5.5三角形内角和定理(1)
《三角形的内角和》ppt

多样性
不等腰三角形可以有各种不同的 形状和大小。
现实世界中的例子
不等腰三角形可以在自然和人造 结构中找到,例如建筑物和山脉。
等腰三角形
等腰三角形是指两条边的长度相等的三角形。
1 特点
等腰三角形具有两个等长的边和两个相等的 角,称为底角。
2 性质
通过等腰三角形的对称性,我们可以得出许 多关于角度和边长的结论。
三角形分类
三角形可以根据边长和角度的属性进行分类。
等边三角形
等边三角形的三条边都相等, 每个角度都为60度。
等腰三角形
等腰三角形的两条边相等,两 个底角度数相等。
直角三角形
直角三角形具有一个90度的直 角和两个边长。
不等腰三角形
不等腰三角形是指两条边的长度不相等的三角形。
无特殊性质
不等腰三角形没有特殊的角度或 边长关系。
2 示例应用
使用内角和定理,我们可以计算未知角度,解决各种几何问题。
证明三角形的内角和定理
要证明三角形的内角和定理,我们可以使用几何证明或代数证明的方法。这里展示几何证明方法:
1
步骤一
根据三角形的定义,我们创建一个任意的三角形。
2
步骤二
构造一条平行线通过其中一个角,并找到三角形内部的一对等边三角形。
3
步骤三
应用平行线和三角形内部等边三角形的性质来推导出三角形的内角和。
应用三角形的内角和定理解题
内角和定理可以应用于各种几何问题,例如:
角度测量
通过使用内角和定理,我们可以计算未知角度的度数。
角度关系
通过分析三角形的内角和,我们可以确定角度之间的关系。
形状构造
使用内角和定理,我们可以构建具有特定角度的三角形。
《三角形内角和》课件

《三角形内角和》课件一、教学目标1、知识与技能目标学生理解并掌握三角形内角和定理,能够运用定理解决相关的几何计算和证明问题。
2、过程与方法目标通过测量、剪拼、推理等活动,培养学生的动手操作能力、逻辑推理能力和数学思维能力。
3、情感态度与价值观目标让学生在探究过程中体验成功的喜悦,激发学生学习数学的兴趣,增强学生的自信心和团队合作精神。
二、教学重难点1、教学重点三角形内角和定理的证明及应用。
2、教学难点三角形内角和定理的证明思路的形成。
三、教学方法讲授法、讨论法、实验法四、教学过程1、导入新课通过展示一个三角形的图片,提问学生:“大家知道三角形的三个内角之和是多少度吗?”引发学生的思考和讨论,从而引出本节课的主题——三角形内角和。
2、探究活动(1)测量法让学生分组,用量角器测量三角形三个内角的度数,并计算它们的和。
通过测量,学生可能会得到不同的结果,但大致都在 180°左右。
(2)剪拼法给每个学生发放一个三角形纸片,让学生将三角形的三个内角剪下来,然后拼在一起,观察拼成的角的度数。
学生发现三个内角拼在一起形成了一个平角,即 180°。
3、定理证明引导学生思考如何用数学方法证明三角形内角和定理。
可以通过作平行线的方法来证明。
如图,在△ABC 中,过点 A 作直线 EF∥BC。
因为 EF∥BC,所以∠B =∠EAB,∠C =∠FAC(两直线平行,内错角相等)。
因为∠EAB +∠BAC +∠FAC = 180°(平角的定义),所以∠B +∠BAC +∠C = 180°,即三角形内角和为 180°。
4、例题讲解(1)已知在△ABC 中,∠A = 50°,∠B = 60°,求∠C 的度数。
解:因为三角形内角和为 180°,所以∠C = 180°∠A ∠B = 180°50° 60°= 70°(2)在△ABC 中,∠A ∠B = 30°,∠C = 4∠B,求∠A、∠B、∠C 的度数。
三角形的特殊性质和计算

三角形的特殊性质和计算一、三角形的定义与基本性质1.1 三角形是由三条线段首尾顺次连接所组成的封闭图形。
1.2 三角形的三个顶点分别称为顶点A、B、C,三条边分别称为边a、b、c。
1.3 三角形的内角分别为角A、角B、角C,且内角和为180度。
1.4 三角形的任意两边之和大于第三边。
1.5 三角形的任意两边之差小于第三边。
1.6 三角形的两边之和大于第三边的两边之和。
1.7 三角形的两边之差小于第三边的两边之差。
二、三角形的分类2.1 按边长可分为:不等边三角形、等腰三角形、等边三角形。
2.2 按角度可分为:锐角三角形、直角三角形、钝角三角形。
