平面解析几何与直线的位置关系
(适用于新高考新教材)第九章平面解析几何 课时规范练39 两条直线的位置关系 Word版含解析

课时规范练39两条直线的位置关系基础巩固组1.(2021四川资阳中学月考)若直线l1:(a+2)x+(1-a)y-3=0与l2:(a-1)x+(2a+3)y+2=0互相垂直,则实数a 的值为()A.1B.-1C.±1D.-322.(2021北京昌平模拟)直线x+ay+2=0与直线ax+y+2a2=0平行,则实数a的值为()A.1或-1B.0或-1C.-1D.13.已知直线mx+4y-2=0与直线2x-5y+n=0互相垂直,垂足为点(1,p),则m+n-p等于()A.24B.20C.4D.04.与直线l:2x-3y+1=0关于y轴对称的直线的方程为()A.2x+3y+1=0B.2x+3y-1=0C.3x-2y+1=0D.3x+2y+1=05.直线l0:4x-y-4=0与l1:x-2y-2=0及l2:4x+3y-12=0所得两交点间的距离为()A.32√17 B.314√17C.914√17 D.3√176.直线l1,l2是分别过A(1,1),B(0,-1)两点的两条平行直线,当l1,l2间的距离最大时,直线l1的方程为()A.x+2y-3=0B.x-2y-3=0C.2x-y-1=0D.2x-y-3=07.(多选)(2021湖南雅礼中学月考)三条直线x+y=0,x-y=0,x+ay=3构成三角形,则实数a的取值可以是() A.-1 B.1C.2D.58.若a>0,点A(2,a)到直线l:x-2y+3=0距离为√5,则a=.9.已知M(-1,2),直线l:2x+y-5=0,点M关于直线l的对称点Q的坐标是.综合提升组10.(2021北京高三二模)点P(cos θ,sin θ)到直线3x+4y-12=0的距离的取值范围为()A.[125,17 5]B.[75,12 5]C.[75,17 5]D.[125,24 5]11.(多选)(2021福建漳州三中高三开学考试)等腰直角三角形ABC的直角顶点为点C(3,3),若点A的坐标为(0,4),则点B的坐标可能是()A.(2,0)B.(0,2)C.(4,6)D.(6,4)12.(多选)已知直线l1:ax-y+1=0,l2:x+ay+1=0,a∈R,以下结论正确的是()A.不论a为何值,直线l1与直线l2都互相垂直B.当a变化时,直线l1,l2分别过定点A(0,1),B(-1,0)C.不论a为何值,直线l1与l2都关于直线x+y=0对称D.若直线l1与l2交于点M,则|MO|的最大值为√213.(2021河北高三二模)直线l1:x+ay-2=0(a∈R)与直线l2:y=34x-1平行,则a=,l1与l2的距离为.创新应用组14.已知平面上一点M(5,0),若直线上存在点P,使|PM|=4,则称该直线为“切割型直线”.下列直线是“切割型直线”的有.①直线y=x+1;②直线y=2;③直线y=43x;④直线y=2x+1.课时规范练39 两条直线的位置关系1.C 解析因为直线l 1:(a+2)x+(1-a )y-3=0与l 2:(a-1)x+(2a+3)y+2=0互相垂直, 所以(a+2)(a-1)+(1-a )(2a+3)=0,得a 2=1, 解得a=±1.故选C .2.C 解析因为直线x+ay+2=0与直线ax+y+2a 2=0平行, 所以{1×1-a ×a =0,1×2a 2-a ×2≠0即{a =±1,a ≠0,a ≠1,所以a=-1.故选C .3.D 解析由两直线垂直得2m+4×(-5)=0, 解得m=10,所以原直线为10x+4y-2=0.又因为垂足(1,p )同时满足两直线方程, 所以代入得{10×1+4p -2=0,2×1-5p +n =0,解得{p =-2,n =-12,所以m+n-p=10-12+2=0.故选D .4.B 解析设点M (x ,y )是所求直线上的任意一点,则其关于y 轴的对称点M'(-x ,y )在直线l :2x-3y+1=0上,所以-2x-3y+1=0,即2x+3y-1=0.故选B .5.C 解析由{4x -y -4=0,x -2y -2=0,得{x =67,y =-47,即直线l 0与l 1的交点A 的坐标为(67,-47),由{4x -y -4=0,4x +3y -12=0,得{x =32,y =2,即直线l 0与l 2的交点B 的坐标为(32,2), 所以|AB|=√(67-32)2+(-47-2)2=9√1714.故选C .6.A 解析当两条平行直线与直线AB 垂直时,两条平行直线间的距离最大.因为k AB =1-(-1)1-0=2,所以k 1=-12,所以直线l 1的方程为y-1=-12(x-1),即x+2y-3=0.故选A .7.CD 解析由题意可得直线x+y=0与x-y=0都过原点, 而无论a 为何值,直线x+ay=3不过原点,因此,要满足三条直线构成三角形,只需直线x+ay=3与另两条直线不平行,所以a ≠±1.故选CD .8.5解析由点到直线的距离公式可得√5=√5=√5,即|5-2a|=5.又因为a>0,所以a=5.9.(3,4)解析设Q(x0,y0).因为点M(-1,2)关于直线l的对称点是点Q,所以{y0-2x0-(-1)×(-2)=-1,2×x0-12+y0+22-5=0,解得{x0=3,y0=4,即Q(3,4).10.C解析点P到直线的距离为d=√3+4=|5sin(θ+φ)-12|5,其中sin φ=35,cosφ=45.由三角函数性质易知,5sin(θ+φ)-12∈[-17,-7],故d∈[75,175].故选C.11.AC解析设B(x,y).根据题意可得{k AC k BC=-1, |BC|=|AC|,即{3-43-0·y-3x-3=-1,√(x-3)2+(y-3)2=√(0-3)2+(4-3)2,解得{x=2,y=0或{x=4,y=6,所以B(2,0)或B(4,6).