七年级上学期定理知识点汇总

合集下载

初中数学北师大版七年级上册定理知识点汇总

初中数学北师大版七年级上册定理知识点汇总

矿产资源开发利用方案编写内容要求及审查大纲
矿产资源开发利用方案编写内容要求及《矿产资源开发利用方案》审查大纲一、概述
㈠矿区位置、隶属关系和企业性质。

如为改扩建矿山, 应说明矿山现状、
特点及存在的主要问题。

㈡编制依据
(1简述项目前期工作进展情况及与有关方面对项目的意向性协议情况。

(2 列出开发利用方案编制所依据的主要基础性资料的名称。

如经储量管理部门认定的矿区地质勘探报告、选矿试验报告、加工利用试验报告、工程地质初评资料、矿区水文资料和供水资料等。

对改、扩建矿山应有生产实际资料, 如矿山总平面现状图、矿床开拓系统图、采场现状图和主要采选设备清单等。

二、矿产品需求现状和预测
㈠该矿产在国内需求情况和市场供应情况
1、矿产品现状及加工利用趋向。

2、国内近、远期的需求量及主要销向预测。

㈡产品价格分析
1、国内矿产品价格现状。

2、矿产品价格稳定性及变化趋势。

三、矿产资源概况
㈠矿区总体概况
1、矿区总体规划情况。

2、矿区矿产资源概况。

3、该设计与矿区总体开发的关系。

㈡该设计项目的资源概况
1、矿床地质及构造特征。

2、矿床开采技术条件及水文地质条件。

初中数学北师大版七年级上册定理知识点汇总

初中数学北师大版七年级上册定理知识点汇总

初中数学北师大版七年级上册定理知识点汇总试题北师大版初中数学定理知识点汇总七年级上册第一章丰富的图形世界¤1¤2¤3. 球体:由球面围成的(球面是曲面)¤4. 几何图形是由点、线、面构成的。

①几何体与外界的接触面或我们能看到的外表就是几何体的表面。

几何的表面有平面和曲面;②面与面相交得到线;③线与线相交得到点。

※5. 棱:在棱柱中,任何相邻两个面的交线都叫做棱。

※6. 侧棱:相邻两个侧面的交线叫做侧棱,所有侧棱长都相等。

¤7. 棱柱的上、下底面的形状相同,侧面的形状都是长方形。

¤8. 根据底面图形的边数,人们将棱柱分为三棱柱、四棱柱、五棱柱、六棱柱……它们底面图形的形状分别为三边形、四边形、五边形、六边形……¤9. 长方体和正方体都是四棱柱。

¤10. 圆柱的表面展开图是由两个相同的圆形和一个长方形连成。

¤11. 圆锥的表面展开图是由一个圆形和一个扇形连成。

※12. 设一个多边形的边数为nn≥3,且n为整数,从一个顶点出发的对角线有n-3条;可以把n边形成n-2个三角形;这个n边形共有条对角线。

◎13. 圆上两点之间的部分叫做弧,弧是一条曲线。

◎14. 扇形,由一条弧和经过这条弧的端点的两条半径所组成的图形。

¤15. 凸多边形和凹多边形都属于多边形。

有弧或不封闭图形都不是多边形。

第二章有理数及其运算※※数轴的三要素:原点、正方向、单位长度(三者缺一不可)。

※任何一个有理数,都可以用数轴上的一个点来表示。

(反过来,不能说数轴上所有的点都表示有理数)※如果两个数只有符号不同,那么我们称其中一个数为另一个数的相反数,也称这两个数互为相反数。

(0的相反数是0)※在数轴上,表示互为相反数的两个点,位于原点的侧,且到原点的距离相等。

¤数轴上两点表示的数,右边的总比左边的大。

正数在原点的右边,负数在原点的左边。

七年级数学知识点汇总与整理

七年级数学知识点汇总与整理

侧面是曲面底面是圆面圆柱,:⎩⎨⎧侧面是正方形或长方形底面是多边形棱体柱体,:侧面是曲面底面是圆面圆锥,:⎩⎨⎧侧面都是三角形底面是多边形棱锥锥体,:⎪⎪⎪⎩⎪⎪⎪⎨⎧有理数⎪⎩⎪⎨⎧)3,2,1:()3,2,1:( 如负整数如正整数整数)0(零⎪⎩⎪⎨⎧----)8.4,3.2,31,21:( 如负分数分数)8.3,3.5,31,21:( 如正分数第一章 丰富的图形世界¤1.¤2.¤3. 球体:由球面围成的(球面是曲面)¤4. 几何图形是由点、线、面构成的。

①几何体与外界的接触面或我们能看到的外表就是几何体的表面。

几何的表面有平面和曲面;②面与面相交得到线;③线与线相交得到点。

※5. 棱:在棱柱中,任何相邻两个面的交线都叫做棱.。

※6. 侧棱:相邻两个侧面的交线叫做侧棱..,所有侧棱长都相等。

¤7. 棱柱的上、下底面的形状相同,侧面的形状都是长方形。

¤8. 根据底面图形的边数,人们将棱柱分为三棱柱、四棱柱、五棱柱、六棱柱……它们底面图形的形状分别为三边形、四边形、五边形、六边形…… ¤9. 长方体和正方体都是四棱柱。

¤10. 圆柱的表面展开图是由两个相同的圆形和一个长方形连成。

¤11. 圆锥的表面展开图是由一个圆形和一个扇形连成。

※12. 设一个多边形的边数为n(n≥3,且n 为整数),从一个顶点出发的对角线有(n-3)条;可以把n 边形成(n-2)个三角形;这个n 边形共有2)3(-n n 条对角线。