三、三角形的特殊性质3.1 等腰三角形的性质:两腰相等,底角相等。
3.2 直角三角形的性质:有一个角是直角(90度),其他两个角互余。
3.3 钝角三角形的性质:有一个角是钝角(大于90度),其他两个角为锐角。
3.4 三角形的面积公式:面积=底×高÷2。
3.5 三角形的周长公式:周长=a+b+c。
四、三角形的计算4.1 计算三角形的面积:已知底和高,直接使用面积公式计算。
4.2 计算三角形的周长:将三条边长相加。
4.3 计算等腰三角形的面积:已知腰和底,使用面积公式计算。
4.4 计算直角三角形的面积:已知两条直角边,使用面积公式计算。
4.5 计算钝角三角形的面积:已知三条边,使用海伦公式计算。
五、三角形的证明与推导5.1 三角形的内角和定理:三角形的三个内角之和等于180度。
5.2 三角形的SSS(边-边-边)全等定理:若两个三角形的三条边分别相等,则两个三角形全等。
5.3 三角形的SAS(边-角-边)全等定理:若两个三角形的两边和夹角分别相等,则两个三角形全等。
5.4 三角形的ASA(角-边-角)全等定理:若两个三角形的两角和夹边分别相等,则两个三角形全等。
5.5 三角形的AAS(角-角-边)全等定理:若两个三角形的两角和其中一边分别相等,则两个三角形全等。
三角形的内角和和外角和关系(教师)

三角形的内角和与外角和关系一、考点、热点回顾:要点一、三角形的内角和1.三角形内角和定理:三角形的内角和为180°.2.结论:直角三角形的两个锐角互余.要点诠释:应用三角形内角和定理可以解决以下三类问题:①在三角形中已知任意两个角的度数可以求出第三个角的度数;②已知三角形三个内角的关系,可以求出其内角的度数;③求一个三角形中各角之间的关系.要点二、三角形的外角1.定义:三角形的一边与另一边的延长线组成的角叫做三角形的外角.如图,∠ACD是△ABC的一个外角.要点诠释:(1)外角的特征:①顶点在三角形的一个顶点上;②一条边是三角形的一边;③另一条边是三角形某条边的延长线.(2)三角形每个顶点处有两个外角,它们是对顶角.所以三角形共有六个外角,通常每个顶点处取一个外角,因此,我们常说三角形有三个外角.2.性质:(1)三角形的一个外角等于与它不相邻的两个内角的和.(2)三角形的一个外角大于任意一个与它不相邻的内角.要点诠释:三角形内角和定理和三角形外角的性质是求角度及与角有关的推理论证明经常使用的理论依据.另外,在证角的不等关系时也常想到外角的性质.3.三角形的外角和:三角形的外角和等于360°.要点诠释:因为三角形的每个外角与它相邻的内角是邻补角,由三角形的内角和是180°,可推出三角形的三个外角和是360°.二、典型例题+拓展训练:【典型例题】类型一、三角形的内角和1.在△ABC中,若∠A=12∠B=13∠C,试判断该三角形的形状.【思路点拨】由∠A=12∠B=13∠C,以及∠A+∠B+∠C=180°,可求出∠A、∠B和∠C的度数,从而判断三角形的形状.【答案与解析】解:设∠A=x,则∠B=2x,∠C=3x.由于∠A+∠B+∠C=180°,即有x+2x+3x=180°.解得x=30°.故∠A=30°.∠B=60°,∠C=90°.故△ABC是直角三角形.【总结升华】本题利用设未知数的方法求出三角形三个内角的度数,解法较为巧妙.举一反三:【变式1】三角形中至少有一个角不小于________度.【答案】60【高清课堂:与三角形有关的角练习(3)】【变式2】如图,AC⊥BC,CD⊥AB,图中有对互余的角?有对相等的锐角?【答案】4,2.2.在△ABC中,∠ABC=∠C,BD是AC边上的高,∠ABD=30°,则∠C的度数是多少? 【思路点拨】按△ABC为锐角三角形和钝角三角形两种情况,分类讨论.【答案与解析】解:分两种情况讨论:(1)当△ABC为锐角三角形时,如图所示,在△ABD中,∵ BD是AC边上的高(已知),∴∠ADB=90°(垂直定义).又∵∠ABD=30°(已知),∴∠A=180°-∠ADB-∠ABD=180°-90°-30°=60°.又∵∠A+∠ABC+∠C=180°(三角形内角和定理),∴∠ABC+∠C=120°,又∵∠ABC=∠C,∴∠C=60°.(2)当△ABC为钝角三角形时,如图所示.