(完整版)荧光机理
荧光分析法检测原理及应用举例

1 荧光定义某些化学物质从外界吸收并储存能量而进入激发态,当其从激发态回到基态时,过剩的能量以电磁辐射的形式放射出去即发光,称之为荧光。
可产生荧光的分子或原子在接受能量后引起发光,供能一旦停止,荧光现象随之消失。
2 荧光分类由化学反应引起的荧光称为化学荧光,由光激发引起的荧光称为光致荧光,课题主要研究光致荧光。
按产生荧光的基本微粒不同,荧光可分为原子荧光、X 射线荧光和分子荧光,课题主要研究分子荧光。
3 光致荧光机理某一波长的光照射在分子上,分子对此光有吸收作用,光能量被分子所吸收,分子具有的能量使分子的能级由最低的基态能级上升至较高的各个激发态的不同振动能级,称为跃迁。
分子在各个激发态处于不稳定的状态,并随时在激发态的不同振动能级下降至基态,在下降过程中,分子产生发光现象,此过程为释放能量的过程,即为光致荧光的机理。
光致荧光的过程按照时间顺序可分为以下几部分。
分子受激发过程在波长为10~400nm的紫外区或390~780nm的可见光区,光具有较高的能量,当某一特征波长的光照射分子时,是的分子会吸收此特征波长的光能量,能量由光传递到分子上,此过程为分子受激发过程。
分子中的电子会出现跃迁过程,在稳定的基态向不稳定的激发态跃迁。
跃迁所需要的能量为跃迁前后两个能级的能量差,即为吸收光的能量。
分子跃迁至不稳定的激发态中即为电子激发态分子。
在电子激发态中,存在多重态。
多重态表示为2S+1。
S为0或1,它表示电子在自转过程中,具有的角动量的代数和。
S=0表示所有电子自旋的角动量代数和为0,即所有电子都是自旋配对的,那么2S+1=1,电子所处的激发态为单重态,用Si 表示,由此可推出,S即为基态的单重态,S1为第一跃迁能级激发态的单重态,S2为第二跃迁能级激发态的单重态。
S=1表示电子的自旋方向不能配对,说明电子在跃迁过程中自旋方向有变化,存在不配对的电子为2个,2S+1=3,电子在激发态中位于第三振动能级,称为三重态,用Ti 来表示,T1即为第一激发态中的三重态,T2即为第二激发态中的三重态,以此类推。
荧光基团发光原理

荧光基团发光原理
荧光基团发射原理是一种利用物质能够把外界强烈的电磁波转换成发射较弱的电磁波,从而能够形成荧光发射机理。
荧光是一种特殊状态,物质受到外界特定波长的光的吸收,能量转换的过程中,由一
种能源状态转变到另一种较低能量状态时,物质会发出光(即荧光),从而实现外界能量
的转换。
荧光发射的主要机理有分子和原子两种:
分子型:当分子处于激发态时,受到外界的电磁波的吸收,从能量较高的状态转变到
能量较低的状态,当它从较高能量状态发射光子能量到较低能量状态时,就会产生了荧光
发射,我们就称这个现象为分子型荧光发射。
以上就是荧光基团发射原理的简要介绍,主要包括了:受到外界电磁波的吸收,以及
物质从较高能量状态发射出少量能量到较低能量状态,两种发光机理(分子型和原子型)
等内容。
如果你想学习更多关于荧光发射原理的内容,可以独自进行研究,以深入了解该
现象。
荧光材料发光机理 -回复

荧光材料发光机理 -回复
荧光材料发光的机理主要涉及到材料的电子能级结构和能带理论。
在荧光材料中,存在着激发态和基态之间的能级跃迁。
当荧光材料受到外界激发源(例如光或电场)的作用时,能量被传递给材料中的电子,使它们跃迁到更高的能级,形成激发态。
在激发态中,电子往往处于不稳定的状态,会迅速退回到基态。
在这个退激过程中,电子释放出多余的能量,通常以光的形式辐射出来,产生发光现象。
荧光材料的发光颜色和强度与材料的组成和结构密切相关。
不同的材料会有不同的电子能级分布和激发态-基态跃迁的能级差,因此会发出不同颜色的光。
此外,通过控制材料中的掺杂离子,也可以改变荧光材料的发光特性。
总的来说,荧光材料发光的机理可以简单地解释为通过外界能量激发材料中的电子,使其达到激发态并经过退激过程,发出能量辐射,最终产生可见光的现象。
荧光发光原理