◎13. 圆上两点之间的部分叫做弧.,弧是一条曲线。

◎14. 扇形,由一条弧和经过这条弧的端点的两条半径所组成的图形。

¤15. 凸多边形和凹多边形都属于多边形。

有弧或不封闭图形都不是多边形。

第二章 有理数及其运算※※数轴的三要素:原点、正方向、单位长度(三者缺一不可)。

※任何一个有理数,都可以用数轴上的一个点来表示。

七年级数学上册第七单元的必背知识点

七年级数学上册第七单元的必背知识点

七年级数学上册第七单元的必背知识点一、基础定义与概念1. 点、直线、线段、射线点:数学上的点是没有大小、形状、方向的,只有位置。

直线:直线是由无数个点组成,具有无限延伸性,任意两点可以确定一条直线。

线段:线段是由两个点组成,具有长度,有起点和终点。

射线:射线是由一个起点开始,无限延伸的线段。

2. 角度角度:由两条射线共同确定的图形,其端点为角的顶点,两条射线分别为角的两边。

直角:角度为90度的角叫做直角。

3. 平行与垂直平行:如果两条直线在同一个平面内,且不相交,则这两条直线被称为平行。

垂直:如果两条直线相交,且相交的角度为90度,则这两条直线被称为垂直。

二、平面图形1. 三角形定义:三角形是由三条线段组成,三个顶点不共线。

分类:按角度分:直角三角形、锐角三角形、钝角三角形。

按边长分:等腰三角形 (两边相等,两角相等)、等边三角形 (三边相等,三角都是60度)、普通三角形 (三边都不相等)。

面积计算:三角形的面积= 1/2 * 底* 高。

2. 四边形定义:四边形是由四条线段组成,四个顶点依次相连。

分类:按对边是否平行分:梯形、平行四边形、矩形、正方形。

按对角线是否相等分:菱形 (四边等长的平行四边形)。

特殊性质:如平行四边形的对边相等、两对角线互相平分等。

3. 多边形定义:多边形是由多条线段组成,三个以上顶点不共线。

分类:按边的长度和角的大小可以分为不规则多边形和规则多边形。

4. 圆形定义:圆形是由一个固定点 (圆心)和到圆心等长的线段(半径)组成。

性质:所有到圆心的距离都等于半径的点组成的图形。

公式:周长= 2πr(r为半径),面积= πr²。

三、特殊定理与性质1. 勾股定理内容:在直角三角形中,直角边的平方和等于斜边的平方(a² + b² = c²,其中c为斜边)。

应用:用于计算直角三角形的边长或验证直角三角形。

2. 相交线段定理内容:如果两条线段在空间中相交,则相交部分的长度小于两条线段长度之和。

初中数学知识点框架图和几何公式定理汇总

初中数学知识点框架图和几何公式定理汇总

初中数学知识点框架图和几何公式定理汇总几何公式定理汇总初中几何公式定理:线1、同角或等角的余角相等2、过一点有且只有一条直线和已知直线垂直3、过两点有且只有一条直线4、两点之间线段最短5、同角或等角的补角相等6、直线外一点与直线上各点连接的所有线段中,垂线段最短7、平行公理:经过直线外一点,有且只有一条直线与这条直线平行8、如果两条直线都和第三条直线平行,这两条直线也互相平行9、定理:线段垂直平分线上的点和这条线段两个端点的距离相等10、逆定理:和一条线段两个端点距离相等的点,在这条线段的垂直平分线上11、线段的垂直平分线可看作和线段两端点距离相等的所有点的集合12、定理1:关于某条直线对称的两个图形是全等形13、定理2:如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线14、定理3:两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上15、逆定理:如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称初中几何公式定理:角16、同位角相等,两直线平行17、内错角相等,两直线平行18、同旁内角互补,两直线平行19、两直线平行,同位角相等20、两直线平行,内错角相等21、两直线平行,同旁内角互补22、定理1:在角的平分线上的点到这个角的两边的距离相等23、定理2:到一个角的两边的距离相同的点,在这个角的平分线上24、角的平分线是到角的两边距离相等的所有点的集合初中几何公式定理:三角形25、定理:三角形两边的和大于第三边26、推论:三角形两边的差小于第三边27、定理:三角形三个内角的和等于180°28、推论1:直角三角形的两个锐角互余29、推论2:三角形的一个外角等于和它不相邻的两个内角的和30、推论3:三角形的一个外角大于任何一个和它不相邻的内角31、勾股定理:直角三角形两直角边a、b的平方和、等于斜边c的平方32、勾股定理的逆定理:如果三角形的三边长a、b、c有关系a的平方+b的平方=c的平方,那么这个三角形是直角三角形初中几何公式定理:等腰、直角三角形33、等腰三角形的性质定理:等腰三角形的两个底角相等34、推论1:等腰三角形顶角的平分线平分底边并且垂直于底边35、等腰三角形的顶角平分线、底边上的中线和高互相重合36、推论3:等边三角形的各角都相等,并且每一个角都等于60°37、等腰三角形的判定定理:如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)38、推论1:三个角都相等的三角形是等边三角形39、推论2:有一个角等于60°的等腰三角形是等边三角形40、在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半41、直角三角形斜边上的中线等于斜边上的一半初中几何公式定理:相似、全等三角形42、定理:平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似43、相似三角形判定定理1:两角对应相等,两三角形相似(ASA)44、直角三角形被斜边上的高分成的两个直角三角形和原三角形相似45、判定定理2:两边对应成比例且夹角相等,两三角形相似(SAS)46、判定定理3:三边对应成比例,两三角形相似(SSS)47、定理:如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似48、性质定理1:相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比49、性质定理2:相似三角形周长的比等于相似比50、性质定理3:相似三角形面积的比等于相似比的平方51、边角边公理:有两边和它们的夹角对应相等的两个三角形全等52、角边角公理:有两角和它们的夹边对应相等的两个三角形全等53、推论:有两角和其中一角的对边对应相等的两个三角形全等54、边边边公理:有三边对应相等的两个三角形全等55、斜边、直角边公理:有斜边和一条直角边对应相等的两个直角三角形全等56、全等三角形的对应边、对应角相等初中几何公式定理:四边形57、定理:四边形的内角和等于360°58、四边形的外角和等于360°59、定理:n边形的内角的和等于(n-2)×180°60、推论任意多边的外角和等于360°61、平行四边形性质定理1:平行四边形的对角相等62、平行四边形性质定理2:平行四边形的对边相等63、推论:夹在两条平行线间的平行线段相等64、平行四边形性质定理3:平行四边形的对角线互相平分65、平行四边形判定定理1:两组对角分别相等的四边形是平行四边形66、平行四边形判定定理2:两组对边分别相等的四边形是平行四边形67、平行四边形判定定理3:对角线互相平分的四边形是平行四边形68、平行四边形判定定理4:一组对边平行相等的四边形是平行四边形初中几何公式定理:矩形69、矩形性质定理1:矩形的四个角都是直角70、矩形性质定理2:矩形的对角线相等