初中数学二次函数的图象与性质能力达标测试题1(附答案详解)
人教版初中数学九年级上册第二十二章二次函数单元测试卷含答案解析

第二十二章《二次函数》单元测试卷一、选择题(每小题只有一个正确答案) 1.下列函数中,是二次函数的为( )A . y =2x +1B . y =(x −2)2−x 2C . y =2x 2 D . y =2x(x +1) 2.二次函数y=2(x ﹣1)2+3的图象的对称轴是( ) A . x=1 B . x=﹣1 C . x=3 D . x=﹣33.将抛物线y=x 2向左平移2个单位,再向下平移5个单位,平移后所得新抛物线的表达式为( ) A . y=(x +2)2﹣5 B . y=(x +2)2+5 C . y=(x ﹣2)2﹣5 D . y=(x ﹣2)2+5 4.(已知二次函数y=ax 2+bx +c (a ≠0)的图象如图所示,下列结论:①abc >0;②2a +b >0;③b 2﹣4ac >0;④a ﹣b +c >0,其中正确的个数是( )A . 1B . 2C . 3D . 45.已知二次函数y =ax 2−bx −2(a≠0)的图象的顶点在第四象限,且过点(﹣1,0),当a ﹣b 为整数时,ab 的值为( )A . 34或1 B . 14或1 C . 34或12 D . 14或34 6.下列具有二次函数关系的是( )A . 正方形的周长y 与边长xB . 速度一定时,路程s 与时间tC . 三角形的高一定时,面积y 与底边长xD . 正方形的面积y 与边长x7.给出下列四个函数:y=,2x,y=2x,1,y=3x ,x,0,,y=,x 2+3,x,0),其中y 随x 的增大而减小的函数有( )A . 3个B . 2个C . 1个D . 0个8.在直角坐标系xOy 中,二次函数C 1,C 2图象上部分点的横坐标、纵坐标间的对应值如下表: x … ,1 0 1 2 2.5 3 4 … y 1 … 0 m 1 ,8 n 1 ,8.75 ,8 ,5 … y 2…5m 2,11n 2,12.5,11,5…则关于它们图象的结论正确的是()A.图象C1,C2均开口向下B.图象C1的顶点坐标为(2.5,,8.75,C.当x,4时,y1,y2D.图象C1,C2必经过定点(0,,5,9.如图,二次函数y=ax2+bx+c的图象过点A(3,0),对称轴为直线x=1,给出以下结论:①abc <0;②b2﹣4ac>0;③a+b+c≥ax2+bx+c;④若M(x2+1,y1)、N(x2+2,y2)为函数图象上的两点,则y1<y2,其中正确的是()A.①②③B.①②④C.①③④D.②③④10.已知二次函数y=ax2+bx的图象如图所示,则一次函数y=ax+b的图象是()A.B.C.D.11.如图,抛物线y=−23x2+103x+4分别交x轴于A,B两点,与y轴交于点C,动点P从D(0,2)出发,先到达x轴上的某点E,再到达抛物线对称轴上的某点F,最后运动到点C,求点P运动的最短路径长为()A.√61B.8C.7D.912.二维码已经给我们的生活带来了很大方便,它是由大小相同的黑白两色的小正方形(如图1中C)按某种规律组成的一个大正方形,现有25×25格式的正方形如图1,角上是三个7×7的A型大黑白相间正方形,中间右下一个5×5的B型黑白相间正方形,除这4个正方形外,若其他的小正方形白色块数y与黑色块数x正好满足如图2所示的函数图象,则该25×25格式的二维码共有多少块黑色的C型小正方形()A.153B.218C.100D.216二、填空题13.二次函数y,kx2,x,2经过点(1,5),则k,_________.14.若函数y,(m,3)x m2+2m-13是二次函数,则m,______.15.若抛物线y=x2−6x+m与x轴没有交点,则m的取值范围是______,16.已知抛物线y=ax2+bx+c,a,0)的顶点为(2,4),若点(﹣2,m,,,3,n)在抛物线上,则m_____n(填“,”,“=”或“,”,,17.用一段长为30m的篱笆围成一个一边靠墙的矩形菜园,墙长20m,当矩形的长、宽各取某个特定的值时,菜园的面积最大,这个最大面积是_____m2.三、解答题18.在平面直角坐标系xOy中,二次函数y=x2﹣2hx+h的图象的顶点为点D.(1)当h=﹣1时,求点D的坐标;(2)当﹣1≤x≤1时,求函数的最小值m.(用含h的代数式表示m)19.二次函数y=,m+1,x2,2,m+1,x,m+3,,1)求该二次函数的对称轴;,2)过动点C,0,n)作直线l,y轴,当直线l与抛物线只有一个公共点时,求n关于m的函数表达式;,3)若对于每一个给定的x值,它所对应的函数值都不大于6,求整数m,20.某商场销售一种商品,进价为每个20元,规定每个商品售价不低于进价,且不高于60元.经调查发现,每天的销售量y(个)与每个商品的售价x(元)满足一次函数关系,其部分数据如下表所示:,1,求y与x之间的函数关系式;,2,设商场每天获得的总利润为w(元),求w与x之间的函数关系式;,3,不考虑其他因素,当商品的售价为多少元时,商场每天获得的总利润最大,最大利润是多少?21.已知二次函数y=kx2+(k+1)x+1(k≠0).(1)求证:无论k取任何实数时,该函数图象与x轴总有交点;(2)如果该函数的图象与x轴交点的横坐标均为整数,且k为整数,求k值.22.如图,抛物线y=ax2+2ax+1与x轴仅有一个公共点A,经过点A的直线交该抛物线于点B,交y轴于点C,且点C是线段AB的中点.(1)求这条抛物线对应的函数解析式;(2)求直线AB对应的函数解析式.23.如图所示,二次函数y=﹣2x2+4x+m的图象与x轴的一个交点为A(3,0),另一个交点为B.且与y轴交于点C.(1)求m的值及点B的坐标;(2)求△ABC的面积;(3)该二次函数图象上有一点D(x,y),使S△ABD=S△ABC,请求出D点的坐标.参考答案1.D【解析】【分析】先把它们整理成一般形式,再根据二次函数的定义解答.【详解】A选项:一次函数,错误;B选项:原函数可化为:y=-4x+4,一次函数,错误;C选项:不是整式,错误;D选项:原函数可化为:y=2x2+2x,正确.故选:D.【点睛】考查二次函数的定义,一般地,把形如y=ax2+bx+c(a≠0)(a、b、c是常数)的函数叫做二次函数. 2.A【解析】【分析】由抛物线解析式可求得其顶点坐标及对称轴.【详解】∵y,2,x−1,2,3,∴抛物线顶点坐标为(1,3),对称轴为x,1,故选:A,【点睛】本题主要考查二次函数的性质,掌握二次函数的顶点式是解题的关键,即在y,a,x−h,2,k中,对称轴为x,h,顶点坐标为(h,k,,3.A【解析】【分析】直接根据“上加下减,左加右减”的原则进行解答即可.【详解】抛物线y=x2的顶点坐标为(0,0),先向左平移2个单位再向下平移5个单位后的抛物线的顶点坐标为(﹣2,﹣5),所以,平移后的抛物线的解析式为y=(x+2)2﹣5.故选:A.【点睛】本题考查了二次函数的图象与几何变换,熟知函数图象平移的法则是解答本题的关键.4.D【解析】【分析】由抛物线的对称轴的位置判断ab的符号,由抛物线与y轴的交点判断c的符号,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.【详解】①∵抛物线对称轴是y轴的右侧,∴ab<0,∵与y轴交于负半轴,∴c<0,∴abc>0,故①正确;②∵a>0,x=﹣b<1,2a∴﹣b<2a,∴2a+b>0,故②正确;③∵抛物线与x轴有两个交点,∴b2﹣4ac>0,故③正确;④当x=﹣1时,y>0,∴a﹣b+c>0,故④正确.故选:D.【点睛】本题主要考查了图象与二次函数系数之间的关系,二次函数y=ax2+bx+c系数符号由抛物线开口方向、对称轴和抛物线与y轴的交点、抛物线与x轴交点的个数确定.5.A【解析】【分析】首先根据题意确定a,b的符号,然后进一步确定a的取值范围,根据a,b为整数确定a,b的值,从而确定答案.【详解】,0,a+b,2=0,依题意知a,0,b2a故b,0,且b=2,a,a,b=a,,2,a,=2a,2,于是0,a,2,∴,2,2a,2,2,又a,b为整数,∴2a,2=,1,0,1, 故a=12,1,32,b=32,1,12,∴ab=34或1,故选A, 【点睛】根据开口和对称轴可以得到b 的范围。
(常考题)北师大版初中数学九年级数学下册第二单元《二次函数》测试卷(有答案解析)(5)

一、选择题1.已知关于x 的一元二次方程()()250x m n x mn m n -++-=<有两个不相等的实数根(),,a b a b <则实数,,,m n a b 的大小关系可能是( )A .m a b n <<<B .m a n b <<<C .a m n b <<<D .a m b n <<<2.在同一坐标系中,函数y ax b =+与2(0)y ax bx a =+≠的图象可能是( ) A . B . C . D . 3.一次函数y =ax +b 与二次函数y =ax 2+bx +c 在同一坐标系中的图象可能是( ) A . B .C .D .4.如图,一边靠墙(墙有足够长),其它三边用12m 长的篱笆围成一个矩形(ABCD )花园,这个花园的最大面积是( )A .18m 2B .12 m 2C .16 m 2D .22 m 2 5.如图在平面直角坐标系中,点A 在抛物线245y x x =-+上运动.过点A 作AC x ⊥轴于点C ,以AC 为对角线作矩形ABCD ,则对角线BD 的最小值为( )A .4B .3C .2D .16.下列函数中,当0x >时,y 随x 增大而增大的是( )A .2y x =B .22y x =+C . 1y x =-+D .22 y x =-- 7.如图,已知ABC 中,,120,3AC BC ACB AB =∠=︒=,点D 为边AB 上一点,过点D 作//DE AC ,交BC 于点E ,过点E 作EF DE ⊥,交AB 于点F .设,AD x DEF =的面积为y ,则能大致反映y 与x 函数关系的图象是( )A .B .C .D .8.二次函数y =ax 2+bx +c (a ,b ,c 为常数,且a ≠0)中的x 与y 的部分对应值如表: x﹣1 0 1 3 y﹣1 3 5 3 则代数式﹣2a (4a +2b +c )的值为( ) A .92 B .152 C .9 D .159.如图,在平面直角坐标系中,反比例函数和二次函数的图象大致如图所示,它们的表达式可能分别为( )A .2,k y y kx x x =-=-+ B .2,k y y kx x x =-=-- C .2,k y y kx x x ==-- D .2,k y y kx x x==-+ 10.如图,二次函数2y ax bx c =++(a 、b 、c 是常数,且0a ≠)的图象与x 轴的一个交点为()3,0A ,对称轴为直线1x =,下列结论:①0abc <;②0a b c -+<;③2b a =-;④80ac +>.其中正确结论的个数为( )A .1个B .2个C .3个D .4个 11.在平面直角坐标系中,下列二次函数的图象开口向上的是( ) A .22y x = B .221y x x =-++ C .22y x x =-+D .20.5y x x =-+ 12.如图,二次函数2y ax bx c =++的图象与x 轴交于,A B 两点,与y 轴负半轴交于点C ,它的对称轴为直线12x =,则下列选项中正确的是( )A .0abc <B .0a b -=C .40a c ->D .当2(1x n n =+为实数)时,y c ≤二、填空题13.函数y =ax 2+bx +c (a ≠0)图像如图所示,过点(﹣1,0),对称轴为x =2,下列结论正确的是_____.①4a +b =0;②24a +2b +3c <0;③若A (﹣3,y 1),B (﹣0.5,y 2),C (3.5,y 3)三点都在抛物线上,y 1<y 2<y 3; ④当y 1>﹣1时,y 随x 增大而增大.14.如图,在平面直角坐标中,对抛物线222y x x =-+在x 轴上方的部分进行循环反复的轴对称或中心对称变换,若点A 是该抛物线的顶点,则经过第2020次变换后所得的A 点的坐标是_________.15.若点A (﹣12021,y 1)、B (40412021,y 2)都在二次函数y =﹣x 2+2x +m 的图像上,则y 1_____y 2.16.将抛物线y =3x 2沿y 轴向上平移1个单位,所得的抛物线关系式为_____. 17.将抛物线y =2x 2向左平移2个单位,所得抛物线的对称轴是直线_____.18.二次函数()20y ax bx c a =++≠的图象如图所示,其对称轴为直线1x =-,与x 轴的交点为()()12,0,0x x ,其中201x <<,有下列结论:①240b ac ->;②421a b c -+>-;③132x -<<-;④当m 为任意实数时,2a b am bm -≤+;⑤30a c +<.其中,正确结论的序号是(________)19.抛物线23(2)4=---y x 的顶点坐标是______.20.有五张正面分别标有数字32112---,,,,的卡片,它们除数字不同外其余全部相同.现将它们背面朝上,洗匀后从中随机抽取一张,记卡片上的数字为a ,则使关于以x为自变量的二次函数22(1)2y x a x a =-++-的图象不经过点(1,0)的概率是____.三、解答题21.平安路上,多“盔”有你.在“交通安全宣传月”期间,某商店销售一批头盔,进价为每顶40元,售价为每顶68元,平均每周可售出100顶.商店计划将头盔降价销售,每顶售价不高于58元,经调查发现:每降价1元,平均每周可多售出20顶.(1)若该商店希望平均每周获利4000元,则每顶头盔应降价多少?(2)商店降价销售后,决定每销售1顶头盔,就向某慈善机构捐赠m 元(m 为整数,且15m <),帮助做“交通安全”宣传.捐赠后发现,该商店每周销售这种商品的利润仍随售价的增大而增大,求m 的值.22.已知抛物线239y x kx k =-+-.求证:无论k 为何值,该二次函数的图象与x 轴都有交点.23.如图,已知抛物线y =﹣x 2+bx +c 与坐标轴交于A ,B ,C 三点,其中A (﹣2,0),B (4,0).(1)求该抛物线的表达式;(2)根据图象,直接写出y >0时,x 的取值范围;(3)若要使抛物线与x 轴只有一个交点,则需将抛物线向下平移几个单位?24.平面直角坐标系xOy 中,已知抛物线2y x bx c =++经过()21,21m m -++、()20,22m m ++两点,其中m 为常数.(1)求b 的值,并用含m 的代数式表示c ;(2)若抛物线2y x bx c =++与x 轴有公共点,求m 的值;(3)设()1,a y 、()22,a y +是抛物线2y x bx c =++上的两点,请比较2y 与1y 的大小,并说明理由.25.天气寒冷,某百货商场准备销售一种围巾,围巾的进货价格为每条50元,并且每条的售价不低于进货价,经过市场调查,每月的销售量y (条)与每条的售价x (元)之间满足人体所示的函数关系.(1)求每月销售y (条)与售价x (元)的函数关系式;(2)物价部门规定,该围巾的每条利润不允许高于进货价的30%,设这种围巾每月的总利润为w (元),那么售价定为多少元可获得最大利润?最大利润是多少?26.如图1是某校园运动场主席台及遮阳棚,其侧面结构示意图如图2所示.主席台(矩形ABCD )高2AD = 米,直杆5DE =米,斜拉杆EG ,EH 起稳固作用,点H 处装有一射灯.遮阳棚边缘曲线FHG 可近似看成抛物线的一部分,G 为抛物线的最高点且位于主席台边缘BC 的正上方,若点E ,H ,C 在同一直线上,且1DF =米,4EG =米,60AEG ∠=︒,则射灯H 离地面的高度为______米.【参考答案】***试卷处理标记,请不要删除1.C解析:C【分析】设抛物线解析式为y =x 2-(m +n )x +mn -5,根据题意可得当x =a 或x =b 时,y =0,分别求出当x =n ,x =m 时y 的符号,根据二次函数的性质即可得答案.【详解】设抛物线解析式为y=x 2-(m+n)x+mn-5,∵一元二次方程()()250x m n x mn m n -++-=<有两个不相等的实数根(),a b a b <, ∴当x =a 或x =b 时,y =0,∵1>0,∴抛物线y =x 2-(m +n )x +mn -5图象的开口向上,与x 的交点坐标为(a ,0),(b ,0), ∵a <b ,∴当a <x <b 时,y <0,当x =m 时,y =m 2-(m +n )m +mn -5=-5<0,当x =n 时,y=n 2-(m +n )n +mn -5=-5<0,∵m <n ,∴a <m <n <b ,故选:C .【点睛】本题考查二次函数的图象与性质,熟练掌握二次函数与一元二次方程之间的关系是解题关键.2.A解析:A【分析】根据二次函数的c 值为0,确定二次函数图象经过坐标原点,再根据a 值确定出二次函数的开口方向与一次函数所经过的象限即可得解.【详解】解:2(0)y ax bx a =+≠,0c ,∴二次函数经过坐标原点,故B 、C 选项错误; A 、根据二次函数开口向上0a >,对称轴b x 02a =->, 所以,0b <,一次函数经过第一三象限,0a >,与y 轴负半轴相交,所以,0b <,符合,故本选项正确;D 、二次函数图象开口向下,0a <,一次函数经过第一三象限,0a >,矛盾,故本选项错误.【点睛】本题考查了二次函数的图象,一次函数的图象,熟练掌握函数解析式的系数与图象的关系是解题的关键.3.B解析:B【分析】先由一次函数y ax b =+的图象得到a 、b 的正负,再与二次函数2y ax bx c =++的图象的开口方向、对称轴位置相比较即可做出判断.【详解】解:A 、由抛物线可知,a <0,x =﹣2b a <0,得b <0,由直线可知,a >0,b >0,故本选项错误;B 、由抛物线可知,a <0,x =﹣2b a <0,得b <0,由直线可知,a <0,b <0,故本选项正确;C 、由抛物线可知,a >0,x =﹣2b a >0,得b <0,由直线可知,a >0,b >0,故本选项错误;D 、由抛物线可知,a <0,x =﹣2b a<0,得b <0,由直线可知,a <0,b >0,故本选项错误.故选:B .【点睛】本题主要考查一次函数的图象、二次函数2y ax bx c =++的图象与性质,熟练掌握两函数图象与解析式的系数的关系是解答的关键. 4.A解析:A【分析】根据题意可以列出相应的函数关系式,然后化为顶点式即可解答本题.【详解】解:设与墙垂直的矩形的边长为xm ,则这个花园的面积是:S=x (12-2x )=()222122318x x x -+=--+,∴当x=3时,S 取得最大值,此时S=18,故选:A .【点睛】本题考查二次函数的应用,解答本题的关键是明确题意,列出相应的函数关系式,利用二次函数的性质解答.5.D解析:D【分析】先利用配方法得到抛物线的顶点坐标为(2,1),再根据矩形的性质得BD =AC ,由于AC 的长等于点A 的纵坐标,所以当点A 在抛物线的顶点时,点A 到x 轴的距离最小,最小值为2,从而得到BD 的最小值.【详解】解:∵y =x 2﹣4x +5=(x ﹣2)2+1,∴抛物线的顶点坐标为(2,1),∵四边形ABCD 为矩形,∴BD =AC ,而AC ⊥x 轴,∴AC 的长等于点A 的纵坐标,当点A 在抛物线的顶点时,点A 到x 轴的距离最小,最小值为1,∴对角线BD 的最小值为1.故选:D .【点睛】本题考查了二次函数图象上点的坐标特征:二次函数图象上点的坐标满足其解析式.也考查了矩形的性质.6.B解析:B【分析】根据二次函数、一次函数、反比例函数的增减性,结合自变量的取值范围,逐一判断.【详解】解:A 、2y x=,反比例函数,k=2>0,分别在一、三象限,在每一象限内,y 随x 的增大而减小,不符合题意; B 、22y x =+,a=1>0,开口向上,对称轴为y 轴,故当图象在对称轴右侧,y 随着x 的增大而增大,符合题意;C 、1y x =-+,一次函数,k=-1<0,故y 随着x 增大而减小,不符合题意;D 、22y x =--,a=-1<0,开口向下,对称轴为y 轴,故当图象在对称轴右侧,y 随着x 的增大而减小,不符合题意.故选:B .【点睛】本题考查一次函数,二次函数及反比例函数的增减性,掌握函数图像性质利用数形结合思想解题是本题的解题关键.7.B解析:B【分析】过点C 作CG ⊥AB ,求出CG 、AC ,证明△ACB ∽△DEB ,求出DE ,再根据直角三角形的性质求出EF ,根据三角形面积公式得到y 关于x 的函数表达式,从而判断图像.【详解】解:∵AC=BC ,∠ACB=120°,∴∠A=∠B=30°,过点C 作CG ⊥AB ,则AG=BG=12AB=32,AC=2CG , 则CG=3=32,AC=3, ∵DE ∥AC ,∴△ACB ∽△DEB ,∴AC AB DE BD =,即333x=-, 解得:DE=()333x -, ∵∠DEF=90°,∠EDF=∠A=30°,∴EF=3=33x -, ∴y=S △DEF =12DE EF ⨯⨯=()3313233x x --⨯⨯=()23318x -, 可得:当0<x <3时,图像为抛物线,y 随x 的增大而减小,选项B 中的图像最合适,故选B .【点睛】本题考查了相似三角形的判定和性质,以及直角三角形的性质,二次函数,解题的关键是通过相似三角形的性质得到线段的长,从而得到二次函数表达式.8.B解析:B【分析】由当x=0和x=3时y 值相等,可得出二次函数图象的对称轴为直线x=32,进而可得出2b a -的值,由x=1时y=5,可得出当x=2时y=5,即4a+2b+c=5,再将2b a -=32及4a+2b+c=5代入2b a -(4a+2b+c )中即可求出结论. 【详解】解:∵当x =0和x =3时,y 值相等,∴二次函数图象的对称轴为直线x =32, ∴3=22b a -. ∵当x =1时,y =5,∴当x =2×32﹣1=2时,y =5, ∴4a +2b +c =5. ∴2b a -(4a +2b +c )=32×5=152. 故选:B .【点睛】 本题考查了二次函数图象上点的坐标特征以及二次函数的性质,利用二次函数的性质及二次函数图象上点的坐标特征,找出2b a-和(4a+2b+c )的值是解题的关键. 