石墨烯的光电特性及应用
石墨烯薄膜用途

石墨烯薄膜用途石墨烯是一种由碳原子排列成六角形的单层薄膜,具有许多引人注目的特性,因此具有广泛的应用潜力。
石墨烯薄膜在许多领域都具有重要的用途,以下将详细介绍。
首先,石墨烯薄膜在电子学领域具有重要的用途。
由于石墨烯是一种具有导电性的材料,电子在其表面可以以极快的速度移动,使得石墨烯可以用作高性能晶体管材料。
石墨烯晶体管可以替代传统的硅晶体管,具有更高的电子迁移率和更低的能耗。
此外,石墨烯还具有非常好的光透过性,可以用于制造透明导电薄膜,用于触摸屏、太阳能电池等器件。
其次,石墨烯薄膜在能源领域有着广泛的应用前景。
石墨烯具有高度的机械强度和良好的柔韧性,可以用来制造超级电容器和锂离子电池等储能装置,具有更高的能量密度和更长的循环寿命。
石墨烯还可以用作太阳能电池的电极材料,可以提高太阳能电池的转化效率。
第三,石墨烯薄膜在化学领域也具有重要的用途。
由于石墨烯具有大量的表面活性位点和高度的化学稳定性,可以用作吸附材料和催化剂载体。
石墨烯可以吸附和催化许多有机物和无机物,具有广泛的应用潜力,例如水处理、废气净化和有机合成等领域。
此外,石墨烯薄膜在传感器技术方面也有广泛的应用。
由于石墨烯具有极高的比表面积和超好的电子传输特性,可以制造出高灵敏度和高选择性的传感器。
石墨烯传感器可以用于检测环境中的气体、液体和生物分子,例如气体传感器可用于检测有害气体,生物传感器可用于检测疾病标志物。
最后,石墨烯薄膜在光学和光电子学领域也有着重要的应用。
由于石墨烯可以吸收从紫外线到远红外线的光谱范围内的光线,并产生极高的光电转换效率,因此可以用来制造光探测器、光学调制器和激光器等器件。
此外,石墨烯还具有优异的非线性光学性质,可以用于制造光学逻辑门和光通信设备。
总之,石墨烯薄膜具有广泛的应用潜力,并在电子学、能源学、化学、传感器技术、光学和光电子学等领域都有着重要的用途。
随着石墨烯材料研究的不断深入,相信石墨烯的应用前景会在未来得到更加广泛的开发和应用。
石墨烯的十大用途

石墨烯是世界上已经发现的最薄、最坚硬的物质。
美国一位工程师杰弗雷用形象地比喻了石墨烯的强度:将一张和食品保鲜膜一样薄的石墨烯薄片覆盖在一只杯子上,如想用一支铅笔戳穿它,需要一头大象站在铅笔上。
这么薄而又坚硬的石墨烯有什么用途呢?1、制造下一代超级计算机。
石墨烯是目前已知导电性能最好的材料,这种特性尤其适合于高频电路,石墨烯将是硅的替代品,可用来生产未来的超级计算机,使电脑运行速度更快、能耗降低。
2、制造“太空电梯”的缆线。
科学家幻想将来太空卫星要用缆线与地面联接起来,那时卫星就成了有线的风筝,科学家现在终于找到了可以制造这种太空缆线的特殊材料,这就是石墨烯。
3、可作为液晶显示材料。
石墨烯是一种“透明”的导体,可以用来替代现在的液晶显示材料,用于生产下一代电脑、电视、手机的显示屏。
4、制造新一代太阳能电池。
石墨烯透明导电膜对于包括中远红外线在内的所有红外线的高透明性,是转换效率非常高的新一代太阳能电池最理想材料。
5、制造光子传感器。
去年10月,IBM的一个研究小组首次展示了他们研制的石墨烯光电探测器。
6、制造医用消毒品和食品包装。
中国科研人员发现细菌的细胞在石墨烯上无法生长,而人类细胞却不会受损。
利用石墨烯的这一特性可以制作绷带,食品包装,也可生产抗菌服装、床上用品等。
7、创制“新型超强材料”。
石墨烯与塑料复合,可以凭借韧性,兼具超薄、超柔和超轻特性,是下一代新型塑料。
8、石墨烯适合制作透明触摸屏、透光板。