71、矩形判定定理1:有三个角是直角的四边形是矩形72、矩形判定定理2:对角线相等的平行四边形是矩形初中几何公式:菱形73、菱形性质定理1:菱形的四条边都相等74、菱形性质定理2:菱形的对角线互相垂直,并且每一条对角线平分一组对角75、菱形面积=对角线乘积的一半,即S=(a×b)÷276、菱形判定定理1:四边都相等的四边形是菱形77、菱形判定定理2:对角线互相垂直的平行四边形是菱形初中几何公式定理:正方形78、正方形性质定理1:正方形的四个角都是直角,四条边都相等79、正方形性质定理2:正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角80、定理1:关于中心对称的两个图形是全等的81、定理2:关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分82、逆定理:如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称初中几何公式定理:等腰梯形83、等腰梯形性质定理:等腰梯形在同一底上的两个角相等84、等腰梯形的两条对角线相等85、等腰梯形判定定理:在同一底上的两个角相等的梯形是等腰梯形86、对角线相等的梯形是等腰梯形初中几何公式:等分87、平行线等分线段定理:如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等88、推论1:经过梯形一腰的中点与底平行的直线,必平分另一腰89、推论2:经过三角形一边的中点与另一边平行的直线,必平分第三边90、三角形中位线定理:三角形的中位线平行于第三边,并且等于它的一半91、梯形中位线定理:梯形的中位线平行于两底,并且等于两底和的一半L=(a+b)÷2S=L ×h92、比例的基本性质:如果a:b=c:d,那么ad=bc;如果ad=bc,那么a:b=c:d93、合比性质:如果a/b=c/d,那么(a±b)/b=(c±d)/d94、等比性质:如果a/b=c/d=…=m/n(b+d+…+n≠0),那么,(a+c+…+m)/(b+d+…+n)=a/b95、平行线分线段成比例定理:三条平行线截两条直线,所得的对应线段成比例96、推论:平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例97、定理:如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边98、平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例初中几何公式定理:圆99、任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值100、任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值101、圆是定点的距离等于定长的点的集合102、圆的内部可以看作是圆心的距离小于半径的点的集合103、圆的外部可以看作是圆心的距离大于半径的点的集合104、同圆或等圆的半径相等105、到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆106、和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线107、到已知角的两边距离相等的点的轨迹,是这个角的平分线108、到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线109、定理不在同一直线上的三个点确定一条直线110、垂径定理垂直于弦的直径平分这条弦并且平分弦所对的两条弧111、推论1:①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧②弦的垂直平分线经过圆心,并且平分弦所对的两条弧③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧112、推论2:圆的两条平行弦所夹的弧相等113、圆是以圆心为对称中心的中心对称图形114、定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等115、推论:在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等116、定理:一条弧所对的圆周角等于它所对的圆心角的一半117、推论1:同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等118、推论2:半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径119、推论3:如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形120、定理:圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角121、①直线L和⊙O相交d﹤r;②直线L和⊙O相切d=r;③直线L和⊙O相离d﹥r 122、切线的判定定理:经过半径的外端并且垂直于这条半径的直线是圆的切线123、切线的性质定理:圆的切线垂直于经过切点的半径124、推论1:经过圆心且垂直于切线的直线必经过切点125、推论2:经过切点且垂直于切线的直线必经过圆心126、切线长定理:从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角127、圆的外切四边形的两组对边的和相等128、弦切角定理:弦切角等于它所夹的弧对的圆周角129、推论:如果两个弦切角所夹的弧相等,那么这两个弦切角也相等130、相交弦定理:圆内的两条相交弦,被交点分成的两条线段长的积相等131、推论:如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项132、切割线定理:从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项133、推论:从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等134、如果两个圆相切,那么切点一定在连心线上135、①两圆外离d﹥R+r;②两圆外切d=R+r;③两圆相交R-r﹤d﹤R+r(R﹥r);④两圆内切d=R-r(R﹥r);⑤两圆内含d﹤R-r(R﹥r)136、定理:相交两圆的连心线垂直平分两圆的公共弦137、定理:把圆分成n(n≥3):⑴依次连结各分点所得的多边形是这个圆的内接正n边形⑵经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形138、定理:任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆139、正n边形的每个内角都等于(n-2)×180°/n140、定理:正n边形的半径和边心距把正n边形分成2n个全等的直角三角形141、正n边形的面积Sn=pnrn/2p表示正n边形的周长142、正三角形面积√3a/4a表示边长143、如果在一个顶点周围有k个正n边形的角,由于这些角的和应为360°,因此k×(n-2)180°/n=360°化为(n-2)(k-2)=4144、弧长计算公式:L=nπR/180145、扇形面积公式:S扇形=nπR/360=LR/2146、内公切线长=d-(R-r)外公切线长=d-(R+r)。