9.D解析:D【分析】根据反比例函数图像的位置判断k 的符号,再结合二次函数的图像和性质,逐项判断即可【详解】A 、由反比例函数k y x=-的图像可知,0k >,则二次函数2y kx x =-+的图像开口应向下,与图像不符,故选项错误; B 、由反比例函数k y x=-的图像可知,0k >,则二次函数2y kx x =--的图像开口应向下,与图像不符,故选项错误; C 、由反比例函数k y x=的图像可知,0k <,则二次函数2y kx x =--的图像开口向上,对称轴110222b x a k k-=-=-=->-应位于y 轴的右侧,与图像不符,故选项错误; D 、由反比例函数k y x =的图像可知,0k <,则二次函数2y kx x =-+的图像开口向上,对称轴110222b x a k k=-=-=<-应位于y 轴的左侧,与图像相符,故选项正确; 故选:D .【点睛】 本题考查了反比例函数,二次函数图像的性质,解题关键是熟练掌握反比例函数和二次函数的图像和性质.10.B解析:B【分析】利用数形结合思想,从抛物线的开口,与坐标轴的交点,对称轴等方面着手分析判断即可.【详解】∵抛物线的开口向上,对称轴在原点的右边,与y 轴交于负半轴,∴a >0, b <0,c <0,∴abc >0,∴结论①错误;∵抛物线的对称轴为x=1, ∴12b a-=, ∴2b a =-; ∴结论③正确;∵二次函数2y ax bx c =++(a 、b 、c 是常数,且0a ≠)的图象与x 轴的一个交点为()3,0A ,对称轴为直线1x =, ∴1312x +=, ∴11x =-,∴二次函数2y ax bx c =++(a 、b 、c 是常数,且0a ≠)的图象与x 轴的另一个交点为(-1,0),∴0a b c -+=;∴结论②错误;∵当x=-2时,y=4a-2b+c >0, ∵12b a-=,则b=-2a ∴80a c +>,∴结论④正确;故选B .【点睛】本题考查了二次函数的图像与系数之间的关系,对称轴的使用,代数式符号的判定,熟练运用数形结合的思想,二次函数的性质是解题的关键.11.A解析:A【分析】二次函数y =ax 2+bx +c (a ≠0),①当a >0时,抛物线y =ax 2+bx +c (a ≠0)的开口向上;②当a <0时,抛物线y =ax 2+bx +c (a ≠0)的开口向下,据此判断即可.【详解】解:A 、∵a >0, ∴2y =的图象开口向上,故本选项符合题意;B 、∵a =﹣1<0,∴y =﹣x 2+2x +1的图象开口向下,故本选项不符合题意;C 、∵a =﹣2<0,∴y =﹣2x 2+x 的图象开口向下,故本选项不符合题意;D 、∵a =﹣0.5<0,∴y =﹣0.5x 2+x 的图象开口向下,故本选项不符合题意;故选:A .【点睛】本题考查二次函数的图象和性质,解答本题的关键是明确题意,利用二次函数的性质解答.12.D解析:D【分析】根据二次函数的图像和性质,分别对每个选项进行判断,即可得到答案.【详解】解:由图象开口向上,可知a<0,与y 轴的交点在x 轴的下方,可知c<0, 又对称轴方程为12x =,所以122b a -=>0,所以b >0, ∴abc >0,故A 错误; ∵122b a -= ∴=-a b , ∴0a b +=,故B 错误; 当12x =时,则11042y a b c =++>, ∵=-a b ,∴11042a a c -+>, ∴104a c -+>, ∴40a c -<,故C 错误;当21x n =+时,222(1)(1)y a n b n c =++++4222an an a an a c =++--+42an an c =++22(1)an n c =++;∵n 为实数,∴20an ≤,211n +≥,∴22(1)an n c c ++≤,即y c ≤,故D 正确;故选:D .【点睛】本题主要考查二次函数的图象和性质.熟练掌握图象与系数的关系以及二次函数与方程的关系是解题的关键.第II 卷(非选择题)请点击修改第II 卷的文字说明二、填空题13.①②③【分析】由抛物线的对称轴可判断①;由①可得出过点(﹣10)代入可得出c =﹣5a 代入化简即可判断②;根据二次函数的增减性知抛物线上点离对称轴水平距离越小函数值越大据此可判断③;由抛物线的图像的增 解析:①②③【分析】由抛物线的对称轴可判断①;由①可得出=4b a -,过点(﹣1,0),代入可得出c =﹣5a ,代入化简即可判断②;根据二次函数的增减性知抛物线上点离对称轴水平距离越小,函数值越大,据此可判断③;由抛物线的图像的增减性直接判断④.【详解】函数y =ax 2+bx +c (a ≠0)的对称轴2b x a =-, ∵ 对称轴2x =, ∴=22b a-, ∴=4b a -,∴ 4+=0a b ,故①正确;有图可知,a <0,∴=4b a -,∴ 2=8b a -,过点(﹣1,0),∴ a-b+c =0,∴ b=a+c ,即a+c=﹣4a ,∴ c =﹣5a ,∴24a +2b +3c =24a -8a -15a =a <0,故②正确;当x =0时,y =c ,∵A (﹣3,y 1),B (﹣0.5,y 2),C (3.5,y 3)三点都在抛物线上,点A 与2x =的水平距离为5,点B 与2x =的水平距离为2.5,点C 与2x =的水平距离为1.5,∵5>2.5>1.5,∴ 123y y y <<,故③正确;有图可知,当11y >-,y 随x 增大先增大后减小,故④不正确;综上,正确的有:①②③.故答案为:①②③.【点睛】本题考查的是二次函数图象与系数的关系,要求学生熟悉函数的基本性质,能熟练求解函数与坐标轴的交点及顶点的坐标等.14.【分析】观察图形可知每三次对称为一个循环组依次循环用2020除以3然后根据商和余数的情况确定出变换后的点A 所在的象限然后解答即可【详解】解:∵∴抛物线的顶点坐标为点A 第一次关于x 轴对称后在第四象限第 解析:11,22⎛⎫- ⎪⎝⎭【分析】观察图形可知每三次对称为一个循环组依次循环,用2020除以3,然后根据商和余数的情况确定出变换后的点A 所在的象限,然后解答即可.【详解】解:∵2221122=2()2()22y x x x x x =-+--=--+∴抛物线222y x x =-+的顶点坐标为11,22⎛⎫ ⎪⎝⎭点A 第一次关于x 轴对称后在第四象限,第二次关于原点对称后在第二象限,第三次关于y 轴对称后在第一象限,回到原始位置,所以每3次对称为一个循环组,∵20203=6731÷∴经过第2020次变换后所得的A 点位置第一次变换后的位置相同,在第四象限,坐标为11,22⎛⎫- ⎪⎝⎭故答案为:11,22⎛⎫- ⎪⎝⎭【点睛】本题考查了轴对称的性质,点的坐标变换规律,读懂题目信息,观察出每三次对称为一个循环组依次循环是解题的关键,也是本题的难点.15.<【分析】把AB 两点坐标代入函数关系式再根据已知条件求出的值最后求出答案即可【详解】解:∵点A (﹣y1)B (y2)都在二次函数y =﹣x2+2x+m 的图像上∴====∴故答案为:<【点睛】本题考查了二解析:<【分析】把A ,B 两点坐标代入函数关系式,再根据已知条件求出21y y -的值,最后求出答案即可.【详解】解:∵点A (﹣12021,y 1)、B (40412021,y 2)都在二次函数y =﹣x 2+2x +m 的图像上, ∴21y y -=224041404111()2[()2()]2021202120212021m m -+⨯+---+⨯-+ =2111(2)2(2)()202120212021--+⨯-+-222021+ =22412124()4()20212021202120212021-+-+-++ =402021> ∴12y y <故答案为:<.【点睛】本题考查了二次函数图象上点的坐标特征,能选择适当的方法求解是解答此题的关键. 16.y =3x2+1【分析】根据抛物线平移规律常数项加1即可【详解】解:抛物线y =3x2沿y 轴向上平移1个单位所得的抛物线关系式为y =3x2+1故答案为:y =3x2+1【点睛】本题考查了抛物线平移的变化规解析:y =3x 2+1.【分析】根据抛物线平移规律,常数项加1即可.【详解】解:抛物线y =3x 2沿y 轴向上平移1个单位,所得的抛物线关系式为y =3x 2+1, 故答案为:y =3x 2+1.【点睛】本题考查了抛物线平移的变化规律,解题关键是准确掌握函数平移的规律,左加右减自变量,上加下减常数项.17.x =-2【分析】利用平移可求得平移后的抛物线的解析式可求得其对称轴【详解】解:∵将抛物线y =2x2向左平移2个单位长度后抛物线解析式为y =2(x+2)2∴所得抛物线的对称轴为直线x =-2故答案是:x解析:x =-2【分析】利用平移可求得平移后的抛物线的解析式,可求得其对称轴.【详解】解:∵将抛物线y =2x 2向左平移2个单位长度后抛物线解析式为y =2(x +2)2,∴所得抛物线的对称轴为直线 x =-2.故答案是:x =-2.【点睛】主要考查了二次函数的图象与性质,熟练掌握函数图象平移的规律并准确运用平移规律求函数解析式是解题的关键.18.①③④【分析】根据函数图象与x 轴有两个交点即可判断①正确;根据对称性可得:故③正确;x=0与x=-2时的函数值相等即可判断②错误;根据对称轴为直线得到当x=-1时函数值最小故当x=m 时函数值大于等于解析:①③④【分析】根据函数图象与x 轴有两个交点即可判断①正确;根据对称性可得:132x -<<-,故③正确;x=0与x=-2时的函数值相等,即可判断②错误;根据对称轴为直线1x =-,得到当x=-1时,函数值最小,故当x=m 时,函数值大于等于x=-1时的函数值,即2a b c am bm c -+≤++,即可判断④正确;由对称轴为直线1x =-,得到b=2a ,由图象可得:当x=1时,y>0,故a+b+c>0,代入得到3a+c>0,由此判断⑤错误.【详解】∵函数图象与x 轴的交点为()()12,0,0x x ,∴240b ac ->,故①正确;∵对称轴为直线1x =-,与x 轴的交点为()()12,0,0x x ,其中201x <<,∴132x -<<-,故③正确;根据抛物线的对称性得到:x=0与x=-2时的函数值相等,∵图象与y 轴的交点纵坐标小于-1,∴421a b c -+<-,故②错误;∵对称轴为直线1x =-,∴当x=-1时,函数值最小,故当x=m 时,函数值大于等于x=-1时的函数值,即2a b c am bm c -+≤++, ∴2a b am bm -≤+,故④正确;∵对称轴为直线1x =-, ∴12b a-=-,得b=2a , 由图象可得:当x=1时,y>0,∴a+b+c>0,∴3a+c>0,故⑤错误,故答案为:①③④.【点睛】此题考查二次函数的图象,函数图象与x 轴交点问题,利用图象判断式子的正负,函数最值,根据图象得到相关的信息是解题的关键.19.【分析】根据题目中的抛物线可以写出该抛物线的顶点坐标本题得以解决【详解】解:∵物线∴该抛物线的顶点坐标为(2-4)故答案为:(2-4)【点睛】本题考查了二次函数的性质解题的关键是明确题意利用二次函数 解析:(2,4)-【分析】根据题目中的抛物线,可以写出该抛物线的顶点坐标,本题得以解决.【详解】解:∵物线23(2)4=---y x ,∴该抛物线的顶点坐标为(2,-4),故答案为:(2,-4).【点睛】本题考查了二次函数的性质,解题的关键是明确题意,利用二次函数的性质解答. 20.【分析】把点的坐标代入解析式转化为a 的一元二次方程确定方程的根从给出的数字中扣除方程的根就是符合题意的a 值计算概率即可【详解】当二次函数的图象经过点时得解得所以符合题意的a 值有-3-12共三个所以二 解析:35【分析】把点的坐标代入解析式,转化为a 的一元二次方程,确定方程的根,从给出的数字中扣除方程的根就是符合题意的a 值,计算概率即可.【详解】当二次函数22(1)2y x a x a =-++-的图象经过点(1,0)时,得 220a a +-=,解得 122,1a a =-=,所以符合题意的a 值有-3,-1,2,共三个,所以二次函数22(1)2y x a x a =-++-的图象不经过点(1,0)的概率是35, 故答案为:35. 【点睛】 本题考查了简单事件的概率计算、二次函数,利用二次函数的图象过点的意义,判定符合题意的a 值是解题的关键.三、解答题21.(1)20元;(2)3或4【分析】(1)设每顶头盔应降价x 元,根据题意列出方程求解即可;(2)设每周扣除捐赠后可获得利润为w 元,每顶头盔售价a 元,根据题意列出函数求解即可;【详解】解:(1)设每顶头盔应降价x 元.根据题意,得(10020)(6840)4000x x +--=.解得123,20x x ==.当3x =时,68365-=;当20x 时,682048-=;每顶售价不高于58元,∴每顶头盔应降价20元.(2)设每周扣除捐赠后可获得利润为w 元,每顶头盔售价a 元,根据题意,得[10020(68)](40)w a a m =+---220(202260)1460(40)a m a m =-++-+ 抛物线对称轴为直线1132m a +=,开口向下, 当58a 时,利润仍随售价的增大而增大,113582m +∴,解得3m . 15,35m m <∴<. m 为整数,3m ∴=或4. 【点睛】本题主要考查了二次函数的应用,结合一元二次方程的求解是解题的关键.22.证明见详解.【分析】令y=0,构造一元二次方程239=0x kx k -+-,由1,,39a b k c k ==-=-,判别式()22123660k k k ∆=-+=-≥即可.【详解】解:令y=0,239=0x kx k -+-,∵1,,39a b k c k ==-=-, ()()()222=4139123660k k k k k ∴∆--⨯⨯-=-+=-≥,∴二次函数的图象与x 轴都有交点.【点睛】本题考查二次函数与x 轴的交点问题,掌握二次函数与x 轴交点问题转化为y=0时,一元二次方程有实根问题,理解二次函数和一元二次方程之间的关系式解此题的关键,此题是一个比较典型的题目.23.(1)y =﹣x 2+2x +8;(2)当﹣2<x <4时,y >0;(3)把抛物线y =﹣x 2+2x +8向下平移9个单位,抛物线与x 轴只有一个交点.【分析】(1)把A 点和B 点坐标分别代入y=-x 2+bx+c 得到关于b 、c 的方程组,然后解方程组即可;(2)根据函数图象直接得到答案;(3)先利用配方法得到抛物线的顶点坐标,然后把抛物线的平移问题转化为点的平移问题;【详解】解:(1)把A(﹣2,0),B(4,0)代入y =﹣x 2+bx+c ,得 4201640b c b c --+=⎧⎨-++=⎩, 解得28b c =⎧⎨=⎩, 抛物线解析式为y =﹣x 2+2x+8;(2)∵A(﹣2,0),B(4,0)∴由图象知,当﹣2<x <4时,y >0;(3)∵y =﹣x 2+2x+8=﹣(x ﹣1)2+9,∴抛物线的顶点坐标为(1,9),∴把抛物线y =﹣x 2+2x+8向下平移9个单位,抛物线与x 轴只有一个交点.【点睛】本题主要考查了抛物线与x 轴的交点,二次函数图象与几何变换,待定系数法确定函数关系式等知识点,注意“数形结合”数学思想的应用;24.(1)b =2,c =m 2+2m +2;(2)m =-1;(3)见解析【分析】(1)由抛物线上两点代入抛物线解析式中即可求出b 和c ;(2)令y =0,抛物线和x 轴有公共点,即△≥0,再结合非负数的性质确定出m 的值, (3)将两点代入抛物线解析式中,表示出y 1,y 2,求出y 2-y 1分情况讨论即可【详解】解:(1)∵抛物线y =x 2+bx +c 经过(-1,m 2+2m +1)、(0,m 2+2m +2)两点, ∴2212122b c m m c m m ⎧-+=++⎨=++⎩, ∴2222b c m m =⎧⎨=++⎩, 即:b =2,c =m 2+2m +2;(2)由(1)得y =x 2+2x +m 2+2m +2,令y =0,得x 2+2x +m 2+2m +2=0,∵抛物线与x 轴有公共点,∴△=4-4(m 2+2m +2)≥0,∴(m +1)2≤0,∵(m +1)2≥0,∴m +1=0,∴m =-1;(3)由(1)得,y =x 2+2x +m 2+2m +2,∵(a ,y 1)、(a +2,y 2)是抛物线的图象上的两点,∴y 1=a 2+2a +m 2+2m +2,y 2=(a +2)2+2(a +2)+m 2+2m +2,∴y 2-y 1=[(a +2)2+2(a +2)+m 2+2m +2]-[a 2+2a +m 2+2m +2]=4(a +2)当a +2≥0,即a ≥-2时,y 2-y 1≥0,即y 2≥y 1,当a +2<0,即a <-2时,y 2-y 1<0,即y 2<y 1.【点睛】此题是二次函数综合题,主要考查了待定系数法,抛物线与x 轴的交点,比较代数式的大小,解本题的关键是求出b ,用m 表示出抛物线解析式,难点是分类讨论.25.(1)y 101200x =-+(x≥50);(2)售价定为65元可获得最大利润,最大利润8250元.【分析】(1)设一次函数解析式y kx b =+ (x≥50),利用待定系数法将(60,600),(80,400)代入即得解得解析式;(2)根据题意列出函数关系式,再利用二次函数的性质求最大利润即可,注意考虑自变量的范围,围巾的每条利润不允许高于进货价的30%.【详解】解:(1)设一次函数解析式y kx b =+ (x≥50).由函数图像可知(60,600),(80,400)在函数图像上,代入即得:6006040080k b k b =+⎧⎨=+⎩解得:101200k b =-⎧⎨=⎩. 所以,每月销售y (条)与售价x (元)的函数关系式:y 101200x =-+(x≥50). (2)由题意得:()()=10120050w x x -+-化简得:2=10170060000w x x -+-由函数解析式可知对称轴是x=85时,x≤85时,w 随x 的增加而增大.因为,围巾的每条利润不允许高于进货价的30%,那么 x ≤50×(1+30%),即x≤65. 所以,当x=65时,w 取到最大值:2=106517006560000=8250w -⨯+⨯-. 所以,售价定为65元可获得最大利润,最大利润8250元.【点睛】本题考查了一次函数与二次函数在销售问题中的应用,理清题中的数量关系并熟练掌握二次函数的性质是解题的关键.26.5【分析】首先建立以AB 为x 轴,以AD 为y 轴的直角坐标系,过点G 作GQ ⊥AD 交AE 于Q ,再得出抛物线的解析式为y= -16+5及直线EC 解析式为y= -56x+7,最后求出H 的纵坐标即可得解.【详解】解:如图所示,建立以AB 为x 轴,以AD 为y 轴的直角坐标系,过点G 作GQ ⊥AD 交AE于Q,∵AD=2,DE=5,DF=1,∴D(0,2),E(0,7),F(0,3),∵GQ⊥AD,EG=4,∠AEG=60°,∴GQ=sin60°×EG=34232=∴2216122EG GQ-=-=,∴AQ=AE-EQ=7-2=5,∴35),3,0),32),∵35)为抛物线顶点,∴设抛物线的解析式为:3,将点F(0,3)代入解析式得3)²+5,即12a+5=3,解得a= -16,故抛物线解析式为:y= -163+5,设直线EC解析式为:y=kx+b(k≠0),将E(0,7),32)代入解析式联立,得:7223bk b=⎧⎪⎨=+⎪⎩,解得:7536bk=⎧⎪⎨=⎪⎩直线解析式为:y= -563,∴H同时在抛物线与直线EC上联立得(21567y x y ⎧=--+⎪⎪⎨⎪=+⎪⎩, 解得:(舍去)即Hy=7+, 得H的纵坐标为:7=4.5, 故射灯离地面高度4.5米.故答案为:4.5.【点睛】本题考查了解直角三角形的应用,解题的关键是正确的构造直角三角形并选择正确的边角关系解直角三角形.。
(常考题)北师大版初中数学九年级数学下册第二单元《二次函数》检测(含答案解析)