9、制造晶体管集成电路。
石墨烯可取代硅成为下一代超高频率晶体管的基础材料,而广泛应用于高性能集成电路和新型纳米电子器件中。
10、制造出纸片般薄的超轻型飞机材料、制造出超坚韧的防弹衣,具有军事用途。
石墨烯电池的原理及应用

石墨烯电池的原理及应用1. 石墨烯电池的原理石墨烯电池是一种新型电池技术,利用石墨烯材料作为电池的电极材料。
石墨烯是一种由单层碳原子组成的二维材料,具有优异的导电性、化学稳定性和机械强度。
石墨烯电池的原理主要包括电解质层、阳极和阴极。
1.1 电解质层电解质层是石墨烯电池中起到离子传导作用的层。
常用的电解质层材料有液态电解质和固态电解质。
液态电解质可以提供更好的离子传输性能,但同时也存在安全性和稳定性的问题。
固态电解质具有更好的稳定性和安全性,但离子传输性能较差。
选择合适的电解质材料对石墨烯电池的性能和应用至关重要。
1.2 阳极阳极是石墨烯电池中的正极。
石墨烯材料的优异导电性和高比表面积使得石墨烯阳极能够有效储存和释放电荷。
石墨烯阳极能够提高电池的能量密度和循环寿命,提高电池的性能。
1.3 阴极阴极是石墨烯电池中的负极。
常用的阴极材料有锂离子储能材料,例如氧化钴、氧化镍等。
阴极材料的选择对电池的能量密度和循环寿命有很大影响。
石墨烯材料能够提高阴极材料的电化学性能,提高电池的效率和循环寿命。
2. 石墨烯电池的应用石墨烯电池由于其优异的特性被广泛应用于各个领域,以下列举了几个主要的应用领域:2.1 储能领域石墨烯电池在储能领域中具有很高的应用价值。
其高能量密度、快速充放电和长循环寿命的特点使得石墨烯电池成为理想的储能解决方案。
石墨烯电池在电动车、手机、笔记本电脑等电子产品中得到广泛应用。
2.2 环保领域石墨烯电池在环保领域中也起到了重要的作用。
石墨烯材料具有良好的耐腐蚀性和高导电性,可以用于制备高效的环保传感器。
利用石墨烯电池可以检测和监测空气质量、水质污染等环境指标,对环境保护和监测起到积极的推动作用。
2.3 生命科学领域石墨烯电池在生命科学领域中也有广泛应用。
石墨烯材料具有高度的生物相容性和生物稳定性,可以用于制备高灵敏度的生物传感器。
利用石墨烯电池可以实现生物分子的检测和分析,提高生物医学诊断和治疗的效率。
石墨烯量子点在生物与发光材料上的应用研究

石墨烯量子点在生物与发光材料上的应用研究石墨烯是一种由碳原子组成的二维晶体结构材料,具有独特的物理和化学性质。
石墨烯量子点是石墨烯的纳米级别片段,具有优异的光电特性和生物相容性,在生物医学和发光材料领域具有广泛的应用前景。
本文将介绍石墨烯量子点在生物与发光材料上的应用研究。
石墨烯量子点具有优异的荧光特性,可作为生物成像探针。
石墨烯量子点具有较高的量子产率和较长的荧光寿命,在低浓度下即可达到高亮度的荧光信号。
这使得石墨烯量子点在生物体内的成像具有较高的分辨率和较低的背景干扰。
石墨烯量子点还具有较宽的激发波长范围和可调的发射波长,可用于多模态成像,如荧光成像和二光子成像等。
石墨烯量子点具有较好的生物相容性,在生物学样品中不会引起细胞毒性和光损伤,因此可以安全地应用于体内或体外的生物成像研究中。
石墨烯量子点可以用于药物传递和治疗。
石墨烯量子点具有大的比表面积和丰富的官能团,可以有效地吸附和包埋药物分子。
其良好的生物相容性和低光毒性使得石墨烯量子点在体内的应用具有潜力。
石墨烯量子点还可以通过改变表面功能化基团来调控药物的释放速率和靶向性。
通过修饰石墨烯量子点表面的靶向分子,可以实现药物的靶向传递,提高治疗效果并减少副作用。