荧光发光原理荧光发光原理是一种物理现象,指的是某些物质在受到激发后能够发出可见光的现象。
荧光发光原理的研究对于我们理解光的性质、应用光学技术以及发展新型光学材料具有重要意义。
本文将就荧光发光原理进行详细的介绍,希望能够帮助读者更好地理解这一现象。
荧光发光原理的基本过程是,当某些物质受到能量激发后,其内部的电子会跃迁到一个较高的能级。
在电子跃迁的过程中,会释放出部分能量,这部分能量就表现为可见光。
这种发光的过程是一个自发的过程,因此被称为自发辐射。
荧光发光原理的关键在于激发能量的输入和电子跃迁的能级结构。
荧光发光的激发能量可以是光能、热能或电能,而被激发的物质则被称为荧光体。
在荧光体受到激发能量后,其内部的电子会跃迁到一个激发态,这个激发态是一个比基态能级高的能级。
在激发态停留的时间极短,通常只有纳秒量级,之后电子就会跃迁回基态。
在电子跃迁的过程中,释放出的能量就表现为荧光发光。
荧光发光的颜色和强度与荧光体的性质有关,不同的荧光体在受到激发后会发出不同颜色的荧光。
荧光发光原理在实际生活中有着广泛的应用。
荧光灯就是利用荧光发光原理制作的一种照明设备。
荧光灯的荧光粉受到电能激发后会发出可见光,从而实现照明的效果。
此外,荧光发光原理还被应用在荧光标记、荧光显示屏、荧光染料等领域。
荧光发光原理的应用不仅丰富了我们的生活,也推动了光学技术的发展。
总之,荧光发光原理是一种重要的物理现象,其基本过程是某些物质在受到能量激发后,内部的电子跃迁到一个较高的能级,释放出的能量表现为可见光。
荧光发光原理在照明、标记、显示等领域有着广泛的应用,对于推动光学技术的发展具有重要意义。
希望本文能够帮助读者更好地理解荧光发光原理,进一步认识光的性质,以及探索更多的光学应用。
神奇的发光物质荧光材料的原理与应用

神奇的发光物质荧光材料的原理与应用荧光材料作为一种神奇的发光物质,具有广泛的应用领域,如显示技术、荧光标记、生物医学诊断等。
本文将介绍荧光材料的原理以及一些具体的应用案例。
一、荧光材料的原理荧光材料是一种可以吸收光能转化为发光能量的物质。
其发光原理主要涉及到两个基本概念:激发态和基态。
当荧光材料处于基态时,电子处于最低能级。
而当吸收能量后,电子会从基态跃迁到激发态,此时电子处于高能级。
然后,电子在激发态上会停留一段时间后,再由激发态回到基态,释放出一定能量的光子而发光。
荧光材料的发光原理与分子内部的电子结构有关。
它们通常由有机分子或无机晶体构成。
在有机荧光材料中,分子通常由苯环等π-电子系统组成。
这些π-电子可以吸收特定波长的光并进行能级跃迁,从而导致发光。
二、荧光材料的应用案例1. 显示技术荧光材料在显示技术中有着重要的应用。
例如,液晶显示器中的背光单元就利用了荧光材料的发光特性。
通过将荧光材料与荧光粉结合,将其注入背光单元中,通过激活荧光材料来提供背光。
这种技术使得我们能够在暗环境下清晰地看到显示器上的图像。
2. 荧光标记荧光材料还可以被用作荧光标记,在生物学和医学领域有着广泛的应用。
通过在荧光材料表面修饰特定的生物分子(如抗体、DNA探针等),可以实现对生物分子的可视化检测和分析。
举例来说,科学家们可以利用荧光染料标记细胞或组织中的蛋白质,然后使用显微镜观察荧光信号,从而研究生命科学中的相关问题。
3. 光催化材料荧光材料还可以应用于光催化领域。
光催化材料能够在可见光或紫外光的照射下,利用其荧光发光特性来产生活性氧自由基等具有氧化还原能力的物质,从而进行光催化反应。
这种光催化材料被广泛应用于环境净化、水处理和能源转换等领域。
4. 发光材料当然,荧光材料最基本的应用就是作为发光材料。
荧光粉、荧光漆等广泛应用于照明、安全标识、夜光等方面。
这些荧光材料在光照或激发后能够长时间发光,使得其在黑暗环境下提供可见光。
化学生物学荧光探针发光机理课件