一、选择题1.如图,Rt △ABC 中,AC =BC =2,正方形CDEF 的顶点D 、F 分别在AC 、BC 边上,设CD 的长度为x ,△ABC 与正方形CDEF 重叠部分的面积为y ,则下列图象中能表示y 与x 之间的函数关系的是( )A .B .C .D .2.对于二次函数2y x bx c =++(b ,c 是常数)中自变量x 与函数y 的部分对应值如下表:x1- 0 1 2 34 y10 52 125A .函数图像开口向上B .当5x =时,10y =C .当2x >时,y 随x 的增大而增大.D .方程20x bx c ++=有两个不相等的实数根3.如图是二次函数y =mx 2+nx +k 图象的一部分且过点P (3,0),二次函数图象的对称轴是直线x =1,下列结论正确的是( )A .n 2﹣4mk <0B .mk >0C .n =2mD .m ﹣n +k =04.如图所示,二次函数2y ax bx c =++的图象经过点(-1,2),且与x 轴交点的横坐标分别为1x ,2x ,其中121x -<<-,201x <<,下列结论:①0abc >;②420a b c -+<;③20a b -<;④284b a ac +>.其中正确的有( )A .1个B .2个C .3个D .4个5.抛物线23y x =向左平移5个单位,再向下平移1个单位,所得到的抛物线是( ) A .23(5)1y x =-+ B .23(-5)1y x =- C .23(5)1y x =+-D .23(5)1y x =++6.如图,抛物线2y ax bx c =++的对称轴是直线1x =-,下列结论:①0abc >;②240b ac -≥;③80a c +<;④5320a b c -+<,正确的有( )A .1个B .2个C .3个D .4个7.已知抛物线2y ax bx c =++(a ,b ,c 是常数0a ≠,1c >)经过点(2,0),其对称轴是直线12x =.有下列结论:①0abc >;②关于x 的方程20ax bx c ++=有两个不等的实数根;③12a <-.其中正确结论的个数是( ) A .0B .1C .2D .38.如图1,在矩形ABCD 中,动点E 从点A 出发,沿A B C →→的路线运动,当点E 到达点C 时停止运动.若FE AE ⊥,交CD 于点F 设点E 运动的路程为x ,FC y =,已知y 关于x 的图象如图2所示,则m 的值为( )A .2B .2C .1D .239.函数k y x=与()20y kx k k =-≠在同一直角坐标系中的图象大致是下图中的( ) A . B . C . D .10.如图,二次函数2y ax bx c =++(a 、b 、c 是常数,且0a ≠)的图象与x 轴的一个交点为()3,0A ,对称轴为直线1x =,下列结论:①0abc <;②0a b c -+<;③2ba =-;④80a c +>.其中正确结论的个数为( )A .1个B .2个C .3个D .4个11.飞机着陆后滑行的距离s (单位:m )与滑行的时间t (单位:s )的函数解析式是260 1.5s t t =-,那么飞机着陆后滑行多长时间才能停下来.( )A .10sB .20sC .30sD .40s12.如图,二次函数2y ax bx c =++的图象与x 轴交于,A B 两点,与y 轴负半轴交于点C ,它的对称轴为直线12x =,则下列选项中正确的是( )A .0abc <B .0a b -=C .40a c ->D .当2(1x n n =+为实数)时,y c ≤二、填空题13.将抛物线y =3x 2沿y 轴向上平移1个单位,所得的抛物线关系式为_____. 14.已知二次函数2(0)y ax bx c a =++≠的自变量x 与函数值y 之间满足下列数量关系:x0 1 2 3 y75713则代数式的值为_______.15.若A (m-2,n ),B (m+2,n )为抛物线2()2020y x h =--+上两点,则n=_______.16.已知函数y b =的图象与函数23|1|43y x x x =----的图象恰好有四个交点,则b 的取值范围是______.17.有五张正面分别标有数字32112---,,,,的卡片,它们除数字不同外其余全部相同.现将它们背面朝上,洗匀后从中随机抽取一张,记卡片上的数字为a ,则使关于以x为自变量的二次函数22(1)2y x a x a =-++-的图象不经过点(1,0)的概率是____.18.如图,已知二次函数2(0)y ax bx c a =++<的图象与x 轴交于不同两点,与y 轴的交点在y 轴正半轴,它的对称轴为直线1x =.有以下结论:①0abc >,②0a c ->,③若点()11,y -和()22,y 在该图象上,则12y y <,④设1x ,2x 是方程20ax bx c ++=的两根,若2am bm c p ++=,则()()120p m x m x --≤.其中正确的结论是____________(填入正确结论的序号).19.抛物线2y ax bx c =++上部分点的横坐标x ,纵坐标y 的对应值如表所示,下列说法:x··· 3-2-1- 0 1 ··· y···6-466···①抛物线与轴的交点为0,6;②抛物线的对称轴是在轴右侧;③在对称轴左侧,y 随x 增大而减小;④抛物线一定过点()3,0.上述说法正确的是____(填序号).20.如图,抛物线()()1244y x x =+-与x 轴交于A B 、两点,P 是以点()0,3C 为圆心,2为半径的圆上的动点,Q 是线段PA 上靠近点A 的三等分点,连结OQ ,则线段OQ 的最大值是__________.三、解答题21.已知:抛物线y 1=﹣x 2﹣2x +3的图象交x 轴于点A ,B (点A 在点B 的左侧). (1)请在平面直角坐标系内画出二次函数y 1=﹣x 2﹣2x +3的草图,并标出点A 的位置; (2)点C 是直线y 2=﹣x +1与抛物线y 1=﹣x 2﹣2x +3异于B 的另一交点,则点C 的坐标为 ;当y 1≥y 2时x 的取值范围是 .22.平面直角坐标系xOy 中,已知抛物线2y x bx c =++经过()21,21m m -++、()20,22mm ++两点,其中m 为常数.(1)求b 的值,并用含m 的代数式表示c ;(2)若抛物线2y x bx c =++与x 轴有公共点,求m 的值;(3)设()1,a y 、()22,a y +是抛物线2y x bx c =++上的两点,请比较2y 与1y 的大小,并说明理由.23.如图, 已知直线112y x =+与y 轴交于点A ,与x 轴交于点D ,抛物线2y ax bx c =++与直线交于A ,E 两点,与x 轴交于B (1,0),C (2,0)两点.(1)求该抛物线的解析式;(2)动点P 在x 轴上移动, 当△PAE 是直角三角形时, 请通过计算写出一个满足条件点P 的坐标.24.一个二次函数图像上部分点的横坐标x ,纵坐标y 的对应值如下表:x … 0 1 2 3 4 … y…m﹣13…的值为 ;(2)在给定的直角坐标系中,画出这个函数的图像; (3)根据图像,写出当y >0时,x 的取值范围.25.已知二次函数223(0)y mx mx m m =-->的图像与x 轴交于A ,B 两点(点A 在点B 左侧),顶点为C .(1)求A ,B 两点的坐标;(2)连接,BC AC ,若ABC 为等边三角形,求m 的值.26.2020年是国家实施精准扶贫、实现贫困人口全面脱贫的决胜之年.贫困户张大爷在某单位的帮扶下,把一片坡地改造后种植了优质水果蓝莓,今年正式上市销售,在销售的30天中,第一天卖出20千克,为了扩大销售,采取降价措施,以后每天比前一天多卖出4千克,第x 天的售价为y 元/千克,y 关于x 的函数解析式为()()76120,2030,mx m x x y n x x ⎧-≤<⎪=⎨≤≤⎪⎩为正整数为正整数且第12天的售价为32元/千克,第26天的售价为25元/千克.已知种植销售蓝莓的成本是18元/千克,每天的利润是W 元(利润=销售收入-成本).(1)m =______,n =______;(2)求销售蓝莓第几天时,当天的利润最大?最大利润是多少?【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】分类讨论:当0<x≤1时,根据正方形的面积公式得到2yx ;当1<x≤2时,ED 交AB 于M ,EF 交AB 于N ,利用重叠的面积等于正方形的面积减去△MNE 的面积得到()2221y x x =--,配方得到()222y x =--+,然后根据二次函数的性质对各选项进行分析判断即可. 【详解】解:当0<x≤1时,2yx ,当1<x≤2时,ED 交AB 于M ,EF 交AB 于N ,如图,CD=x ,则2AD x =-, ∵Rt △ABC 中,AC=BC=2, ∴△ADM 为等腰直角三角形, ∴2DM x =-,∴()222EM x x x =--=-,∴S △ENM ()()22122212x x =-=-, ()()2222214222y x x x x x =--=-+-=--+∴()()()22012212y x x y x x ⎧=≤⎪⎨=--+≤⎪⎩﹤﹤, 故选:A . 【点睛】本题考查动点问题的函数图象:通过看图获取信息,考查学生问题分析能力,解题的关键是分两种情况考虑:当0<x≤1和当1<x≤2.2.D解析:D 【分析】根据表格中的数据和二次函数图象具有对称性即可判断各个选项中的说法是否正确,从而可以解答本题. 【详解】解:由表格可得,当x <2时,y 随x 的值增大而减小;当x >2时,y 随x 的值增大而增大,该函数开口向上,故选项A 、C 不符合题意; ∴点(−1,10)的对称点是(5,10),∴点(5,10)在该函数的图象上,故选项B 不符合题意;由表格可得,该抛物线开口向上,且最小值是1,则该抛物线与x 轴没有交点, ∴方程20x bx c ++=无实数根,故选项D 符合题意. 故选:D . 【点睛】本题考查二次函数的性质、二次函数的最值、二次函数图象上点的坐标特征,解答本题的关键是明确题意,利用二次函数的性质解答.3.D解析:D 【分析】根据抛物线与x 轴有两个交点可对A 进行判断;由抛物线开口向上得m >0,由抛物线与y 轴的交点在x 轴下方得k <0,则可对B 进行判断;根据抛物线的对称轴是x =1对C 选项进行判断;根据抛物线的对称性得到抛物线与x 轴的另一个交点为(−1,0),所以m −n +k =0,则可对D 选项进行判断. 【详解】解:A .∵抛物线与x 轴有两个交点, ∴n 2﹣4mk >0,所以A 选项错误; B .∵抛物线开口向上, ∴m >0,∵抛物线与y 轴的交点在x 轴下方, ∴k <0,∴mk <0,所以B 选项错误;C .∵二次函数图象的对称轴是直线x =1, ∴﹣2nm=1, ∴n =﹣2m ,所以C 选项错误;D .∵抛物线过点A (3,0),二次函数图象的对称轴是x =1, ∴抛物线与x 轴的另一个交点为(﹣1,0), ∴m ﹣n +k =0,所以D 选项正确; 故选:D . 【点睛】本题考查了二次函数的图象与系数的关系:二次函数y =ax 2+bx +c (a≠0)的图象为抛物线,当a >0,抛物线开口向上;对称轴为直线2bx a=-;抛物线与y 轴的交点坐标为(0,c );当b 2−4ac >0,抛物线与x 轴有两个交点;当b 2−4ac =0,抛物线与x 轴有一个交点;当b 2−4ac <0,抛物线与x 轴没有交点.4.D解析:D 【分析】由抛物线的开口方向判断a 与0的关系,由抛物线与y 轴的交点判断c 与0的关系,然后根据对称轴及抛物线与x 轴交点情况进行推理,进而对所得结论进行判断. 【详解】 解:①∵a <0,2ba-<0, ∴b <0.∵抛物线交y 轴与正半轴, ∴c >0.∴abc >0,故①正确.②根据图象知,当x=-2时,y <0,即4a-2b+c <0;故②正确; ③∵该函数图象的开口向下, ∴a <0;又∵对称轴-1<x=2ba-<0, ∴2a-b <0,故③正确;④∵y=244ac b a->2,a <0,∴4ac-b 2<8a ,即b 2+8a >4ac ,故④正确. 综上所述,正确的结论有①②③④.故答案为:D .【点睛】本题主要考查对二次函数图象与系数的关系,抛物线与x 轴的交点,二次函数图象上点的坐标特征等知识点的理解和掌握,掌握相关性质是解题的关键.5.C解析:C【分析】根据“左加右减、上加下减”的原则进行解答即可.【详解】解:将抛物线y=3x 2向左平移5个单位所得直线解析式为:y=3(x+5)2;再向下平移1个单位为:y=3(x+5)2-1.故选:C .【点睛】本题考查的是二次函数的图象与几何变换,熟知函数图象平移的法则是解答此题的关键. 6.B解析:B【分析】首先根据函数图像分别判断出a 、b 、c 的符号判断结论①;再利用与x 轴交点的个数得出24b ac -的正负判断结论②;利用对称轴以及当2x =时函数值的正负判断结论③;利用当1x =-和2x =-时的函数值的正负来判断结论④.【详解】结论①由抛物线开口方向向上可得0a >;对称轴在y 轴左侧可得a 、b 符号相同,即0b >;函数图像与y 轴交于负半轴,可得0c <;由此可知0abc <,故①错误. 结论②由函数图像与x 轴有两个交点可得240b ac ->,故②正确.结论③由函数图像可知抛物线对称轴为1x =-,所以12b a-=-,整理可得2b a =;当2x =时,420a b c ++>,将2b a =代入420a b c ++>可得,80a c +>,故③错误. 结论④由函数图像可知当2x =-时,420a b c -+<,当1x =-时,0a b c -+<,所以532(42)()0a b c a b c a b c -+=-++-+<,故④正确.综上所述,本题正确结论为②④,共2个.故选B.【点睛】本题主要考查二次函数的系数与图像的关系,关键在利用函数中当1x =-、2x =-和1x =-时的函数值的大小来判断③④结论的对错.7.C解析:C【分析】由二次函数的对称性及题意可得该抛物线与x 轴的另一个交点坐标为()1,0-,进而可得抛物线的开口方向向下,则有a 0,b 0,c 0<>>,然后根据二次函数的性质可进行排除选项.【详解】解:∵抛物线2y ax bx c =++(a ,b ,c 是常数0a ≠,1c >)经过点(2,0),其对称轴是直线12x =, ∴抛物线与x 轴的另一个交点的横坐标为12212⨯-=-, ∴该点坐标为()1,0-,∴抛物线的开口方向向下,即0a <,根据“左同右异”可得0b >,∴0abc <,故①错误; ∴令y=0,则关于x 的方程20ax bx c ++=的解为:122,1x x ==-,故②正确; 根据根与系数的关系可得122c x x a==-, ∴21c a =->, 解得12a <-,故③正确; ∴正确的个数有2个;故选C .【点睛】 本题主要考查二次函数的图像与性质,熟练掌握二次函数的图像与性质是解题的关键. 8.D解析:D【分析】分别求出点E 在AB 、BC 段运动时函数的表达式,即可求解.【详解】解:由图2可知,AB=6,BC=10-6=4,①当点E 在AB 上运动时,y=FC=BE=AB-AE=6-x ,即y=6-x (0≤x≤6),图象为一次函数;②当点E 在BC 上运动时,如下图,则BE=x-AB=x-6,EC=BC-BE=4-(x-6)=10-x , FC=y ,AB=6,∵∠FEC+∠AEB=90°,∠AEB+∠EAB=90°,∴∠FEC=∠EAB ,∴∠CFE=∠AEB ,∴△ABE ∽△ECF , ∴BE AB CF CE=,即6610x y x -=-, 整理得:()2181061063y x x x =-+-<≤,图象为二次函数, ∵106-<, 故()2218121086363y x x x =-+-=--+有最大值,最大值为23, 即23m =, 故选:D .【点睛】本题考查的是动点图象问题,涉及到二次函数、一次函数、相似三角形等知识,此类问题关键是:弄清楚不同时间段,图象和图形的对应关系,进而求解.9.B解析:B【分析】根据k>0,k<0,结合反比例函数及二次函数图象及其性质分类讨论.【详解】解:分两种情况讨论:①当k>0时,反比例函数k y x=在一、三象限,而二次函数()20y kx k k =-≠开口向上,与y 轴交点在原点下方,故C 选项错误,B 选项正确; ②当k<0时,反比例函数k y x=在二、四象限,而二次函数()20y kx k k =-≠开口向下,与y 轴交点在原点上方,故A 选项与D 选项错误.故选B .【点睛】 本题考查了反比例函数图象性质和二次函数图象性质.关键是根据k>0,k<0,结合反比例函数及二次函数图象及其性质分类讨论.10.B解析:B【分析】利用数形结合思想,从抛物线的开口,与坐标轴的交点,对称轴等方面着手分析判断即可.【详解】∵抛物线的开口向上,对称轴在原点的右边,与y 轴交于负半轴,∴a >0, b <0,c <0,∴abc >0,∴结论①错误;∵抛物线的对称轴为x=1, ∴12b a-=, ∴2b a =-; ∴结论③正确;∵二次函数2y ax bx c =++(a 、b 、c 是常数,且0a ≠)的图象与x 轴的一个交点为()3,0A ,对称轴为直线1x =, ∴1312x +=, ∴11x =-,∴二次函数2y ax bx c =++(a 、b 、c 是常数,且0a ≠)的图象与x 轴的另一个交点为(-1,0),∴0a b c -+=;∴结论②错误;∵当x=-2时,y=4a-2b+c >0, ∵12b a-=,则b=-2a ∴80a c +>,∴结论④正确;故选B .【点睛】 本题考查了二次函数的图像与系数之间的关系,对称轴的使用,代数式符号的判定,熟练运用数形结合的思想,二次函数的性质是解题的关键.11.B解析:B【分析】当s 取最大值时,飞机停下来,求函数最大值时的自变量即可.【详解】∵当s 取最大值时,飞机停下来,∴t= 6022( 1.5)b a -=-⨯-=20, 故选:B .【点睛】本题考查了二次函数应用-飞机着陆问题,熟练把问题转化为二次函数的最值问题是解题的关键.12.D解析:D【分析】根据二次函数的图像和性质,分别对每个选项进行判断,即可得到答案.【详解】解:由图象开口向上,可知a<0,与y 轴的交点在x 轴的下方,可知c<0, 又对称轴方程为12x =,所以122b a -=>0,所以b >0, ∴abc >0,故A 错误; ∵122b a -= ∴=-a b , ∴0a b +=,故B 错误; 当12x =时,则11042y a b c =++>, ∵=-a b , ∴11042a a c -+>, ∴104a c -+>, ∴40a c -<,故C 错误;当21x n =+时,222(1)(1)y a n b n c =++++4222an an a an a c =++--+42an an c =++22(1)an n c =++;∵n 为实数,∴20an ≤,211n +≥,∴22(1)an n c c ++≤,即y c ≤,故D 正确;故选:D .【点睛】本题主要考查二次函数的图象和性质.熟练掌握图象与系数的关系以及二次函数与方程的关系是解题的关键.第II 卷(非选择题)请点击修改第II 卷的文字说明二、填空题13.y =3x2+1【分析】根据抛物线平移规律常数项加1即可【详解】解:抛物线y =3x2沿y 轴向上平移1个单位所得的抛物线关系式为y =3x2+1故答案为:y =3x2+1【点睛】本题考查了抛物线平移的变化规解析:y =3x 2+1.【分析】根据抛物线平移规律,常数项加1即可.【详解】解:抛物线y =3x 2沿y 轴向上平移1个单位,所得的抛物线关系式为y =3x 2+1, 故答案为:y =3x 2+1.【点睛】本题考查了抛物线平移的变化规律,解题关键是准确掌握函数平移的规律,左加右减自变量,上加下减常数项.14.91【分析】观察表格可知:x=0时y=7x=2时y=7即可求得抛物线的对称轴为直线x==1根据抛物线的对称性求得x=-1时y=13从而求得4a+2b+c=7a-b+c=13【详解】解:观察表格可知:解析:91【分析】观察表格可知:x=0时,y=7,x=2时,y=7,即可求得抛物线的对称轴为直线x=022+=1,根据抛物线的对称性求得x=-1时,y=13,从而求得4a+2b+c=7,a-b+c=13.【详解】解:观察表格可知:x=0时,y=7,x=2时,y=7,∴抛物线的对称轴为直线x=022+=1, ∵x=3时,y=13,∴x=-1时,y=13,∴4a+2b+c=7,a-b+c=13,∴(4a+2b+c )(a-b+c )的值为91,故答案为91.【点睛】本题考查二次函数图象上的点的特征,解题的关键是灵活运用所学知识解决问题,属于中考常考题型. 15.2016【分析】根据二次函数的图象与性质可得抛物线的对称轴为再利用m-2+m+2=2h 解得m=h 则可得A (h −2n )B (h +2n )将B (h +2n )代入函数关系式即可求出结果【详解】解:∵A (m-2n解析:2016【分析】根据二次函数的图象与性质可得抛物线2()2020y x h =--+的对称轴为x h =,再利用m-2+m+2=2h ,解得m=h ,则可得A (h−2,n ),B (h +2,n ),将B (h +2,n )代入函数关系式即可求出结果.【详解】解:∵A (m-2,n ),B (m+2,n )是抛物线2()2020y x h =--+上两点, ∴抛物线2()2020y x h =--+的对称轴为x h =,∴m-2+m+2=2h ,解得m=h ,∴A (h−2,n ),B (h +2,n ),当x =h +2时,n =−(h +2−h )2+2020=2016,故答案为:2016.【点睛】本题考查了二次函数的图象与性质,解题的关键是掌握二次函数图象上的点的坐标特征并灵活运用所学知识解决问题.16.【分析】根据绝对值的意义分两种情形化简绝对值后根据图像确定b 的范围即可【详解】当x≥1时y=;当x <1时y=;∴二图像的交点为(1-6)y=的最小值为画图像如下根据图像可得直线与之间的部分有个交点∴ 解析:2564b -<<- 【分析】根据绝对值的意义,分两种情形化简绝对值,后根据图像确定b 的范围即可.【详解】当x≥1时,y=27x x -;当x <1时,y=26x x --; ∴227(1)6(1)x x x y x x x ⎧-≥=⎨--<⎩, 二图像的交点为(1,-6), y=26x x --的最小值为254-, 画图像如下,根据图像,可得直线6y =-与254y =-之间的部分有4个交点, ∴b 的取值范围为254-<b <-6, 故填254-<b <-6. 【点睛】 本题考查了图像的交点问题,利用分类思想,数形结合思想,最值思想画出图像草图是解题的关键.17.【分析】把点的坐标代入解析式转化为a 的一元二次方程确定方程的根从给出的数字中扣除方程的根就是符合题意的a 值计算概率即可【详解】当二次函数的图象经过点时得解得所以符合题意的a 值有-3-12共三个所以二 解析:35【分析】把点的坐标代入解析式,转化为a 的一元二次方程,确定方程的根,从给出的数字中扣除方程的根就是符合题意的a 值,计算概率即可.【详解】当二次函数22(1)2y x a x a =-++-的图象经过点(1,0)时,得 220a a +-=,解得 122,1a a =-=,所以符合题意的a 值有-3,-1,2,共三个,所以二次函数22(1)2y x a x a =-++-的图象不经过点(1,0)的概率是35,故答案为:35. 【点睛】 本题考查了简单事件的概率计算、二次函数,利用二次函数的图象过点的意义,判定符合题意的a 值是解题的关键.18.③④【分析】利用数形结合思想从抛物线的开口与坐标轴的交点对称轴等方面着手分析判断即可【详解】解:∵抛物线的开口向下对称轴在原点的右边与y 轴交于正半轴∴a <0b >0c >0∴abc <0∴结论①错误;∵抛解析:③④【分析】利用数形结合思想,从抛物线的开口,与坐标轴的交点,对称轴等方面着手分析判断即可.【详解】解:∵抛物线的开口向下,对称轴在原点的右边,与y 轴交于正半轴,∴a <0, b >0,c >0,∴abc <0,∴结论①错误;∵抛物线的对称轴为x=1, ∴12b a-=, ∴b=-2a ;∵ c+a+b >0,∴c-a >0,∴a-c <0, ∴结论②错误;∵抛物线的对称轴为直线x=1,抛物线的开口向下,∵点()11,y -和()22,y 在该图象上,∴()11,y -与x=1的距离比()22,y 与x=1的距离远;∴12y y <,∴结论③正确;∵2am bm c p ++=,1x ,2x 是方程20ax bx c ++=的两根,当0p a+b+c <≤时,12m ≤≤x x ;∴()()120<--p m x m x ;当p=0时,()()12=0--p m x m x当p<0时,()()120<--p m x m x∴()()120p m x m x--≤∴结论④正确;③④故答案为:【点睛】本题考查了二次函数的图像与系数之间的关系,对称轴的使用,代数式符号的判定,熟练运用数形结合的思想,二次函数的性质是解题的关键.19.①②④【分析】由表格中数据x=0时y=6x=1时y=6;可判断抛物线的对称轴是x=05根据函数值的变化判断抛物线开口向下再由抛物线的性质逐一判断【详解】解:由表格中数据可知x=0时y=6x=1时y=解析:①②④.【分析】由表格中数据x=0时,y=6,x=1时,y=6;可判断抛物线的对称轴是x=0.5,根据函数值的变化,判断抛物线开口向下,再由抛物线的性质,逐一判断.【详解】解:由表格中数据可知,x=0时,y=6,x=1时,y=6,①抛物线与y轴的交点为(0,6),正确;②抛物线的对称轴是x=0.5,对称轴在y轴的右侧,正确;③由表中数据可知在对称轴左侧,y随x增大而增大,错误.④根据对称性可知,抛物线的对称轴是x=0.5,点(-2,0)的对称点为(3,0),即抛物线一定经过点(3,0),正确;正确的有①②④.故答案为①②④.【点睛】主要考查了二次函数的性质.要熟练掌握函数的特殊值对应的特殊点.解题关键是根据表格中数据找到对称性以及数据的特点求出对称轴,图象与x,y轴的交点坐标等.20.