石墨烯量子点还可以用作发光材料。
石墨烯量子点具有宽带隙和可调的发光特性,可以通过改变其尺寸和结构来调控发光波长和发射强度。
石墨烯量子点具有较高的稳定性和较长的激发寿命,可用于发光二极管和激光器等器件的制备。
石墨烯量子点的独特光电特性还可以用于光电转换和光催化反应等领域的研究。
石墨烯量子点在生物和发光材料上具有广泛的应用潜力。
未来的研究工作应进一步探索石墨烯量子点的合成方法和表面修饰策略,提高其光电性能和生物相容性,推动其在生物医学和发光材料领域的应用。
石墨烯材料和二维材料

石墨烯材料和二维材料石墨烯和二维材料是当今世界上备受瞩目的材料,因为它们不仅具有超强的物理和化学性质,而且在电子学、能源、生物医学和催化等领域具有广泛的应用前景。
石墨烯是一种由碳原子组成的单层图形化物质,具有优异的电学、热学、力学和光学性质。
石墨烯是最薄的材料,只有一张碳原子层,它的薄度约为人类头发直径的百万分之一,同时还是最强的材料之一,比钢铁还硬。
石墨烯的导电性比铜高几百倍,传热性比银好几倍。
这些超级材料特性使得它们在电子、传感和纳米技术等领域有着广泛的应用。
石墨烯的诞生始于2004年,由英国曼彻斯特大学的安德鲁·盖姆(Andrew Geim)教授和康斯坦丁·诺沃肖洛夫(Konstantin Novoselov)教授共同发现。
他们将石墨烯从普通的石墨中分离出来,并证明它可用于制作新型的纳米电子器件。
他们因此获得了2010年的诺贝尔物理学奖。
随着科学技术的发展和研究的深入,许多新的二维材料如黑磷、二硫化钼等材料也相继被发现和研究。
这些新型材料不仅具有与石墨烯相似的优异性质,而且还拥有独特的性质和应用前景。
例如,黑磷是一种新型的二维半导体材料,它的电学性质类似于石墨烯,但与之不同的是,黑磷的带隙(能带中的禁带宽度)可以通过加厚以控制其电学性质。
这意味着黑磷不仅可以用于电子器件的制造,还可以用于光电器件的制造。
而且,黑磷在电池和超级电容器中也具有广泛的应用前景。
除了黑磷之外,二硫化钼也是一种备受关注的二维材料。
它具有特殊的电学、光学和力学性质,导致它在电子和光电领域的应用具有重要的潜力。
许多研究表明,二硫化钼在制造光电二极管、光电传感器和太阳能电池方面具有优异的效果。
总的来说,石墨烯和二维材料是未来科学技术的重要部分。
它们的出现将开创先河,打开诸多新的应用领域。
尽管这些材料还处于研究阶段,但通过对其物理、化学和力学性质的深入研究,我们可以预见这些材料在电子、能源、生物医学、催化等领域的应用将越来越广泛。
石墨烯电镀应用例子

石墨烯电镀应用例子
石墨烯是一种由碳原子构成的单层薄膜,具有极强的机械强度、热导率和导电性能,因此被广泛应用于电子、光电、化学和生物学等领域。
其中,石墨烯电镀是一种常见的应用方式,下面我们来介绍几个石墨烯电镀的应用例子。
第一个例子是石墨烯电极的应用。
石墨烯电极具有高导电性和高表面积的特点,可以显著提高电化学反应的效率。
比如,在电池制造中,石墨烯电极可以作为阳极或阴极使用,使电池的输出功率和储存能量都有所提高。
此外,石墨烯电极还可以应用于电解水制氢、电化学合成等领域。
第二个例子是石墨烯涂层的应用。
石墨烯涂层可以显著提高材料的机械强度、导热性、耐腐蚀性和抗氧化性能。
比如,在航空航天领域中,石墨烯涂层可以应用于航空器表面的保护和加强,提高航行安全性和耐用性;在汽车工业中,石墨烯涂层可以应用于发动机和制动系统等部件,提高汽车的性能和寿命。
第三个例子是石墨烯纳米复合材料的应用。