在直角△ABD中,∵∠ABD=30°(已知),所以∠BAD=60°.∴ ∠BAC =120°.又∵ ∠BAC+∠ABC+∠C =180°(三角形内角和定理),∴ ∠ABC+∠C =60°.∴ ∠C =30°.综上,∠C 的度数为60°或30°.【总结升华】在解决无图的几何题的过程中,只有正确作出图形才能解决问题.这就要求解答者必须具备根据条件作出图形的能力;要注意考虑图形的完整性和其他各种可能性,双解和多解问题也是我们在学习过程中应该注意的一个重要环节.类型二、三角形的外角【高清课堂:与三角形有关的角 例4、 】3.如图,在△ABC 中,AE ⊥BC 于E ,AD 为∠BAC 的平分线,∠B=50º,∠C=70º, 求∠DAE .【答案与解析】解:∠A =180°-∠B -∠C =180°-50°-70°=60°又AD 为∠BAC 的平分线所以∠BAD =12BAC ∠=30° ∠ADE =∠B +∠BAD =50º+30°=80°又 AE ⊥BC 于E所以∠DAE =90°-∠ADE =90°-80°=10°举一反三:【变式】如图,在△ABC 中,AB >AC ,AE ⊥BC 于E ,AD 为∠BAC 的平分线,则∠DAE 与∠C -∠B 的数量关系 .【答案】2C B DAE ∠-∠∠=4.如图所示,已知CE 是△ABC 外角∠ACD 的平分线,CE 交BA 延长线于点E.求证:∠BAC >∠B.【答案与解析】证明:在△ACE中,∠BAC >∠1(三角形的一个外角大于与它不相邻的任何一个内角).同理在△BCE中,∠2 >∠B,因为∠1=∠2,所以∠BAC >∠B.【总结升华】涉及角的不等关系的问题时,经常用到三角形外角性质:“三角形的一个外角大于与它不相邻的任何一个内角”.举一反三:【变式】如图所示,用“<”把∠1、∠2、∠A联系起来________.【答案】∠A <∠2 <∠1类型三、三角形的内角外角综合5.如图所示,试求∠A+∠B+∠C+∠D+∠E的度数.【思路点拨】本题中∠A、∠B、∠C、∠D、∠E不能单个地求出.因此,需进行整体求值.【答案与解析】解:连BC,由三角形的内角和为180°不难得到∠E+∠D=∠1+∠2.∵∠A+∠ABD+∠ACE+∠1+∠2=180°,∴∠A+∠ABD+∠ACE+∠D+∠E=180°.【总结升华】解多个角的度数和问题可以结合三角形的内角和与三角形的外角,将所求角转化到一个或几个三角形中,从而求得多个角的和.举一反三:【变式1】如图所示,五角星ABCDE中,试说明∠A+∠B+∠C+∠D+∠E=180°.【答案】解:因为∠AGF是△GCE的外角,所以∠AGF=∠C+∠E.同理∠AFG=∠B+∠D.在△AFG中,∠A+∠AFG+∠AGF=180°.所以∠A+∠B+∠C+∠D+∠E=180°.【变式2】一个三角形的外角中,最多有锐角 ( )A.1个 B.2个 C.3个 D.不能确定【答案】A (提示:由于三角形最多有一个内角是钝角,故最多有一个外角是锐角.) 三、总结:四、课堂练习:一、选择题1. (湖北荆州)如图所示,一根直尺EF压在三角板30°的角∠BAC上,与两边AC,AB交于M,N.那么∠CME+∠BNF是( )A.150° B.180° C.135° D.不能确定2.若一个三角形的三个内角互不相等,则它的最小角必小于( )A.30° B.45° C.60° D.55°3.下列语句中,正确的是( )A.三角形的外角大于任何一个内角B.三角形的外角等于这个三角形的两个内角之和C.三角形的外角中,至少有两个钝角D.三角形的外角中,至少有一个钝角4.如果一个三角形的两个外角之和为270°,那么这个三角形是( )A.锐角三角形 B.直角三角形 C.钝角三角形 D.无法确定5.如图,已知AB∥CD,则( )A.∠1=∠2+∠3 B.∠1=2∠2+∠3C.∠1=2∠2-∠3 D.∠1=180°-∠2-∠36.(福建漳州)如图所示,在折纸活动中,小明制作了一张△ABC的纸片,点D、E分别是边AB、AC上,将△ABC沿着DE折叠压平,A与A′重合,若∠A=70°,则∠1+∠2=( ) A.140° B.130° C.110° D.70°二、填空题7.在△ABC中,若∠A-2∠B=70°,2∠C-∠B=10°,则∠C=________.8.