【分析】当BCP三点共线且C在BP之间时BP最大连接PB此时△OAQ∽△BAP且相似比为1:3由此即可求得求出BP的最大值即可求解【详解】解:如下图所示连接BP当BCP三点共线且C在BP之间时BP最解析:7 3【分析】当B、C、P三点共线,且C在BP之间时,BP最大,连接PB,此时△OAQ∽△BAP,且相似比为1:3,由此即可求得13=OQ BP,求出BP的最大值即可求解.【详解】解:如下图所示,连接BP ,当B 、C 、P 三点共线,且C 在BP 之间时,BP 最大,令()()12404=+-=y x x ,求得1224,==x x , ∴B(4,0),A(-2,0), ∵21===63AO AQ AB AP,且∠QAO=∠PAB , ∴△OAQ ∽△BAP , ∴13=OQ BP ,故只要BP 最大,则OQ 就最大, 此时BP 最大值为:224327++=BC CP , ∴OQ 的最大值为:73. 【点睛】本题考查了抛物线与x 轴的交点坐标,相似三角形的性质和判定,本题的关键是根据圆的基本性质,确定BP 的最大值,进而求解.三、解答题21.(1)见解析;(2)()2,3-,21x -≤≤【分析】(1)利用五点法作出二次函数的图像,然后令x=0求出A 点坐标即可;(2)将两个函数联立形成新的一元二次方程,然后求解C 点坐标,最后利用图像判断x 的取值范围即可.【详解】(1)由题意得: x ··· -3 -2 -1 0 1 ···y .. 0 3 4 3 0 (1)由上图得A 点坐标为()3,0-;(2)由题意得:2123x x x -+=--+,解得12x =-,21x =,当2x =-时,()213y =--+=,∴C 点坐标为()2,3-,由上图得,当y 1≥y 2时,21x -≤≤.【点睛】本题考查了二次函数的图像和性质,重点是根据五点法作出二次函数的图像,然后利用数形结合思想进行判断.22.(1)b =2,c =m 2+2m +2;(2)m =-1;(3)见解析【分析】(1)由抛物线上两点代入抛物线解析式中即可求出b 和c ;(2)令y =0,抛物线和x 轴有公共点,即△≥0,再结合非负数的性质确定出m 的值, (3)将两点代入抛物线解析式中,表示出y 1,y 2,求出y 2-y 1分情况讨论即可【详解】解:(1)∵抛物线y =x 2+bx +c 经过(-1,m 2+2m +1)、(0,m 2+2m +2)两点, ∴2212122b c m m c m m ⎧-+=++⎨=++⎩, ∴2222b c m m =⎧⎨=++⎩, 即:b =2,c =m 2+2m +2;(2)由(1)得y =x 2+2x +m 2+2m +2,令y =0,得x 2+2x +m 2+2m +2=0,∵抛物线与x 轴有公共点,∴△=4-4(m 2+2m +2)≥0,∴(m +1)2≤0,∵(m +1)2≥0,∴m +1=0,∴m =-1;(3)由(1)得,y =x 2+2x +m 2+2m +2,∵(a ,y 1)、(a +2,y 2)是抛物线的图象上的两点,∴y 1=a 2+2a +m 2+2m +2,y 2=(a +2)2+2(a +2)+m 2+2m +2,∴y 2-y 1=[(a +2)2+2(a +2)+m 2+2m +2]-[a 2+2a +m 2+2m +2]=4(a +2)当a +2≥0,即a ≥-2时,y 2-y 1≥0,即y 2≥y 1,当a +2<0,即a <-2时,y 2-y 1<0,即y 2<y 1.【点睛】此题是二次函数综合题,主要考查了待定系数法,抛物线与x 轴的交点,比较代数式的大小,解本题的关键是求出b ,用m 表示出抛物线解析式,难点是分类讨论.23.(1)213122=-+y x x ;(2)点P 的坐标为1(,0)2或(1,0)或(3,0)或11(,0)2. 【分析】(1)根据直线的解析式求得点A (0,1),然后利用待定系数法求得函数解析式;(2)让直线解析式与抛物线的解析式结合即可求得点E 的坐标.△PAE 是直角三角形,应分点P 为直角顶点,点A 是直角顶点,点E 是直角顶点三种情况探讨.【详解】解:(1)解:(1)∵直线y=12x+1与y 轴交于点A , ∴A (0,1),将A (0,1),B (1,0),C (2,0)代入2y ax bx c =++中 10420c a b c a b c =⎧⎪++=⎨⎪++=⎩,解得:12321a b c ⎧=⎪⎪⎪=-⎨⎪=⎪⎪⎩∴抛物线的解析式为:213122=-+y x x (2) 设点E 的横坐标为m ,则它的纵坐标为213122m m -+即E 点的坐标213(,1)22m m m -+,又∵点E 在直线112y x =+上, ∴213111222m m m -+=+解得10m =(舍 去) ,24m =, E ∴的坐标为(4,3).(Ⅰ)当A 为直角顶点时,过A 作1AP DE ⊥交x 轴于1P 点,设1(,0)P a 易知D 点坐标为(2,0)-,由Rt AOD Rt ∆∽△1POA 得:DO OA OA OP =,即211a=, 12a ∴=, 11(2P ∴,0). (Ⅱ) 同理,当E 为直角顶点时, 过E 作2EP DE ⊥交x 轴于2P 点,由Rt AOD Rt ∆∽△2P ED 得,2DO DE OA EP =,即221=22EP ∴=,2152DP ∴==, 1511222a ∴=-=, 2P 点坐标为11(,0)2.(Ⅲ) 当P 为直角顶点时, 过E 作EF x ⊥轴于F ,设3(P b ,0),由90OPA FPE ∠+∠=︒,得OPA FEP ∠=∠,Rt AOP Rt PFE ∆∆∽, 由AO OP PF EF =得143b b =-, 解得13b =,21b =,∴此时的点3P 的坐标为(1,0)或(3,0),综上所述, 满足条件的点P 的坐标为1(,0)2或(1,0)或(3,0)或11(,0)2.【点睛】本题考查了待定系数法求二次函数的解析式,二次函数的性质,直线和抛物线的交点等;分类讨论的思想是解题的关键.24.(1)3;(2)见解析;(3)x<1或x>3.【分析】(1)利用抛物线的对称性得到抛物线的对称轴为直线x=2,则x=4和x=0时的函数值相等,从而得到m的值;(2)利用描点法画出二次函数图象;(3)结合函数图象,写出抛物线在x轴上方所对应的自变量的范围.【详解】解:(1)∵抛物线经过点(1,0),(3,0),∴抛物线的对称轴为直线x=2,顶点坐标为(2,-1),∴x=4和x=0时的函数值相等,∴m=3;故答案为:3;(2)描点,连线,二次函数图象如图所示,y 时,x<1或x>3.(3)观察图象,0【点睛】本题考查了抛物线与x 轴的交点:把求二次函数y=ax 2+bx+c (a ,b ,c 是常数,a≠0)与x 轴的交点坐标问题转化为解关于x 的一元二次方程.也考查了二次函数的性质. 25.(1)(1,0)A -,(3,0)B ;(2)32m = 【分析】(1)把y=0代入,解方程即可;(2)求出顶点坐标,过C 作CD AB ⊥于D ,求出CD 即可.【详解】解:(1)2230mx mx m --=,∵0m >,方程两边同时除以m 得, 2230x x --=解得,13x =,21x =-∴A ,B 两点的坐标分别为:(1,0)A -,(3,0)B .(2)抛物线223(0)y mx mx m m =-->的顶点横坐标为:212m x m-=-=, 把x=1代入223y mx mx m =--得,y=-4m ,抛物线的顶点C 的坐标为:(1,4)C m -由(1)得,AB=4,过C 作CD AB ⊥于D , ∵ABC 为等边三角形,∴AD=2,AC=4, ∴22224223CD AC AD =-=-=∵点C 在第四象限,∴43m =∴3m =. 【点睛】本题考查求二次函数与x 轴交点,等边三角形的性质,解题关键是熟练的解一元二次方程,根据已知条件,找到坐标与线段的关系.26.(1)12m =-,25n =;(2)当18x =时,968W =最大. 【分析】(1)根据题意将第12天的售价、第26天的售价代入即可得;(2)在(1)的基础上分段表示利润,讨论最值.【详解】解:(1)第12天的售价为32元/件,代入76y mx m =-得 321276m m =-,解得12m =-, 当地26天的售价为25元/千克时,代入y n =,则25n =, 故答案为:12m =-,25n =. (2)由(1)第x 天的销售量为()2041x +-即416x +.当120x ≤<时,()()22141638182723202189682W x x x x x ⎛⎫=+-+-=-++=--+ ⎪⎝⎭, ∴当18x =时,968W =最大.当2030x ≤≤时,()()416251828112W x x =+-=+,∵280>,∴W 随x 的增大而增大,∴当30x =时,952W =最大.∵968952>,∴当18x =时,968W =最大.【点睛】本题考查了一次函数的应用,二次函数的应用,弄清题意,找准题中的数量关系,运用分类讨论思想是解题的关键.。
初中数学二次函数专题经典练习题(附答案)

二次函数总复习经典练习题1.抛物线y =-3x 2+2x -1的图象与坐标轴的交点情况是的图象与坐标轴的交点情况是( ) ( ) (A)(A)没有交点.没有交点.没有交点. (B) (B) (B)只有一个交点.只有一个交点.(C)(C)有且只有两个交点.有且只有两个交点.有且只有两个交点. (D) (D) (D)有且只有三个交点.有且只有三个交点.2.已知直线y =x 与二次函数y =ax 2-2x -1图象的一个交点的横坐标为1,则a 的值为的值为( ) ( ) (A)2(A)2.. (B)1 (B)1.. (C)3 (C)3.. (D)4 (D)4..3.二次函数y =x 2-4x +3的图象交x 轴于A 、B 两点,交y 轴于点C ,则△ABC 的面积为的面积为( ) ( )(A)6(A)6.. (B)4 (B)4.. (C)3 (C)3.. (D)1 (D)1..4.函数y =ax 2+bx +c 中,若a >0,b <0,c <0,则这个函数图象与x 轴的交点情况是轴的交点情况是( ) ( )(A)(A)没有交点.没有交点.(B)(B)有两个交点,都在有两个交点,都在x 轴的正半轴.(C)(C)有两个交点,都在有两个交点,都在x 轴的负半轴.(D)(D)一个在一个在x 轴的正半轴,另一个在x 轴的负半轴.5.已知已知(2(2(2,,5)5)、、(4(4,,5)5)是抛物线是抛物线y =ax 2+bx +c 上的两点,则这个抛物线的对称轴方程是则这个抛物线的对称轴方程是( ) ( ) (A)x =a b-. (B)x =2=2.. (C)x =4=4.. (D)x =3=3..6.已知函数y=ax 2+bx +c 的图象如图1所示,那么能正确反映函数y=ax +b 图象的只可能是( )(D)(C)(B)(A)x yo y xo yxxy o 7.二次函数y =2x 2-4x +5的最小值是的最小值是__________________..8.某二次函数的图象与x 轴交于点轴交于点((-1,0)0),,(4(4,,0)0),且它的形状与,且它的形状与y =-x 2形状相同.则这个二次函数的解析式为这个二次函数的解析式为__________________..9.若函数y =-x 2+4的函数值y >0,则自变量x 的取值范围是的取值范围是__________________..1010.某品牌电饭锅成本价为.某品牌电饭锅成本价为70元,销售商对其销量与定价的关系进行了调查,结果如下:定价(元)100110120130140150图1 xyo -4-3-2-113销量(个) 80 100 110 100 80 60为获得最大利润,销售商应将该品牌电饭锅定价为为获得最大利润,销售商应将该品牌电饭锅定价为 元.元.元.1111.函数.函数y =ax 2-(a -3)x +1的图象与x 轴只有一个交点,那么a 的值和交点坐标分别为____________..1212.某涵洞是一抛物线形.某涵洞是一抛物线形.某涵洞是一抛物线形,,它的截面如图3所示所示,,现测得水面宽 1.6AB m =,涵洞顶点O 到水面的距离为2.4m ,在图中的直角坐标系内在图中的直角坐标系内,,涵洞所在抛物线的解析式为涵洞所在抛物线的解析式为________. ________.1313..(本题8分)已知抛物线y =x 2-2x -2的顶点为A ,与y 轴的交点为B ,求过A 、B 两点的直线的解析式.的直线的解析式.1414..(本题8分)抛物线y =ax 2+2ax +a 2+2的一部分如图3所示,求该抛物线在y 轴左侧与x 轴的交点坐标.轴的交点坐标.1515..(本题8分)如图4,已知抛物线y =ax 2+bx +c (a >0)0)的顶点是的顶点是C (0(0,,1)1),直线,直线l :y =-ax +3与这条抛物线交于P 、Q 两点,且点P 到x 轴的距离为2.(1)(1)求抛物线和直线求抛物线和直线l 的解析式;的解析式;(2)(2)(2)求点求点Q 的坐标.的坐标.1616..(本题8分)工艺商场以每件155元购进一批工艺品.若按每件200元销售,工艺商场每天可售出该工艺品100件;若每件工艺品降价1元,则每天可多售出该工艺品4件.问每件工艺品降价多少元出售,每天获得的利润最大?获得的最大利润是多少元?每件工艺品降价多少元出售,每天获得的利润最大?获得的最大利润是多少元?1717..(本题10分)) )) 杭州休博会期间,杭州休博会期间,嘉年华游乐场投资150万元引进一项大型游乐设施.若不计维修保养费用,预计开放后每月可创收33万元.而该游乐设施开放后,从第1个月图3 yxO1图4 PQyxO到第x 个月的维修保养费用累计为y (万元万元)),且y =ax 2+bx ;若将创收扣除投资和维修保养费用称为游乐场的纯收益g (万元万元)),g 也是关于x 的二次函数.的二次函数.(1)(1)若维修保养费用第若维修保养费用第1个月为2万元,第2个月为4万元.求y 关于x 的解析式;的解析式; (2)(2)求纯收益求纯收益g 关于x 的解析式;的解析式;(3)(3)问设施开放几个月后,游乐场的纯收益达到最大?几个月后,能收回投资?问设施开放几个月后,游乐场的纯收益达到最大?几个月后,能收回投资?问设施开放几个月后,游乐场的纯收益达到最大?几个月后,能收回投资? 18(本题10分)如图所示,图4-4-①是一座抛物线型拱桥在建造过程中装模时的设计示意图,①是一座抛物线型拱桥在建造过程中装模时的设计示意图,拱高为30m 30m,,支柱A 3B 3=50m =50m,,5根支柱A 1B 1、A 2B 2、A 3B 3、A 4B 4、A 5B 5之间的距离均为15m 15m,,B 1B 5∥A 1A 5,将抛物线放在图4-4-②所示的直角坐标系中.②所示的直角坐标系中.②所示的直角坐标系中. (1)(1)直接写出图直接写出图4-4-②中点②中点B 1、B 3、B 5的坐标;的坐标; (2)(2)求图求图4-4-②中抛物线的函数表达式;②中抛物线的函数表达式;②中抛物线的函数表达式; (3)(3)求图求图4-4-①中支柱①中支柱A 2B 2、A 4B 4的长度.的长度.1919、、 如图5,已知A (2(2,,2)2),,B (3(3,,0)0).动点.动点P (m ,0)0)在线段在线段OB 上移动,过点P 作直线l 与x 轴垂直.轴垂直.(1)(1)设△设△OAB 中位于直线l 左侧部分的面积为S ,写出S 与m 之间的函数关系式;之间的函数关系式; (2)(2)试问是否存在点试问是否存在点P ,使直线l 平分△OAB 的面积?若有,求出点P 的坐标;若无,请说明的坐标;若无,请说明 理由.理由.更多学习方法和中高考复习资料,免费下载,扫一扫关注微信:更多学习方法和中高考复习资料,免费下载,扫一扫关注微信:图5 PyxO AB 图4-②B 1B 3B 5yxO图4-① B 5B 4B 3B 2B 1A 5A 4A 3A 1A 230m答案:答案:一、一、11.B 2B 2..D 3D 3..C 4C 4..D 5D 5..D 6D 6..B二、二、77.3 83 8..y =-x 2+3x +4 94 9.-.-.-22<x <2 102 10..1301111..a =0=0,,(13-,0)0);;a =1=1,,(-1,0)0);;a =9=9,,(13,0) 120) 12..2154y x =- 1313.抛物线的顶点为.抛物线的顶点为.抛物线的顶点为(1(1(1,-,-,-3)3)3),点,点B 的坐标为的坐标为(0(0(0,-,-,-2)2)2).直线.直线AB 的解析式为y =-x -21414.依题意可知抛物线经过点.依题意可知抛物线经过点.依题意可知抛物线经过点(1(1(1,,0)0).于是.于是a +2a +a 2+2=02=0,解得,解得a 1=-1,a 2=-2.当a =-1或a =-2时,求得抛物线与x 轴的另一交点坐标均为轴的另一交点坐标均为((-3,0)1515..(1)(1)依题意可知依题意可知b =0=0,,c =1=1,且当,且当y =2时,ax 2+1=2①,-ax +3=2②.由①、②解得a =1=1,,x =1=1.故抛物线与直线的解析式分别为:.故抛物线与直线的解析式分别为:y =x 2+1,y =-x +3;(2)Q (-2,5) 1616..设降价x 元时,获得的利润为y 元.则依意可得y =(45=(45--x )(100)(100++4x )=)=--4x 2+80x +45004500,,即y =-4(x -10)2+49004900.故当.故当x =10时,y 最大最大=4900(=4900(=4900(元元)1717..(1)(1)将将(1(1,,2)2)和和(2(2,,6)6)代入代入y =ax 2+bx ,求得a =b =1=1.故.故y =x 2+x ;(2)g =33x -150150--y ,即g =-x 2+32x -150150;;(3)(3)因因y =-(x -16)2+106106,,所以设施开放后第16个月,纯收益最大.令g =0=0,得-,得-x 2+32x -150=0150=0.解得.解得x =16±106,x ≈16-≈16-10.3=5.7(10.3=5.7(10.3=5.7(舍去舍去26.3)26.3).当.当x =5时,g <0, 当x =6时,g >0,故6个月后,能收回投资个月后,能收回投资 1818..(1)1(30)B -,0,3(030)B ,,5(300)B ,; (2)设抛物线的表达式为(30)(30)y a x x =-+, 把3(030)B ,代入得(030)(030)30y a =-+=. 130a =-∴. ∵所求抛物线的表达式为:1(30)(30)30y x x =--+.(3)4B ∵点的横坐标为1515,, 4B ∴的纵坐标4145(1530)(1530)302y =--+=.3350A B =∵,拱高为3030,,∴立柱44458520(m)22A B =+=.由对称性知:224485(m)2A B A B ==.四、四、1919..(1)(1)当当0≤m ≤2时,S =212m ;当2<m ≤3时,S =12×3×2-12(3(3--m )()(--2m +6)=6)=--m 2+6m -6.(2)(2)若有这样的若有这样的P 点,使直线l 平分△OAB 的面积,很显然0<m <2.由于△OAB 的面积等于3,故当l 平分△OAB 面积时,S =32.21322m =∴.解得m =3.故存在这样的P 点,使l 平分△OAB 的面积.且点P 的坐标为的坐标为((3,0)0)..。
(常考题)人教版初中数学九年级数学上册第二单元《二次函数》检测卷(有答案解析)