石墨烯纳米复合材料具有高强度、高导电性、高热导率和优异的机械性能,可以应用于制造高性能材料。
比如,在纳米电子器件中,石墨烯与其他材料复合可以制造出高灵敏度的传感器和高速的晶体管;在生物医学领域中,石墨烯与生物分子复合可以制造出高灵敏度的检测器和治疗器,用于诊断和治疗各种疾病。
综上所述,石墨烯电镀是一种非常重要的应用方式,可以应用于
电子、光电、化学和生物学等众多领域。
随着石墨烯技术的不断发展,相信石墨烯电镀将会产生更多的创新应用。
石墨烯的性质及其应用
石墨烯的性质及其应用上课班级:年级:专业:学号:姓名:电话:1、石墨烯的特性:导电性:石墨烯结构非常稳定,迄今为止,研究者仍未发现石墨烯中有碳原子缺失的情况。
石墨烯中各碳原子之间的连接非常柔韧,当施加外部机械力时,碳原子面就弯曲变形,从而使碳原子不必重新排列来适应外力,也就保持了结构稳定。
这种稳定的晶格结构使碳原子具有优秀的导电性。
石墨烯中的电子在轨道中移动时,不会因晶格缺陷或引入外来原子而发生散射。
由于原子间作用力十分强,在常温下,即使周围碳原子发生挤撞,石墨烯中电子受到的干扰也非常小。
石墨烯最大的特性是其中电子的运动速度达到了光速的1/300,远远超过了电子在一般导体中的运动速度。
石墨烯有相当的不透明度:可以吸收大约 2.3%的可见光。
而这也是石墨烯中载荷子相对论性的体现机械特性:石墨烯是人类已知强度最高的物质,比钻石还坚硬,强度比世界上最好的钢铁还要高上100倍。
电子的相互作用:利用世界上最强大的人造辐射源,美国加州大学、哥伦比亚大学和劳伦斯?伯克利国家实验室的物理学家发现了石墨烯特性新秘密:石墨烯中电子间以及电子与蜂窝状栅格间均存在着强烈的相互作用。
科学家借助了美国劳伦斯伯克利国家实验室的“先进光源(ALS)”电子同步加速器。
这个加速器产生的光辐射亮度相当于医学上X射线强度的1亿倍。
科学家利用这一强光源观测发现,石墨烯中的电子不仅与蜂巢晶格之间相互作用强烈,而且电子和电子之间也有很强的相互作用。
化学性质:我们至今关于石墨烯化学知道的是:类似石墨表面,石墨烯可以吸附和脱附各种原子和分子。
从表面化学的角度来看,石墨烯的性质类似于石墨,可利用石墨来推测石墨烯的性质。
石墨烯化学可能有许多潜在的应用,然而要石墨烯的化学性质得到广泛关注有一个不得不克服的障碍:缺乏适用于传统化学方法的样品。
这一点未得到解决,研究石墨烯化学将面临重重困难。
电子运输在发现石墨烯以前,大多数(如果不是所有的话)物理学家认为,热力学涨落不允许任何二维晶体在有限温度下存在。
石墨烯的多功能应用
石墨烯的多功能应用石墨烯是一种由碳原子构成的二维晶格结构材料,具有许多独特的物理和化学性质,被誉为21世纪最具潜力的材料之一。
石墨烯的发现引起了科学界的广泛关注,其在各个领域的多功能应用也成为研究的热点之一。
本文将介绍石墨烯的多功能应用,包括电子学、光学、生物医药、能源存储等方面的应用。
一、电子学领域石墨烯在电子学领域具有重要的应用前景。
由于石墨烯具有优异的电子输运性能,可以用于制备高性能的场效应晶体管。
石墨烯场效应晶体管具有高电子迁移率、高载流子迁移速度和优良的热导率,可以用于高速电子器件的制备。
此外,石墨烯还可以用于柔性电子器件的制备,如柔性显示屏、柔性传感器等,为电子产品的发展提供了新的可能性。
二、光学领域石墨烯在光学领域也具有重要的应用价值。
石墨烯具有优异的光学性能,可以用于制备光电器件和光学器件。
石墨烯具有宽广的光学吸收谱和快速的载流子响应速度,可以用于制备高性能的光电探测器和光学调制器。