如图,在△ABC中,∠ABC、∠ACB的平分线相交于点O.(1)若∠A=76°,则∠BOC=________;(2)若∠BOC=120°,则∠A=_______;(3)∠A与∠BOC之间具有的数量关系是_______.9. 已知等腰三角形的一个外角等于100°,则它的底角等于________.10.(河南)将一副直角三角板如图所示放置,使含30°角的三角板的短直角边和含45°角的三角板的一条直角边重合,则∠1的度数为________.11.(湖北鄂州)如图所示,△ABC的外角∠ACD的平分线CP与内角∠ABC平分线BP交于点P,若∠BPC=40°,则∠CAP=_______.12.如图,O是△ABC外一点,OB,OC分别平分△ABC的外角∠CBE,∠BCF.若∠A=n°,则∠BOC=(用含n的代数式表示).三、解答题13.如图,求证:∠A+∠B+∠C+∠D+∠E=180°.14.如图所示,BE与CD交于A,CF为∠BCD的平分线,EF为∠BED的平分线.(1)试探求:∠F与∠B、∠D之间的关系;(2)若∠B:∠D:∠F=2:4:x,求x的值.15.如图,在△ABC中,∠ABC的平分线与外角∠ACE的平分线交于点D.试说明12D A ∠=∠.16.如图所示,在△ABC中,∠1=∠2,∠C>∠B,E为AD上一点,且EF⊥BC于F.(1)试探索∠DEF与∠B,∠C的大小关系;(2)如图(2)所示,当点E在AD的延长线上时,其余条件都不变,你在(1)中探索到的结论是否还成立?【答案与解析】一、选择题1. 【答案】A【解析】(1)由∠A=30°,可得∠AMN+∠ANM=180°-30°=150°又∵∠CME=∠AMN,∠BNF=∠ANM,故有∠CME+∠BNF=150°.2. 【答案】C;【解析】假如三角形的最小角不小于60°,则必有大于或等于60°的,因为该三角形三个内角互不相等,所以另外两个非最小角一定大于60°,此时,该三角形的三个内角和必大于180°,这与三角形的内角和定理矛盾,故假设不可能成立,即它的最小角必小于60°.3. 【答案】C ;【解析】因为三角形的内角中最多有一个钝角,所以外角中最多有一个锐角,即外角中至少有两个钝角.4. 【答案】B;【解析】因为三角形的外角和360°,而两个外角的和为270°,所以必有一个外角为90°,所以有一个内有为90°.5. 【答案】A;6. 【答案】A;【解析】连接AA′,则∠1=∠EAA′+∠EA′A,∠2=∠DAA′+∠DA′A所以∠1+∠2=∠EAA′+∠EA′A+∠DAA′+∠DA′A=∠EAD+∠EA′D=70°+70°=140°.二、填空题7. 【答案】20°;【解析】联立方程组:A-2B=702C-10180BA B C∠∠︒⎧⎪∠∠=︒⎨⎪∠+∠+∠=︒⎩,解得20C∠=︒.8.【答案】128°, 60°,∠BOC=90°+12∠A;9. 【答案】80°或50°;【解析】100°的补角为80°,(1)80°为三角形的顶角;(2)80°为三角形底角时,则三角形顶角为50°.10.【答案】75°;11.【答案】50°;【解析】∠PCD=∠PBC+40°,即∠PCD-∠PBC=40°,又PA是△ABC中∠A的外角的平分线,点P是旁心(旁心是一个三角形内角平分线与其不相邻的两个外角平分线的交点)所以180°-2∠PCD+2∠PBC+180°-2∠PAC=180°,所以∠PAC=50°.12.【答案】1902n︒-︒;【解析】∵∠COB=180︒-(∠OBC+∠OCB ), 而BO ,CO 分别平分∠CBE ,∠BCF ,∴∠OBC =1122n ACB ︒+∠,∠OCB =1122n ABC ︒+∠. ∴∠COB=180°-[(180)2n n ︒+︒-︒]=1902n ︒-︒. 三、解答题13.【解析】解:延长BE ,交AC 于点H,易得∠BFC=∠A+∠B+∠C再由∠EFC=∠D+∠E ,上式两边分别相加,得:∠A+∠B+∠C +∠D+∠E =∠BFC +∠EFC =180°。
三角形的内角和定理的证明(第一课时)

海南第二中学
周春媛
课题 项目 教 材 的 地 位 及 作 教 用