故选AC.12.ABD解析对于A,因为a×1+(-1)×a=0恒成立,所以不论a为何值,直线l1与l2互相垂直恒成立,故A正确;对于B,易知直线l1恒过点A(0,1),直线l2恒过点B(-1,0),故B正确;对于C,在直线l1上任取点(x,ax+1),其关于直线x+y=0对称的点的坐标为(-ax-1,-x),代入直线l2的方程x+ay+1=0,可知左边不恒等于0,故C不正确;对于D,由{ax-y+1=0,x+ay+1=0,解得{x=-a-1a2+1,y=-a+1a2+1,所以M-a -1a2+1,-a+1 a2+1,所以|MO|=√(-a-1a2+1)2+(-a+1a2+1)2=√2a2+1≤√2,所以|MO|的最大值为√2,故D正确.故选ABD.13.-4325解析l2方程可化为3x-4y-4=0.因为l1∥l2,所以13=a-4≠-2-4,解得a=-43,所以直线l1:x-43y-2=0,即3x-4y-6=0,所以它们之间的距离为d=√3+(-4)=25.14.②③解析①点M到直线y=x+1的距离d=√2=3√2>4,故该直线上不存在点P,使|PM|=4,该直线不是“切割型直线”;②点M到直线y=2的距离d=2<4,故该直线上存在点P,使|PM|=4,该直线是“切割型直线”;③点M到直线y=43x的距离d=4,故该直线上存在点P,使|PM|=4,该直线是“切割型直线”;④点M到直线y=2x+1的距离d=√5=11√55>4,故该直线上不存在点P,使|PM|=4,该直线不是“切割型直线”.故答案为②③.。
【人教版】2020高考数学一轮复习第9章平面解析几何第2讲两直线的位置关系分层演练文

第2讲 两直线的位置关系一、选择题1.已知直线l 1:mx +y -1=0与直线l 2:(m -2)x +my -2=0,则“m =1”是“l 1⊥l 2”的( ) A .充分不必要条件 B .充要条件C .必要不充分条件D .既不充分也不必要条件解析:选A .由l 1⊥l 2,得m (m -2)+m =0,解得m =0或m =1,所以“m =1”是“l 1⊥l 2”的充分不必要条件,故选A .2.当0<k <12时,直线l 1:kx -y =k -1与直线l 2:ky -x =2k 的交点在( )A .第一象限B .第二象限C .第三象限D .第四象限解析:选B .由⎩⎪⎨⎪⎧kx -y =k -1,ky -x =2k ,得⎩⎪⎨⎪⎧x =k k -1,y =2k -1k -1.又因为0<k <12,所以x =kk -1<0,y =2k -1k -1>0, 故直线l 1:kx -y =k -1与直线l 2:ky -x =2k 的交点在第二象限.3.若直线l 1:y =k (x -4)与直线l 2关于点(2,1)对称,则直线l 2恒过定点( ) A .(0,4) B .(0,2) C .(-2,4)D .(4,-2)解析:选B .由于直线l 1:y =k (x -4)恒过定点(4,0),其关于点(2,1)对称的点为(0,2),又由于直线l 1:y =k (x -4)与直线l 2关于点(2,1)对称,所以直线l 2恒过定点(0,2).4.若直线l 1:x +ay +6=0与l 2:(a -2)x +3y =0平行,则l 1与l 2之间的距离为( ) A . 2 B .2 2 C .3 2D .4 2解析:选C .因为l 1∥l 2, 所以1a -2=a 3, 解得a =-1,所以l 1与l 2的方程分别为l 1:x -y +6=0,l 2:x -y =0,所以l 1与l 2的距离d =||6-02=32.选C .5.光线沿着直线y =-3x +b 射到直线x +y =0上,经反射后沿着直线y =ax +2射出,则有( ) A .a =13,b =6B .a =-13,b =-6C .a =3,b =-16D .a =-3,b =16解析:选B .在直线y =-3x +b 上任意取一点A (1,b -3),则点A 关于直线x +y =0的对称点B (-b +3,-1)在直线y =ax +2上,故有-1=a (-b +3)+2,即-1=-ab +3a +2,所以ab =3a +3,结合所给的选项,只有B 项符合,故选B .6.在直角坐标平面内,过定点P 的直线l :ax +y -1=0与过定点Q 的直线m :x -ay +3=0相交于点M ,则|MP |2+|MQ |2的值为( )A .102B .10C .5D .10解析:选D .由题意知P (0,1),Q (-3,0),因为过定点P 的直线ax +y -1=0与过定点Q 的直线x -ay +3=0垂直,所以M 位于以PQ 为直径的圆上, 因为|PQ |=9+1=10,所以|MP |2+|MQ |2=|PQ |2=10,故选D . 二、填空题7.直线x -2y +1=0关于直线x =1对称的直线方程是________. 解析:由题意得直线x -2y +1=0与直线x =1的交点坐标为(1,1). 又直线x -2y +1=0上的点(-1,0)关于直线x =1的对称点为(3,0),所以由直线方程的两点式,得y -01-0=x -31-3,即x +2y -3=0.答案:x +2y -3=08.以点A (4,1),B (1,5),C (-3,2),D (0,-2)为顶点的四边形ABCD 的面积为________. 解析:因为k AB =5-11-4=-43,k DC =2-(-2)-3-0=-43.k AD =-2-10-4=34,k BC =2-5-3-1=34. 则k AB =k DC ,k AD =k BC ,所以四边形ABCD 为平行四边形. 又k AD ·k AB =-1,即AD ⊥AB , 故四边形ABCD 为矩形.故S =|AB |·|AD |=(1-4)2+(5-1)2×(0-4)2+(-2-1)2=25. 答案:259.