一、选择题1.在同一直角坐标系中,一次函数y=ax+c 和二次函数y=ax 2+c 的图象大致为( )A .B .C .D .2.某同学在利用描点法画二次函数y =ax2+bx+c (a≠0)的图象时,先取自变量x 的一些值,计算出相应的函数值y ,如下表所示: x … 0 1 2 3 4 … y…﹣3﹣13…) A .03x y =⎧⎨=-⎩B .21x y =⎧⎨=-⎩C .3x y =⎧⎨=⎩D .43x y =⎧⎨=⎩ 3.若整数a 使得关于x 的分式方程12322ax xx x -+=--有整数解,且使得二次函数y =(a ﹣2)x 2+2(a ﹣1)x +a +1的值恒为非负数,则所有满足条件的整数a 的值之和是( ) A .12 B .15 C .17 D .204.设函数()()12y x x m =--,23y x=,若当1x =时,12y y =,则( ) A .当1x >时,12y y < B .当1x <时,12y y > C .当0.5x <时,12y y <D .当5x >时,12y y >5.如图,抛物线2y ax bx c =++与x 轴交于点(1,0)A -,顶点坐标为(1,)n 与y 轴的交点在(0,2)、(0,3) 之间(包含端点).有下列结论:①24ac b <;②30a b +>;③420a b c ++>;④当0y >时,x 的取值范围为13x;⑤当0x >时,y 随着x的增大而减小;⑥若抛物线经过点()12,y -、23,2y ⎛⎫ ⎪⎝⎭、()33,y ,则312y y y <<.其中正确的有( )A .②③⑤B .①③④C .①③⑥D .②③⑥6.已知二次函数y =ax 2+bx +c 的y 与x 的部分对应值如表:x﹣1234y 5 0 ﹣4 ﹣3 0A .抛物线的开口向下B .抛物线的对称轴为直线x =2C .当0≤x ≤4时,y ≥0D .若A (x 1,2),B (x 2,3)是抛物线上两点,则x 1<x 27.已知二次函数22236y x ax a a =-+-+(其中x 是自变量)的图象与x 轴没有公共点,且当1x <-时,y 随x 的增大而减小,则实数a 的取值范围是( ) A .2a <B .1a >-C .12a -<≤D .12a -≤<8.已知二次函数22(0)y ax bx a =--≠的图象的顶点在第四象限,且过点(1,0)-,当-a b 为整数时,ab 的值为( )A .34或1 B .14或1 C .34或12D .14或129.如图是抛物线y 1=ax 2+bx +c (a ≠0)图象的一部分,抛物线的顶点坐标是A (1,3),与x 轴的一个交点B (4,0),直线y 2=mx +n (m ≠0)与抛物线交于A 、B 两点.下列结论:①2a +b =0;②abc >0;③方程ax 2+bx +c =3有两个相等的实数根;④抛物线与x 轴的另一个交点是(﹣1,0);⑤当1<x <4时,有y 2<y 1;⑥a +b ≥m (am +b )(m 实数)其中正确的是( )A .①②③⑥B .①③④C .①③⑤⑥D .②④⑤10.关于抛物线223y x x =-+-,下列说法正确的是( ) A .开口方向向上 B .顶点坐标为()1,2- C .与x 轴有两个交点D .对称轴是直线1x =-11.把函数2(1)2y x =-+图象向右平移1个单位长度,平移后图象的函数解析式为( ) A .22y x =+B .2(1)1y x =-+C .2(2)2y x =-+D .2(1)3y x =-+12.二次函数2y ax bx c =++的图象如图所示,下列结论中:①20a b +>;②()a b m am b +≠+(1m ≠的实数);③2a c +>;④在10x -<<中存在一个实数0x 、使得0a bx a+=-其中正确的有( )A .1个B .2个C .3个D .4个二、填空题13.小明研究抛物线y =﹣(x ﹣a )2﹣a +1(a 为常数)性质时得到如下结论: ①这条抛物线的顶点始终在直线y =x +1上;②当﹣1<x <2时,y 随x 的增大而增大,则a 的取值范围为a ≥2;③点A (x 1,y 1)与点B (x 2,y 2)在函数图象上,若x 1<x 2,x 1+x 2>2a ,则y 1>y 2; ④只存在一个a 的值,使得抛物线与x 轴的两个交点及抛物线的顶点构成等腰直角三角形;其中正确结论的序号是____.14.把函数y =(x ﹣1)2+2图象向右平移1个单位长度,平移后图象的函数解析式为_____.15.如图,抛物线224y x x =-+与x 轴交于点O ,A ,把抛物线在x 轴及其上方的部分记为1C ,将1C 以y 轴为对称轴作轴对称得到2C ,2C 与x 轴交于点B ,若直线y = m 与1C ,2C 共有4个不同的交点,则m 的取值范围是_______________.16.如图是二次函数2(0)y ax bx c a =++≠图象的一部分,有下列4个结论:①0abc >;②240b ac ->;③关于x 的方程20ax bx c ++=的两个根是12x =-,23x =;④关于x 的不等式20ax bx c ++>的解集是2x >-.其中正确的结论是___________.17.单行隧道的截面是抛物线形,且抛物线的解析式为21 3.258y x =-+,一辆车高3米,宽4米,该车________(填“能”或“不能”)通过该隧道.18.已知二次函数246y x x =--,若16x -≤≤,则y 的取值范围为____.19.二次函数y=(x+2)2-5的最小值为_______. 20.已知抛物线243y x x =-+与x 轴交于A 、B 两点,P 为抛物线上一点,且1APB S ∆=,则P 的坐标为_______.三、解答题21.新华书店为满足广大九年级学生的需求,订购《走进数学》若干本,每本进价为16元. 根据以往经验:当销售单价是20元时,每天的销售量是200本,销售单价每上涨1元,每天的销售量就减少10本,书店要求每本书的利润不低于25%且不高于50%. (1)请直接写出书店销售《走进数学》每天的销售量y (本)与销售单价x (元)之间的函数关系式及自变量的取值范围;(2)当销售单价定为多少元时,每天的利润最大,最大利润是多少?22.某车间生产以甲、乙两种水果为原料的某种罐头,在一次进货中得知,花费1.8万元购进的甲种水果与2.4万元购进的乙种水果质量相同,乙种水果每千克比甲种水果多2元.(1)求甲、乙两种水果的单价;(2)车间将水果制成罐头投入市场进行售卖,已知一听罐头需要甲乙水果各0.5千克,而每听罐头的成本除了水果成本之外,其他所有成本是水果成本的57还要多3元.调查发现,以28元的定价进行销售,每天只能卖出3000听,超市对它进行促销,每降低1元,平均每天可多卖出1000听,当售价为多少元时,利润最大?最大利润为多少? (3)若想使得该种罐头的销售利润每天达到6万元,并且保证降价的幅度不超过定价的15%,每听罐头的价钱应为多少钱?23.已知二次函数y =﹣x 2+4x +5,完成下列各题: (1)求出该函数的顶点坐标. (2)求出它的图象与x 轴的交点坐标. (3)直接写出:当x 为何值时,y >0.24.某片果园有果树60棵,现准备多种一些果树提高果园产量,但是如果多种树,那么树与树之间的距离和每棵树所受光照就会减少,单棵树的产量随之降低.若该果园每棵果树产果y (千克)与增种果树x (棵)之间的函数关系如图所示. (1)求每棵果树产果y (千克)与增种果树x (棵)之间的函数关系式; (2)设果园的总产量为w (千克),求w 与x 之间的函数表达式;(3)试说明(2)中总产量w (千克)随增种果树x (棵)的变化而变化的情况,并指出增种果树x 为多少棵时获得最大产量,最大产量w 是多少?25.已知:二次函数2y x bx c =++过点(0,-3),(1,-4) (1)求出二次函数的表达式;(2)在给定坐标系中画出这个二次函数的图像;(3)根据图像回答:当0≤x <3时,y 的取值范围是 .26.若二次函数y =x 2-x-2的图象与x 轴交于A ,B 两点(点A 在点B 的左侧). (1)求A ,B 两点的坐标;(2)若P(m ,-2)为二次函数y =x 2-x-2图象上一点,求m 的值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】根据二次函数的开口方向,与y 轴的交点;一次函数经过的象限,与y 轴的交点可得相关图象.【详解】解:∵一次函数和二次函数都经过y 轴上的(0,c ), ∴两个函数图象交于y 轴上的同一点,故B 选项错误;当a >0,c <0时,二次函数开口向上,一次函数经过一、三、四象限,故C 选项错误; 当a <0,c >0时,二次函数开口向下,一次函数经过一、二、四象限,故A 选项错误,D 选项正确; 故选:D . 【点睛】本题考查二次函数及一次函数的图象的性质;用到的知识点为:二次函数和一次函数的常数项是图象与y 轴交点的纵坐标;一次函数的一次项系数大于0,图象经过一、三象限;小于0,经过二、四象限;二次函数的二次项系数大于0,图象开口向上;二次项系数小于0,图象开口向下.2.A解析:A 【分析】根据二次函数的对称性知:抛物线的对称轴为直线x =2,且抛物线的开口向上,由此确定答案. 【详解】∵x =1和x =3时,y =0; ∴抛物线的对称轴为直线x =2, ∴顶点坐标为(2,﹣1), ∴抛物线的开口向上,∴x =0和x =4的函数值相等且大于0, ∴x =0,y =﹣3错误. 故选:A . 【点睛】此题考查抛物线的对称性,抛物线的性质,读懂表格掌握二次函数的对称性解决问题是解题的关键.3.B解析:B 【分析】由抛物线的性质得到20a ->,2=4(1)4(2)(1)0a a a ∆---+≤然后通过解分式方程求得a 的取值,然后求和. 【详解】解:∵二次函数y =(a -2)x 2+2(a -1)x +a +1的值恒为非负数, ∴20a ->,2=4(1)4(2)(1)0a a a ∆---+≤ 解得3a ≥解分式方程12322ax xx x-+=--解得:62xa=-由x≠2得,a≠5,由于a、x是整数,所以a=3,x=6,a=4,x=3,a=8,x=1,同理符合a≥3的a值共有3,4,8,故所有满足条件的整数a的值之和=3+4+8=15,故选:B.【点睛】本题考查的是抛物线和x轴交点,涉及到解分式方程,正确理解二次函数的值恒为非负数是解题的关键.4.D解析:D【分析】当y1=y2,即(x﹣2)(x﹣m)=3x,把x=1代入得,(1﹣2)(1﹣m)=3,则m=4,画出函数图象即可求解.【详解】解:当y1=y2,即(x﹣2)(x﹣m)=3x,把x=1代入得,(1﹣2)(1﹣m)=3,∴m=4,∴y1=(x﹣2)(x﹣4),抛物线的对称轴为:x=3,如下图:设点A、B的横坐标分别为1,5,则点A、B关于抛物线的对称轴对称,从图象看在点B处,即x=5时,y1>y2,故选:D.【点睛】本题考查的是二次函数与不等式(组),主要要求学生通过观察函数图象的方式来求解不等式.5.B【分析】根据二次函数图像可知1x =为抛物线的对称轴,可以求出与x 轴正半轴交点坐标,可解④⑤,开口朝下,与y 轴交于正半轴,可知:0a <,23c ≤≤,根据对称轴公式可得:0b >,可解①②③,根据图像可解⑥. 【详解】∵抛物线开口朝下, ∴0a <,∵与y 轴的交点在(0,2)、(0,3) 之间(包含端点), ∴23c ≤≤, ∴4ac <0, ∴24ac b <, ∴①正确;∵1x =为抛物线的对称轴, ∴12ba-=, ∴0b >,12a b =-, ∴313202a b b b b +=-+=-<,∴②不正确;∵1x =-时,0a b c -+=, ∴32c b =, ∴1424202a b c b b c c ⎛⎫++=⨯-++= ⎪⎝⎭> ∴③正确;∵1x =为抛物线的对称轴,(1,0)A -, ∴B 点坐标为(3,0),∴当0y >时,x 的取值范围为13x∴④正确;∵1x =为抛物线的对称轴, ∴1x >时,y 随着x 的增大而减小, ∴⑤不正确;由图像可知:213000y y y =<,>,, ∴132y y y <<, ∴⑥不正确; 故选:B .本题主要考查的是二次函数图像的性质以及二次函数对称轴,数量掌握二次函数图像的性质是解决本题的关键.6.B解析:B 【分析】根据表格中的数据和二次函数的性质,可以判断各个选项中的说法是否正确,从而可以解答本题. 【详解】解:由表格可得,该抛物线的对称轴为直线x =042=2,故选项B 正确; 当x <2 时,y 随x 的增大而减小,当x >2时,y 随x 的增大而增大,所以该抛物线的开口向上,故选项A 错误;当0≤x ≤4时,y ≤0,故选项C 错误;由二次函数图象具有对称性可知,若A (x 1,2),B (x 2,3)是抛物线上两点,则x 1<x 2或x 2<x 1,故选项D 错误; 故选:B . 【点睛】本题考查二次函数的性质,解答本题的关键是明确题意,利用二次函数的性质解答.7.D解析:D 【分析】根据判别式的意义得到△=(-2a )2-4(a 2-3a+6)<0,解得a <2,再求出抛物线的对称轴为直线x=a ,根据二次函数的性质得到a≥-1,从而得到实数a 的取值范围是-1≤a <2. 【详解】解∵抛物线22236y x ax a a =-+-+与x 轴没有公共点,∴△=(-2a )2-4(a 2-3a+6)<0,解得a <2,∵抛物线的对称轴为直线x=-22a-=a ,抛物线开口向上, 而当x <-1时,y 随x 的增大而减小, ∴a≥-1,∴实数a 的取值范围是-1≤a <2. 故选:D . 【点睛】本题考查了抛物线与x 轴的交点:把求二次函数y=ax 2+bx+c (a ,b ,c 是常数,a≠0)与x 轴的交点坐标问题转化为解关于x 的一元二次方程.也考查了二次函数的性质.8.A解析:A 【分析】由题意易得20a b +-=,且0,0a b >>,则有当x=1时,y<0,即20a b --<,进而可得22a b -<-<,然后由-a b 为整数,则有1a b -=或0或-1,最后求解即可. 【详解】解:∵二次函数()220y ax bx a =--≠的图象的顶点在第四象限,且过点()1,0-,∴20a b +-=,且0,0a b >>,当x=1时,y<0,即20a b --<, ∴2a b +=,且0,2a a b >-<, ∴02,02a b <<<<, ∴22a b -<-<, ∵-a b 为整数,∴1a b -=或0或-1,若1a b -=时,则有31,22a b ==,从而34ab =;若0a b -=时,则有1,1a b ==,从而1ab =;若1a b -=-时,则有13,22a b ==,从而34ab =;故选A . 【点睛】本题主要考查二次函数的图像与性质,熟练掌握二次函数的图像与性质是解题的关键.9.C解析:C 【分析】根据拋物线的开口方向以及对称轴为x =1,即可得出a 、b 之间的关系以及ab 的正负,由此得出①正确;根据抛物线与y 轴的交点在y 轴正半轴上,可知c 为正结合a <0、b >0即可得出②错误;将抛物线往下平移3个单位长度可知抛物线与x 轴只有一个交点从而得知③正确;根据拋物线的对称性结合抛物线的对称轴为x =1以及点B 的坐标,即可得出抛物线与x 轴的另一交点坐标,④正确;⑤根据两函数图象的上下位置关系即可判断y 2<y 1,故⑤正确;当1x =时y 1有最大值,a +b +c ≥am 2+bm +c ,即可判断⑥正确. 【详解】解:由抛物线对称轴为直线x =2ba-,从而b =﹣2a ,则2a +b =0,故①正确; 抛物线开口向下,与y 轴相交于正半轴,则a <0,c >0,而b =﹣2a >0,因而abc <0,故②错误;方程ax 2+bx +c =3从函数角度可以看做是y =ax 2+bx +c 与直线y =3求交点,从图象可以知道,抛物线顶点为(1,3),则抛物线与直线有且只有一个交点 故方程ax 2+bx +c =3有两个相等的实数根,故③正确;由抛物线对称性,与x 轴的一个交点B (4,0),则另一个交点坐标为(﹣2,0),故④错误;由图象可知,当1<x <4时,y 2<y 1,故⑤正确;因为x =1时,y 1有最大值,所以a +b +c ≥am 2+bm +c ,即a +b ≥m (am +b )(m 实数),故⑥正确.故选C .【点睛】本题主要考查了二次函数的图像、一次函数图像、二次函数的图象与系数的关系等知识考查知识点较多.解答的关键在于读懂图象信息,掌握二次函数知识,灵活运用所学知识解决问题,属于中考常考题型.10.B解析:B【分析】根据抛物线的解析式和二次函数的性质,可以判断各个选项中的说法是否正确,从而可以解答本题.【详解】解:∵抛物线y=-x 2+2x-3=-(x-1)2-2,∴该抛物线的开口向下,故选项A 错误;顶点坐标为()1,2-,故选项B 正确;当y=0时,△=22-4×(-1)×(-3)=-8<0,则该抛物线与x 轴没有交点,故选项C 错误; 对称轴是直线x=1,故选项D 错误;故选:B .【点睛】本题考查抛物线与x 轴的交点、二次函数的额性质,解答本题的关键是明确题意,利用二次函数的性质解答.11.C解析:C【分析】先求出y=(x-1)2+2的顶点坐标,再根据向右平移横坐标加,求出平移后的二次函数图象顶点坐标,然后利用顶点式解析式写出即可.【详解】解:二次函数y=(x-1)2+2的图象的顶点坐标为(1,2),∴向右平移1个单位长度后的函数图象的顶点坐标为(2,2),∴所得的图象解析式为y=(x-2)2+2.故选:C .【点睛】本题主要考查的是函数图象的平移,求出平移后的函数图象的顶点坐标直接代入函数解析式求得平移后的函数解析式.12.B解析:B【分析】根据二次函数的图象与性质逐项判定即可求出答案.【详解】解:①由抛物线的对称轴可知:12b a -< 由抛物线的图象可知:a >0,∴-b <2a ,∴2a+b >0,故①正确;②当x=1时,y=a+b+c=0,当y=ax 2+bx+c=0,∴x=1或x=m ,∴当m≠1时,a+b=am 2+bm ,故②错误;③由图象可知:x=-1,y=2,即a-b+c=2,∵a+b+c=0,∴b=-1,∴c=1-a∴a+c=a+1-a=1<2,故③错误;④由于a+b=-c=a-1,∵c <0,∴a-1>0,∴a >1,∴0<11a< ∵x 0=111,a a a--=-+ ∴-1<-1+1a <0 ∴-1<x 0<0,故④正确;故选:B .【点睛】本题考查二次函数的图象与性质,解题的关键是应用数形结合思想解题.二、填空题13.②③④【分析】由题意易得顶点坐标为(a ﹣a+1)所以这个函数图象的顶点始终在直线y=﹣x+1上抛物线开口向下对称轴为直线x=a 由此可判定②由可判定③假设存在一个a 的值使得函数图象的顶点与x 轴的两个交解析:②③④【分析】由题意易得顶点坐标为(a ,﹣a +1),所以这个函数图象的顶点始终在直线y =﹣x +1上,抛物线开口向下,对称轴为直线x =a ,由此可判定②,由122x x a +>可判定③,假设存在一个a 的值,使得函数图象的顶点与x 轴的两个交点构成等腰直角三角形,令y =0,得﹣(x ﹣a )2﹣a +1=0,其中a ≤1,进而可求解.【详解】解:抛物线y =﹣(x ﹣a )2﹣a +1(a 为常数),①∵顶点坐标为(a ,﹣a +1),∴这个函数图象的顶点始终在直线y =﹣x +1上,故结论①错误;②∵抛物线开口向下,对称轴为直线x =a ,当﹣1<x <2时,y 随x 的增大而增大,∴a 的取值范围为a ≥2,故结论②正确;③∵x 1+x 2>2a , ∴122x x a +>, ∵抛物线对称轴为直线x =a ,∴点A 离对称轴的距离小于点B 离对称轴的距离,∴y 1>y 2,故结论③正确;④假设存在一个a 的值,使得函数图象的顶点与x 轴的两个交点构成等腰直角三角形, 令y =0,得﹣(x ﹣a )2﹣a +1=0,其中a ≤1,解得:x 1=a ,x 2=a .∵顶点坐标为(a ,﹣a +1),且顶点与x 轴的两个交点构成等腰直角三角形,∴|﹣a +1|=|a ﹣(a )|,解得:a =0或1,当a =1时,二次函数y =﹣(x ﹣1)2,此时顶点为(1,0),与x 轴的交点也为(1,0),不构成三角形,舍去;∴存在a =0,使得函数图象的顶点与x 轴的两个交点构成等腰直角三角形,故结论④正确.故答案为:②③④.【点睛】本题主要考查二次函数的图像与性质,熟练掌握二次函数的图像与性质是解题的关键. 14.y =(x ﹣2)2+2【分析】根据原二次函数的解析式可得原抛物线的顶点进而可得新抛物线的顶点根据平移不改变二次项的系数利用顶点式可得新函数解析式【详解】∵二次函数y =(x ﹣1)2+2的图象的顶点坐标为解析:y =(x ﹣2)2+2【分析】根据原二次函数的解析式可得原抛物线的顶点,进而可得新抛物线的顶点,根据平移不改变二次项的系数利用顶点式可得新函数解析式.【详解】∵二次函数y =(x ﹣1)2+2的图象的顶点坐标为(1,2),∴向右平移1个单位长度后的函数图象的顶点坐标为(2,2),∴所得的图象解析式为y =(x ﹣2)2+2.故答案为y =(x ﹣2)2+2.【点睛】本题考查了二次函数的平移问题;用到的知识点为:平移不改变二次项的系数;二次函数的平移,看顶点的坐标平移即可,用顶点式较简便.15.【分析】首先求出点A 和点B 的坐标然后求出解析式分别求出直线过抛物线顶点时m 的值以及直线过原点时m 的值结合图形即可得到答案【详解】令解得:或则A (20)B (-20)∵与关于y 轴对称:顶点为(12)∴的解析:02m <<【分析】首先求出点A 和点B 的坐标,然后求出2C 解析式,分别求出直线y m =过抛物线顶点时m的值以及直线y m =过原点时m 的值,结合图形即可得到答案. 【详解】令2240y x x =-+=,解得:0x =或2x =,则A (2,0),B (-2,0),∵1C 与2C 关于y 轴对称,1C :()2224212y x x x =-+=--+,顶点为(1,2), ∴2C 的解析式为()2221224y x x x =-++=--(20x -≤≤),顶点为(-1,2),当直线y m =过抛物线顶点时,它与1C ,2C 共有2个不同的交点,此时2m =;当直线y m =过原点时,它与1C ,2C 共有3个不同的交点,此时0m =; ∴当02m <<时,直线y m =与1C ,2C 共有4个不同的交点. 故答案为:02m <<.【点睛】本题考查了抛物线与x 轴的交点、二次函数的图象与几何变换、一次函数与二次函数的关系,数形结合是解题的关键.16.②③【分析】根据抛物线开口方向对称轴的位置以及与y 轴的交点可对①减小判断;利用抛物线与x 轴的交点个数可对②进行判断;根据二次函数的性质可对③进行判断;利用图象则可对④进行判断【详解】解:∵抛物线开口解析:②③【分析】根据抛物线开口方向,对称轴的位置以及与y 轴的交点可对①减小判断;利用抛物线与x 轴的交点个数可对②进行判断;根据二次函数的性质可对③进行判断;利用图象则可对④进行判断.【详解】解:∵抛物线开口向下,交y 轴的正半轴,∴a <0,c >0,∵-2b a =12, ∴b =-a >0, ∴abc <0,所以①错误;∵抛物线与x 轴有2个交点,∴△=b 2-4ac >0,即b2>4ac ,所以②正确;∵抛物线y =ax 2+bx +c 经过点(-2,0),而抛物线的对称轴为直线x=12, ∴点(-2,0)关于直线x =12的对称点(3,0)在抛物线上, ∴关于x 的一元二次方程ax 2+bx +c =0的两根是x 1=-2,x 2=3,所以③正确.由图象可知当-2<x <3时,y >0,∴不等式ax 2+bx +c >0的解集是-2<x <3,所以④错误;故答案为②③.【点睛】本题考查了二次函数图象与系数的关系:对于二次函数y =ax 2+bx +c (a≠0),二次项系数a 决定抛物线的开口方向和大小:当a >0时,抛物线向上开口;当a <0时,抛物线向下开口;一次项系数b 和二次项系数a 共同决定对称轴的位置:当a 与b 同号时(即ab >0),对称轴在y 轴左; 当a 与b 异号时(即ab <0),对称轴在y 轴右;常数项c 决定抛物线与y 轴交点位置:抛物线与y 轴交于(0,c );抛物线与x 轴交点个数由△决定:△=b 2-4ac >0时,抛物线与x 轴有2个交点;△=b 2-4ac =0时,抛物线与x 轴有1个交点;△=b 2-4ac <0时,抛物线与x 轴没有交点.17.不能【分析】根据题意将x=2代入求出相应的y 值然后与车高比较大小即可解答本题【详解】解:将x=2代入y=-x2+325得y=-×22+325=275∵275<3∴该车不能通过隧道故答案为:不能【点睛解析:不能.【分析】根据题意,将x=2代入求出相应的y 值,然后与车高比较大小即可解答本题.【详解】解:将x=2代入y=-18x 2+3.25,得 y=-18×22+3.25=2.75, ∵2.75<3,∴该车不能通过隧道,故答案为:不能.【点睛】本题考查二次函数的应用,解题的关键是明确题意,找出所求问题需要的条件. 18.【分析】先利用配方法求得抛物线的顶点坐标从而可得到y 的最小值然后再求得最大值即可【详解】解:y=x2-4x-6=x2-4x+4-10=(x-2)2-10∴当x=2时y 有最小值最小值为-10∵∴当x=解析:106y -≤≤【分析】先利用配方法求得抛物线的顶点坐标,从而可得到y 的最小值,然后再求得最大值即可.【详解】解:y=x 2-4x-6=x 2-4x+4-10=(x-2)2-10.∴当x=2时,y 有最小值,最小值为-10.∵16x -≤≤,∴当x=6时,y 有最大值,最大值为y=(6-2)2-10=6.∴y 的取值范围为106y -≤≤.故答案为:106y -≤≤.【点睛】本题主要考查的是二次函数的性质,熟练掌握二次函数的性质是解题的关键.19.