此外,石墨烯还可以用于制备超薄光学器件,如超薄透镜、超薄偏振器等,为光学器件的微型化和集成化提供了新的途径。
三、生物医药领域石墨烯在生物医药领域的应用也备受关注。
石墨烯具有优异的生物相容性和生物相互作用性,可以用于生物传感、药物传递、组织工程等方面。
石墨烯纳米材料可以作为生物传感器的载体,用于检测生物分子的浓度和活性。
此外,石墨烯还可以用于药物的传递和释放,提高药物的生物利用度和靶向性。
在组织工程方面,石墨烯可以用于细胞培养支架的制备,促进组织再生和修复。
四、能源存储领域石墨烯在能源存储领域也有重要的应用。
石墨烯具有高表面积和优异的电导率,可以用于制备超级电容器和锂离子电池。
石墨烯超级电容器具有高能量密度、高功率密度和长循环寿命,可以用于储能系统和电动汽车的动力源。
石墨烯锂离子电池具有高比能量、长循环寿命和快速充放电特性,可以用于便携式电子产品和储能设备。
综上所述,石墨烯具有广泛的多功能应用,涉及电子学、光学、生物医药、能源存储等多个领域。
石墨烯用途
石墨烯用途石墨烯是最新发现的一种贵重的碳材料,它的出现对科学和技术的发展产生了深远的影响。
它的特性使其成为被广泛应用的材料,它的发明带来了无数的用途。
今天,石墨烯正在全球范围内推动前沿科技领域的发展和创新,成为世界上最具潜力的新材料。
首先,石墨烯在电子领域有着广泛的应用。
它可以用于制造高品质的电子器件,可以用于制造电子器件、组件、集成电路、电路板以及用于空间、航空、航海等其他领域的电子技术。
石墨烯电子设备的优势在于它具有较强的抗干扰能力、保持良好的磁性性能和温度耐受性、低电阻性等特点。
石墨烯不仅可以用于电子领域,还可以用于光电子领域,特别是太阳能发电领域。
石墨烯可以用于制造太阳能电池,电池具有更高的能量密度、更长的使用寿命以及更好的可持续性。
此外,石墨烯还可以用于光调制,可以有效改善传统有源光纤光缆的传输特性,实现高效传输。
此外,石墨烯还可以用于构筑用于储存热能的超电容器,以替代燃料电池。
同时,利用它的电导率和导电性,能够生产出先进的高级电子产品,满足不同用户的需求。
此外,石墨烯还有工业应用。
它可用于制造超细纳米纤维,这些纤维在航空航天、船舶和汽车制造和维护等工业领域中有着广泛的应用。
在航空航天领域,石墨烯可以用于制造运载火箭、航天器等航天设备,提升运载火箭的性能和可靠性。
在船舶制造领域,石墨烯可以用于改善船舶的耐久性和可靠性,从而提高安全性和节能效果。
最后,石墨烯还可以用于医疗领域。
它可以用于制备超微纳米药物支架,能够更好地控制药物的释放,实现更准确的投药。
石墨烯还可以用于构建生物传感器,可以用于靶向检测、阻断病毒感染以及其他医学检测。
综上所述,石墨烯在电子、光电、热能、工业和医疗等许多领域有着广泛的应用。
它可以极大地改善我们的生活质量,带来更多技术优势和发展机会。
因此,它受到各界关注,有望成为未来用于推动世界发展的新材料。
石墨烯量子点应用
石墨烯量子点应用
石墨烯,简称石墨烯,是一种具有单原子厚度的二维材料,具有极高的热导率、电导率和强韧性。
而石墨烯量子点则是指直径小于10纳米的石墨烯微粒,具有独特的光电性能和表面积,可用于各种应用领域。
石墨烯量子点在生物医学领域应用广泛。
石墨烯量子点被认为是与金属量子点相当的荧光探针,可以用于生物标记、细胞成像和分子探测等方面。
此外,石墨烯量子点表面积大、生物相容性好,具有广泛的生物应用潜力。
石墨烯量子点被用来制备荧光标记的纳米探针,可以监测细胞活性和信号通路。
石墨烯量子点在光电子器件方面也表现出强大的应用潜力。