三角形的内角和定理的证明 三角形的内角和定理的证明 内容 本节课是北师大版实验教科书八年级下册 第六章第五节的内容。是在学习了平角、探索两 条直线平行的条件及三角形内角和定理的基础 上,进一步探索三角形内角和定理的证明。为今 后学习多边形内角和、外角和,圆等知识打下了 良好的基础。具有承上启下的作用。且三角形内 角和定理在日常生活中,如:机械制造、工程设 计、国防等领域具有广泛应用。 一、知识目标 : 知识目标 知识 1、掌握“三角形内角和定理”的证明及其 简单应用。 2、对比过去撕纸等探索过程,体会思维实 验和符号化的理性作用。 3、通过一题多解,初步体会思维的多向性, 引导学生的个性化发展。 能力目标: 二、能力目标: 1、 培养学生动手操作、探索、观察、分析、 归纳获得数学结论的能力。 2、培养学生转化独立获取知识的方法并解 决问题的能力。 三、情感目标: 情感目标: 目标 培养学生创造性,弘扬个性发展,体验解决 问题的成就感,使学生感悟逻辑推理的数学价 值。 理论依据或意图
评 价 分 析
本节课在教学设计上,依教材、 《课标》 及学生 的实际情况,力求调动一切极积因素,激发学生的学 评价分析是教学过程 习兴趣,在教师引导启发下,使学生的思维围绕探索 的反馈,检验教学是否达 步步深入,最大限度挖掘学生潜能,体现学生的主体 到预期目的、教学目标是 性。因此本人认为本节课达到如下的教学效果: 否实现、教学方法与手段 1、 “提出问题”激发学生思考,培养学生的思维和自 信心。 2、通过动手操作、合作交流,使学生发现并掌握三角 形内角和定理的证明。 3、 “分析命题”培养学生分析问题,解决问题的能力。 运用是否恰当的一个重要 环节。一方面,可以了解 学生对知识的掌握、能力 的培养的程度, 另一方面,
三角形内角和定理

3、在本题的证明中,添加平行线的作用之一是移动角。
在这里,为了证明的需要,在原 来的图形上添画的线叫做辅助线。在 平面几何里,辅助线通常画成虚线。
思路总结
为了证明三个角的和为1800,转化 为一个平角或同旁内角互补,这种转 化思想是数学中的常用方法. 三角形内角和定理:
三角形的内角和等于1800.
活动1:比一比,赛一赛
看哪一组做得又°∠B=500, 则∠C=____。 (2) 在△ABC中,∠C=90°∠B=500, 则∠A=____。 (3)在△ABC中, ∠A=400,∠A=2∠B,则∠C=____。
2 (4)在△ABC中, ∠A等于直角的一半,∠B等于直角的 ,则∠C=__。 3
练一练
已知:如图在△ABC中,AD垂直BC,点D为 垂足, ∠ BAD=∠C 求证: △ABC为直角三角形
A
B
D
C
求证:三角形的内角和是180° l
D 1
A
2
E
已知:△ABC.
求证:∠BAC +∠B +∠C =180° 证明: 过A作ED∥BC
B C
C B 1 2 ∴∠___=∠___, ∠___=∠___(两直线平行,内错角相等) 1 2 (平角定义) BAC ∵∠___+∠______+∠____=180° B BAC C (等量代换) ∴∠____+∠______+∠____=180°
综合运用
? C 例:如图,从A处观测C处时仰角 ∠CAD=30°,从B处观测C处时 仰角∠CBD=45°.从C处观测A、 30° 45° D A B两处时视角∠ACB是多少? B
题组二:
做一做 1、如图,在△ABC中,DE∥BC,∠A=60°, ∠C=70°,则 ∠ADE=__________ 50°
三角形的内角和与外角和关系(基础)知识讲解
三角形的内角和与外角和关系(基础)知识讲解【学习目标】1.理解三角形内角和定理的证明方法;2.掌握三角形内角和定理及三角形的外角性质;3.能够运用三角形内角和定理及三角形的外角性质进行相关的计算,证明问题.【要点梳理】要点一、三角形的内角和1.三角形内角和定理:三角形的内角和为180°.2.结论:直角三角形的两个锐角互余.要点诠释:应用三角形内角和定理可以解决以下三类问题:①在三角形中已知任意两个角的度数可以求出第三个角的度数;②已知三角形三个内角的关系,可以求出其内角的度数;③求一个三角形中各角之间的关系.要点二、三角形的外角1.定义:三角形的一边与另一边的延长线组成的角叫做三角形的外角.如图,∠ACD是△ABC的一个外角.