所以f(x)=2x+2.易知此时f(x)为增函数.又因为1<x≤2,所以f(1)<f(x)≤f(2),即8<f(x)≤16.所以函数f(x)的值域为(8,16].(3)因为f(x)为减函数,而y=2u是增函数,所以函数u=ax+2必须为减函数.所以得a<0点评:本题考查指数函数的定义域、值域、单调性,复合函数的单调性,体现转化的数学思想.检测题3:设f(x)的定义域是(﹣∞,0)∪(0,+∞),且f(x)对任意不为零的实数x都满足f(﹣x)=﹣f(x).已知当x>0时(1)求当x<0时,f(x)的解析式(2)解不等式.考点:指数函数的定义、解析式、定义域和值域;函数奇偶性的性质.专题:常规题型.分析:(1)求当x<0时,f(x)的解析式,在哪个区间上求解析式,就在哪个区间上取值x,再转化到已知区间上求解析式,由f(﹣x)=﹣f(x)解出f(x)即可.(2)解不等式f(x)<﹣,分x>0和x<0两种情况,根据求得的解析式求解即可.解答:解:(1)当x<0时,﹣x>0,=又f(﹣x)=﹣f(x)所以,当x<0时,(2)x>0时,,∴化简得∴,解得1<2x<4∴0<x<2当x<0时,∴解得2x>1(舍去)或∴x<﹣2解集为{x|x<﹣2或0<x<2}点评:本题考查分段函数解析式的求法,注意在哪个区间上求解析式,就在哪个区间上取值,再转化到已知的区间上求解析式,再根据奇偶性,解出f(x)来.解不等式也要分段求解,注意x的取值范围.11。
根据指数函数知识点及题型归纳总结
根据指数函数知识点及题型归纳总结指数函数是数学中的重要概念之一,它在各个领域中都有广泛的应用。
本文将对指数函数的知识点和常见题型进行归纳总结,帮助读者更好地理解和掌握这一概念。
一、知识点总结1. 定义:指数函数是以底数为常数,指数为变量的函数,一般形式为 f(x) = a^x,其中 a 是底数,x 是指数。
2. 指数的性质:- 正指数:a^x 是递增函数,即 x1 < x2,则 a^x1 < a^x2。
- 负指数:a^x 是递减函数,即 x1 < x2,则 a^x1 > a^x2。
- 零指数:a^0 = 1,任意数的零次方等于 1。
3. 底数的性质:- a > 1 时,指数函数呈现增长态势;- 0 < a < 1 时,指数函数呈现衰减态势;- a = 1 时,指数函数为常数函数。
4. 指数函数的图像:根据底数的不同,指数函数的图像可以是上升的曲线、下降的曲线或是一条直线。
5. 指数函数的特殊情况:- 当底数为 e(自然对数的底数)时,指数函数被称为自然指数函数,常用记作 f(x) = e^x。
- 当底数为 10 时,指数函数被称为常用对数函数,常用记作f(x) = log10(x)。
二、题型归纳1. 指数函数的图像绘制:- 根据给定的底数和定义域绘制指数函数的图像。
2. 指数函数的性质应用:- 判断给定的函数是指数函数还是其他类型的函数。
- 比较多个指数函数的增长趋势。
- 求解包含指数函数的方程或不等式。
3. 指数函数的变形与组合:- 利用指数函数的特性进行函数的变形与组合,如 f(x) = a^(2x)、f(x) = a^(x+1) 等。
4. 自然指数函数与常用对数函数的特性:- 探究自然指数函数和常用对数函数的特点及应用。
总结:指数函数是数学中重要的函数类型之一,掌握其基本概念及性质对于理解和应用数学知识具有重要意义。
通过练不同类型的题目,读者可以更好地熟悉指数函数的特点和应用,提高解题能力。
指数函数和对数函数知识点总结
指数函数和对数函数知识点总结一、指数函数:1.基本概念:指数函数是形如y=a^x(a>0,且a≠1)的函数,其中a称为底数,x 称为指数,a^x称为底数a的x次幂。
2.基本性质:(1)a^0=1,任何数的0次幂等于1;(2)a^x*a^y=a^(x+y),相同底数的指数幂相乘,底数不变,指数相加;(3)a^x÷a^y=a^(x-y),相同底数的指数幂相除,底数不变,指数相减;(4)(a^x)^y=a^(x*y),指数幂的乘积再乘方,指数相乘;(5)a^(-x)=1/(a^x),任何数的负指数满足倒数规律。