石墨烯量子点作为一种新型材料可以制备各种电子元器件,并且具有优异的电子输运性质和可调光学特性。
石墨烯量子点还可以用于制备光学透镜、聚焦器和光学滤波器等器件。
在环境领域,石墨烯量子点也被广泛应用。
石墨烯量子点具有高度的吸附能力和表面积,可以被用于吸附处理污染物。
石墨烯量子点还可以作为光催化剂,促进有机物的降解。
此外,石墨烯量子点还可以用于制备高效的电池和氢气制备催化剂。
总的来说,石墨烯量子点在各种领域都有着广泛的应用潜力。
未来的研究应该重点关注石墨烯量子点性质的进一步改进和应用场景的不断拓展,以推动石墨烯量子点的商业化进程和更广泛的应用前景。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
图2石墨烯的主要物理化学特征
二、石墨烯材料主要特性
1、石墨烯的电学性质
石墨烯是由sp2杂化的碳原子构成,这种构成方式会多出一个p轨道的电子,从而形成大π键,π电子可以自由的移动,这赋予了石墨烯优异的电子学性能。石墨烯原子与原子之间的引力和排斥力都很强,在常温状态,石墨烯内部的电子很少会受到外部影响,电子在移动时不容易产生散射现象,迁移率是硅中电子的130倍,其电导率达到了106S/m,是常温下导电性最佳的材料。另外石墨烯还具有半金属特性,它的导带和价带之间有一部分是重叠的。利用这一特性,人们已经开始试着把石墨烯应用到高性能的场效应管中。现制造大面积的石墨烯薄膜的技术已经比较成熟,这加大了它在电子信息领域应用的可能性。石墨烯晶格具有六方对称性。
目前石墨烯的制备方法主要分为“自下而上(down-up)”和“自上而下(up-down)”2大类方法。而“自下而上(down-up)”法是通过碳原子的重构来合成石墨烯材料,是从一种形态到另一种形态的转变,它包括化学气相沉积法(CVD)、外延生长法、有机合成法等。“自上而下(up-down)”法是通过剥离天然石墨材料来制备石墨烯片层,可以分为物理法和化学法,如微波机械剥离法、物理液相剪切分离法、电弧法、氧化还原法、超临界法、碳纳米管轴向切割法等。
四、石墨烯其他应用的个人设想
正如前文提到的石墨烯有许多的优异的性质,那么必然是有巨大并未曾被人们发现或者说提到的应用方式。在这里,我想写一些我所认为的石墨烯有可能的新的应用。
1、建筑领域
石墨烯的力学强度是钢铁的一百倍,那么我们是否可以将石墨烯卷曲后并且制成可见长度的石墨烯绳索替代建筑领域里的钢筋绳获得更高强度的支撑。首先,石墨烯经过卷曲可以形成碳纳米管,那么如果我们可以生长出宏观尺度的二维石墨烯平面就可以制成一条长的碳管,然后我们可以将许许多多束碳管绞合在一起,当然,这需要十分多的碳管才能形成宏观尺寸的石墨烯绳索,不过一旦制成,它的强度将远超现有的钢筋,另外由于石墨烯绳索是由微观到宏观的一个生长过程,过程可控,未达到应力极限下发生断裂的可能性很小。
首先石墨烯经过卷曲可以形成碳纳米管那么如果我们可以生长出宏观尺度的二维石墨烯平面就可以制成一条长的碳管然后我们可以将许许多多束碳管绞合在一起当然这需要十分多的碳管才能形成宏观尺寸的石墨烯绳索不过一旦制成它的强度将远超现有的钢筋另外由于石墨烯绳索是由微观到宏观的一个生长过程过程可控未达到应力极限下发生断裂的可能性很小
石墨烯的光电特性及应用
摘要:石墨烯独特的光电特性吸引了许多领域中的学者进行研究,在纳米材料领域这种材料更是有着很大的关注力度。有关学者也语言石墨烯在未来可能代替硅化材料,发展成为电子元件发展的重要部件,本文也综述了这种物质述