已知l 1,l 2是分别经过A (1,1),B (0,-1)两点的两条平行直线,当l 1,l 2间的距离最大时,则直线l 1的方程是________.解析:当直线AB 与l 1,l 2垂直时,l 1,l 2间的距离最大.因为A (1,1),B (0,-1),所以k AB =-1-10-1=2,所以两平行直线的斜率为k =-12,所以直线l 1的方程是y -1=-12(x -1),即x +2y -3=0.答案:x +2y -3=010.在平面直角坐标系内,到点A (1,2),B (1,5),C (3,6),D (7,-1)的距离之和最小的点的坐标是________. 解析:设平面上任一点M ,因为|MA |+|MC |≥|AC |,当且仅当A ,M ,C 共线时取等号,同理|MB |+|MD |≥|BD |,当且仅当B ,M ,D 共线时取等号,连接AC ,BD 交于一点M ,若|MA |+|MC |+|MB |+|MD |最小,则点M 为所求.因为k AC =6-23-1=2,所以直线AC 的方程为y -2=2(x -1), 即2x -y =0.①又因为k BD =5-(-1)1-7=-1,所以直线BD 的方程为y -5=-(x -1), 即x +y -6=0.②联立①②⎩⎪⎨⎪⎧2x -y =0,x +y -6=0,解得⎩⎪⎨⎪⎧x =2,y =4,所以M (2,4).答案:(2,4) 三、解答题11.已知点P (2,-1).(1)求过点P 且与原点的距离为2的直线l 的方程;(2)求过点P 且与原点的距离最大的直线l 的方程,最大距离是多少?(3)是否存在过点P 且与原点的距离为6的直线?若存在,求出方程;若不存在,请说明理由.解:(1)过点P 的直线l 与原点的距离为2,而点P 的坐标为(2,-1),显然,过P (2,-1)且垂直于x 轴的直线满足条件,此时l 的斜率不存在,其方程为x =2. 若斜率存在,设l 的方程为y +1=k (x -2), 即kx -y -2k -1=0.由已知得|-2k -1|k 2+1=2,解得k =34.此时l 的方程为3x -4y -10=0.综上,可得直线l 的方程为x =2或3x -4y -10=0.(2)作图可得过点P 与原点O 的距离最大的直线是过点P 且与PO 垂直的直线,如图. 由l ⊥OP ,得k l k OP =-1, 所以k l =-1k OP=2.由直线方程的点斜式得y +1=2(x -2),即2x -y -5=0. 所以直线2x -y -5=0是过点P 且与原点O 的距离最大的直线, 最大距离为|-5|5=5.(3)由(2)可知,过点P 不存在到原点的距离超过5的直线,因此不存在过点P 且到原点的距离为6的直线. 12.正方形的中心为点C (-1,0),一条边所在的直线方程是x +3y -5=0,求其他三边所在直线的方程. 解:点C 到直线x +3y -5=0的距离d =|-1-5|1+9=3105.设与x +3y -5=0平行的一边所在直线的方程是x +3y +m =0(m ≠-5), 则点C 到直线x +3y +m =0的距离d =|-1+m |1+9=3105,解得m =-5(舍去)或m =7,所以与x +3y -5=0平行的边所在直线的方程是x +3y +7=0. 设与x +3y -5=0垂直的边所在直线的方程是3x -y +n =0, 则点C 到直线3x -y +n =0的距离d =|-3+n |1+9=3105,解得n =-3或n =9,所以与x +3y -5=0垂直的两边所在直线的方程分别是3x -y -3=0和3x -y +9=0.1.已知△ABC 的顶点A (5,1),AB 边上的中线CM 所在直线方程为2x -y -5=0,AC 边上的高BH 所在直线方程为x -2y -5=0,求直线BC 的方程.解:依题意知:k AC =-2,A (5,1), 所以l AC 的方程为2x +y -11=0,联立⎩⎪⎨⎪⎧2x +y -11=0,2x -y -5=0,得C (4,3).设B (x 0,y 0),则AB 的中点M ⎝⎛⎭⎪⎫x 0+52,y 0+12,代入2x -y -5=0,得2x 0-y 0-1=0,联立⎩⎪⎨⎪⎧2x 0-y 0-1=0,x 0-2y 0-5=0,得B (-1,-3),所以k BC =65,所以直线BC 的方程为y -3=65(x -4),即6x -5y -9=0.2.已知三条直线:l 1:2x -y +a =0(a >0);l 2:-4x +2y +1=0;l 3:x +y -1=0,且l 1与l 2间的距离是7510.(1)求a 的值;(2)能否找到一点P ,使P 同时满足下列三个条件: ①点P 在第一象限;②点P 到l 1的距离是点P 到l 2的距离的12;③点P 到l 1的距离与点P 到l 3的距离之比是2∶5.若能,求点P 的坐标;若不能,说明理由. 解:(1)直线l 2:2x -y -12=0,所以两条平行线l 1与l 2间的距离为d =⎪⎪⎪⎪⎪⎪a -⎝ ⎛⎭⎪⎫-1222+(-1)2=7510, 所以⎪⎪⎪⎪⎪⎪a +125=7510,即⎪⎪⎪⎪⎪⎪a +12=72, 又a >0,解得a =3.(2)假设存在点P ,设点P (x 0,y 0).若点P 满足条件②,则点P 在与l 1,l 2平行的直线l ′:2x -y +c =0上,且|c -3|5=12×⎪⎪⎪⎪⎪⎪c +125,即c =132或116,所以直线l ′的方程为2x 0-y 0+132=0或2x 0-y 0+116=0;若点P 满足条件③,由点到直线的距离公式, 有|2x 0-y 0+3|5=25×|x 0+y 0-1|2, 即|2x 0-y 0+3|=|x 0+y 0-1|, 所以x 0-2y 0+4=0或3x 0+2=0;由于点P 在第一象限,所以3x 0+2=0不可能.联立方程2x 0-y 0+132=0和x 0-2y 0+4=0,解得⎩⎪⎨⎪⎧x 0=-3,y 0=12(舍去); 联立方程2x 0-y 0+116=0和x 0-2y 0+4=0,解得⎩⎪⎨⎪⎧x 0=19,y 0=3718.所以存在点P ⎝ ⎛⎭⎪⎫19,3718同时满足三个条件.。