3.常见指数函数:(1)指数函数y=2^x:以2为底的指数函数,可以用来描述2的x 次幂关系,是一种常见的指数型增长函数,图像逐渐向上凸起。
二、对数函数:1.基本概念:对数函数是指y=loga(x),其中a>0,且a≠1,a称为底数,x称为真数,y称为以a为底x的对数。
2.基本性质:(1)loga(1)=0,底数为任何正数时,1的对数都是0;(2)loga(a)=1,底数为任何正数时,底数的对数都是1;(3)loga (x*y) = loga(x) + loga(y),对数相乘,真数取乘积,对数相加;(4)loga (x/y) = loga(x) - loga(y),对数相除,真数取商,对数相减;(5)loga(x^k) = k * loga(x),对数乘方,真数取底数的k次方,对数乘以指数。
3.常见对数函数:(1)常用对数函数:y=log10(x),其中底数为10,对数函数可以简写为y=log(x)。
常用对数函数是以10为底的对数函数,输入一个正实数x,输出满足10^y=x的y值。
(2)自然对数函数:y=ln(x),其中底数为e。
自然对数函数是以e 为底的对数函数,输入一个正实数x,输出满足e^y=x的y值。
三、指数函数与对数函数的关系:四、指数函数与对数函数的应用:1.科学中的指数增长:指数函数常常用于描述原子衰变、细胞分裂和放射性物质的衰变等过程。
指数函数知识点总结
指数函数知识点总结1. 什么是指数函数?指数函数是数学中常见的一类函数,它以底数为基准,将指数作为自变量,得到相应的函数值。
指数函数可以用数学表达式y = a^x来表示,其中a表示底数,x表示指数,y表示函数值。
2. 指数函数的特点指数函数具有以下几个特点:•当底数a大于 1 时,函数呈递增的趋势;当底数a介于 0 和 1 之间时,函数呈递减的趋势。
•指数函数图像总是过点(0, 1),因为a^0 = 1。
•指数函数的图像在x轴的正半轴上是渐进于 0 的,即函数值无限趋近于 0。
•当指数x为负数时,指数函数的值可以通过倒数得到,即a^(-x) =1 / a^x。
3. 指数函数的基本性质指数函数具有以下几个基本性质:•指数函数在自变量为 0 时取值为 1,即a^0 = 1。
•当指数x为正整数时,指数函数表示连乘,即a^x = a * a * ... * a(共x个a相乘)。
•当指数x为负整数时,指数函数表示连除,即a^(-x) = 1 / (a * a * ... * a)(共x个a相除)。
•指数函数具有指数与对数的互逆性质,即loga(a^x) = x和a^(loga(x)) = x。
•当指数函数的底数a大于 1 时,函数图像与x轴交于点(0, 0);当底数a介于 0 和 1 之间时,函数图像与y轴交于点(0, 0)。
4. 指数函数的图像变化规律指数函数的图像变化规律取决于底数a的大小,具体如下:•当a > 1时,指数函数图像从左下方逐渐增加到右上方。
•当0 < a < 1时,指数函数图像从左上方逐渐减小到右下方。
•当a = 1时,指数函数恒为y = 1,即一条水平直线。
5. 指数函数的应用指数函数在实际生活和科学研究中有广泛的应用,以下列举几个常见的应用场景:•金融领域:指数函数在复利计算中起到重要的作用,可以用来计算投资收益、贷款利息等。
•物理学:指数函数可以描述某些物理量的增长或衰减规律,如放射性物质的衰变、电路中的电荷充放电过程等。
指数函数知识点