-5【分析】根据二次函数的顶点式的意义即可确定函数的最值【详解】解:∵y=(x+2)2-5∴当x=-2时函数有最小值为-5故答案为-5【点睛】本题主要考查了二次函数的最值掌握根据二次函数的顶点式求最解析:-5【分析】根据二次函数的顶点式的意义即可确定函数的最值.【详解】解:∵y=(x+2)2-5∴当x=-2时,函数有最小值为-5.故答案为-5.【点睛】本题主要考查了二次函数的最值,掌握根据二次函数的顶点式求最值的方法是解答本题的关键.20.(2-1)或(2-1)或(2+1)【分析】当y=0时求得x 的值确定AB 的长设点P 坐标为根据三角形面积公式列方程求解即可【详解】解:当y=0时解得:∴AB=2设点P 坐标为∴∴当时解得x=2此时P 点坐标解析:(2,-1)或(1),或(,1).【分析】当y=0时,求得x 的值,确定AB 的长,设点P 坐标为2(,43)x x x -+,根据三角形面积公式列方程求解即可.【详解】解:当y=0时,243=0x x -+解得:121,3x x ==∴AB=2设点P 坐标为2(,43)x x x -+, ∴214312APB S AB x x ∆=-+= ∴2431x x -+=当2431x x -+=-时,解得x=2,此时P 点坐标为(2,-1)当2431x x -+=时,解得122x x =P 点坐标为(,1),或(,1)综上,P 的坐标为:(2,-1)或(1),或(,1)故答案为:(2,-1)或(,1),或(,1).【点睛】本题考查二次函数与图形,利用数形结合思想列方程求解是解题关键.三、解答题21.(1)()104002024y x x =-+≤≤;(2)当销售单价定为24元时,利润最大,为1280元.【分析】(1)根据题意易得每天减少的销量为()1020x -本,然后问题可求解;(2)设每天的利润为w 元,根据题意可得()()21610400105606400w x x x x =--+=-+-,然后根据二次函数的性质可进行求解.【详解】解:(1)由题意得:()200102010400y x x =--=-+,∵书店要求每本书的利润不低于25%且不高于50%,∴1625161650x ⨯≤-≤⨯%%,解得:2024x ≤≤,∴每天的销售量y (本)与销售单价x (元)之间的函数关系式为()104002024y x x =-+≤≤;(2)设每天的利润为w 元,根据题意得:()()()22161040010560640010281440w x x x x x =--+=-+-=--+, ∵100a =-<,开口向下,对称轴为直线28x =,∴当2024x ≤≤时,y 随x 的增大而增大,∴当x=24时,利润最大,最大值为:()221028144010414401280w x =--+=-⨯+=(元);答:当销售单价定为24元时,每天的利润最大,最大利润是1280元.【点睛】本题主要考查二次函数的实际应用,熟练掌握二次函数的性质及应用是解题的关键. 22.(1)甲、乙两种水果的单价分别为6元/千克、8元/千克;(2)售价为23元时,利润最大,最大利润为64000元;(3)每听罐头的价钱应为25元【分析】(1)设甲种水果的单价为x 元/千克,乙种水果的单价为()2x +元/千克,列出分式方程进行求解;(2)先根据(1)中的结果算出水果成本,然后设降价m 元,表示出销量和单个利润,列出总利润的表达式,最后求出最值;(3)令(2)中的利润为6万元,列式求出m 的值,取范围内的值求出罐头价钱.【详解】解:(1)设甲种水果的单价为x 元/千克,乙种水果的单价为()2x +元/千克,根据题意得,180********x x =+, 解得:6x =,经检验,6x =是方程的根,28x ∴+=,答:甲、乙两种水果的单价分别为6元/千克、8元/千克;(2)由(1)知每听罐头的水果成本为:60.580.57⨯+⨯=元, 每听罐头的总成本为:5773157+⨯+=元, 设降价m 元,则利润()()22815300010001000W m m m =--+=-+()210000390001000564000m m +=--+,10000-<,∴当5m =时,W 有最大值为64000,∴当售价为23元时,利润最大,最大利润为64000元;(3)由(2)知,()2100056400060000W m =--+=,解得:7m =或3m =,但是降价的幅度不超过定价的15%,3m ∴=, ∴售价为28325-=(元),答:每听罐头的价钱应为25元.【点睛】本题考查分式方程的应用和二次函数的应用,解题的关键是根据题意列出方程或者函数表达式进行求解.23.(1)(2,9);(2)(5,0)、(﹣1,0);(3)当﹣1<x <5时,y >0.【分析】(1)由y=-x 2+4x+5=-(x-2)2+9即可求解;(2)令y=-x 2+4x+5=0,解得x=5或-1,即可求解;(3)a=-1<0,则抛物线开口向下,即可求解.【详解】解:(1)y =﹣x 2+4x +5=﹣(x ﹣2)2+9,则抛物线的顶点坐标为(2,9);(2)令y =﹣x 2+4x +5=0,∴()-5(1=0x x ++) 解得x =5或﹣1,故图象与x 轴的交点坐标为(5,0)、(﹣1,0);(3)∵a =﹣1<0,故抛物线开口向下,故当﹣1<x <5时,y >0.【点睛】【点睛】本题考查的是抛物线与x 轴的交点,主要考查函数图象上点的坐标特征,解题的关键是熟悉函数与坐标轴的交点、顶点等点坐标的求法,及这些点代表的意义及函数特征.24.(1)1802y x =-+;(2)215048002w x x =-++ ;(3)当x=50时,w 的最大值为6050.【分析】(1)由图像可得坐标()()12,74,28,66,设y kx b =+,然后代入求解即可; (2)根据(1)及题意可直接进行求解;(3)由(2)及二次函数的性质可进行求解.【详解】解:(1))由图像可得坐标()()12,74,28,66,则设y kx b =+,把点()()12,74,28,66代入得:12742866k b k b +=⎧⎨+=⎩,解得:1280k b ⎧=-⎪⎨⎪=⎩, ∴1802y x =-+; (2)由(1)及题意得:()()16060802w x y x x ⎛⎫=+⋅=+⋅-+ ⎪⎝⎭215048002x x =-++; (3)由(2)得:()221150480050605022w x x x =-++=--+, ∴102a =-<,开口向下,对称轴为直线50x =, ∴当50x ≤时,y 随x 的增大而增大,当50x ≥时,y 随x 的增大而减小,∴当50x =时,w 取最大,最大值为6050.【点睛】本题主要考查二次函数的实际应用,熟练掌握二次函数的应用是解题的关键.25.(1)2-2-3y x x =;(2)见解析;(3)-4≤y <0【分析】(1)把已知点的坐标代入函数解析式,即可求出答案;(2)根据函数的解析式画出抛物线即可;(3)把二次函数解析式化成顶点式,再根据图形分析计算y 的取值范围即可.【详解】解:(1)将点(0,-3),(1,-4)代入二次函数2y x bx c =++得:314c b c =-⎧⎨++=-⎩, 解得:23b c =-⎧⎨=-⎩, 所以,二次函数的表达式为:223y x x =--;(2)二次函数的图象如下:(3)∵()214y x =--∴当x =1时,有最小值-4,当x =0时,y =(0−1)2-4=−3,当x =3时,y =(3−1)2-4=0,又对称轴为x =1,∴当0≤x <3时,y 的取值范围是−4<y≤0.【点睛】本题考查了用待定系数法求二次函数的解析式、也考查了二次函数的图象与性质,熟练掌握二次函数的三种常用形式:一般式、顶点式、交点式.26.(1)A (-1,0),B(2,0);(2)0或1【分析】(1)解方程x 2-x-2=0可得A ,B 两点的坐标;(2)把P (m ,-2)代入y=x 2-x-2得m 2-m-2=-2,然后解关于m 的方程即可.【详解】解:(1)当y =0时,x 2-x-2=0,解得x 1=-1,x 2=2,∴A (-1,0),B (2,0);(2)把P (m ,-2)代入y =x 2-x-2得m 2-m-2=-2,解得m 1=0,m 2=1,∴m 的值为0或1.【点睛】本题考查了抛物线与x 轴的交点:把求二次函数y=ax 2+bx+c (a ,b ,c 是常数,a≠0)与x 轴的交点坐标问题转化为解关于x 的一元二次方程.。
人教版初中数学九年级上册课后提升训练试卷(22.1.4 二次函数y=ax2+bx+c第的图象和性质)

2020年秋绵阳南山双语学校初中数学(人教版)九年级上册第二十二章二次函数22.1 二次函数的图象和性质22.1.4 二次函数y=ax2+bx+c第的图象和性质1.(2020湖北十堰丹江口期中)关于抛物线y=x2-2x-1,下列说法中错误的是 ( )A.开口方向向上B.对称轴是直线x=1C.当x>1时,y随x的增大而减小D.顶点坐标为(1,-2)2.(2019吉林四平铁西期中)二次函数y=-2x2-3x+1的图象大致是 ( )3.(2020重庆八中月考)如图,已知抛物线y=ax2+bx+c(a≠0)经过点(-2,0),对称轴为直线x=1,下列结论中正确的是 ( ) A.abc>0 B.b=2aC.9a+3b+c<0D.8a+c=04.(2020天津和平期中)抛物线的顶点为(1,-4),与y轴交于点(0,-3),则该抛物线的解析式为 ()A.y=x2-2x-3B.y=x2+2x-3C.y=x2-2x+3D.y=2x2-3x-35.(2020浙江嘉兴秀洲期中)二次函数y=ax2+bx+c的图象经过点A(-4,0)、B(-1,0)和C(-2,-2),则下列说法正确的是 ()A.抛物线的开口向下B.当x>-3时,y随x的增大而增大C.二次函数的最小值是-2D.抛物线的对称轴是直线x=- 526.(2020天津和平期中)二次函数y=x2+bx+c(b,c是常数)中的自变量x与函数值y的部分对应值如下表:下列结论正确的是 ( )A.当x=2时,y有最大值1B.当x<2时,y随x的增大而增大C.点(5,9)在该函数的图象上D.若A(m,y1),B(m+1,y2)两点都在该函数的图象上,则当m>3/2 时,y1<y27.(2019天津南开期中)函数y=ax2+ax+a(a≠0)的图象可能是下列图象中的 ( )8.(2019重庆中考)抛物线y=-3x2+6x+2的对称轴是 ()A.直线x=2B.直线x=-2C.直线x=1D.直线x=-19.(2019辽宁葫芦岛中考)二次函数y=ax2+bx的图象如图所示,则一次函数y=ax+b的图象大致是 ( )10.(2019四川遂宁中考)二次函数y=x2-ax+b的图象如图所示,对称轴为直线x=2,下列结论不正确的是 ()A.a=4B.当b=-4时,顶点的坐标为(2,-8)C.当x=-1时,b>-5D.当x>3时,y随x的增大而增大11.(2020独家原创试题)已知A(a,m),B(b,n)是抛物线y=x2-2x-2 020上的两点,且a<b<1.若k=a-b,c=m-n,则一次函数y=kx+c的图象经过的象限是 ()A.第一、二、三象限B.第一、二、四象限C.第二、三、四象限D.第一、三、四象限12.(2019江苏徐州铜山二模)二次函数y=x2+2x+2的图象先向上平移2个单位长度,再向右平移3个单位长度,则平移后二次函数图象的顶点坐标是.13.已知二次函数y=ax2+bx+c的图象如图所示,则点P(a,bc)在第象限.14.(2020山东青岛莱西期中)顶点为(-6,0),开口向下,形状与函数x2的图象相同的抛物线的表达式是. y= 1215.(2019北京西城期中)已知二次函数y=ax2+bx+c(a,b,c为常数,a≠0),其中自变量x与函数值y之间满足下面的对应关系:则a+b+c= .16.(2020重庆巴南期中)已知二次函数y=ax2+bx+c的y与x的部分对应值如下表:若一次函数y=bx+ac的图象不经过第m象限,则m=17.(2020湖北孝感孝南期中)如图,抛物线y=ax2+bx+c的图象经过(-1,0),对称轴为x=1,则下列三个结论:①abc<0;②10a+3b+c>0;③am2+bm+a≥0,其中正确的结论为(填序号).18.(2019福建莆田秀屿月考)若函数y=a(x-h)2+k的图象经过原点,最小值为-8且形状与抛物线y=-2x2-2x+3相同,则此函数关系式为.19.(2020北京三十九中期中)把抛物线y=-x2+4x-3先向左平移3个单位,再向下平移2个单位,则变换后的抛物线解析式是.20.(2019福建龙岩上杭月考)如图,二次函数图象过A,B,C三点,点A的坐标为(-1,0),点B的坐标为(4,0),点C在y轴正半轴上,且AB=OC.(1)求点C的坐标;(2)求二次函数的解析式.21.(2019山东淄博临淄期中)已知二次函数y=ax2+bx+c中,y与x的部分对应值如下表:(1)求这个二次函数的解析式;(2)写出这个二次函数图象的顶点坐标.参考答案1.答案 C∵a=1>0,∴开口方向向上,故A说法正确;对称轴是故B说法正确;当x>1时,y随x的增大而增大,故C说法错误;y=x2-2x-1=(x-1)2-2,顶点坐标为(1,-2),故D说法正确.故选C.2.答案 B因为a=-2<0,所以抛物线y=-2x2-3x+1开口向下,故C、D不符合题意;抛物线y=-2x2-3x+1的对称轴是直线故A不符合题意.故选B.3.答案 D ∵抛物线开口向下,∴a<0,∵抛物线对称轴为直线x=1,∴-b/2a =1,∴b=-2a>0,故B错误;∵抛物线与y轴的正半轴相交,∴c>0,∴abc<0,故A错误;∵对称轴为直线x=1,又点(-2,0)关于直线x=1的对称点的坐标为(4,0),∴当x=3时,y=9a+3b+c>0,故C错误;∵抛物线y=ax2+bx+c经过点(-2,0),∴4a-2b+c=0,∵b=-2a,∴4a+4a+c=0,即8a+c=0,故D正确.故选D.4.答案 A 设抛物线的解析式为y=a(x-1)2-4,将(0,-3)代入y=a(x-1)2-4,得-3=a(0-1)2-4,解得a=1,∴抛物线的解析式为y=(x-1)2-4=x2-2x-3.故选A.5.答案 D ∵二次函数y=ax2+bx+c的图象经过点A(-4,0)、B(-1,0)和C(-2,-2),∴a>0,∴抛物线开口向上,故A错误;对称轴为直线y随x的增大而增大,故B错误,D正确;∴函数的最小值小于-2,故C错误.故选D.6.答案 D 观察表格知,函数的图象经过点(1,2)和(3,2),∴对称轴为x=2.∵函数图象开口向上且经过点(2,1),∴x=2时,y有最小值1,故A错误.易知当x<2时,y随x的增大而减小,故B错误.∵对称轴是直线x=2,点(-1,10)关于x=2的对称点是(5,10),∴点(5,10)在该函数的图象上,点(5,9)不在该函数的图象上,故C错误.∵当m>3/2 时,|2-m|<|m+1-2|,∴y1<y2,故D正确.故选D.7.答案 C 在函数y=ax2+ax+a(a≠0)中,当a<0时,该函数图象开口向下,顶点在y轴左侧,抛物线与y轴的负半轴相交,故C正确、D错误;当a>0时,该函数图象开口向上,顶点在y轴左侧,抛物线与y轴的正半轴相交,故A、B错误.故选C.8.答案 C9.答案 D10.答案 C 由题意得,对称轴为直线x=2,∴a=4,故A正确;当b=-4时,y=x2-4x-4=(x-2)2-8,∴顶点的坐标为(2,-8),故B正确;当x=-1时,由图象知此时y<0,即1+4+b<0,∴b<-5,故C不正确;∵对称轴为直线x=2且图象开口向上,∴当x>3时,y随x的增大而增大,故D正确.故选C.11.答案 B y=x2-2x-2 020=(x-1)2-2 021,∴抛物线开口向上,对称轴为x=1,当x<1时,y随x的增大而减小.∵A(a,m),B(b,n)是抛物线y=x2-2x-2 020上的两点,且a<b<1,∴m>n.∵k=a-b<0,c=m-n>0,∴一次函数y=kx+c 的图象经过的象限是第一、二、四象限.故选B.12.答案(2,3)∵y=x2+2x+2=(x+1)2+1,顶点为(-1,1),∴将图象向上平移2个单位长度,再向右平移3个单位长度,平移后的二次函数图象的顶点坐标为(2,3).13.答案一14.解析设所求的抛物线的表达式为y=a(x-h)2+k,∵顶x2点为(-6,0),∴h=-6,k=0,又∵开口向下,形状与函数y= 12 ,∴抛物线的表达式为的图象相同,∴a=-1215.答案-1.5∵x=3时,y=2.5;x=5时,y=2.5,∴抛物线的对称轴为直线x=4,∴x=1和x=7的函数值相等,而x=7时,y=-1.5,∴x=1时,y=a+b+c=-1.5.16.答案 3解析由表中的数据可知抛物线开口向上,顶点为(1,3),与y轴的交点为(0,4),∴b<0,∴ac>0,∴函数y=bx+ac的图象经过第一、二、四象限,不经过第三象限,∴m=3.17.答案②③解析①观察图象可知,a>0,b<0,c<0,∴abc>0.∴①错误.②观察图象可知,当x=3时,y=0,即9a+3b+c=0,∵a>0,∴10a+3b+c>0.∴②正确.③∵对称轴为x=1,∴b=-2a,∴am2+bm+a=am2-2am+a=a(m-1)2≥0,∴am2+bm+a≥0.∴③正确.18.答案y=2x2+8x或y=2x2-8x函数y =a (x -h )2+k 的图象经过原点,把(0,0)代入解析式,得ah 2+k =0,∵最小值为-8,∴函数图象的开口向上,a >0,顶点的纵坐标k =-8,又∵形状与抛物线y =-2x 2-2x +3相同,∴二次项系数a =2,把a =2,k =-8代入ah 2+k =0中,得h =±2,∴函数解析式是y =2(x +2)2-8或y =2(x -2)2-8,即y =2x 2+8x 或y =2x 2-8x .19. 答案 y =-x 2-2x -2 ∵抛物线y =-x 2+4x -3=-(x -2)2+1,∴顶点坐标为(2,1),将顶点向左平移3个单位,再向下平移2个单位得到的点是(-1,-1),则变换后的抛物线解析式为y =-(x +1)2-1=-x 2-2x -2.20. 解析 (1)∵点A 的坐标为(-1,0),点B 的坐标为(4,0),∴AB =4-(-1)=5,∵AB =OC ,∴OC =5,∴点C 的坐标为(0,5).(2)解法一:设过点A ,B ,C 的抛物线的解析式为y =ax 2+bx +c , 把A (-1,0),B (4,0),C (0,5)分别代入y =ax 2+bx +c 中,得 解得 -0,1640,5,a b c a b c c +=⎧⎪++=⎨⎪=⎩5-,415,45,a b c ⎧=⎪⎪⎪=⎨⎪=⎪⎪⎩所以二次函数的解析式为解法二:设过点A ,B 的抛物线的解析式为y =a (x +1)(x -4), 把点C (0,5)代入,得5=a (0+1)(0-4),所以二次函数的解析式为21. 解 (1)把(0,1),(1,-2),(2,1)代入y =ax 2+bx +c 中,得 解得 所以二次函数解析式为y =3x 2-6x +1.(2)由(1)知抛物线解析式为y =3x 2-6x +1,即y =3(x 2-2x )+1=3(x 2-2x +1-1)+1=3(x -1)2-2,所以抛物线的顶点坐标为(1,-2).1,-2,421,c a b c a b c =⎧⎪++=⎨⎪++=⎩3,-6,1,a b c =⎧⎪=⎨⎪=⎩。
九年级 数学第一章一元二次函数测试题附答案
九年级数学第一章一元二次函数测试题附答案第一章一元二次函数单元测试题时限:100分钟总分:100分)一、选择题(本题共8小题,每小题3分,共24分)1.抛物线 $y=(x-1)^2+1$ 的顶点坐标为(。
)。
A。
$(1,1)$。
B。
$(1,-1)$。
C。
$(-1,1)$。
D。
$(-1,-1)$2.二次函数 $y=(x+1)^2-2$ 的最小值是()。
A。
$1$。
B。
$-1$。
C。
$2$。
D。
$-2$3.在下列函数解析式中,对称轴为直线 $x=2$ 的二次函数是()。
A。
$y=2x+1$。
B。
$y=2x-1$。
C。
$y=x-4x+1$。
D。
$y=x+4x+1$4.抛物线 $y=2(x-1)^2+5$ 与 $y$ 轴交点的坐标是()。
A。
$(0,5)$。
B。
$(\sqrt{2},2)$。
C。
$(2,5)$。
D。
$(1,5)$5.要得到函数 $y=x+1$ 的图象,应将函数 $y=(x-2)^2-3$ 的图象()。
A。
先向下平移 $3$ 个单位,再向右平移 $2$ 个单位B。
先向左平移 $2$ 个单位,再向上平移 $4$ 个单位C。
先向上平移 $2$ 个单位,再向左平移 $3$ 个单位D。
先向右平移 $2$ 个单位,再向下平移 $2$ 个单位6.根据下列表格中的二次函数 $y=ax^2+bx+c$ 的自变量$x$ 与对应 $y$ 值,判断方程 $ax^2+bx+c=0$ ($a\neq 0$,$a$、$b$、$c$ 为常数)的一个解 $x$ 的范围是()。
begin{tabular}{|c|c|c|c|c|} \hlinex$ & $6.17$ & $6.18$ & $6.19$ & $6.20$ \\ \hliney=ax^2+bx+c$ & $-0.03$ & $-0.01$ & $0.02$ & $0.04$ \\\hlineend{tabular}A。
初中数学二次函数真题汇编附答案
<x
0
<
1 2
D.
1 2
<x
0
<1
【答案】C
【解析】
【分析】
首先根据题意推断方程 x3+2x-1=0 的实根是函数 y=x2+2 与 y 1 的图象交点的横坐标,再根 x
据四个选项中 x 的取值代入两函数解析式,找出抛物线的图象在反比例函数上方和反比例 函数的图象在抛物线的上方两个点即可判定推断方程 x3+2x-1=0 的实根 x 所在范围. 【详解】
A.
B.
C.
D.
【答案】A 【解析】 【分析】 分点 P 在 AB 边和 BC 边上两种情况画出图形,分别求出 y 关于 x 的函数关系式,再结合其 取值范围和图象的性质判断即可. 【详解】
解:当点 P 在 AB 边上,即 0 x 8 时,如图 1,由题意得:AP=BQ=x,∠ABD=45°,∴
其中的“关键点”,还要善于分析各图象的变化趋势.
3.在抛物线 y=a(x﹣m﹣1)2+c(a≠0)和直线 y=﹣ 1 x 的图象上有三点(x1,m)、 2
(x2,m)、(x3,m),则 x1+x2+x3 的结果是( )
A. 3 m 1
B.0
22
C.1
D.2
【答案】D
【解析】
【分析】
根据二次函数的对称性和一次函数图象上点的坐标特征即可求得结果.
∴m=﹣ 1 x1, 2
∴x1=﹣2m, ∴x1+x2+x3=﹣2m+2m+2=2, 故选:D.
【点睛】 本题考查了二次函数的对称性和一次函数图象上点的坐标特征,解题的关键是利用数形结 合思想画出函数图形.