平面解析几何

平面解析几何解析几何是数学中的一个分支,研究的是在平面或者空间中的点、线、面之间的关系。
平面解析几何主要研究平面内点的位置、线的性质以及二次曲线的方程等问题。
在这篇文章中,我们将深入探讨平面解析几何的相关概念、基本原理以及应用。
一、平面坐标系平面解析几何的基础是平面坐标系。
平面坐标系是通过两个互相垂直的坐标轴来确定平面上任意一点的位置。
通常将水平轴称为x轴,竖直轴称为y轴。
我们可以用有序数对(x, y)来表示一个点在坐标系中的位置,其中x为横坐标,y为纵坐标。
二、点的位置关系在平面坐标系中,点的位置可以通过其坐标值来确定。
对于两个点A(x₁, y₁)和B(x₂, y₂),可以计算它们之间的距离和斜率来研究它们的位置关系。
1. 距离:两点之间的距离可以通过勾股定理计算。
假设两点A(x₁, y₁)和B(x₂, y₂),它们之间的距离d可以表示为d = √((x₂ - x₁)² + (y₂ - y₁)²)。
2. 斜率:对于直线上的两点A(x₁, y₁)和B(x₂, y₂),它们之间的斜率可以表示为k = (y₂ - y₁) / (x₂ - x₁)。
根据斜率的正负和大小,我们可以判断直线的倾斜方向和倾斜程度。
三、直线的方程直线是平面解析几何中的重要对象。
直线的方程可以分为一般式、斜截式和点斜式等形式。
1. 一般式:一般式方程表示为Ax + By + C = 0,其中A、B和C为实常数,且A和B不同时为0。
2. 斜截式:斜截式方程表示为y = kx + b,其中k为斜率,b为截距。
3. 点斜式:点斜式方程表示为(y - y₁) = k(x - x₁),其中(x₁, y₁)为直线上的已知点,k为斜率。
通过这些方程,我们可以根据已知条件推导出直线的方程,或者根据方程求出直线的性质。
四、二次曲线的方程除了直线,二次曲线也是平面解析几何中研究的重点之一。
二次曲线的方程一般形式为Ax² + Bxy + Cy² + Dx + Ey + F = 0,其中A、B、C、D、E和F为实常数。
2020高考数学总复习第八章解析几何8.2两直线的位置关系课件理新人教A版

解析:方法一 当 a=1 时,l1:x+2y+6=0, l2:x=0,l1 不平行于 l2; 当 a=0 时,l1:y=-3, l2:x-y-1=0,l1 不平行于 l2; 当 a≠1 且 a≠0 时,两直线可化为 l1:y=-a2x-3,
l2:y=1-1 ax-(a+1),
已知两直线一般方程的两直线位置关系的表示
提醒:当直线方程中存在字母参数时,不仅要考虑到斜率存 在的一般情况,也要考虑到斜率不存在的特殊情况.同时还要注 意 x,y 的系数不能同时为零这一隐含条件.
(1)已知三条直线 2x-3y+1=0,4x+3y+5=0,mx-y-1=0 不能
构成三角形,则实数 m 的取值集合为( D )
①若直线与对称轴平行,则在直
2.轴对称问题的两种类型及求解方法
若两点 P1(x1,y1)与 P2(x2,y2)关于 直线 l:Ax+By+C=0 对称,由
点关 方程组
于直 线对 称
Ax1+2 x2+By1+2 y2+C=0, yx22--yx11·-BA=-1,
可得到点 P1 关于 l 对称的点 P2 的 坐标(x2,y2)(其中 B≠0,x1≠x2)
法二 设 P(x,y)为 l′上任意一点, 则 P(x,y)关于点 A(-1,-2)的对称点为 P′(-2-x,-4 -y), ∵P′在直线 l 上, ∴2(-2-x)-3(-4-y)+1=0, 即 2x-3y-9=0.
角度 4 线关于线的对称
直线 l1:2x+y-4=0 关于直线 l:x-y+2=0 对称的直线
(1)若动点 A,B 分别在直线 l1:x+y-7=0 和 l2:x+y-5=0 上移
动,则 AB 的中点 M 到原点的距离的最小值为( A )
2022届高考数学一轮复习(新高考版) 第8章 两条直线的位置关系

√A.6x-4y-3=0
C.2x+3y-2=0
B.3x-2y-3=0 D.2x+3y-1=0
解析 因为抛物线 y2=2x 的焦点坐标为12,0, 直线 3x-2y+5=0 的斜率为32, 所以所求直线 l 的方程为 y=32x-21,
化为一般式,得6x-4y-3=0.
4.已知三条直线2x-3y+1=0,4x+3y+5=0,mx-y-1=0不能构成三 角形,则实数m的取值集合为
解析 由题意得,点 P 到直线的距离为|4×4-35×a-1|=|15-5 3a|. 又|15-5 3a|≤3,即|15-3a|≤15,解得 0≤a≤10,
所以a的取值范围是[0,10].
4.若P,Q分别为直线3x+4y-12=0与6x+8y+5=0上任意一点,则
29
|PQ|的最小值为__1_0___.
题型二 两直线的交点与距离问题
自主演练
1.已知直线y=kx+2k+1与直线y=-
1 2
x+2的交点位于第一象限,则实
数k的取值范围是__-__16,__12__.
解析
y=kx+2k+1, 由方程组y=-12x+2,
x=22-k+41k, 解得y=62kk++11.
(若 2k+1=0,即 k=-12,则两直线平行)
知识梳理
一、两条直线的平行与垂直 1.两条直线平行 (1)对于两条不重合的直线l1,l2,若其斜率分别为k1,k2,则有l1∥l2⇔ k1=k2 . (2)当直线l1,l2不重合且斜率都不存在时,l1∥l2. 2.两条直线垂直 (1)如果两条直线l1,l2的斜率存在,设为k1,k2,则有l1⊥l2⇔ k1·k2=-1 . (2)当其中一条直线的斜率不存在,而另一条的斜率为0时,l1⊥l2.