指数函数知识点专题复习一、基础知识 1.指数函数的概念函数y =a x (a >0,且a ≠1)叫做指数函数,其中指数x 是自变量,函数的定义域是R ,a 是底数. 形如y =ka x ,y =a x +k (k ∈R 且k ≠0,a >0且a ≠1)的函数叫做指数型函数,不是指数函数. 2.指数函数y =a x (a >0,且a ≠1)的图象与性质二、常用结论指数函数图象的特点(1)指数函数的图象恒过点(0,1),(1,a ),⎪⎭⎫⎝⎛-a 1,1,依据这三点的坐标可得到指数函数的大致图象. (2)函数y =a x 与y =xa ⎪⎭⎫⎝⎛1(a >0,且a ≠1)的图象关于y 轴对称.(3)底数a 与1的大小关系决定了指数函数图象的“升降”:当a >1时,指数函数的图象“上升”;当0<a <1时,指数函数的图象“下降”. 三、考点解析考点一 指数函数的图象及应用例、(1)函数f (x )=21-x 的大致图象为( )(2)若函数y=|3x-1|在(-∞,k]上单调递减,则k的取值范围为________.变式练习1.[变条件]本例(1)中的函数f(x)变为:f(x)=2|x-1|,则f(x)的大致图象为()2.[变条件]本例(2)变为:若函数f(x)=|3x-1|-k有一个零点,则k的取值范围为________.3.若函数y=21-x+m的图象不经过第一象限,求m的取值范围.考点二指数函数的性质及应用考法(一)比较指数式的大小例、已知a=243,b=425,c=2513,则()A.b<a<c B.a<b<c C.b<c<a D.c<a<b考法(二)解简单的指数方程或不等式例、若偶函数f(x)满足f(x)=2x-4(x≥0),则不等式f(x-2)>0的解集为________.[解题技法]简单的指数方程或不等式问题的求解策略:(1)a f(x)=a g(x)⇔f(x)=g(x).(2)a f(x)>a g(x),当a>1时,等价于f(x)>g(x);当0<a<1时,等价于f(x)<g(x).(3)解决简单的指数不等式的问题主要利用指数函数的单调性,要特别注意底数a的取值范围,并在必要时进行分类讨论.考法(三)指数型函数性质的综合问题例、已知函数f(x)=34231+-⎪⎭⎫⎝⎛xax(1)若a=-1,求f(x)的单调区间;(2)若f(x)有最大值3,求a的值.[解题技法]与指数函数有关的复合函数的单调性:形如函数y=a f(x)的单调性,它的单调区间与f(x)的单调区间有关:(1)若a>1,函数f(x)的单调增(减)区间即函数y=a f(x)的单调增(减)区间;(2)若0<a <1,函数f (x )的单调增(减)区间即函数y =a f (x )的单调减(增)区间.即“同增异减”. 跟踪训练 1.函数y =12221-+⎪⎭⎫ ⎝⎛x x 的值域是( )A .(-∞,4)B .(0,+∞)C .(0,4]D .[4,+∞) 2.设a =0.60.6,b =0.61.5,c =1.50.6,则a ,b ,c 的大小关系是( )A .a <b <cB .a <c <bC .b <a <cD .b <c <a 3.设函数f (x )=x 2-a与g (x )=a x (a >1且a ≠2)在区间(0,+∞)上具有不同的单调性,则M =(a -1)0.2与N =1.01⎪⎭⎫⎝⎛a 的大小关系是( ) A .M =N B .M ≤N C .M <N D .M >N4.已知实数a ≠1,函数f (x )=⎩⎪⎨⎪⎧4x ,x ≥0,2a -x ,x <0,若f (1-a )=f (a -1),则a 的值为________.课后作业1.函数f (x )=1-e |x |的图象大致是( )2.已知函数f (x )=4+2a x-1的图象恒过定点P ,则点P 的坐标是( )A .(1,6)B .(1,5)C .(0,5)D .(5,0) 3.已知a =20.2,b =0.40.2,c =0.40.6,则a ,b ,c 的大小关系是( )A .a >b >cB .a >c >bC .c >a >bD .b >c >a 4.函数f (x )=xx +-⎪⎭⎫⎝⎛221的单调递增区间是( )A.]21,(-∞ B.]21,0[ C.)21[∞+, D.]121[, 5.函数f (x )=a x-b的图象如图所示,其中a ,b 为常数,则下列结论正确的是( )A .a >1,b <0B .a >1,b >0C .0<a <1,b >0D .0<a <1,b <06.