七年级命题 定理 知识点

七年级命题 定理 知识点

七年级命题定理知识点七年级数学定理及其应用在中学数学中,定理是数学学科中最重要的组成部分之一。

它们提供了数学中的基础思想和一些重要的结论,是学生学习数学的基础。

本文将介绍一些七年级数学定理及其应用。

一、角的定义首先,让我们看看角的定义。

一个角是由两条线段或射线共享一个端点所组成的图形。

角的大小可以用度数或弧度来表示。

二、角的分类在已知一个角时,我们可以将它分类为不同的类型。

例如,锐角是指角的度数小于90度,直角是指角的度数等于90度,而钝角是指角的度数大于90度。

三、全等三角形定理全等三角形定理是中学数学中最重要的定理之一。

它表明,如果两个三角形的三边分别相等,那么这两个三角形就是全等的。

四、平行四边形定理平行四边形定理表明,如果一组对边分别平行,则这个四边形就是平行四边形。

该定理还包括平行四边形的对角线的特殊性质。

五、园的定义及应用圆是数学中常用的几何图形之一,它由围绕中心点的一组点组成。

该圆的线条称为圆周,圆心为中心。

圆有多种不同的用途。

例如,在计算圆的周长和面积时,我们通常使用圆周率。

还可以使用圆来计算弧长和扇形面积。

六、角平分线当一条直线将一个角平分时,它被称为角度平分线。

该定理还包括垂直角的性质。

七、正比例在数学中,正比例是指两个量之间存在一种恒定比率关系。

例如,如果我们知道一个物品的价格和数量,我们可以计算出价格与数量之间的正比例关系。

以上是一些七年级数学学科中最重要的定理和概念,它们是数学学科中重要的基础。

掌握它们可以帮助学生更好地理解数学中的其他概念和定理,并在解决问题时提供帮助和启示。

七年级基本定理知识点

七年级基本定理知识点数学是一门重要的学科,在其中基本定理是一个重要的知识点,掌握了基本定理,就可以更好地理解数学。

本文将介绍七年级基本定理知识点,以便学生更好地掌握这些知识。

1.帕斯卡定理帕斯卡定理,又称为杨辉三角定理,指的是:对于任意正整数n,有:$(a+b)^n = \sum\limits_{i=0}^{n}{n \choose i}a^ib^{n-i}$其中, ${n \choose i}$ 表示组合数,其意义为从n个不同元素中取i个元素的组合数目。

例如, ${5 \choose 2}$=10,表示从5个不同元素中取2个元素的组合数目为10。

帕斯卡定理的应用非常广泛,在组合数学、概率论等领域有着广泛的应用,同时也是解决数学题目的有效工具。

2.勾股定理勾股定理也称毕达哥拉斯定理,它是世界上最古老的数学定理之一,由古希腊的毕达哥拉斯所发现。

勾股定理指的是:在直角三角形中,直角边的平方等于另外两边平方和。

即,若三角形ABC中,∠B=90,AB为直角边,则有:$AC^2+BC^2=AB^2$勾股定理普遍适用于测量一些物体的长度、角度等问题,是数学中非常重要的一个定理。

3.数的因式分解定理数的因式分解定理是指:任何一个大于1的自然数都可以写成若干个质数之积的形式。

例如,60可以分解为2×2×3×5,而360可以分解为2×2×2×3×3×5。

因式分解定理是解决数学问题的基本方法之一,在代数、几何等学科中都有着广泛的应用。

4.直线的两点式直线的两点式是指:在平面直角坐标系中,已知两个不同的点A(x1, y1)和B(x2, y2),则过这两点可以作一条直线,其方程为:$\frac{y-y_1}{x-x_1}=\frac{y_2-y_1}{x_2-x_1}$直线的两点式在几何学中应用非常广泛,对于解决几何问题具有重要的作用。

5.平均数的计算平均数是指一组数值的总和除以数的个数得到的数值,通常用“x”表示。

鲁教版数学七年级上册期末复习考点总结

鲁教版七年级上册期末复习考点总结第一章 生活中的轴对称1、判断给你的图形是否是轴对称图形。

2、找图形的对称轴,需要注意的是不要遗漏,找全了。

3、牵涉到尺规作图(如作已知角的角平分线,线段的垂直平分线,画等腰三角形,等边三角形),明确已知,求作,作法步骤一定要详细,写清楚怎么作的,注意要保留作图痕迹。

4、定理,重要的结论记清楚⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧︒等,对应角相等轴对称图形对应线段相被对称轴垂直平分轴对称图形对应点连线角对的边是斜边的一半直角三角形,等角对等边线合一)等腰三角形的性质(三垂直平分线30 5、区分开轴对称图形和图像关于对称轴对称6、细心一些,知识点简单但是琐碎,简单也不能马虎。

第二章 勾股定理1、一定要清楚勾股定理的探索这一节内容,利用的是面积法。

2、清楚 “勾股定理”是什么?3、勾股数不是唯一的,有无数组,只要满足a b c a 2+b 2=c 2,就是一组勾股数。

3、注意多解问题4、结合生活中的勾股定理。

第三章 实数1、无理数,有理数的区别2、平方根,算数平方根的区别,立方根3、牵涉到形式的变化,如(-4)2的算术平方根是?,25的平方根是?25-)(=?(5)2=?等问题要会抓住问题考查的实质4、正数,负数,零,是否有平方根,算术平方根,立方根?有的话有几个?5、比较大小时的问题,要清楚2≈1.414 3≈1.732 5≈2.236,会前后看看如4<17<5(4=16,5=25) 6、注意22不是分数,a -有意义,则a 是非正数7、注意有绝对值的题目。

第五章平面直角坐标系1、找准位置,联系对称图形找点的坐标2、关于x轴对称,y轴对称点的坐标怎么变得?图像关于x轴对称,关于y轴对称的新坐标。

3、注意多解问题,容易遗漏。

第六章一次函数1、函数的概念,x的取值范围一定标注,否则函数表达式没意义。

2、区分一次函数,正比例函数的概念,正比例函数是一次函数的特例,正比例函数是一次函数。

七年级上册数学知识点总结(通用15篇)