(完整版)初中数学二次函数试题及答案
一、选择题(每题3分,共30分)1. 下列关系式中,届丁二次函数的是(x 为自变量)() _1。
_ 1A. '*B..「•C.「LD ; - ! !2. 函数y=x 2-2x+3的图象的顶点坐标是() A. (1 , -4) B.(-1 , 2) C. (1 , 2) D.(0, 3)3. 抛物线y=2(x-3)2的顶点在() A.第一象限 B.第二象限C. x 轴上D. y 轴上4. 抛物线* 丁 +冠斗的对称轴是() A. x=-2B.x=2C. x=-4D. x=45. 已知二次函数y=ax 2+bx+c 的图象如图所示,则下列结论中,正确的是()A. ab>0, c>0B. ab>0, c<0C. ab<0, c>0D. ab<0, c<06. 二次函数y=ax 2+bx+c 的图象如图所示,贝U 点 .象限() A. 一 B. 二 C. 三 D. 四 已知二次函数 y=ax 2+bx+c (a 丰0)的图象的顶点 图象交x 轴丁点A (m , 0)和点B,且m>4,那么 8. 若一次函数y=ax+b 的图象经过第二、三、四象限,则二次函数y=ax 2+bx 的图象只可能是()9. 已知抛物线和直线E 在同一直角坐标系中的图象如图所示,抛物线的对 称轴7.如图所示, P 的横坐标是4, AB 的长是()A. 4+m C. 2m-8B. m D. 8-2m为直线x=-1 , P l(X1, y i), P2(X2, y2)是抛物线上的点,P3(X3, y3)是直线£上的点,且-1<X1<X2, X3<-1,则y i, y2, y3的大小关,系是()A. y1 <y2<y3B. y2<y3<y 1 ;''顼\ \芝C. y3<y1<y2D. y2<y1<y3 :10. 把抛物线A = 的图象向左平移2个单位,再向上平■移3个单位,所得的抛物线的函数关系式是()A.L—B. - / J如- D.-二、填空题(每题4分,共32分)11. 二次函数y=X2-2X+1的对称轴方程是.12. 若将二次函数y=X2-2X+3配方为y=(X-h)2+k的形式,贝U y=.13. 若抛物线y=X2-2X-3与X轴分别交丁A、B两点,则AB的长为14. 抛物线y=X2+bX+c,经过A(-1 , 0), B(3, 0)两点,则这条抛物线的解析式为.15. 已知二次函数y=ax2+bx+c的图象交x轴丁A、B两点,交y轴丁C点, 且△ ABC 是直角三角形,请写出一个符合要求的二次函数解析式16. 在距离地面2m高的某处把一物体以初速度v0(m/s)竖直向上抛物出,在1不计空气阻力的情况下,其上升高度s(m)与抛出时间t(s)满足:2(其中g是常数,通常取10m/s2).若v0=10m/s,则该物体在运动过程中最高点距地面 m.17. 试写出一个开口方向向上,对称轴为直线x=2,且与y轴的交点坐标为(0, 3)的抛物线的解析式为.和(:*18. 已知抛物线y=x2+x+b2经过点 4 ,则y i的值是.三、解答下列各题(19、20每题9分,21、22每题10分,共38分)319. 若二次函数的图象的对称轴方程是a,并且图象过A(0, -4)和B(4,0)(1)求此二次函数图象上点A关丁对称轴对称的点A '的坐标;(2)求此二次函数的解析式;20. 在直角坐标平■面内,点O为坐标原点,二次函数y=x2+(k-5)x-(k+4)的图象交x 轴丁点A(XI, 0)、B(x2, 0),且(X I+1)(X2+1)=-8.(1) 求二次函数解析式;(2) 将上述二次函数图象沿x轴向右平■移2个单位,设平移后的图象与y轴的交点为C,顶点为P,求z\POC的面积.21. 已知:如图,二次函数y=ax2+bx+c的图象与x轴交丁A、B两点,其中A点坐标为(-1, 0),点C(0, 5),另抛物线经过点(1, 8), M为它的顶点.(1) 求抛物线的解析式;(2) 求/\ MCB 的面积,△ MCB.22. 某商店销售一种商品,每件的进价为2.50元,根据市场调查,销售量与销售单价满足如下关系:在一段时间内,单价是13.50元时,销售量为500件, 而单价每降低1元,就可以多售出200件.请你分析,销售单价多少时,可以获利最大.答案与解析: 一、选择题1. 考点:二次函数概念.选A.2.考点:求二次函数的顶点坐标.解析:法一,直接用二次函数顶点坐标公式求 .法二,将二次函数解析式由 一般形式转换为顶点式,即 y=a(x-h)2+k 的形式,顶点坐标即为 (h , k), y=x 2-2x+3=(x-1)2+2,所以顶点坐标为(1, 2),答案选C.3. 考点:二次函数的图象特点,顶点坐标.解析:可以直接由顶点式形式求出顶点坐标进行判断,函数 y=2(x-3)2的顶 点为(3, 0),所以顶点在x 轴上,答案选C.4.考点:数形结合,二次函数 y=ax 2+bx+c 的图象为抛物线,其对称轴为抛物线 "-丁 +枣一',直接利用公式,其对称轴所在直线为5.考点:二次函数的图象特征.抛物线与y 轴交点坐标为(0, c)点,由图知,该点在x 轴上方,」> 0答案选C.6.考点:数形结合,由抛物线的图象特征,确定二次函数解析式各项系数的 符号特征.解析:由图象,抛物线开口方向向下,,-':.-一 > o,又《0,.,一 > 0,抛物线对称轴在y 轴右侧,*抛物线与y 轴交点坐标为(0, c)点,由图知,该点在 x 轴上方,解析:解析: 由图象,抛物线开口方向向下,抛物线对称轴在y 轴右侧,——> 又:队 < 0,「一 ab < 0,在第四象限,答案选 D.7.考点:二次函数的图象特征.解析:因为二次函数y=ax2+bx+c(a丰0)的图象的顶点P的横坐标是4,所以抛物线对称轴所在直线为x=4,交xM丁点D,所以A、B两点关丁对称轴对称,因为点A(m , 0),且m>4,所以AB=2AD=2(m-4)=2m-8,答案选C.8.考点:数形结合,由函数图象确定函数解析式各项系数的性质符号,由函数解析式各项系数的性质符号画出函数图象的大致形状.解析:因为一次函数y=ax+b的图象经过第二、三、四象限,一小<o, &《a <o 2摩所以二次函数y=ax2+bx的图象开口方向向下,对称轴在y轴左侧,交坐标轴丁(0, 0)点.答案选C.9.考点:一次函数、二次函数概念图象及性质.解析:因为抛物线的对称轴为直线x=-1 ,且-1<x1<x2,当x>-1时,由图象知,y 随x的增大而减小,所以y2<y1;乂因为x3<-1,此时点P3(x3, y3)在二次函数图象上方,所以y2<y1<y3.答案选D.10.考点:二次函数图象的变化.抛物线+做+ - 1矿+3的图象向左平移2个单位得到尸=-2折+ 1)+3 ,再向上平移3个单位得到乃-23 + W+6 .答案选C.、填空题11.考点:二次函数性质.汗二一攵二一己二1解析:二次函数y=x2-2x+1,所以对称轴所在直线方程*2答案x=1.12.考点:利用配方法变形二次函数解析式.解析:y=x2-2x+3=(x2-2x+1)+2=(x-1)2+2.答案y=(x-1)2+2.13.考点:二次函数与一元二次方程关系.解析:二次函数y=x2-2x-3与x轴交点A、B的横坐标为一元二次方程x2-2x-3=0 的两个根,求得x1=-1, x2=3,则AB=|x2-x1|=4.答案为4.14.考点:求二次函数解析式.1 —b+4=0解析:因为抛物线经过A(-1 , 0), B(3, 0)两点,曾死解得b=-2,c=-3,答案为y=x2-2x-3.15.考点:此题是一道开放题,求解满足条件的二次函数解析式,答案不唯一.解析:需满足抛物线与x轴交丁两点,与y轴有交点,及△ ABC是直角三角形,但没有确定哪个角为直角,答案不唯一,如:y=x2-1.16.考点:二次函数的性质,求最大值.解析:直接代入公式,答案:7.17.考点:此题是一道开放题,求解满足条件的二次函数解析式,答案不唯一.解析:如:y=x2-4x+3.18.考点:二次函数的概念性质,求值.M提示L a3 +a-Fb3a3+a+1 +b3 =O r- (a+y)J+b a=0)答案:- 4三、解答题19.考点:二次函数的概念、性质、图象,求解析式解析:(1)A' (3, -4)b 3■-- =—2a 2l$a + 4b+ c =仁=—4(2)由题设知:L•■-y=x2-3x-4 为所求(3)20.考点:二次函数的概念、性质、图象,求解析式 .解析:(1)由已知x i, x2是x2+(k-5)x-(k+4)=0的两根、+ 与=—(k- 5)乂(x i + 1)(x2+1)=-8x1x2+(x1+x2)+9=0. .-(k+4)-(k-5)+9=0. . k=5•■-y=x2-9为所求(2)由已知平移后的函数解析式为:y=(x-2)2-9且x=0 时y=-5. .C(0, -5), P(2, -9)■- =]"罚=5a=-l解得=>抛物线的解析式为c=5(2)令y=0,得(x-5)(x+1)=0 , x i=5 , x2=-1••• B(5, 0)由y = -x a+4x+5 = -(x-2)a+9,得M(2 , 9)作ME ± y轴丁点E,21.解:(1)依题意:a- b + c - 0,-c = 5a4b + c-8则"I I可得,△ MCB =15.22.思路点拨:通过阅读,我们可以知道,商品的利润和售价、销售量有关系,它们之间呈现如下关系式:总利润=单个商品的利润X销售量.要想获得最大利润,并不是单独提高单个商品的利润或仅大幅提高销售量就可以的,这两个量之间应达到某种平衡,才能保证利润最大.因为已知中给出了商品降价与商品销售量之间的关系,所以,我们完全可以找出总利润与商品的价格之间的关系,利用这个等式寻找出所求的问题,这里我们不妨设每件商品降价x 元,商品的售价就是(13.5-x)元了.单个的商品的利润是(13.5-X-2.5)这时商品的销售量是(500+200X)总利润可设为y元.利用上面的等量关式,可得到y与x的关系式了,若是二次函数,即可利用二次函数的知识,找到最大利润.解:设销售单价为降价x元.则y= (1S5 - jr - 2.5)(500+2001)=(11-为〔5。
初中数学:二次函数测试题(含答案)
一、选择题1.若将抛物线y=5x2先向右平移2个单位,再向上平移1个单位,得到的新抛物线的表达式为()=5(x-2)2+1 =5(x+2)2+1 =5(x-2)2-1 =5(x+2)2-12.函数y=﹣2x2﹣8x+m的图象上有两点A(x1,y1),B(x2,y2),若x1<x2<﹣2,则()<y2>y2 =y2、y2的大小不确定3.二次函数y=ax2+bx+c的部分图象如图所示,则下列结论中正确的是()>0 B.不等式ax2+bx+c>0的解集是﹣1<x<5﹣b+c>0 D.当x>2时,y随x的增大而增大4.一次函数y=ax+b与二次函数y=ax2+bx+c在同一坐标系中的图象可能是()5.一次函数y=ax+b(a≠0)与二次函数y=ax2+bx+c(a≠0)在同一平面直角坐标系中的图象可能是()6.二次函数y=ax2+bx+c的图象如图所示,对称轴是直线x=-1,有以下结论:①abc>0;②4ac<b2;③2a+b=0;④a-b+c>2.其中正确的结论的个数是()个个个个7.某种正方形合金板材的成本y(元)与它的面积成正比,设边长为xcm.当x=3时,y=18,那么当成本为72元时,边长为()8.在平面直角坐标系中,二次函数y=x2+2x﹣3的图象如图所示,点A(x1,y1),B(x2,y2)是该二次函数图象上的两点,其中﹣3≤x1<x2≤0,则下列结论正确的是()<y2 >y2 的最小值是﹣3 的最小值是﹣49.河北省赵县的赵州桥的桥拱是近似的抛物线形,建立如图所示的平面直角坐标系,其函数的关系式为,当水面离桥拱顶的高度DO是4m时,这时水面宽度AB为()A.﹣20m D.﹣10m10.如图,在正方形ABCD中,AB=3cm,动点M自A点出发沿AB方向以每秒1cm的速度向B点运动,同时动点N自A点出发沿折线AD﹣DC﹣CB以每秒3cm的速度运动,到达B点时运动同时停止.设△AMN的面积为y(cm2),运动时间为x(秒),则下列图象中能大致反映y与x之间的函数关系的是()11.如图所示,向一个半径为R、容积为V的球形容器内注水,则能够反映容器内水的体积y 与容器内水深x间的函数关系的图象可能是()A.B.C.D.12.如图,正方形ABCD中,AB=8 cm,对角线AC,BD相交于点O,点E,F分别从B,C两点同时出发,以1 cm/s的速度沿BC,CD运动,到点C,D时停止运动,设运动时间为t(s),△OEF的面积S(cm2),则S(cm2)与t(s)的函数关系可用图象表示为( B )二、填空题13.在直角坐标平面中,将抛物线y=2x2先向上平移1个单位,再向右平移1个单位,那么平移后的抛物线解析式是14.二次函数y=(a﹣1)x2﹣x+a2﹣1 的图象经过原点,则a的值为.15.若将二次函数y=x2﹣2x+3配方为y=(x﹣h)2+k的形式,则y=.16.已知函数y=ax2+bx+c的图象如图所示,则下列结论中:①abc>0;②b=2a;③a+b+c<0;④a-b+c>0.正确的是.17.如图,在平面直角坐标系中,点A在第二象限,以A为顶点的抛物线经过原点,与x轴负半轴交于点B,对称轴为直线x=﹣2,点C在抛物线上,且位于点A、B之间(C不与A、B重合).若△ABC的周长为a,则四边形AOBC的周长为(用含a的式子表示).18.如图,光源P在横杆AB的正上方,AB在灯光下的影子为CD,AB245=-+化成y=a (x-h) 2 +k的形式;y x xy x x=-+(1)将245(2)指出该二次函数图象的对称轴和顶点坐标;(3)当x取何值时,y随x的增大而增大19.如图,已知二次函数y=ax2+bx+c的图象与x轴交于A、B两点,其中A点坐标为(﹣1,0),点C(0,5),另抛物线经过点(1,8),M为它的顶点.(1)求抛物线的解析式;(2)求△MCB的面积S.△MCB20.如图所示,抛物线y=ax2+bx+c与直线y=﹣x+6分别交于x轴和y轴上同一点,交点分别是点B和点C,且抛物线的对称轴为直线x=4.(1)求出抛物线与x轴的两个交点A,B的坐标.(2)试确定抛物线的解析式.21.如图,有一个长为24米的篱笆,一面利用墙(墙的最大长度a为10米)围成中间隔有一道篱笆的长方形花圃.设花圃的宽AB为x米,面积为S平方米.(1)求S与x的函数关系式;(2)如果要围成面积为45平方米的花圃,AB的长为多少米22.已知抛物线y=ax2+bx+3的对称轴是直线x=1.(1)求证:2a+b=0;(2)若关于x的方程ax2+bx﹣8=0的一个根为4,求方程的另一个根.23.大学生自主创业,集资5万元开品牌专卖店,已知该品牌商品成本为每件a元,市场调查发现日销售量y(件)与销售价x(元/件)之间存在一次函数关系,如下表所示:若该店某天的销售价定为110元/件,雇有3名员工,则当天正好收支平衡(即支出=商品成本+员工工资+应支付的其他费用).已知员工的工资为每人每天100元,每天还应支付其他费用200元(不包括集资款).(1)求日销售量y(件)与销售价x(元/件)之间的函数关系式;(2)该店现有2名员工,试求每件服装的销售价定为多少元时,该服装店每天的毛利润最大(毛利润=销售收入-商品成本-员工工资-应支付的其他费用);(3)在(2)的条件下,若每天毛利润全部积累用于一次性还款,而集资款每天应按其万分之二的利率支付利息,则该店最少需要多少天(取整数)才能还清集资款24.如图,已知抛物线经过点A(-1,0),B(3,0),C(0,3)三点.(1)求抛物线的解析式;(2)点M是线段BC上的点(不与B,C重合),过M作NM∥y轴交抛物线于N,若点M的横坐标为m,请用含m的代数式表示MN的长;(3)在(2)的条件下,连接NB,NC,是否存在点m,使△BNC的面积最大若存在,求m的值;若不存在,说明理由.参考答案1.A;2.A.3.B.4.B.5.C6.C.7.A8.D9.C10.A11.B12.B.13.答案为:y=2(x-1)2+114.答案为:﹣1.15.答案为:y=(x﹣1)2+2.16.答案为:①③④.17.答案为:a+4;18.答案为:;19.20.解:(1)依题意:,解得∴抛物线的解析式为y=﹣x2+4x+5(2)令y=0,得(x ﹣5)(x+1)=0,x 1=5,x 2=﹣1,∴B (5,0).由y=﹣x 2+4x+5=﹣(x ﹣2)2+9,得M (2,9)作ME ⊥y 轴于点E ,可得S △MCB =S 梯形MEOB ﹣S △MCE ﹣S △OBC =(2+5)×9﹣×4×2﹣×5×5=15.21.解:(1)∵抛物线y=ax2+bx+c 与直线y=﹣x+6分别交于x 轴和y 轴上同一点,交点分别是点B 和点C ,∴将x=0代入y=﹣x+6得,y=6;将y=0代入y=﹣x+6,得x=6.∴点B 的坐标是(6,0),点C 的坐标是(0,6).∵抛物线y=ax2+bx+c 与x 轴交于点A 、B 两点,对称轴为直线x=4,∴点A 的坐标为(2,0).即抛物线与x 轴的两个交点A ,B 的坐标分别是(2,0),(6,0).(2)∵抛物线y=ax2+bx+c 过点A (2,0),B (6,0),C (0,6),∴4a+2b+c=0,36a+6b+c=0,c=6,解得a=,b=﹣4,c=6.∴抛物线的解析式为:y=+6.22. (1)S=x(24-3x),即S=-3x 2+24x.(2)当S=45时,-3x 2+24x=45.解得x 1=3,x 2=5.又∵当x=3时,BC >10(舍去),∴x=5.答:AB 的长为5米.23.(1)见解析;(2)x=-224.解:(1)由表可知,y 是关于x 的一次函数,设y=kx +b ,将x=110,y=50;x=115,y=45分别代入,得110k+b=50,115k+b=45,解得k=-1,b=160.∴y=-x +160(0<x ≤160);(2)由已知可得50×110=50a +3×100+200,解得a=100.设每天的毛利润为W 元,则W=(x -100)(-x +160)-2×100-200=-x 2+260x -16 400=-(x -130)2+500,∴当x=130时,W 取最大值500.答:每件服装的销售价定为130元时,该服装店每天的毛利润最大,最大毛利润为500元;(3)设需t天才能还清集资款,则500t≥50 000+2×50 000t,解得t≥102.∵t为整数,∴t的最小值为103天.答:该店最少需要103天才能还清集资款.25.解:(1)y=-x2+2x+3(2)易求直线BC的解析式为y=-x+3,∴M(m,-m+3),又∵MN⊥x轴,∴N(m,-m2+2m+3),∴MN=(-m2+2m+3)-(-m+3)=-m2+3m(0<m<3)(3)S△BNC=S△CMN+S△MNB=|MN|·|OB|,∴当|MN|最大时,△BNC的面积最大,MN=-m2+3m=-2+,所以当m=时,△BNC的面积最大为.{。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初中数学二次函数的图象与性质能力达标测试题1(附答案详解)1.已知二次函数y=ax 2+bx+c (a≠0)的图象如图,在下列代数式中(1)a+b+c >0;(2)﹣4a <b <﹣2a (3)abc >0;(4)5a ﹣b+2c <0; 其中正确的个数为( )A .1个B .2个C .3个D .4个2.已知二次函数的图像y=ax²+bx+c(a≠0)如右图所示,下列结论⑴a+b+c=0 ⑵a -b+c ﹥0 ⑶abc ﹥0 ⑷b=-2a 其中正确的结论个数有( )A .1个B .2个C .3个D .4个3.已知点A (﹣2,a ),B (12,b ),C (52,c )都在二次函数y=﹣x 2+2x+3的图象上,那么a 、b 、c 的大小是( )A .a <b <cB .b <c <aC .a <c <bD .c <b <a4.若抛物线y =(x -m)2+(1-m)的顶点在第一象限,则m 的取值范围为( )A .m>0B .m>1C .-1<m<0D .0<m<1 5.如图,抛物线()20y ax bx c a =++≠与x 轴交于A (-1,0),B (3,0)两点,与y 轴交于点C ,顶点为D ,下列结论正确的是( )A .abc <0B .3a+c=0C .4a-2b+c <0D .方程ax 2+bx+c=-2(a≠0)有两个不相等的实数根6.如图是二次函数y=ax 2+bx+c 的图象的一部分,对称轴是直线x=1.①b 2>4ac ;②b <0;③y 随x 的增大而减小; ④若(﹣2,y 1),(5,y 2)是抛物线上的两点,则y 1<y 2.上述4个判断中,正确的是( )A .①②④B .①④C .①③④D .②③④ 7.抛物线的图象一定经过( ) A .第一、二象限B .第三、四象限C .第一、三象限D .第二、四象限 8.二次函数()20y ax bx c a =++≠的图象如图所示,下列四个结论:①0ac <;②0a b c ++>;③420a b c -+<;④240ac b ->.其中正确的结论有( )A .1B .2C .3D .49.如图,抛物线的表达式是( )A .y =x 2-x +2B .y =x 2+x +2C .y =-x 2-x +2D .y =-x 2+x +2 10.如图,在平面直角坐标系中,点A 是抛物线y=a (x+32)2+k 与y 轴的交点,点B 是这条抛物线上的另一点,且AB ∥x 轴,则以AB 为边的正方形ABCD 的周长为_____.11.函数242y x x =++的最小值是________.12.已知二次函数()20y ax bx c a =++≠的图象如图所示,有下列5个结论: ①20a b +=;②b a c <+;③2124b a ac +=;④()a b m am b +>+,(1m ≠的实数); ⑤240b ac ->,其中正确的结论有________.13.若二次函数232y x x m =-+的最小值是2,则m =________.14.如果一条抛物线的形状与y=﹣2x 2+2的形状相同,且顶点坐标是(4,﹣2),则它的解析式是________.15.已知二次函数2y ax bx c =++中,函数y 与自变量x 的部分对应值如下表:则此二次函数的对称轴为____.16.二次函数y =x (x ﹣6)的图象的对称轴是______.17.二次函数y=﹣x 2+bx+c 的图象如图所示:若点A (x 1,y 1),B (x 2,y 2)在此函数图象上,x 1<x 2<1,y 1与y 2的大小关系是y 1_____y 2(填“>”、“<”、“=”)18.把抛物线y=2x 2向右平移3个单位,再向下平移2个单位,得到的新的抛物线的表达式是_____.19.已知抛物线y=ax 2经过点A (﹣2,﹣8).(1)求此抛物线的函数解析式;(2)写出这个二次函数图象的顶点坐标、对称轴;(3)判断点B (﹣1,﹣4)是否在此抛物线上;(4)求出此抛物线上纵坐标为﹣6的点的坐标.20.已知抛物线y=ax 2﹣4x+c 经过点A (0,﹣6)和B (3,﹣9).(1)求出抛物线的解析式;(2)通过配方,写出抛物线的对称轴方程及顶点坐标.21.二次函数2y ax =与直线21y x =-的图象交于点()1,P m()1求a ,m 的值;()2写出二次函数的表达式,并指出x 取何值时该表达式y 随x 的增大而增大?()3写出该抛物线的顶点坐标和对称轴.22.某商场经营一种海产品,进价是20元/kg ,根据市场调查发现,每日的销售量y (kg )与售价x (元/kg )是一次函数关系,如图所示.(1)求y 与x 的函数关系式.(不求自变量的取值范围)(2)某日该商场销售这种海产品获得了21000元的利润,问:该海产品的售价是多少? (3)若某日该商场销售这种海产品的销量不少于650kg ,问:该商场销售这种海产品获得的最大利润是多少?23.如图,抛物线y=ax 2+bx+c 与x 轴交于A ,B (1,0)两点,与y 轴交于点C ,直线y=x ﹣2经过A ,C 两点,抛物线的顶点为D .