高考一轮复习教案数学(理)新课标 第九篇 解析几何 2 两条直线的位置关系

第2讲 两条直线的位置关系【2013年高考会这样考】1.考查两直线的平行与垂直.2.考查两点间的距离公式、点到直线的距离公式、两平行直线间的距离公式.【复习指导】1.对两条直线的位置关系,求解时要注意斜率不存在的情况,注意平行、垂直时直线方程系数的关系.2.熟记距离公式,如两点之间的距离、点到直线的距离、两条平行线之间的距离.基础梳理1.两条直线平行与垂直的判定(1)两条直线平行对于两条不重合的直线l 1、l 2,其斜率分别为k 1、k 2,则有l 1∥l 2⇔k 1=k 2,特别地,当直线l 1、l 2的斜率都不存在时,l 1与l 2的关系为平行.(2)两条直线垂直①如果两条直线l 1、l 2的斜率存在,设为k 1、k 2,则l 1⊥l 2⇔k 1k 2=-1.②如果l 1、l 2中有一条直线的斜率不存在,另一条直线的斜率为0时,l 1与l 2的关系为垂直.2.两直线相交交点:直线l 1:A 1x +B 1y +C 1=0和l 2:A 2x +B 2y +C 2=0的公共点的坐标与方程组⎩⎨⎧A 1x +B 1y +C 1=0,A 2x +B 2y +C 2=0的解一一对应. 相交⇔方程组有唯一解,交点坐标就是方程组的解;平行⇔方程组无解;重合⇔方程组有无数个解.3.三种距离公式(1)平面上的两点P 1(x 1,y 1),P 2(x 2,y 2)间的距离公式|P 1P 2|=(x 1-x 2)2+(y 1-y 2)2. 特别地,原点O (0,0)与任一点P (x ,y )的距离|OP |=x 2+y 2.(2)点P 0(x 0,y 0)到直线l :Ax +By +C =0的距离d =|Ax 0+By 0+C |A 2+B2. (3)两条平行线Ax +By +C 1=0与Ax +By +C 2=0间的距离为d =|C 1-C 2|A 2+B 2.一条规律与直线Ax +By +C =0(A 2+B 2≠0)平行、垂直的直线方程的设法:一般地,平行的直线方程设为Ax +By +m =0;垂直的直线方程设为Bx -Ay +n =0.两个防范(1)在判断两条直线的位置关系时,首先应分析直线的斜率是否存在.两条直线都有斜率,可根据判定定理判断,若直线无斜率时,要单独考虑. (2)在运用两平行直线间的距离公式d =|C 1-C 2|A 2+B 2时,一定要注意将两方程中的x ,y 系数化为分别相等.三种对称(1)点关于点的对称点P (x 0,y 0)关于A (a ,b )的对称点为P ′(2a -x 0,2b -y 0).(2)点关于直线的对称设点P (x 0,y 0)关于直线y =kx +b 的对称点P ′(x ′,y ′), 则有⎩⎪⎨⎪⎧ y ′-y 0x ′-x 0·k =-1,y ′+y 02=k ·x ′+x 02+b ,可求出x ′,y ′.(3)直线关于直线的对称①若已知直线l 1与对称轴l 相交,则交点必在与l 1对称的直线l 2上,然后再求出l 1上任一个已知点P 1关于对称轴l 对称的点P 2,那么经过交点及点P 2的直线就是l 2;②若已知直线l 1与对称轴l 平行,则与l 1对称的直线和l 1分别到直线l 的距离相等,由平行直线系和两条平行线间的距离即可求出l 1的对称直线.双基自测1.(人教A 版教材习题改编)直线ax +2y -1=0与直线2x -3y -1=0垂直,则a的值为( ).A .-3B .-43C .2D .3解析 由⎝ ⎛⎭⎪⎫-a 2×23=-1,得:a =3. 答案 D2.原点到直线x +2y -5=0的距离为( ).A .1 B. 3 C .2 D. 5解析 d =|-5|1+22= 5. 答案 D3.(2012·银川月考)过点(1,0)且与直线x -2y -2=0平行的直线方程是( ).A .x -2y -1=0B .x -2y +1=0C .2x +y -2=0D .x +2y -1=0 解析 ∵所求直线与直线x -2y -2=0平行,∴所求直线斜率k =12,排除C 、D.又直线过点(1,0),排除B ,故选A.答案 A4.点(a ,b )关于直线x +y +1=0的对称点是( ).A .(-a -1,-b -1)B .(-b -1,-a -1)C .(-a ,-b )D .(-b ,-a )解析 设对称点为(x ′,y ′),则⎩⎪⎨⎪⎧ y ′-b x ′-a ×(-1)=-1,x ′+a 2+y ′+b 2+1=0,解得:x ′=-b -1,y ′=-a -1.答案 B5.平行线l 1:3x -2y -5=0与l 2:6x -4y +3=0之间的距离为________.解析 直线l 2变为:3x -2y +32=0,由平行线间的距离公式得:d =⎪⎪⎪⎪⎪⎪-5-3232+22=132.答案13 2考向一两条直线平行与垂直的判定及应用【例1】►(1)已知两条直线y=ax-2和y=(a+2)x+1互相垂直,则实数a=________.(2)“ab=4”是直线2x+ay-1=0与直线bx+2y-2=0平行的().A.充分必要条件B.充分不必要条件C.必要不充分条件D.既不充分也不必要条件[审题视点] (1)利用k1·k2=-1解题.(2)抓住ab=4能否得到两直线平行,反之两直线平行能否一定得ab=4.解析(1)由题意知(a+2)a=-1,所以a2+2a+1=0,则a=-1.(2)直线2x+ay-1=0与直线bx+2y-2=0平行的充要条件是-2a=-b2且-1a≠-1,即ab=4且a≠1,则“ab=4”是“直线2x+ay-1=0与直线bx+2y-2=0平行”的必要而不充分条件.答案(1)-1(2)C(1)充分掌握两直线平行与垂直的条件是解决本题的关键,对于斜率都存在且不重合的两条直线l1和l2,l1∥l2⇔k1=k2,l1⊥l2⇔k1·k2=-1.若有一条直线的斜率不存在,那么另一条直线的斜率是多少一定要特别注意.(2)①若直线l1和l2有斜截式方程l1:y=k1x+b1,l2:y=k2x+b2,则:直线l1⊥l2的充要条件是k1·k2=-1.②设l1:A1x+B1y+C1=0,l2:A2x+B2y+C2=0.则:l1⊥l2⇔A1A2+B1B2=0.(3)注意转化与化归思想的应用.【训练1】已知直线l1:x+my+6=0,l2:(m-2)x+3y+2m=0,求m的值,使得:(1)l1与l2相交;(2)l1⊥l2;(3)l1∥l2;(4)l1,l2重合.解(1)由已知1×3≠m(m-2),即m2-2m-3≠0,解得m≠-1且m≠3.故当m ≠-1且m ≠3时,l 1与l 2相交.(2)当1·(m -2)+m ·3=0,即m =12时,l 1⊥l 2.(3)当1×3=m (m -2)且1×2m ≠6×(m -2)或m ×2m ≠3×6,即m =-1时,l 1∥l 2.