石墨烯是科学家最早发现的一种具有稳定二维结构碳的材料,是一种理想的二维碳质晶体。理想的石墨烯结构是平面六边形点阵,其基本结构单元为有机材料中最稳定的苯六元环,它是一种由碳原子以sp2杂化轨道组成六角型呈蜂巢晶格的平面状薄膜。石墨烯是碳的多种形态中的基本结构单元,单层石墨烯只有一个碳原子的厚度,即0.335nm,碳的其他存在形态为碳纳米管、石墨、富勒烯、金刚石(图1)。石墨烯是已知自然界稳定存在的最薄的材料,并且具有极大的比表面积、超高的导热率、超强的导电性和强度等优点,因此其拥有良好的应用和市场前景。
最近几年,学者Ecthermeyer等人利用金属的等离子体和石墨烯进行结合,这种方法所得出的结构是和石墨烯光电探测的光电流一致的,而且这比较于没有等离子纳米结构的元件来说要高出一个数量级。而且因为等电子体产生一定的共振,纳米结构的稳定性被大大提高,单层原子厚度的石墨烯可以全面的受到这种等离子体的增强。
参考文献:
[1]孙玥.石墨烯的光电特性及应用[J].科技风,2017,(13):87.
[2]李绍娟,甘胜,沐浩然,徐庆阳,乔虹,李鹏飞,薛运周,鲍桥梁.石墨烯光电子器件的应用研究进展[J].新型炭材料,2014,29(05):329-356.
3、过滤方向
由于石墨烯的六角结构,且为纳米尺度的单层二维材料,那么我们可以将其制成海水过滤器件,这样小型的水分子可以较易通过器件,而较大的杂质则会被阻挡在外。具体可以将石墨烯平铺,用电子束在其上轰击出适于水分子通过的分子大小的小孔来,而水分子由两个H+和一个O离子组成,体积较小,这样海水中其他的元素,诸如Cl、Na、Mg等则通不过石墨烯层,可达到过滤海水的目的。
2、透明导体
所谓透明导体,是指由触摸屏、二极管以及太阳能电池组成的,对于表面电阻和透明度要求较高的器件的核心组件。作为电极的设备需要满足光的传入传出条件。而传统透明导体由高度掺杂的氧化物组成。但传统透明导体的应用会受到多因素的限制。例如机械的一定脆性对于他们作为弹性显示器来说很不利;一些稀缺元素的短缺也使得铟类显示器价格一直很高等。为了进一步满足对透明导体的发展需求,新技术的研发逐渐变得更为关键。在当前纳米材料领域中,碳基薄膜被许多学者认为富有多方面的优良性能。并且石墨烯和金属、纳米材料进行组合的复合材料可以作为优质的透明导体薄膜。石墨烯和硅相组合成的薄膜有着高达百分之九十四的透明度,薄层的导电率也为0.45S/cm。
2、石墨烯的光学性质
石墨烯有着非常优良的透光性,在近红外,以及可见光波段的透光率,单层石墨烯可高达98%。在可见光区,单原子层厚度的石墨烯所反射的光小于入射光的0.1%,当达到数十层时,会上升到2%左右。Li等人对石墨烯进行了研究,利用700—8000cm1谱段,发现石墨烯内部结构中存在多子交互作用(Many—BodyInteractions)。石墨烯是一种“光学透明”的导体,具有稳定的晶格结构,电子在石墨烯上以恒定的速率移动,石墨烯还表现出了异常的整数量子霍尔行为。石墨烯里电子的有效质量为零,这和光子的行为极为相似。
三、石墨烯光电应用领域
1、光电探测器
光电的探测是将光能信号转换为电流信号。传统的光电检测都是基于传统半导体材料进行的,这些检测器的性能会因为材料属性的限制而改变。和传统的半导体材料相比较,石墨烯没有能带的间隙,可以吸收的光范围也是较大的。除此之外,过高的载电子迁移率让石墨烯成为科学家眼中制作光电探测器的优异材料。
结束语