七年级上册数学知识点总结(通用15篇) 七年级上册数学知识点总结(通用15篇) 总结就是对一个时期的学习、工作或其完成情况进行一次全面系统的回顾和分析的书面材料,它有助于我们寻找工作和事物发展的规律,从而掌握并运用这些规律,我想我们需要写一份总结了吧。总结怎么写才不会流于形式呢?以下是小编帮大家整理的七年级上册数学知识点总结,希望对大家有所帮助。 七年级上册数学知识点总结 篇1 第一章 有理数 (一)正负数 1.正数:大于0的数。 2.负数:小于0的数。 3.0即不是正数也不是负数。 4.正数大于0,负数小于0,正数大于负数。 (二)有理数 1.有理数:由整数和分数组成的数。包括:正整数、0、负整数,正分数、负分数。可以写成两个整数之比的形式。(无理数是不能写成两个整数之比的形式,它写成小数形式,小数点后的数字是无限不循环的。如:π) 2.整数:正整数、0、负整数,统称整数。 3.分数:正分数、负分数。 (三)数轴 1.数轴:用直线上的点表示数,这条直线叫做数轴。(画一条直线,在直线上任取一点表示数0,这个零点叫做原点,规定直线上从原点向右或向上为正方向;选取适当的长度为单位长度,以便在数轴上取点。) 2.数轴的三要素:原点、正方向、单位长度。 3.相反数:只有符号不同的两个数叫做互为相反数。0的相反数还是0。 4.绝对值:正数的绝对值是它本身,负数的绝对值是它的相反数;0的绝对值是0,两个负数比较大小,绝对值大的反而小。 (四)有理数的加减法 1.先定符号,再算绝对值。 2.加法运算法则:同号相加,取相同符号,并把绝对值相加。异号相加,取绝对值大的加数的符号,并用较大的绝对值减去较小的绝对值。互为相反数的两个数相加得0。一个数同0相加减,仍得这个数。 3.加法交换律:a+b= b+ a 两个数相加,交换加数的位置,和不变。 4.加法结合律:(a+b)+ c = a +(b+ c )三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。 5. ab = a +(b) 减去一个数,等于加这个数的相反数。 (五)有理数乘法(先定积的符号,再定积的大小) 1.同号得正,异号得负,并把绝对值相乘。任何数同0相乘,都得0。 2.乘积是1的两个数互为倒数。 3.乘法交换律:ab= ba 4.乘法结合律:(ab)c = a (b c) 5.乘法分配律:a(b +c)= a b+ ac (六)有理数除法 1.先将除法化成乘法,然后定符号,最后求结果。 2.除以一个不等于0的数,等于乘这个数的倒数。 3.两数相除,同号得正,异号得负,并把绝对值相除,0除以任何一个不等于0的数,都得0。 (七)乘方 1.求n个相同因数的积的运算,叫做乘方。写作an。(乘方的结果叫幂,a叫底数,n叫指数) 2.负数的奇数次幂是负数,负数的偶次幂是正数;0的任何正整数次幂都是0。 (八)有理数的加减乘除混合运算法则 1.先乘方,再乘除,最后加减。 2.同级运算,从左到右进行。 3.如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行。 (九)科学记数法、近似数、有效数字。 第二章 整式 (一)整式 1.整式:单项式和多项式的统称叫整式。 2.单项式:数与字母的乘积组成的式子叫单项式。单独的一个数或一个字母也是单项式。 3.系数:一个单项式中,数字因数叫做这个单项式的系数。 4.次数:一个单项式中,所有字母的指数和叫做这个单项式的次数。 5.多项式:几个单项式的和叫做多项式。 6.项:组成多项式的每个单项式叫做多项式的项。 7.常数项:不含字母的项叫做常数项。 8.多项式的次数:多项式中,次数最高的项的次数叫做这个多项式的次数。 9.同类项:多项式中,所含字母相同,并且相同字母的指数也相同的项叫做同类项。 10.合并同类项:把多项式中的同类项合并成一项,叫做合并同类项。 (二)整式加减 整式加减运算时,如果遇到括号先去括号,再合并同类项。 1.去括号:一般地,几个整式相加减,如果有括号就先去括号,然后再合并同类项。 如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同。如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反。 2.合并同类项:把多项式中的同类项合并成一项,叫做合并同类项。 合并同类项后,所得项的系数是合并前各同类项的系数的和,且字母部分不变 第三章 一元一次方程 分析实际问题中的数量关系,利用其中的相等关系列出方程,是用数学解决实际问题的一种方法。 (一)方程:先设字母表示未知数,然后根据相等关系,写出含有未知数的等式叫方程。 (二)一元一次方程: 1.一元一次方程:方程里只含有一个未知数(元),未知数的次数都是1,这样的方程叫做一元一次方程。 2.解:求出的方程中未知数的值叫做方程的解。 (二)等式的性质 1.等式两边加(或减)同一个数(或式子),结果仍相等。 如果a= b,那么a± c= b± c 2.等式两边乘同一个数,或除以同一个不为0的数,结果仍相等。 如果a= b,那么a c= b c; 如果a= b,(c0),那么a ∕c = b ∕ c。 (三)解方程的步骤 解一元一次方程的步骤:去分母、去括号、移项、合并同类项,未知数系数化为1。 1.去分母:把系数化成整数。 2.去括号 3.移项:把等式一边的某项变号后移到另一边。 4.合并同类项 5.系数化为1 第四章 图形认识初步 一、图形认识初步 1.几何图形:把从实物中抽象出来的各种图形的统称。 2.平面图形:有些几何图形的各部分都在同一平面内,这样的图形是平面图形。 3.立体图形:有些几何图形的各部分不都在同一平面内,这样的图形是立体图形。 4.展开图:有些立体图形是由一些平面图形围成的,将它们的表面适当剪开,可以展开成平面图形,这样的平面图形称为相应立体图形的展开图。 5.点,线,面,体 ①图形是由点,线,面构成的。 ②线与线相交得点,面与面相交得线。 ③点动成线,线动成面,面动成体。 二、直线、线段、射线 1.线段:线段有两个端点。 2.射线:将线段向一个方向无限延长就形成了射线。射线只有一个端点。 3.直线:将线段的两端无限延长就形成了直线。直线没有端点。 4.两点确定一条直线:经过两点有一条直线,并且只有一条直线。 5.相交:两条直线有一个公共点时,称这两条直线相交。 6.两条直线相交有一个公共点,这个公共点叫交点。 7.中点:M点把线段AB分成相等的两条线段AM与MB,点M叫做线段AB的中点。 8.线段的性质:两点的所有连线中,线段最短。(两点之间,线段最短) 9.距离:连接两点间的线段的长度,叫做这两点的距离。 三、角 1.角:有公共端点的两条射线组成的图形叫做角。 2.角的度量单位:度、分、秒。 3.角的度量与表示: ①角由两条具有公共端点的射线组成,两条射线的公共端点是这个角的顶点。 ②一度的1/60是一分,一分的1/60是一秒。角的度、分、秒是60进制。 4.角的比较: ①角也可以看成是由一条射线绕着他的端点旋转而成的。 ②平角和周角:一条射线绕着他的端点旋转,当终边和始边成一条直线时,所成的角叫做平角。始边继续旋转,当他又和始边重合时,所成的角叫做周角。平角等于180度。周角等于360度。直角等于90度。 ③平分线:从一个角的顶点引出的一条射线,把这个角分成两个相等的角,这条射线叫做这个角的平分线。 ④工具:量角器、三角尺、经纬仪。 5.余角和补角 ①余角:两个角的和等于90度,这两个角互为余角。即其中每一个是另一个角的余角。 ②补角:两个角的和等于180度,这两个角互为补角。即其中一个是另一个角的补角。 ③补角的性质:等角的补角相等 ④余角的性质:等角的余角相等 七年级上册数学知识点总结 篇2 2.1整式 1、单项式:由数字和字母乘积组成的式子。系数,单项式的次数。单项式指的是数或字母的积的代数式。单独一个数或一个字母也是单项式。因此,判断代数式是否是单项式,关键要看代数式中数与字母是否是乘积关系,即分母中不含有字母,若式子中含有加、减运算关系,其也不是单项式。 2、单项式的系数:是指单项式中的数字因数; 3、单项数的次数:是指单项式中所有字母的指数的和。 4、多项式:几个单项式的和。判断代数式是否是多项式,关键要看代数式中的每一项是否是单项式。每个单项式称项,常数项,多项式的次数就是多项式中次数的次数。多项式的次数是指多项式里次数项的次数,这里ab是次数项,其次数是6;多项式的项是指在多项式中,每一个单项式。特别注意多项式的项包括它前面的性质符号。 5、它们都是用字母表示数或列式表示数量关系。注意单项式和多项式的每一项都包括它前面的符号。 6、单项式和多项式统称为整式。 2.2整式的加减 1、同类项:所含字母相同,并且相同字母的指数也相同的项。与字母前面的系数(≠0)无关。 2、同类项必须同时满足两个条件: (1)所含字母相同; (2)相同字母的次数相同,二者缺一不可。同类项与系数大小、字母的排列顺序无关 3、合并同类项:把多项式中的同类项合并成一项。可以运用交换律,结合律和分配律。 4、合并同类项法则:合并同类项后,所得项的系数是合并前各同类项的系数的和,且字母部分不变; 5、去括号法则:去括号,看符号:是正号,不变号;是负号,全变号。 6、整式加减的一般步骤: 一去、二找、三合 (1)如果遇到括号按去括号法则先去括号。 (2)结合同类项。 (3)合并同类项 七年级上册数学知识点总结 篇3 第一章 丰富的图形世界 1、几何图形 从实物中抽象出来的各种图形,包括立体图形和平面图形。 2、点、线、面、体 (1)几何图形的组成 点:线和线相交的地方是点,它是几何图形中最基本的图形。