(4)当1×3=m (m -2)且1×2m =6×(m -2),即m =3时,l 1与l 2重合.考向二 两直线的交点【例2】►求经过直线l 1:3x +2y -1=0和l 2:5x +2y +1=0的交点,且垂直于直线l 3:3x -5y +6=0的直线l 的方程.[审题视点] 可先求出l 1与l 2的交点,再用点斜式;也可利用直线系方程求解.解 法一 先解方程组⎩⎨⎧3x +2y -1=0,5x +2y +1=0, 得l 1、l 2的交点坐标为(-1,2),再由l 3的斜率35求出l 的斜率为-53,于是由直线的点斜式方程求出l :y -2=-53(x +1),即5x +3y -1=0.法二 由于l ⊥l 3,故l 是直线系5x +3y +C =0中的一条,而l 过l 1、l 2的交点(-1,2),故5×(-1)+3×2+C =0,由此求出C =-1,故l 的方程为5x +3y -1=0.法三 由于l 过l 1、l 2的交点,故l 是直线系3x +2y -1+λ(5x +2y +1)=0中的一条,将其整理,得(3+5λ)x +(2+2λ)y +(-1+λ)=0.其斜率-3+5λ2+2λ=-53,解得λ=15, 代入直线系方程即得l 的方程为5x +3y -1=0.运用直线系方程,有时会给解题带来方便,常见的直线系方程有:(1)与直线Ax +By +C =0平行的直线系方程是:Ax +By +m =0(m ∈R 且m ≠C );(2)与直线Ax +By +C =0垂直的直线系方程是Bx -Ay +m =0(m ∈R );(3)过直线l 1:A 1x +B 1y +C 1=0与l 2:A 2x +B 2y +C 2=0的交点的直线系方程为A 1x +B 1y +C 1+λ(A 2x +B 2y +C 2)=0(λ∈R ),但不包括l 2.【训练2】 直线l 被两条直线l 1:4x +y +3=0和l 2:3x -5y -5=0截得的线段的中点为P (-1,2),求直线l 的方程.解 法一 设直线l 与l 1的交点为A (x 0,y 0),由已知条件,得直线l 与l 2的交点为B (-2-x 0,4-y 0),并且满足⎩⎨⎧ 4x 0+y 0+3=0,3(-2-x 0)-5(4-y 0)-5=0, 即⎩⎨⎧ 4x 0+y 0+3=0,3x 0-5y 0+31=0,解得⎩⎨⎧ x 0=-2,y 0=5,因此直线l 的方程为y -25-2=x -(-1)-2-(-1),即3x +y +1=0. 法二 设直线l 的方程为y -2=k (x +1),即kx -y +k +2=0.由⎩⎨⎧ kx -y +k +2=0,4x +y +3=0,得x =-k -5k +4. 由⎩⎨⎧kx -y +k +2=0,3x -5y -5=0,得x =-5k -155k -3. 则-k -5k +4+-5k -155k -3=-2,解得k =-3. 因此所求直线方程为y -2=-3(x +1),即3x +y +1=0.法三 两直线l 1和l 2的方程为(4x +y +3)(3x -5y -5)=0,①将上述方程中(x ,y )换成(-2-x,4-y ),整理可得l 1与l 2关于(-1,2)对称图形的方程:(4x +y +1)(3x -5y +31)=0.②①-②整理得3x +y +1=0.考向三 距离公式的应用【例3】►(2011·北京东城模拟)若O (0,0),A (4,-1)两点到直线ax +a 2y +6=0的距离相等,则实数a =________.[审题视点] 由点到直线的距离公式列出等式求a .解析 由题意,得6a 2+a 4=|4a -a 2+6|a 2+a4,即4a -a 2+6=±6,解之得a =0或-2或4或6.检验得a =0不合题意,所以a =-2或4或6.答案 -2或4或6用点到直线的距离公式时,直线方程要化为一般式,还要注意公式中分子含有绝对值的符号,分母含有根式的符号.而求解两平行直线的距离问题也可以在其中一条直线上任取一点,再求这一点到另一直线的距离.【训练3】 已知直线l 1:mx +8y +n =0与l 2:2x +my -1=0互相平行,且l 1,l 2之间的距离为 5,求直线l 1的方程. 解 ∵l 1∥l 2,∴m 2=8m ≠n -1,∴⎩⎨⎧ m =4,n ≠-2或⎩⎨⎧m =-4,n ≠2. (1)当m =4时,直线l 1的方程为4x +8y +n =0,把l 2的方程写成4x +8y -2=0.∴|n +2|16+64=5,解得n =-22或n =18. 所以,所求直线的方程为2x +4y -11=0或2x +4y +9=0.(2)当m =-4时,直线l 1的方程为4x -8y -n =0,l 2的方程为2x -4y -1=0,∴|-n +2|16+64=5,解得n =-18或n =22. 所以,所求直线的方程为2x -4y +9=0或2x -4y -11=0.考向四 对称问题【例4】►光线从A (-4,-2)点射出,到直线y =x 上的B 点后被直线y =x 反射到y 轴上C 点,又被y 轴反射,这时反射光线恰好过点D (-1,6),求BC 所在的直线方程.[审题视点] 设A 关于直线y =x 的对称点为A ′,D 关于y 轴的对称点为D ′,则直线A ′D ′经过点B 与C .解 作出草图,如图所示.设A 关于直线y =x 的对称点为A ′,D 关于y 轴的对称点为D ′,则易得A ′(-2,-4),D ′(1,6).由入射角等于反射角可得A ′D ′所在直线经过点B 与C .故BC 所在的直线方程为y -66+4=x -11+2,即10x -3y +8=0.解决这类对称问题要抓住两条:一是已知点与对称点的连线与对称轴垂直;二是以已知点和对称点为端点的线段的中点在对称轴上.【训练4】 已知直线l :x -y -1=0,l 1:2x -y -2=0.若直线l 2与l 1关于l 对称,则l 2的方程是( ).A .x -2y +1=0B .x -2y -1=0C .x +y -1=0D .x +2y -1=0解析 l 1与l 2关于l 对称,则l 1上任一点关于l 的对称点都在l 2上,故l 与l 1的交点(1,0)在l 2上.又易知(0,-2)为l 1上一点,设其关于l 的对称点为(x ,y ),则⎩⎪⎨⎪⎧ x +02-y -22-1=0,y +2x ×1=-1,得⎩⎨⎧x =-1,y =-1.即(1,0)、(-1,-1)为l 2上两点,可得l 2方程为x -2y -1=0. 答案 B难点突破19——两直线平行与垂直问题的求解策略从近两年新课标高考试题可看出高考主要以选择题、填空题的形式考查两直线的平行和垂直问题,往往是直线方程中一般带有参数,问题的难点就是确定这些参数值,方法是根据两直线平行、垂直时所满足的条件列关于参数的方程(组),通过解方程(组)求出参数值,但要使参数符合题目本身的要求,解题时注意直线方程本身的限制.【示例1】►(2011·浙江)若直线x-2y+5=0与直线2x+my-6=0互相垂直,则实数m=________.【示例2】►(2010·上海)已知直线l1:(k-3)x+(4-k)y+1=0与l2:2(k-3)x-2y+3=0平行,则k的值是().A.1或3 B.1或5 C.3或5 D.1或2。