要点诠释:(1)外角的特征:①顶点在三角形的一个顶点上;②一条边是三角形的一边;③另一条边是三角形某条边的延长线.(2)三角形每个顶点处有两个外角,它们是对顶角.所以三角形共有六个外角,通常每个顶点处取一个外角,因此,我们常说三角形有三个外角.2.性质:(1)三角形的一个外角等于与它不相邻的两个内角的和.(2)三角形的一个外角大于任意一个与它不相邻的内角.要点诠释:三角形内角和定理和三角形外角的性质是求角度及与角有关的推理、证明经常使用的理论依据.另外,在证明角的不等关系时也常想到外角的性质.3.三角形的外角和:三角形的外角和等于360°.要点诠释:因为三角形的每个外角与它相邻的内角是邻补角,由三角形的内角和是180°,可推出三角形的三个外角和是360°.【典型例题】类型一、三角形的内角和1.证明:三角形的内角和为180°.【答案与解析】解:已知:如图,已知△ABC,求证:∠A+∠B+∠C=180°.证法1:如图1所示,延长BC 到E ,作CD ∥AB .∵ AB ∥CD (已作),∴ ∠1=∠A (两直线平行,内错角相等),∠B=∠2(两直线平行,同位角相等).又∵∠ACB+∠1+∠2=180°(平角定义),∴∠ACB+∠A+∠B=180°(等量代换).证法2:如图2所示,在BC 边上任取一点D ,作DE ∥AB ,交AC 于E ,DF ∥AC ,交AB 于点F .∵DF ∥AC (已作),∴∠1=∠C (两直线平行,同位角相等),∠2=∠DEC (两直线平行,内错角相等).∵DE ∥AB (已作).∴∠3=∠B ,∠DEC=∠A (两直线平行,同位角相等).∴∠A=∠2(等量代换).又∵∠1+∠2+∠3=180°(平角定义),∴∠A+∠B+∠C=180°(等量代换).证法3:如图3所示,过A 点任作直线1l ,过B 点作2l ∥1l ,过C 点作3l ∥1l ,∵1l ∥3l (已作).∴∠l=∠2(两直线平行,内错角相等).同理∠3=∠4.又∵1l ∥2l (已作),∴∠5+∠1+∠6+∠4=180°(两直线平行,同旁内角互补).∴∠5+∠2+∠6+∠3=180°(等量代换).又∵∠2+∠3=∠ACB ,∴∠BAC+∠ABC+∠ACB=180°(等量代换).【总结升华】三角形内角和定理的证明方法有很多种,无论哪种证明方法,都是应用的平行线的性质.2.在△ABC 中,已知∠A+∠B =80°,∠C =2∠B ,试求∠A ,∠B 和∠C 的度数.【思路点拨】题中给出两个条件:∠A+∠B =80°,∠C =2∠B ,再根据三角形的内角和等于180°,即∠A+∠B+∠C =180°就可以求出∠A ,∠B 和∠C 的度数.【答案与解析】解:由∠A+∠B =80°及∠A+∠B+∠C =180°,知∠C =100°.又∵ ∠C =2∠B ,∴ ∠B =50°.∴ ∠A =80°-∠B =80°-50°=30°.【总结升华】解答本题的关键是利用隐含条件∠A+∠B+∠C =180°.本题可以设∠B =x ,则∠A =80°-x ,∠C =2x 建立方程求解.【高清课堂:与三角形有关的角 例1、】举一反三:【变式】已知,如图 ,在△ABC 中,∠C=∠ABC=2∠A ,BD 是AC 边上的高,求∠DBC 的度数.【答案】解:已知△ABC中,∠C=∠ABC=2∠A设∠A=x则∠C=∠ABC=2xx+2x+2x=180°解得:x=36°∴∠C=2x=72°在△BDC中, BD是AC边上的高,∴∠BDC=90°∴∠DBC=180°-90°-72°=18°类型二、三角形的外角【高清课堂:与三角形有关的角例2、】3.(1)如图,AB和CD交于点O,求证:∠A+∠C=∠B+∠D .(2)如图,求证:∠D=∠A+∠B +∠C.【答案与解析】解:(1)如图,在△AOC中,∠COB是一个外角,由外角的性质可得:∠COB=∠A+∠C,同理,在△BOD中,∠COB=∠B+∠D,所以∠A+∠C=∠B+∠D.(2)如图,延长线段BD交线段与点E,在△ABE中,∠BEC=∠A+∠B ①;在△DCE中,∠BDC=∠BEC+∠C ②,将①代入②得,∠BDC=∠A+∠B+∠C,即得证.【总结升华】重要结论:(1)“8”字形图:∠A+∠C=∠B+∠D;(2)“燕尾形图”:∠D=∠A+∠B +∠C.