北师大版初中七年级数学知识点汇总

侧面是曲面底面是圆面圆柱,:⎩⎨⎧侧面是正方形或长方形底面是多边形棱体柱体,:侧面是曲面底面是圆面圆锥,:⎩⎨⎧侧面都是三角形底面是多边形棱锥锥体,:⎪⎪⎪⎩⎪⎪⎪⎨⎧有理数⎪⎩⎪⎨⎧)3,2,1:()3,2,1:( 如负整数如正整数整数)0(零⎪⎩⎪⎨⎧----)8.4,3.2,31,21:( 如负分数分数)8.3,3.5,31,21:( 如正分数北师大版初中数学定理知识点汇总[七年级上册(北师大版)]第一章 丰富的图形世界¤1 ..¤2.¤3. 球体:由球面围成的(球面是曲面)¤4. 几何图形是由点、线、面构成的。

①几何体与外界的接触面或我们能看到的外表就是几何体的表面。

几何的表面有平面和曲面;②面与面相交得到线;③线与线相交得到点。

※5. 棱:在棱柱中,任何相邻两个面的交线都叫做棱.。

※6. 侧棱:相邻两个侧面的交线叫做侧棱..,所有侧棱长都相等。

¤7. 棱柱的上、下底面的形状相同,侧面的形状都是长方形。

¤8. 根据底面图形的边数,人们将棱柱分为三棱柱、四棱柱、五棱柱、六棱柱……它们底面图形的形状分别为三边形、四边形、五边形、六边形……¤9. 长方体和正方体都是四棱柱。

¤10. 圆柱的表面展开图是由两个相同的圆形和一个长方形连成。

¤11. 圆锥的表面展开图是由一个圆形和一个扇形连成。

※12. 设一个多边形的边数为n(n≥3,且n 为整数),从一个顶点出发的对角线有(n-3)条;可以把n 边形成(n-2)个三角形;这个n 边形共有2)3(-n n 条对角线。