已知函数f (x )=⎩⎪⎨⎪⎧1-2-x ,x ≥0,2x -1,x <0,则函数f (x )是( )A .偶函数,在[0,+∞)上单调递增B .偶函数,在[0,+∞)上单调递减C .奇函数,且单调递增D .奇函数,且单调递减7.已知a =3.331⎪⎭⎫ ⎝⎛,b =9.331⎪⎭⎫⎝⎛,则a ________b .(填“<”或“>”)8.函数y =x ⎪⎭⎫ ⎝⎛41-x⎪⎭⎫⎝⎛21+1在[-3,2]上的值域是________.9.已知函数f (x )=a x +b (a >0,且a ≠1)的定义域和值域都是[-1,0],则a +b =________.10.已知函数f (x )=a |x +1|(a >0,且a ≠1)的值域为[1,+∞),则f (-4)与f (1)的大小关系是________.11.已知函数f (x )=ax⎪⎭⎫⎝⎛21,a 为常数,且函数的图象过点(-1,2).(1)求a 的值;(2)若g (x )=4-x -2,且g (x )=f (x ),求满足条件的x 的值.12.已知函数f (x )=ax -⎪⎭⎫⎝⎛32.(1)求f (x )的单调区间;(2)若f (x )的最大值是94,求a 的值.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
指数函数(一)指数与指数幂的运算1.根式的概念:一般地,如果a x n=,那么x 叫做a 的n 次方根,其中n >1,且n ∈N *. 负数没有偶次方根;0的任何次方根都是0,记作00=n 。
当n 是奇数时,a a n n =,当n 是偶数时,⎩⎨⎧<≥-==)0()0(||a a a a a a n n2.分数指数幂正数的分数指数幂的意义,规定:)1,,,0(*>∈>=n N n m a a an m nm )1,,,0(11*>∈>==-n N n m a a aanmnm nm0的正分数指数幂等于0,0的负分数指数幂没有意义 3.实数指数幂的运算性质(1)ra ·sr raa += ),,0(R s r a ∈>;(2)rss r a a =)( ),,0(R s r a ∈>; (3)sr r a a ab =)( ),,0(R s r a ∈>.(二)指数函数及其性质1、指数函数的概念:一般地,函数)1,0(≠>=a a a y x且叫做指数函数,其中x 是自变量,函数的定义域为R .注意:指数函数的底数的取值范围,底数不能是负数、零和1. 2注意:利用函数的单调性,结合图象还可以看出:(1)在[a ,b]上,)1a 0a (a )x (f x≠>=且值域是)]b (f ),a (f [或)]a (f ),b (f [(2)若0x ≠,则1)x (f ≠;)x (f 取遍所有正数当且仅当R x ∈;(3)对于指数函数)1a 0a (a )x (f x ≠>=且,总有a )1(f =;指数函数·例题解析【例1】求下列函数的定义域与值域:(1)y 3(2)y (3)y 12x===-+---213321x x解 (1)定义域为x ∈R 且x ≠2.值域y >0且y ≠1. (2)由2x+2-1≥0,得定义域{x|x ≥-2},值域为y ≥0. (3)由3-3x-1≥0,得定义域是{x|x ≤2},∵0≤3-3x -1<3,∴值域是≤<.0y 3练习:(1)412-=x y ; (2)||2()3x y =; (3)1241++=+x x y ;【例2】指数函数y =a x ,y =b x ,y =c x ,y =d x 的图像如图2.6-2所示,则a 、b 、c 、d 、1之间的大小关系是 [ ]A .a <b <1<c <dB .a <b <1<d <cC . b <a <1<d <cD .c <d <1<a <b解 选(c),在x 轴上任取一点(x ,0), 则得b <a <1<d <c . 