举一反三:【变式1】如图,AB∥CD,AD和BC相交于点O,∠A=40°,∠AOB=75°,则∠C等于()A、40°B、65°C、75°D、115°【答案】B【变式2】如图,在△ABC中,∠A=70°,BO,CO分别平分∠ABC和∠ACB,则∠BOC的度数为 .【答案】125°类型三、三角形的内角、外角综合4.如图所示,已知DE分别交△ABC的边AB、AC于D、E,交BC的延长线于F,∠B=67°,∠ACB=74°,∠AED=48°,求∠BDF的度数.【思路点拨】要求∠BDF的度数,应从三角形内角和与三角形的外角出发,若将∠BDF看成△BDF的内角,只需求∠F的度数即可.【答案与解析】解:∵∠CEF=∠AED=48°,∠BCA=∠CEF+∠F,∴∠F=∠BCA-∠CEF=74°-48°=26°,∴∠BDF=180°-∠B-∠F=180°-67°-26°=87°.【总结升华】三角形内角和与外角是进行与角有关的计算或证明的重要工具,本题也可将∠BDF看成△ADE的外角来求解.举一反三:【变式】如图所示,已知△ABC中,P为内角平分线AD、BE、CF的交点,过点P作PG⊥BC 于G,试说明∠BPD与∠CPG的大小关系并说明理由.【答案】解:∠BPD=∠CPG;理由如下:∵ AD、BE、CF分别是∠BAC、∠ABC、∠ACB的角平分线,∴∠1=12∠ABC,∠2=12∠BAC,∠3=12∠ACB,∴∠1+∠2+∠3=12(∠ABC+∠BAC+∠ACB)=90°,又∵∠4=∠1+∠2,∴∠4+∠3=90°,又∵ PG⊥BC,∴∠3+∠5=90°,∴∠4=∠5,即∠BPD=∠CPG.。
欧几里得证明三角形内角和定理
欧几里得证明三角形内角和定理
在欧几里得的《几何原本》中,三角形内角和定理被安排为第一卷的命题32:“在任意三角形中,如果延长一边,则外角等于二内对角的和,而且三角形的三个内角的和等于二直角.”
他是用平行线的性质,先证明外角等于两个内对角的和,进而证明三角形的内角和定理.
在欧几里得几何中,三角形的内角和定理与另一个更弱的命题等价“所有三角形的内角和都相同.”证明如下:
设任意三角形的内角和都是x,如图所示,则有:
∠BAC+∠B+∠C=x,①
∠1+∠B+∠3=x,②,
∠2+∠4+∠C=x,③
∠3+∠4=180o,④
∠1+∠2=∠BAC⑤,
②+③并用④⑤①代入,得
2x=(∠1+∠B+∠3)+(∠2+∠4+∠C)
=(∠1+∠2)+(∠B+∠C)+(∠3+∠4)
=∠BAC+∠B+∠C+180 o
=x+180 o
解得x=180 o.
B
1 / 1。
三角形三边关系三角形内角和定理
三角形三边关系三角形内角和定理三角形三边关系与三角形内角和定理三角形是几何学中的基本图形,由三条边和三个顶点构成。
在三角形中,三边之间有一系列内在的关系,而三角形的内角和也有一个重要的定理与之对应。
本文将详细介绍三角形三边关系和三角形内角和定理。
一、三角形三边关系三角形的三边之间存在着一系列特殊的关系,下面将介绍三个重要的三边关系。
1. 三边长关系在任意三角形中,任意两条边之和大于第三条边的长度。
即对于三角形的边长a、b、c,有以下关系:a +b > ca + c > bb +c > a这个关系被称为三边长关系,它是构成三角形的必要条件。
2. 三边长比较关系当我们知道三角形的两条边长和它们的夹角时,可以通过角的余弦定理来比较三条边的长度。
角的余弦定理表达式如下:c² = a² + b² - 2ab*cos(C)其中,a、b、c分别表示三角形的边长,C表示夹角的度数。
3. 直角三角形的特殊边关系直角三角形是指其中一个角为90度的三角形。
在直角三角形中,三边之间有一种特殊的关系,即勾股定理。
勾股定理表达式如下:c² = a² + b²其中,a、b分别表示直角三角形的两条直角边,c表示斜边的长度。
二、三角形内角和定理三角形的内角和定理是指三角形内角的度数和为180度。
即在任意三角形ABC中,有以下关系:∠A + ∠B + ∠C = 180°这个定理是三角形的基本性质之一,有助于我们在解决三角形相关问题时进行推理和计算。
三、应用举例三角形的三边关系和内角和定理在几何学中有着广泛的应用。
下面将通过几个具体的例子来展示其应用。