◎13. 圆上两点之间的部分叫做弧.,弧是一条曲线。

◎14. 扇形,由一条弧和经过这条弧的端点的两条半径所组成的图形。

¤15. 凸多边形和凹多边形都属于多边形。

有弧或不封闭图形都不是多边形。

第二章 有理数及其运算※数轴的三要素:原点、正方向、单位长度(三者缺一不可)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

侧面是曲面底面是圆面圆柱,:⎩⎨⎧侧面是正方形或长方形底面是多边形棱体柱体,:侧面是曲面底面是圆面圆锥,:⎩⎨⎧侧面都是三角形底面是多边形棱锥锥体,:初中数学七年级上学期定理知识点汇总第一章 丰富的图形世界¤1.¤2.¤3. 球体:由球面围成的(球面是曲面)¤4. 几何图形是由点、线、面构成的。

①几何体与外界的接触面或我们能看到的外表就是几何体的表面。

几何的表面有平面和曲面;②面与面相交得到线;③线与线相交得到点。

※5. 棱:在棱柱中,任何相邻两个面的交线都叫做棱.。

※6. 侧棱:相邻两个侧面的交线叫做侧棱..,所有侧棱长都相等。

¤7. 棱柱的上、下底面的形状相同,侧面的形状都是长方形。

¤8. 根据底面图形的边数,人们将棱柱分为三棱柱、四棱柱、五棱柱、六棱柱……它们底面图形的形状分别为三边形、四边形、五边形、六边形…… ¤9. 长方体和正方体都是四棱柱。

¤10. 圆柱的表面展开图是由两个相同的圆形和一个长方形连成。

¤11. 圆锥的表面展开图是由一个圆形和一个扇形连成。

※12. 设一个多边形的边数为n(n≥3,且n 为整数),从一个顶点出发的对角线有(n-3)条;可以把n 边形成(n-2)个三角形;这个n 边形共有2)3(-n n 条对角线。

◎13. 圆上两点之间的部分叫做弧.,弧是一条曲线。

◎14. 扇形,由一条弧和经过这条弧的端点的两条半径所组成的图形。

¤15. 凸多边形和凹多边形都属于多边形。

有弧或不封闭图形都不是多边形。

第二章 有理数及其运算⎪⎪⎪⎩⎪⎪⎪⎨⎧有理数⎪⎩⎪⎨⎧)3,2,1:()3,2,1:( 如负整数如正整数整数)0(零⎪⎩⎪⎨⎧----)8.4,3.2,31,21:( 如负分数分数)8.3,3.5,31,21:( 如正分数※ ※数轴的三要素:原点、正方向、单位长度(三者缺一不可)。

※任何一个有理数,都可以用数轴上的一个点来表示。

(反过来,不能说数轴上所有的点都表示有理数)※如果两个数只有符号不同,那么我们称其中一个数为另一个数的相反数,也称这两个数互为相反数。

(0的相反数是0)※在数轴上,表示互为相反数的两个点,位于原点的侧,且到原点的距离相等。

¤数轴上两点表示的数,右边的总比左边的大。

正数在原点的右边,负数在原点的左边。

※绝对值的定义:一个数a 的绝对值就是数轴上表示数a 的点与原点的距离。

数a 的绝对值记作|a|。

※正数的绝对值是它本身;负数的绝对值是它的数;0的绝对值是0。

⎪⎩⎪⎨⎧<-=>)0()0(0)0(||a a a a a a 或 ⎩⎨⎧<-≥)0()0(||a a a a a ※绝对值的性质:除0外,绝对值为一正数的数有两个,它们互为相反数;互为相反数的两数(除0外)的绝对值相等;任何数的绝对值总是非负数,即|a|≥0※比较两个负数的大小,绝对值大的反而小。

比较两个负数的大小的步骤如下: ①先求出两个数负数的绝对值;②比较两个绝对值的大小;③根据“两个负数,绝对值大的反而小”做出正确的判断。

※绝对值的性质:①对任何有理数a ,都有|a|≥0越来越大②若|a|=0,则|a|=0,反之亦然③若|a|=b ,则a=±b④对任何有理数a,都有|a|=|-a|※有理数加法法则: ①同号两数相加,取相同符号,并把绝对值相加。

②异号两数相加,绝对值相等时和为0;绝对值不等时取绝对值较大的数的符号,并用较大数的绝对值减去较小数的绝对值。

③一个数同0相加,仍得这个数。

※加法的交换律、结合律在有理数运算中同样适用。

¤灵活运用运算律,使用运算简化,通常有下列规律:①互为相反的两个数,可以先相加;②符号相同的数,可以先相加;③分母相同的数,可以先相加;④几个数相加能得到整数,可以先相加。

※有理数减法法则: 减去一个数,等于加上这个数的相反数。

¤有理数减法运算时注意两“变”:①改变运算符号;②改变减数的性质符号(变为相反数)有理数减法运算时注意一个“不变”:被减数与减数的位置不能变换,也就是说,减法没有交换律。

¤有理数的加减法混合运算的步骤:①写成省略加号的代数和。

在一个算式中,若有减法,应由有理数的减法法则转化为加法,然后再省略加号和括号;②利用加法则,加法交换律、结合律简化计算。

(注意:减去一个数等于加上这个数的相反数,当有减法统一成加法时,减数应变成它本身的相反数。

)※有理数乘法法则: ①两数相乘,同号得正,异号得负,绝对值相乘。

②任何数与0相乘,积仍为0。

※如果两个数互为倒数,则它们的乘积为1。

(如:-2与21 、 3553与…等) ※乘法的交换律、结合律、分配律在有理数运算中同样适用。

¤有理数乘法运算步骤:①先确定积的符号;②求出各因数的绝对值的积。

¤乘积为1的两个有理数互为倒数。

注意:①零没有倒数②求分数的倒数,就是把分数的分子分母颠倒位置。

一个带分数要先化成假分数。

③正数的倒数是正数,负数的倒数是负数。

※有理数除法法则: ①两个有理数相除,同号得正,异号得负,并把绝对值相除。

②0除以任何非0的数都得0。

0不可作为除数,否则无意义。

※有理数的乘方 ※注意:①一个数可以看作是本身的一次方,如5=51;②当底数是负数或分数时,要先用括号将底数括上,再在右上角写指数。

※乘方的运算性质:①正数的任何次幂都是正数;②负数的奇次幂是负数,负数的偶次幂是正数;③任何数的偶数次幂都是非负数;④1的任何次幂都得1,0的任何次幂都得0;⑤-1的偶次幂得1;-1的奇次幂得-1;⑥在运算过程中,首先要确定幂的符号,然后再计算幂的绝对值。