(1)求抛物线的解析式;(2)求抛物线的顶点D 的坐标;(3)在y 轴上是否存在一点G ,使得GD +GB 的值最小?若存在,求出点G 的坐标;若不存在,请说明理由;(4)在直线AC 的上方抛物线上是否存在点P ,使△PAC 的面积最大?若存在,直接写出P 点坐标及△PAC 面积的最大值.24.如图,抛物线y=﹣x 2+bx+c 经过直线y=﹣x+3与坐标轴的两个交点A 、B .(1)求抛物线的解析式; (2)画出抛物线的图象.25.如图1,在平面直角坐标系xOy 中,已知点A 和点B 的坐标分别为()2,0A -,()0,6B -,将Rt AOB ∆绕点O 按顺时针分别旋转90,180得到1Rt AOC ∆,Rt EOF ∆,抛物线1C 经过点C ,A ,B ;抛物线2C 经过点C ,E ,F .(1)点C 的坐标为________,点E 的坐标为________;抛物线1C 的解析式为________,抛物线2C 的解析式为________;(2)如果点(),P x y 是直线BC 上方抛物线1C 上的一个动点.①若PCA ABO ∠=∠,求P 点的坐标;②如图2,过点P 作x 轴的垂线交直线BC 于点M ,交抛物线2C 于点N ,记2h PM NM BM =++,求h 与x 的函数关系式.当52x -≤≤-时,求h 的取值范围. 26.如图,已知抛物线y=ax 2+32x+4的对称轴是直线x=3,且与轴相交于A 、B 两点(B 点在A 点的右侧),与轴交于C 点.(1)A 点的坐标是 ;B 点坐标是 ;(2)直线BC 的解析式是: ;(3)点P 是直线BC 上方的抛物线上的一动点(不与B 、C 重合),是否存在点P ,使△PBC 的面积最大.若存在,请求出△PBC 的最大面积,若不存在,试说明理由; (4)若点M 在x 轴上,点N 在抛物线上,以A 、C 、M 、N 为顶点的四边形是平行四边形时,请直接写出点M 点坐标.参考答案1.A【解析】【分析】由抛物线开口向上得到a 大于0,再由对称轴在y 轴右侧得到a 与b 异号,即b 小于0,由抛物线与y 轴交于正半轴,得到c 大于0,可得出abc 的符合,对于(3)作出判断;由x=1时对应的函数值小于0,将x=1代入二次函数解析式得到a+b+c 小于0,(1)错误;根据对称轴在1和2之间,利用对称轴公式列出不等式,由a 大于0,得到-2a 小于0,在不等式两边同时乘以-2a ,不等号方向改变,可得出不等式,对(2)作出判断;由x=-1时对应的函数值大于0,将x=-1代入二次函数解析式得到a-b+c 大于0,又4a 大于0,c 大于0,可得出a-b+c+4a+c 大于0,合并后得到(4)正确,综上,即可得到正确的个数.【详解】解:由图形可知:抛物线开口向上,与y 轴交点在正半轴,∴a >0,b <0,c >0,即abc <0,故(3)错误;又x =1时,对应的函数值小于0,故将x =1代入得:a +b +c <0,故(1)错误;∵对称轴在1和2之间, ∴122b a<-<, 又a >0, ∴在不等式左右两边都乘以−2a 得:−2a >b >−4a ,故(2)正确;又x =−1时,对应的函数值大于0,故将x =1代入得:a −b +c >0,又a >0,即4a >0,c >0,∴5a −b +2c =(a −b +c )+4a +c >0,故(4)错误,综上,正确的有1个,为选项(2).故选:A.【点睛】考查二次函数图象与系数的关系,掌握二次函数系数对图象的影响是解题的关键. 2.C【解析】【分析】解答本题,根据图象可知f(1)<0和f(-1)>0,结合函数解析式即可判断a+b+c 和a-b+c 是否大于0;由图可知,对称轴x=b2a-=-1,a<0,故可知b=2a<0;结合图像和函数解析式可知f(0)=c>0,据此即可判断abc是否大于0. 【详解】求f(1)和f(-1)得a+b+c=0,a-b+c>0;对称轴x=b2a-=-1,a<0,得b=2a<0,f(0)=c>0得abc>0.【点睛】本题考查对二次函数的理解,解题的关键是合理利用图像的坐标.3.C【解析】【分析】先计算对称轴为直线x=1,抛物线开口向下,再根据A、B、C三点与对称轴的远近,比较纵坐标的大小.【详解】比较A、B、C三点横坐标与坐标轴的距离,可知距离差分别为A :3 B:0.5 C:1.5 ∴b>c>a,选C.【点睛】本题考查了二次函数图像上点的坐标特征,解题的关键是掌握二次函数图像的性质.4.D【解析】分析:根据二次函数的解析式可得顶点坐标是(m,1-m),因为二次函数顶点坐标在第一象限,根据点在第一象限的符号特征可得:10mm>⎧⎨->⎩,解不等式组即可求解.详解:因为抛物线y=(x-m)2+(1-m)的顶点在第一象限,所以10mm>⎧⎨->⎩,解得0<m<1,故选D.点睛:本题主要考查二次函数的顶点坐标和平面直角坐标系内点的符号特征,解决本题的关键是要熟练根据二次函数解析式求二次函数的顶点坐标.5.B【解析】【分析】由抛物线的对称轴的位置判断ab的符号,由抛物线与y轴的交点判断c的符号,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.【详解】由图象可得,a>0,b<0,c<0,∴abc>0,故选项A错误,∵抛物线y=ax2+bx+c(a≠0)与x轴交于A(-1,0)、B(3,0)两点,∴-13=22ba-+=1,得b=-2a,当x=-1时,y=a-b+c=a+2a+c=3a+c=0,故选项B正确,当x=-2时,y=4a-2b+c>0,故选项C错误,由函数图象可知,如果函数y=ax2+bx+c(a≠0)顶点的纵坐标大于-2,则方程ax2+bx+c=-2(a≠0)没有实数根,故选项D错误,故选B.【点睛】本题主要考查了图象与二次函数系数之间的关系,二次函数y=ax2+bx+c系数符号由抛物线开口方向、对称轴和抛物线与y轴的交点、抛物线与x轴交点的个数确定.6.A【解析】【分析】根据图象与x轴有2个交点,确定b2-4ac>0,即可判断①;根据开口向上可判断a>0,-b2a=1,可得b=-2a<0,可判断②;根据二次函数的增减性可判断③;④.【详解】解:∵图象与x轴有2个交点,∴b2−4ac>0,b2>4ac,故①正确;∵−b2a=1,又a>0,∴b<0,故②正确;当x>1时,y随x的增大而增大,故③错误;由对称轴为x=1,当x=−2时和x=4时,函数值相等,根据函数性质,x=5的函数值大于x=4的函数值,∴y1<y2,故④正确.所以正确的是①②④,故选A.【点睛】本题考查了二次函数的知识点,解题的关键是熟练的掌握二次函数图象与系数的关系. 7.B【解析】【分析】根据抛物线的开口方向以及顶点即可判断其图像所经过的象限.【详解】∵a<0,∴抛物线y=ax2的图像开口向下,由抛物线的解析式易知其顶点为(0,0),∴y=ax2的图像一定经过第三、四象限.故选B.【点睛】本题主要考查二次函数的图像与性质,熟练掌握相关知识点是解答此类问题的关键.8.B【解析】【分析】由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.【详解】∵抛物线开口向下,交y轴于正半轴,∴a<0,c>0,∴ac<0,故①正确;∵x=1时,y<0,∴a+b+c<0,故②错误;由图象可知:当x=−2时,y<0,∴4a−2b+c<0,故③正确;由抛物线交x轴于两点,∴b2−4ac>0,∴4ac−b2<0,故④错误;故选:B.【点睛】考查二次函数与系数的关系.二次项系数a决定抛物线的开口方向,,a b共同决定了对称轴的位置,常数项c决定了抛物线与y轴的交点位置.9.D【解析】【分析】根据题意,把抛物线经过的三点代入函数的表达式,列出方程组,解出各系数则可.【详解】解:根据题意,设二次函数的表达式为y=ax2+bx+c,抛物线过(-1,0),(0,2),(2,0),所以2420 a b cca b c-+=⎧⎪=⎨⎪++=⎩,解得a=-1,b=1,c=2,这个二次函数的表达式为y=-x2+x+2.故选A.【点睛】本题考查了用待定系数法求函数表达式的方法,同时还考查了方程组的解法等知识,是比较常见的题目.10.12【解析】【分析】根据题意和二次函数的性质可以求得线段AB的长度,从而可以求得正方形ABCD的周长.【详解】∵在平面直角坐标系中,点A是抛物线y=a(x+32)2+k与y轴的交点,∴点A的横坐标是0,该抛物线的对称轴为直线x=﹣32,∵点B是这条抛物线上的另一点,且AB∥x轴,∴点B 的横坐标是﹣3,∴AB=|0﹣(﹣3)|=3,∴正方形ABCD 的周长为:3×4=12, 故答案为:12.【点睛】本题考查了二次函数图象上点的坐标特征、正方形的性质,解题的关键是找出所求问题需要的条件.11.-2【解析】【分析】将函数解析式写成顶点式便可得出最小值.【详解】解:242y x x =++=2442x x ++-=()22x +-2∴顶点坐标为(-2,2),且开口向上;∴函数242y x x =++的最小值是-2.故答案为:-2.【点睛】本题考查了二次函数的最值,关键将解析式写成顶点式.12.①③④⑤【解析】【分析】根据抛物线的对称轴可判断①;代入x=-1,结合图像可判断②;根据顶点坐标公式及图像中的顶点坐标可判断③;利用抛物线的最大值可判断④;根据抛物线与x 轴交点的个数可判断⑤.【详解】 由图像知2b a-=1,则20a b +=,①正确;当x=-1时,y=a-b+c ,由图像可知此时y <0,即a-b+c <0,则b >a+c ,②错误;由图可知顶点坐标为(1,3),则2434b ac a-=,即2124b a ac +=,③正确; 当x=1时,y=a+b+c 为最大值,当x=m 时,y=am 2+bm+c ,由于m≠1,故a+b+c >am 2+bm+c ,即a+b >am 2+bm=m(am+b),④正确;由图可知,抛物线与x 轴有两个交点,则b 2-4ac >0,⑤正确;故答案为:①③④⑤.【点睛】本题综合考察了二次函数的解析式和图像的性质特点,一定要深入理解二次函数解析式各项参数与图像的对应关系,同时对一些特殊值要有敏感度.13.178【解析】【分析】可以由函数解析式得出对称轴的表达式,运用该函数在对称轴处可以得到最小值即可得出答案.【详解】 对称轴33x==212⨯,所以带入可得m= 178,故填 178. 【点睛】本题考查了由二次函数图像得出最值,熟悉理解二次函数最值的取得是解决本题的关键. 14.y=﹣2(x ﹣4)2﹣2或y=2(x ﹣4)2﹣2【解析】试题解析:∵一条抛物线的形状与222y x =-+的形状相同,∴a =±2, 设抛物线的顶点式为22()y x h k =±-+,∵顶点坐标是(4,−2),∴抛物线的顶点式为22(4)2y x =---或22(4) 2.y x =--故答案为:22(4)2y x =---或22(4) 2.y x =--15.1x =-【解析】观察、分析表格中的数据可得,当20x x =-=,时,二次函数2y ax bx c =++的函数值相等,都是3-,∴此二次函数的对称轴为直线:2012x -+==-,即1x =-. 故答案为:1x =-.16.x =3.【解析】解:令y =0,得:x (x ﹣6)=0,解得:x =0或x =6,∴对称轴为直线x =062+ =3.故答案为x =3.17.<【解析】【分析】利用二次函数的性质解决问题.【详解】∵抛物线的对称轴为直线x=1,∴当x 1<x 2<1,∴y 1<y 2.故答案为<.【点睛】本题考查了二次函数图象上点的坐标特征:二次函数图象上点的坐标满足其解析式.也考查了二次函数的性质.18.y=2(x ﹣3)2﹣2.【解析】【分析】抛物线的平移,实际上就是顶点的平移,先求出原抛物线的顶点坐标,再根据平移规律,推出新抛物线的顶点坐标,根据顶点式可求新抛物线的解析式.【详解】∵y =2x 2的顶点坐标为(0,0),∴把抛物线右平移3个单位,再向下平移2个单位,得新抛物线顶点坐标为(3,﹣2),∵平移不改变抛物线的二次项系数,∴平移后的抛物线的解析式是y=2(x﹣3)2﹣2.故答案为y=2(x﹣3)2﹣2.【点睛】本题考查了二次函数图象的平移,其规律是是:将二次函数解析式转化成顶点式y=a(x-h)2+k(a,b,c为常数,a≠0),确定其顶点坐标(h,k),在原有函数的基础上“h 值正右移,负左移;k值正上移,负下移”.19.(1)y=﹣2x2;(2)顶点坐标为(0,0),对称轴为y轴;(3)不在;(4)(3,﹣6)或(﹣3,﹣6).【解析】分析:(1)根据二次函数图象上点的坐标满足其解析式,把A点坐标代入解析式得到关于a的方程,然后解方程即可.(2)根据图象和性质直接写出顶点坐标、对称轴即可.(3)把点B(-1,-4)代入解析式,即可判断;(4)把y=-6代入解析式,即可求得;详解:(1)∵抛物线y=ax2经过点A(﹣2,﹣8),∴a•(﹣2)2=﹣8,∴a=﹣2,∴此抛物线对应的函数解析式为y=﹣2x2.(2)由题可得,抛物线的顶点坐标为(0,0),对称轴为y轴;(3)把x=﹣1代入得,y=﹣2×(﹣1)2=﹣2≠﹣4,∴点B(﹣1,﹣4)不在此抛物线上;(4)把y=﹣6代入y=﹣2x2得,﹣6=﹣2x2,解得x=±,∴抛物线上纵坐标为﹣6的点的坐标为(,﹣6)或(﹣,﹣6).点睛:本题主要考查了待定系数法求解析式,二次函数的性质以及二次函数图象上点的坐标特征,函数解析式与图象上的点之间的关系,点在图象上,则满足解析式;反之,满足解析式则在函数图象上.20.(1)抛物线的解析式为:y=x 2﹣4x ﹣6;(2)对称轴方程为x=2;顶点坐标(2,﹣10).【解析】【分析】把A (0,﹣6)和B (3,﹣9)代入y =ax 2﹣4x +c ,用待定系数法即可求出抛物线的解析式; (2)根据配方法把y =x 2﹣4x ﹣6化为y =(x ﹣2)2﹣10解答即可.【详解】(1)依题意有,即,∴; ∴抛物线的解析式为:y=x 2﹣4x ﹣6.(2)把y=x 2﹣4x ﹣6配方得,y=(x ﹣2)2﹣10,∴对称轴方程为x=2;顶点坐标(2,﹣10).【点睛】本题考查了待定系数法求二次函数解析式及配方法的应用,熟练掌握待定系数法是解答(1)的关键;熟练掌握配方法是解答(2)的关键.21.(1)a=1;m=1;(2)2y x =, 当0x >时,y 随x 的增大而增大;(3)顶点坐标为()0,0,对称轴为y 轴.【解析】【分析】(1)把点P (1,m )分别代入二次函数y=ax 2与直线y=2x-1即可求出未知数的值; (2)把a 代入二次函数y=ax 2与即可求出二次函数表达式;根据二次函数的对称轴及增减性判断出x 的取值.(3)根据二次函数的性质直接写出即可.【详解】()1点()1,P m 在21y x =-的图象上∴2111m =⨯-=代入2y ax =(2)二次函数表达式:2y x =因为函数2y x =的开口向上,对称轴为y 轴,当0x >时,y 随x 的增大而增大; (3)2y x =的顶点坐标为()0,0,对称轴为y 轴.【点睛】本题考查了用待定系数法求函数解析式的方法,及二次函数的增减性.22.(1)y=-10x+1200;(2)该海产品的售价是50元或90元.(3)22750.【解析】【分析】(1),设y 与x 之间的函数关系式为y=kx+b ,将图形上已知的两点代入解方程组,即可求出k 与b 的值,进而确定y 与x 之间的函数关系式;(2)根据题目信息可得(-10x+1200)(x-20)=21000,接下来解方程即可使问题得解;(3) 设所获利润为W ,根据题目信息可得W=(-10x+1200)(x-20),然后对其进行配方,结合x 的取值范围与二次函数的性质进行解答即可.【详解】(1)设y 与x 的函数关系式为:y=kx+b ,将(25,950),(40,800)代入得:2595040800k b k b +⎧⎨+⎩==, 解得:101200k b -⎧⎨⎩==, 故y 与x 的函数关系式为:y=-10x+1200;(2)由(1)得:(-10x+1200)(x-20)=21000,解得:x 1=50,x 2=90,答:该海产品的售价是50元或90元.(3) 设所获利润为W ,则根据题目信息可得W=(-10x+1200)(x-20)=-10(x-70)2+25000.∵-10x+1200≥650,当x=55时,W有最大值.故W的最大值为:-10(55-70)2+25000=22750.【点睛】此题主要考查了一元二次方程的应用以及一次函数的应用,正确求出函数解析式是解题关键.23.(1)y=﹣x2+x﹣2;(2)顶点D(,);(3)存在点G(0,)使得GD+GB的值最小.理由见解析;(4)在直线AC的上方抛物线上存在点P(2,1),使△PAC的面积最大,最大值为4.理由见解析.【解析】【分析】(1)利用一次函数是性质求得点A、C的坐标,然后把点A、B、C的坐标分别代入二次函数解析式,利用待定系数法求得二次函数解析式即可;(2)将二次函数解析式转化为顶点式方程,可以直接得到答案;(3)利用轴对称﹣最短路径方法证得点G,结合一次函数图象上点的坐标特征求得点G的坐标;(4)利用分割法求得△PAC的面积为二次函数的形式,利用二次函数最值的求法进行解答.【详解】(1)把x=0代入y=x﹣2中得:y=﹣2,把y=0代入y=x﹣2中得:x=4,∴A(4,0),C(0,﹣2),把A(4,0),B(1,0),C(0,﹣2)分别代入y=ax2+bx+c,得,解得,则该抛物线的解析式为:y=﹣x2+x﹣2;(2)由(1)知,该抛物线的解析式为y=﹣x2+x﹣2,∴y=﹣x2+x﹣2=﹣(x﹣)2+,∴顶点D(,);(3)存在点G(0,)使得GD+GB的值最小.理由如下:如图1,作点B关于y轴的对称点B′,连接B′D交y轴于点G,则B′(﹣1,0).设直线B′D的解析式为y=kx+b.则,解得:,∴直线B′D的解析式为y=x+,把x=0代入,得y=,∴存在点G(0,)使得GD+GB的值最小;(4)在直线AC的上方抛物线上存在点P(2,1),使△PAC的面积最大,最大值为4.理由如下:如图2,过点P作PQ∥y轴交AC于Q,连接PC,PA.设P(x,﹣x2+x﹣2),则Q(x,x﹣2).∴PQ=﹣x2+x﹣2﹣(x﹣2)=﹣x2+2x=﹣(x﹣2)2+2.又∵S△PAC=S△PQC+S△PQA=x•PQ+(4﹣x)•PQ=2PQ,∴S△PAC=﹣(x﹣2)2+4,∴当x=2时,S△PAC最大值为4,此时﹣x2+x﹣2=1,∴在直线AC的上方抛物线上存在点P(2,1),使△PAC的面积最大,最大值为4.【点睛】本题考查的是二次函数综合题,涉及了轴对称的性质、一次函数的应用、待定系数法等知识,学会利用参数构建方程解决问题,学会用数形结合的思想思考问题是解题的关键. 24.(1) y=﹣x2+2x+3 ;(2)见解析.【解析】【分析】(1)先求得点A和点B的坐标,然后将点A和点B的坐标代入抛物线的解析式求得b,c 的值即可;(2)依据抛物线解析式为y=﹣x2+bx+c,列表,描点,连线即可.【详解】解:(1)将x=0代入AB的解析式y=﹣x+3得:y=3,∴B(0,3).将y=0代入AB的解析式y=﹣x+3得:﹣x+3=0,解得x=3,即A(3,0).将点A和点B的坐标代入y=﹣x2+bx+c,解得:b=2,c=3.∴抛物线的解析式为y=﹣x2+2x+3.(2)列表:抛物线的图象如下:【点睛】本题考查的是二次函数的综合应用,熟练掌握二次函数的性质是解题的关键.25.(1)(6,0)C -,(2,0)E ,1C :21462y x x =---,2C :21262y x x =--+.(2)①符合条件的点P 的坐标为810(,39P -)或414(,39P --).②1721h ≤≤. 【解析】分析:(1)根据旋转的性质,可得C ,E ,F 的坐标,根据待定系数法求解析式;(2)①根据P 点关于直线CA 或关于x 轴对称直线与抛物线交点坐标,求出解析式,联立方程组求解;②根据图象上的点满足函数解析式,可得P 、N 、M 纵坐标,根据平行于y 轴直线上两点间的距离是较大的纵坐标减较小的纵坐标,可得二次函数,根据x 取值范围讨论h 范围. 详解:(1)由旋转可知,OC=6,OE=2,则点C 坐标为(-6,0),E 点坐标为(2,0),分别利用待定系数法求C 1解析式为:y=-12x 2−4x −6,C 2解析式为:y=-12x 2−2x +6 (2)①若点P 在x 轴上方,∠PCA=∠ABO 时,则CA 1与抛物线C 1的交点即为点P ,如图,设直线CA 1的解析式为:y=k 1x+b 1∴111062k b b -+⎧⎨⎩== 解得11132k b ⎧⎪⎨⎪⎩==∴直线CA 1的解析式为:y=13x+2 联立:21462123y x x y x ⎧---⎪⎪⎨⎪+⎪⎩==,解得1183109x y ⎧-⎪⎪⎨⎪⎪⎩==或2260x y =-⎧⎨=⎩(舍去), ∴P(810,39-) 若点P 在x 轴下方,∠PCA=∠ABO 时,则CH 与抛物线C 1的交点即为点P ,如图,易知OH=OA,∴H(0,-2)设直线CH的解析式为:y=k2x+b2∴222062k bb-+⎧⎨-⎩==解得11132kb⎧-⎪⎨⎪-⎩==∴直线CH的解析式为:y=13-x-2联立:21462123y x xy x⎧---⎪⎪⎨⎪--⎪⎩==,解得1143149xy⎧-⎪⎪⎨⎪-⎪⎩==或226xy=-⎧⎨=⎩(舍去),∴414(,39P--);∴符合条件的点P的坐标为810(,39P-)或414(,39P--).②设直线BC的解析式为:y kx b=+,∴066k bb=-+⎧⎨-=⎩,解得16kb=-⎧⎨=-⎩,∴直线BC的解析式为:6y x=--,过点B作BD MN⊥于点D,则2BM BD=,设P(x ,-12x 2−4x −6) ∴222BM BD x ==,2h PM NM BM =++()()2P M N M y y y y x =-+-+ 22P N M y y y x =+--()2211462626222x x x x x x =-----+---- 2612x x =--+,2612h x x =--+,()2321h x =-++,当3x =-时,h 的最大值为21.∵52x -≤≤-,当5x =-时,()2532117h =--++=;当2x =-时,()2232120h =--++=;当52x -≤≤-时,h 的取值范围是1721h ≤≤.点睛:本题考查二次函数综合题,解(1)的关键是利用旋转的性质得出C ,E 的坐标,又利用了待定系数法;解(2)①的关键是利用解方程组,要分类讨论,以防遗漏;解(2)②的关键是利用平行于y 轴直线上两点间的距离是较大的纵坐标减较小的纵坐标得出二次函数,又利用了二次函数的性质.26.(1)A (2-,0) B (8,0);(2)142y x =-+ ; (3)存在点P ,使△PBC 的面积最大,最大面积是16 ;(4)(8-,0),(4,0),(541+,0),(541-,0).【解析】【分析】可得a 的值,求出解析式.由解析式可得出C 和B 的坐标,从而得出直线的解析式.运用假设法,连接辅助线可以设出P,D 的坐标,表达出相应△PBC 的面积解析式,分析可得出结果.由平行四边形的定义可求出答案.【详解】(1)A (2-,0) B (8,0);(2)142y x =-+ ; (3)假设存在点P ,连结PB 、PC ,过点P 作PD ∥y 轴交直线BC 于点D ,设点P (m ,213442m m -++) 则点D (m ,142m -+) 所以PD =213442m m -++- 142m ⎛⎫-+ ⎪⎝⎭ =2124m m -+ ∴211128224PBC S PD OB m m ⎛⎫=⨯⨯=⨯-+⨯ ⎪⎝⎭()228416m m m =-+=--+∵点P 是直线BC 上方的抛物线上的一动点(不与B 、C 重合)∴08m <<∴当4m =时,△PBC 的面积最大,最大面积是16∴存在点P ,使△PBC 的面积最大,最大面积是16(4)(8-,0),(4, 0),(5+0),(5,0) .【点睛】本题考查了一元二次方程的解析式的结构,和直线解析式的求解,以及品行四边形的定义,熟练掌握这些是解决本题的关键.。