例1:已知三角形的两边长分别为3cm和4cm,夹角为60度,求第三边的长度。
根据角的余弦定理,可以得到:c² = 3² + 4² - 2*3*4*cos(60°)= 9 + 16 - 24*cos(60°)= 25 - 12= 13因此,第三边的长度为√13 cm。
平面几何中的三角形和三角形的内角和定理
平面几何中的三角形和三角形的内角和定理三角形是平面上最简单、最基本的几何图形之一。
它由三条线段所围成,每条线段称为三角形的边,两条相邻的边所夹的角称为三角形的角。
在三角形中,有一些角具有特殊的性质,它们的和也有着特别的规律。
本文将介绍三角形中的三角形内角和定理,帮助读者更好地理解和应用平面几何。
一、三角形的内角和对于任意一个三角形ABC,三个内角的和应该等于180度,即∠A+∠B+∠C=180°。
这个结论可以用多种方法来证明。
方法一:利用三角形的等角定理。
我们先假设三角形ABC中的角A等于90度,则∠B和∠C互为余角,即∠B=90°-∠C。
将等式代入∠A+∠B+∠C=180°中,可以得到∠A+(90°-∠C)+∠C=180°,化简后得到∠A+90°=180°,即∠A=90°。
因此,三角形ABC是一个直角三角形。
方法二:利用平行线与交线的性质。
我们用线段AC作为三角形ABC的一条边,通过点B画一条平行于线段AC的直线DE,使DE与BC相交于点F。
因为AC与DE平行,所以∠A=∠E。
同时,∠EBF和∠CBF都是180度减去∠C,即∠EBF=∠CBF=180°-∠C。
因此,∠E+∠B+∠F=∠A+∠B+∠C=180°,即∠E+∠B+(180°-∠C)=180°,化简后得到∠E=∠C。
所以,∠A+∠B+∠C=∠E+∠B+∠C=180°。
方法三:利用三角形的面积公式。
我们将三角形ABC绕某个顶点旋转,使其底边平移至一条与底边平行的直线上,然后将三角形划分成两个梯形和一个三角形。
根据相似三角形的性质,两个梯形面积之和与三角形面积之比等于梯形的中线之比,即hA:hB=AC:BD。
因为BD=AC,所以hA=hB。
同理,再用梯形的面积公式,可得hA=hB=hC,即三角形ABC的三个高相等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
八年级数学导学稿
第五章几何证明初步
5.5三角形内角和定理(1)
开发区初中八年级数学备课组
学习目标:1、会证明三角形的内角和定理及其推论。尝试用多种方法证明三角形内
角和定理。
2、会运用三角形内角和定理及其推论进行有关计算和证明。
3、了解在证明三角形内角和定理时辅助线的作用,体会转化的思想。
重点:三角形的内角和定理及其推论。
难点:运用三角形内角和定理及其推论进行有关计算和证明。
教学过程:
【温故知新】
1.几何证明的过程一般包括 、 、 三个步骤。
2.三角形的内角和定理:三角形三个内角和等于 。
3.辅助线:为了证明的需要,在原来的图形上添加的线叫做 ,这种线通常
画成 。
4.三角形的外角:
(1)概念:三角形一条边的 和另一条相邻的边组成的角,叫做三角形的
外角。
(2)性质:①三角形的外角等于与它不相邻的 内角的和。
②三角形的一个外角 与它不相邻的任何一个内角。
【探索新知】
探究 三角形的内角和定理
1、要证明三角形的内角和是180°,必须从以前学过的涉及180°的角的知识去考
虑,涉及180°的知识有:(1) ;(2) ;
(3) 。
2、辅助线的添加:当问题的条件不够时,添加辅助线,构造新图形,形成新关系,
找到已知与未知的桥梁,把问题转化成自己会解的情况。
例1 已知:△ABC的三个内角是∠A、∠B、∠C。
求证:∠A+∠B+∠C=1800
方法1
方法2
C
D A B
E
A
E B C D
方法3
3、你还能想出这一定理的其他证明方法吗?
4、从三角形的内角和定理,你还发现了什么?
∠ACD与∠A,∠B之间有怎样的数量关系:
由此可得到两个推论:
推论1: 。
推论2: 。
【巩固提升】
1、已知:如图,四边形ABCD是一个任意四边形,
求证:∠A+∠B+∠C+∠D=3600
【课堂小结】
【达标检测】
已知D是△ABC内的一点,求证:∠BDC>∠A
【我的反思】
C
D
B
A
B
D
C
A