解析几何中的平面与直线的交点
解析几何中的平面与直线的交点在解析几何中,平面与直线是两个基本的几何要素。
平面是由无数个点组成的二维空间,而直线则是由无数个点组成的一维空间。
当平面与直线相交时,它们的交点是解析几何中一个重要的概念。
本文将对解析几何中平面与直线的交点进行详细的解析和讨论。
一、平面与直线的交点定义平面与直线的交点是指平面上的一个点同时也在直线上,或者直线上的一个点同时也在平面上。
换句话说,平面与直线的交点是满足平面方程和直线方程的共同解。
二、平面与直线的交点求解方法1. 平面方程与直线方程的联立求解要求解平面与直线的交点,首先需要知道平面的方程和直线的方程。
平面方程通常可以表示为Ax + By + Cz + D = 0,其中A、B、C和D为常数。
而直线方程一般可以表示为x = x0 + at,y = y0 + bt,z = z0 + ct,其中x0、y0、z0为直线上一点的坐标,a、b、c为方向向量的分量,t为参数。
将平面方程和直线方程联立,可以得到一个含有参数t的方程组。
通过解这个方程组,可以求得平面与直线的交点坐标。
2. 平面法向量与直线方向向量的关系另一种求解平面与直线的交点的方法是利用平面的法向量和直线的方向向量之间的关系。
平面的法向量可以通过平面方程的系数A、B和C得到,即(Nx, Ny, Nz) = (A, B, C)。
直线的方向向量可以通过直线方程的系数a、b和c得到,即(d1, d2, d3) = (a, b, c)。
当平面的法向量与直线的方向向量垂直时,即(Nx, Ny, Nz)·(d1, d2, d3) = 0,平面与直线相交。
此时可以通过解直线方程和平面方程联立的方程组,求得平面与直线的交点坐标。
3. 投影求解交点在某些情况下,可以利用平面与直线的投影来求解它们的交点。
将直线在平面上的投影与直线本身进行比较,可以得到直线在平面上的交点。
投影可以通过向量的投影公式进行计算,即投影向量= (直线方向向量·平面法向量) / |平面法向量|^2 ×平面法向量。
直线平行平面的判定定理
直线平行平面的判定定理直线和平面是空间解析几何中的基本概念,它们的位置关系有着重要的几何性质。
在空间中,当一条直线与一个平面满足特定条件时,我们可以根据直线和平面的性质来判断它们是否平行。
本文将介绍直线平行平面的判定定理,以及相关的推导和应用。
一、在空间中,判定一条直线与一个平面是否平行,可以根据以下定理进行判断:定理1:如果直线上的任意一点到平面的距离为定值k,那么这条直线与这个平面平行。
证明:设直线L上任意一点为P(x,y,z),平面为α,平面上一点为Q(a,b,c)。
根据直线上任意一点到平面的距离公式,有:d(P, α) = |ax + by + cz + d| / √(a^2 + b^2 + c^2)其中,α的一般方程为ax + by + cz + d = 0。
因为直线L上的任意一点P(x,y,z)到平面α的距离为定值k,所以有:|ax + by + cz + d| / √(a^2 + b^2 + c^2) = k即:|ax + by + cz + d| = k√(a^2 + b^2 + c^2)根据绝对值的性质,得到:ax + by + cz + d = ± k√(a^2 + b^2 + c^2)由于k为定值,√(a^2 + b^2 + c^2)也为定值,因此左侧和右侧都是一个常数等式,表示一个平面β。
所以,直线L和平面β平行,即直线L与平面α平行。
经过推导和证明,我们得出了判定直线平行平面的定理,即直线与平面上的一点到平面的距离为定值,那么这条直线和这个平面是平行的。
二、直线平行平面的应用直线平行平面的判定定理在解决空间几何问题时具有重要的应用价值。
下面通过几个具体的例子来说明其应用。
例1:已知平面α的一般方程为2x - 3y + 4z - 5 = 0,直线L上的一点为P(1, 2, -1),求直线L与平面α的位置关系。
解:由直线平行平面的判定定理可知,如果点P到平面α的距离为定值,那么直线L与平面α平行。
平面解析几何基础知识
平面解析几何基础知识平面解析几何是数学中的一个分支,研究平面上点、直线、曲线的性质及它们之间的关系。
它在几何图形的研究和数学问题的解决中起到重要的作用。
本文将介绍平面解析几何的基础知识,包括点、直线、曲线的表示方法和相关性质。
一、点的表示和性质在平面解析几何中,点被表示为坐标形式,通常用有序数对(x, y)表示。
其中,x为横坐标,y为纵坐标。
点的坐标可以用于描述点的位置和与其他点的关系。
点的性质包括:1. 对称性:对于任意点(x, y),其对称点为(-x, -y)。
即点关于原点对称。
2. 距离公式:两点之间的距离可以通过以下公式计算:d = √((x2 - x1)^2 + (y2 - y1)^2),其中(x1, y1)和(x2, y2)分别表示两点的坐标。
二、直线的表示和性质直线是平面解析几何中的重要概念,它可以通过点斜式和一般式表示。
1. 点斜式:设直线经过点P(x1, y1),斜率为k,那么直线的点斜式方程为:y - y1 = k(x - x1),其中k表示直线的斜率。
2. 一般式:直线的一般式方程可以表示为Ax + By + C = 0,其中A、B、C为常数。
直线的性质包括:1. 斜率:斜率表示直线的倾斜程度,即直线上任意两点的纵坐标之差与横坐标之差的比值。
斜率为k的直线与x轴的夹角为arctan(k)。
2. 相互关系:两条直线的位置关系可以通过斜率和截距进行判断。
如果两条直线的斜率相等且截距也相等,则它们重合;若斜率相等但截距不相等,则它们平行;若斜率乘积为-1,则它们垂直。
三、曲线的表示和性质曲线是平面解析几何中的重要概念,常见的曲线有圆、椭圆、双曲线等。
它们可以由方程表示。
1. 圆的方程:设圆的圆心为点C(a, b),半径为r,则圆的方程为:(x - a)^2 + (y - b)^2 = r^2。
2. 椭圆的方程:设椭圆的圆心为点C(a, b),长半轴为a,短半轴为b,则椭圆的方程为:(x - a)^2/a^2 + (y - b)^2/b^2 = 1。
高考数学总复习 第九篇 解析几何 第2讲 两条直线的位置关系课件 理
(2)两条直线垂直
① 如 果 两 条 直 线 l1 , l2 的 斜 率 存 在 , 设 为 k1 , k2 , 则 l1⊥l2⇔
k1k2=-1
.