练习:指数函数① ②满足不等式,则它们的图象是( ).【例3】比较大小:(1)2(2)0.6、、、、的大小关系是:.248163235894512--()(3)4.54.1________3.73.6解(1)y 221()x ∵,,,,,函数=,>,该函数在-∞,+∞上是增函数,又<<<<,∴<<<<.222242821621338254912284162123135258389493859=====解 (2)0.6110.6∵>,>,∴>.----451245123232()() 解 (3)借助数4.53.6打桥,利用指数函数的单调性,4.54.1>4.53.6,作函数y 1=4.5x ,y 2=3.7x 的图像如图2.6-3,取x =3.6,得4.53.6>3.73.6 ∴ 4.54.1>3.73.6.说明 如何比较两个幂的大小:若不同底先化为同底的幂,再利用指数函数的单调性进行比较,如例2中的(1).若是两个不同底且指数也不同的幂比较大小时,有两个技巧,其一借助1作桥梁,如例2中的(2).其二构造一个新的幂作桥梁,这个新的幂具有与4.54.1同底与3.73.6同指数的特点,即为4.53.6(或3.74.1),如例2中的(3). 练习: (1)1.72.5与 1.73( 2 )0.10.8-与0.20.8-( 3 ) 1.70.3与 0.93.1(4)5.31.2和7.20.2【例4】解比较大小与>且≠,>.当<<,∵>,>,aa a aan n n n n n nn n nn n -+-+-=-11111111(a 0a 1n 1)0a 1n 10()()∴<,∴<当>时,∵>,>,∴>,>a a a n n aa a n n n n n n n n n n n n 1111111111()()()--+--+-1a 1n 101【例5】作出下列函数的图像:(1)y (2)y 22x ==-,()121x +(3)y =2|x-1| (4)y =|1-3x |解 (1)y (264)(0)(11)y 1=的图像如图.-,过点,及-,.是把函数=的图像向左平移个单位得到的.()()1212121x x+ 解 (2)y =2x -2的图像(如图2.6-5)是把函数y =2x 的图像向下平移2个单位得到的.解 (3)利用翻折变换,先作y =2|x|的图像,再把y =2|x|的图像向右平移1个单位,就得y =2|x-1|的图像(如图2.6-6).解 (4)作函数y =3x 的图像关于x 轴的对称图像得y =-3x 的图像,再把y=-3x 的图像向上平移1个单位,保留其在x 轴及x 轴上方部分不变,把x 轴下方的图像以x 轴为对称轴翻折到x 轴上方而得到.(如图2.6-7)【例8】已知=>f(x)(a 1)a a x x -+11(1)判断f(x)的奇偶性; (2)求f(x)的值域;(3)证明f(x)在区间(-∞,+∞)上是增函数.解 (1)定义域是R .f(x)f(x)-==-,a a a a x x x x ---+=--+1111∴函数f(x)为奇函数.(2)y y 1a 1y 1x 函数=,∵≠,∴有=>-<<,a a y y y y x x -+---=+-⇒1111110即f(x)的值域为(-1,1).(3)设任意取两个值x 1、x 2∈(-∞,+∞)且x 1<x 2.f(x 1)-f(x 2)==,∵>,<,<,++>,∴<,故在上为增函数.a a a a a a a a a a a a x l x l x x x l x x l xx x x x -+-+--++112121*********()()()a 1x x (1)(1)0f(x )f(x )f(x)R 1212单元测试题一、选择题:(本题共12小题,每小题5分,共60分)1、化简1111132168421212121212-----⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫+++++ ⎪⎪⎪⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭,结果是( )A 、11321122--⎛⎫- ⎪⎝⎭B 、113212--⎛⎫- ⎪⎝⎭ C 、13212-- D 、1321122-⎛⎫- ⎪⎝⎭2、44等于( )A 、16aB 、8aC 、4aD 、2a3、若1,0a b ><,且b ba a -+=则b b a a --的值等于( )A 、6B 、2±C 、2-D 、24、函数()2()1xf x a =-在R 上是减函数,则a 的取值范围是( )A 、1>aB 、2<aC 、a <、1a <<5、下列函数式中,满足1(1)()2f x f x +=的是( ) A 、1(1)2x + B 、14x + C 、2x D 、2x - 6、下列2()(1)x xf x a a -=+是( )A 、奇函数B 、偶函数C 、非奇非偶函数D 、既奇且偶函数7、已知,0a b ab >≠,下列不等式(1)22a b >;(2)22a b>;(3)ba 11<;(4)1133a b >;(5)1133a b⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭中恒成立的有( )A 、1个B 、2个C 、3个D 、4个8、函数2121x x y -=+是( )A 、奇函数B 、偶函数C 、既奇又偶函数D 、非奇非偶函数 9、函数121x y =-的值域是( ) A 、(),1-∞ B 、()(),00,-∞+∞ C 、()1,-+∞ D 、()(,1)0,-∞-+∞10、已知01,1a b <<<-,则函数xy a b =+的图像必定不经过( ) A 、第一象限 B 、第二象限 C 、第三象限 D 、第四象限 11、2()1()(0)21xF x f x x ⎛⎫=+⋅≠ ⎪-⎝⎭是偶函数,且()f x 不恒等于零,则()f x ( ) A 、是奇函数 B 、可能是奇函数,也可能是偶函数 C 、是偶函数 D 、不是奇函数,也不是偶函数12、一批设备价值a 万元,由于使用磨损,每年比上一年价值降低%b ,则n 年后这批设备的价值为( )A 、(1%)na b -B 、(1%)a nb -C 、[1(%)]na b - D 、(1%)na b - 二、填空题:(本题共4小题,每小题4分,共16分,请把答案填写在答题纸上)13、若103,104xy==,则10x y-= 。
14、函数22811(31)3x x y x --+⎛⎫=- ⎪⎝⎭≤≤的值域是 。
15、函数2233x y -=的单调递减区间是 。
16、若21(5)2x f x -=-,则(125)f = 。
三、解答题:(本题共6小题,共74分,解答应写出文字说明,证明过程或演算步骤.) 17、设01a <<,解关于x 的不等式22232223x x xx a a -++->。
18、已知[]3,2x ∈-,求11()142x xf x =-+的最小值与最大值。
19、设a R ∈,22()()21x x a a f x x R ⋅+-=∈+,试确定a 的值,使()f x 为奇函数。
20、已知函数22513x x y ++⎛⎫= ⎪⎝⎭,求其单调区间及值域。
21、若函数4323xxy =-+的值域为[]1,7,试确定x 的取值范围。
22、已知函数1()(1)1x xa f x a a -=>+ (1)判断函数的奇偶性; (2)求该函数的值域;(3)证明()f x 是R 上的增函数。
指数与指数函数同步练习参考答案一、二、13、414、991,33⎡⎤⎛⎫⎢⎥ ⎪⎝⎭⎢⎥⎣⎦,令222812(2)9U x x x =--+=-++,∵ 31,99x U -∴-≤≤≤≤,又∵13U y ⎛⎫= ⎪⎝⎭为减函数,∴99133y ⎛⎫⎪⎝⎭≤≤。
15、()0,+∞,令23,23Uy U x ==-, ∵3Uy =为增函数,∴2233x y -=的单调递减区间为()0,+∞。