总的来说,石墨烯这种材料在未来必定有着广阔的应用前景,不管是随着摩尔定律逐渐达到极限,石墨烯替代硅的主流研究方向,还是我所提出的一些不成熟的但的确具有可行性的其他应用方向,石墨烯作为一种新型材料的代表,也一定还有着更多更有意义的应用方式去值得我们探究。然而我认为尽管石墨烯有着美好可见的应用前景,但是高质量、单层石墨烯却仍只能由实验室来进行制备。而要实现前文所述的那些应用,我们目前的耽误之急则应该是解决大面积、高纯净的石墨烯的工业生产问题。
五、展望
石墨烯有着十分独特的物理结构以及光电特性,从其发现至今都有着十分重要的研究意义。而目前制备石墨烯的尺寸是不规范的,这也导致其难以批量的进行生产。所以介绍不同途径设计以及制造的石墨烯才是研究的关键所在。石墨烯有着近乎完美的原子杂化轨道,并且大范围的共轭体系使得石墨烯的电子传输能力大大增强。这是一种碳原子采用sp2杂化轨道进行杂化形成的六边形蜂窝状材料,在立体结构上则呈现出单原子层的特性。在可见光的区域内,仅有单原子厚度的石墨烯所反射的光线是低于入射光线的千分之一的,而当石墨烯累计到数十层的时候这个数据比例会上升到百分之二;而在石墨烯内部碳原子的挤撞对石墨烯内部的电子传输干扰很小。石墨烯的价电子和导电子形成狄拉克锥的结构,这是当前世界上发现电阻率最小的材料。所以对于石墨烯的研究可以更好的促进复合材料的研究,对于其光电性质研究有着更深远的意义,未来石墨烯的光电特性将会应用到更为广泛的行业。
2004年英国曼彻斯特大学的2位物理科学家——安德烈•海姆教授(Geim)和康斯坦丁•诺沃肖洛夫教授(KonstantinNovoselov),在实验室中成功从天然石墨片中第一次剥离出了具有二维结构的石墨烯,从而证明了二维材料在自然状态下可以单独存在,因这个革命性和颠覆性的发现,2位教授共同在2010年获得诺贝尔物理学奖。在此背景下,石墨烯的众多方向研究如火如荼的展开,并且迅速在全球范围里掀起了石墨烯制备、石墨烯复合技术和材料、石墨烯下游产品等的研究热潮。石墨烯材料超强的物理、化学和机械等主要特性如图2所示。
4、触摸屏
当前众多手机和数码相机的屏幕都是触摸屏,并且要求屏幕有快速和直观的反应。触摸屏主要由电阻和电容式两种形式组成。前者主要包括导电衬底以及液晶装置面板、透明导体薄膜。在实际操作的时候需要将面板的薄膜于底部进行接触,通过测算阻力数值进行接触点位置的确定;后者则是当前新兴的高端技术产物,电容式触摸屏利用触摸屏幕表面的静电场畸变,衡量出电容的变化量,从而提高电容式触摸屏的使用性能,降低开发的成本。
5、光学调制器
光学调制器是通过运用光线固有的速度以及互联的能力,运用在芯片上光学的互联,而且在针对电气连接的时候也有一定数量的损耗。光学的调制器以及集成芯片需要较大的光学带宽。硅基的光学调制器有着较弱的场效应,所产生毫米大小的脚位也在一定程度上增加了插入的损耗,妨碍
高速移动的性能。
和当前我国较为通用的半导体材料相比较来说,石墨烯有着高载波的移动特性以及脚位大的光学带宽,同时有着兼容能力较大的解调制功能。这些都是在制造高性能的光学调制器所必须的。在最近的研究中,石墨烯的光学调制需要达到1GHz,其光学的带宽要在1.35μm-1.6μm内,和当前市场上的调制器相比性能更高。
2、电力领域
由于石墨烯的超高的电子迁移率的电学特性,我们完全可以用石墨烯替代传统的电缆及铜线等,降低电流在输运过程当中的损耗。石墨烯上电子的迁移率极高,也就是说电导率高、电阻率小,电流通过时可以保持较低的损耗,具体实现方式可以是将石墨烯制成线型,替代现有城市间和城市里的电力输送网,这样可以极大的节省能源,,结合石墨烯线的高强度力学特性,更可以降低高压电线断裂的可能性,降低事故发生的隐患。