※有理数混合运算法则:①先算乘方,再算乘除,最后算加减。

②如果有括号,先算括号里面的。

第三章 字母表示数※代数式的概念:用运算符号(加、减、乘除、乘方、开方等)把数与表示数的字母连接而成的式子叫做代数式...。

单独的一个数或一个字母也是代数式。

注意:①代数式中除了含有数、字母和运算符号外,还可以有括号;②代数式中不含有“=、>、<、≠”等符号。

等式和不等式都不是代数式,但等号和不等号两边的式子一般都是代数式;=⨯⨯⨯⨯ an a a a a 个③代数式中的字母所表示的数必须要使这个代数式有意义,是实际问题的要符合实际问题的意义。

※代数式的书写格式:①代数式中出现乘号,通常省略不写,如vt ;②数字与字母相乘时,数字应写在字母前面,如4a ; ③带分数与字母相乘时,应先把带分数化成假分数后与字母相乘,如a ⨯312应写作a 37; ④数字与数字相乘,一般仍用“×”号,即“×”号不省略;⑤在代数式中出现除法运算时,一般按照分数的写法来写,如4÷(a-4)应写作44-a ;注意:分数线具有“÷”号和括号的双重作用。

⑥在表示和(或)差的代差的代数式后有单位名称的,则必须把代数式括起来,再将单位名称写在式子的后面,如)(22b a -平方米※代数式的系数:代数式中的数字中的数字因数叫做代数式的系数......。

如3x,4y 的系数分别为3,4。

注意:①单个字母的系数是1,如a 的系数是1;②只含字母因数的代数式的系数是1或-1,如-ab 的系数是-1。

a 3b 的系数是1 ※代数式的项:代数式7262--x x 表示6x 2、-2x 、-7的和,6x 2、-2x 、-7是它的项,其中把不含字母的项叫做常数项注意:在交待某一项时,应与前面的符号一起交待。

※同类项:所含字母相同,并且相同字母的指数也相同的项叫做同类项。

注意:①判断几个代数式是否是同类项有两个条件:a.所含字母相同;b.相同字母的指数也相同。

这两个条件缺一不可;②同类项与系数无关,与字母的排列顺序无关;③几个常数项也是同类项。

※合差同类项:把代数式中的同类项合并成一项,叫做合并同类项。

①合并同类项的理论根据是逆用乘法分配律;②合并同类项的法则是把同类项的系数相加,所得结果作为系数,字母和字母的指数不变。

注意:①如果两个同类项的系数互为相反数,合并同类项后结果为0;②不是同类项的不能合并,不能合并的项,在每步运算中都要写上;③只要不再有同类项,就是最后结果,结果还是代数式。

※根据去括号法则去括号:括号前面是“+”号,把括号和它前面的“+”号去掉,括号里各项都不改变符号;括号前面是“-”号去掉,括号里各项都改变符号。

※根据分配律去括号:括号前面是“+”号看成+1,括号前面是“-”号看成-1,根据乘法的分配律用+1或-1去乘括号里的每一项以达到去括号的目的。

※注意:①去括号时,要连同括号前面的符号一起去掉;②去括号时,首先要弄清楚括号前是“+”号还是“-”号;③改变符号时,各项都变号;不改变符号时,各项都不变号。

第四章平面图形及位置关系一. 线段、射线、直线※1. 正确理解直线、射线、线段的概念以及它们的区别:※2. 直线公理:经过两点有且只有一条直线.二.比较线段的长短※1. 线段公理:两点间线段最短;两之间线段的长度叫做这两点之间的距离.※2. 比较线段长短的两种方法:①圆规截取比较法;②刻度尺度量比较法.※3. 用刻度尺可以画出线段的中点,线段的和、差、倍、分;用圆规可以画出线段的和、差、倍.三.角的度量与表示※1. 角:有公共端点的两条射线组成的图形叫做角;这个公共端点叫做角的顶点;这两条射线叫做角的边.※2. 角的表示法:角的符号为“∠”①用三个字母表示,如图1所示∠AOB②用一个字母表示,如图2所示∠b③用一个数字表示,如图3所示∠1④用希腊字母表示,如图4所示∠β※经过两点有且只有一条直线。

※两点之间的所有连线中,线段最短。

※两点之间线段的长度,叫做这两点之间的距离........。

1º=60’ 1’=60”※角也可以看成是由一条射线绕着它的端点旋转而成的。

如图5所示:※一条射线绕它的端点旋转,当终边和始边成一条直线时,所成的角叫做平角..。

如图6所示:※终边继续旋转,当它又和始边重合时,所成的角叫做周角..。

如图7所示:※从一个角的顶点引出的一条射线,把这个角分成两个相等的角,这条射线叫做这个角的平分线.....。

※经过直线外一点,有且只有一条直线与这条直线平行。

※如果两条直线都与第三条直线平行,那么这两条直线互相平行。

※互相垂直的两条直线的交点叫做垂足..。

※平面内,过一点有且只有一条直线与已知直线垂直。

※如图8所示,过点C作直线AB的垂线,垂足为O点,线段CO的长度叫做点.C.到直线...。

...AB..的距离第五章一元一次方程※在一个方程中,只含有一个未知数x(元),并且未知数的指数是1(次),这样的方程叫做一元一次方程......。

相关文档
最新文档