②如果l1,l2中有一条直线的斜率不存在,另一条直线的斜率 为0时,l1与l2的关系为垂直 .
2.两直线的交点 直线l1:A1x+B1y+C1=0和l2:A2x+B2y+C2=0的公共 点的坐标与方程组AA12xx+ +BB12yy+ +CC12= =00, 的解一一对应. 相交⇔方程组有 唯一解 ,交点坐标就是方程组的解; 平行⇔方程组 无解 ; 重合⇔方程组有 无数个解 .
(2)过点A与原点O距离最大的直线是过点A与AO垂直的直
线,由l⊥AO,得klkOA=-1,所以kl=-k1OA=2, 由直线的点斜式得y+1=2(x-2),即2x-y-5=0,
即直线2x-y-5=0是过点A且与原点距离最大的直线l
的方程,最大距离是|-5|= 5
5.
(3)不存在.由(2)可知,过点A不存在到原点距离超过 5 的
3.距离公式
(1)两点间的距离公式
平面上任意两点P1(x1,y1),P2(x2,y2)间的距离公式为|P1P2|= x2-x12+y2-y12 .
特别地,原点O(0,0)与任一点P(x,y)的距离|OP|= x2+y2 .
(2)点到直线的距离公式
平面上任意一点P0(x0,y0)到直线l:Ax+By+C=0(A,B不同时
故所求直线的方程为y-2=-13(x+1),即x+3y-5=0. 当过点A的直线的斜率不存在时,由点A的坐标为(-1,2) 知,过点A的直线为x=-1.易得P1,P2到直线x=-1的距离 相等,故x=-1符合题意. 综上,所求直线的方程为x+3y-5=0或x=-1.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
平面解析几何与直线的位置关系平面解析几何是研究平面内点、直线和曲线的位置关系以及它们之间的性质和相互作用的数学学科。
其中,直线的位置关系是解析几何重要的基础内容之一。
本文将从不同角度论述平面解析几何与直线的位置关系,并分析其应用。
1. 两直线的关系
两直线的位置关系主要有三种:平行、重合和相交。
平行直线是指在同一个平面内,方向相同且不相交的两条直线。
我们可以通过判断两直线的斜率是否相等来确定它们是否平行。
重合直线是指完全重合的两条直线,它们的方程表达式完全相同。
两条重合直线在任何一个点的坐标都相等。
相交直线是指在同一个平面内,有一个公共点的两条直线。
通过求解两个直线的方程组,可以得到它们的交点坐标。
2. 直线与平面的关系
一条直线与平面的位置关系有三种情况:平行、垂直和斜交。
如果一条直线和平面的所有点之间的距离都相等,那么这条直线与该平面平行。
如果一条直线与平面上所有直线都垂直相交,那么这条直线与该平面垂直。
如果一条直线既不与平面平行也不与平面垂直,那么这条直线与该
平面斜交。
3. 直线的倾斜角度
直线的倾斜角度用来表示直线与坐标轴之间的夹角,其中x轴和y
轴的夹角范围是0°至90°。
当直线倾斜角度为0°时,直线与x轴重合,方程为y=k。
当直线倾斜角度为90°时,直线与y轴重合,方程为x=h。
当直线倾斜角度大于0°且小于90°时,直线与x轴和y轴有不同程
度的夹角,方程为y=kx+h。
4. 直线与圆的位置关系
直线与圆的位置关系主要有四种情况:相离、外切、相交和内切。
如果一条直线和圆没有公共点,那么它们相离。
如果一条直线切到圆的边缘,那么它们外切。
如果一条直线穿过圆的边缘但没有包含圆的内部点,那么它们相交。
如果一条直线穿过圆的边缘并包含圆的内部点,那么它们内切。
平面解析几何与直线的位置关系在数学和工程学科中有广泛的应用。
例如,在计算机图形学中,我们可以利用直线的位置关系来绘制各种
图形;在工程领域,直线的位置关系可以用于建筑设计和路径规划等
方面。
因此,深入理解平面解析几何与直线的位置关系对于解决实际
问题具有重要意义。
总之,平面解析几何与直线的位置关系是解析几何中的基础内容,
涉及到直线之间、直线与平面之间以及直线与曲线之间的关系。
了解
并掌握这些位置关系对于解决数学问题以及实际应用具有重要的意义。
通过对平面解析几何与直线的位置关系的研究,可以更好地理解几何
图形的性质和相互作用,为解决实际问题提供有效的数学工具。