H2O2的检测
中国科学: 化学 2012 年 第42卷 第12期 化学生物学 H2O2荧光探针发展及生物应用
H2O2的检测
Chem. Commun., 2003, 2728. 化学生物学 H2O2荧光探针发展及生物应用
H2O2的检测
Tetrahedron Letters 49 (2008) 3045–3048 Tetrahedron Letters 51 (2010) 1152–1154
细胞器靶向性的过氧化氢探针
SNAP-tag 来自烷基鸟嘌呤-DNA烷基转移 酶(O6-alkylguanine-DNAalkyltransferase,hAGT),该酶是一种 DNA修复蛋白,它的底物是一类苄基嘌呤 和嘧啶的衍生物,包括苄基鸟嘌呤
AGT
SNAP-tag
J. AM. CHEM. SOC. 9 VOL. 132, NO. 12, 2010 ACCOUNTS OF CHEMICAL RESEARCH ,793– 804 ,2011,Vol. 44, No. 9
化学生物学 H2O2荧光探针发展及生物应用
分子内电荷转移 ICT( intramolecular charge transfer)
Tetrahedron ,69 ,2013, 1700 -1704
化学生物学 H2O2荧光探针发展及生物应用
荧光共振能量转移 FRET( fluorescence resonace energy transfer )
• (2)能量供体与能量受体相隔的距离必须远大于它们之 间的碰撞直径(有时甚至为70-100Å);
• (3)能Ino量rg供. C体he与m.能20量13受, 5体2, 7还43必−须75以2 适当的方式排列。
荧光探针设计机理及发展方向
荧光探针设计机理及发展方向荧光探针是一种能够通过光激发产生荧光信号的分子或纳米结构,被广泛应用于生物检测、环境监测、化学分析等领域。
荧光探针的设计机理和未来发展方向是本文将探讨的主题。
一、荧光探针的设计机理1.荧光分子荧光分子是荧光探针的基础,其设计原理主要基于分子的吸收光谱和发射光谱。
在受到光激发后,分子会从基态跃迁到激发态,当其返回到基态时,会以释放光子的形式释放出能量。
不同结构的荧光分子具有不同的吸收和发射光谱,因此可以根据需要选择特定的荧光分子作为探针。
2.荧光纳米结构荧光纳米结构是利用纳米材料制作而成的探针,具有高灵敏度、高分辨率和高稳定性等优点。
荧光纳米结构的设计原理主要基于量子点、量子阱等纳米材料的特殊光电性质。
通过调节纳米材料的尺寸和组成,可以改变其吸收和发射光谱,实现特定的检测目标。
二、荧光探针的发展方向1.高灵敏度与高特异性提高荧光探针的灵敏度和特异性是未来发展的重要方向。
高灵敏度的荧光探针可以检测到低浓度的目标物质,提高检测的准确性和可靠性;高特异性的荧光探针可以区分不同的目标物质,防止误判。
2.多功能化与集成化多功能化与集成化是荧光探针的另一个发展方向。
多功能化的荧光探针可以在同一时间内检测多种目标物质,提高检测效率;集成化的荧光探针可以将检测和信号转换器件集成在一起,实现便携式和实时检测。
3.生物相容性与无损检测生物相容性和无损检测是荧光探针的重要发展方向。
生物相容性的荧光探针可以应用于活体检测,实现对生物体内生理参数的实时监测;无损检测的荧光探针可以在不损害样品的情况下进行检测,适用于医学、文物等领域。
4.智能化与自动化智能化与自动化是荧光探针的未来发展趋势。
智能化的荧光探针可以通过计算机控制实现自动化检测,提高检测效率;自动化的荧光探针可以通过机器人技术实现样品自动采集和处理,减少人为误差。
三、总结荧光探针作为一种重要的分析工具,在生物医学、环境监测、化学分析等领域发挥着重要作用。
三种原子光谱(发射,吸收与荧光)产生机理
一、概述原子光谱是研究原子内部结构和原子间相互作用的重要技术手段,也是物质分析学、化学分析学、化学物理学和光谱学等领域的重要研究内容。
原子光谱包括发射光谱、吸收光谱和荧光光谱,它们是由原子在外界作用下产生的具有特殊波长和频率的光谱。
发射光谱是原子从高能级跃迁到低能级时产生的谱线,吸收光谱是原子吸收外界光子导致能级跃迁的谱线,荧光光谱则是原子在受激激发后再跃迁回基态时放出的光谱。
本文将重点介绍三种原子光谱的产生机理。
二、发射光谱产生机理1. 激发当原子受到能量激发时,电子从基态跃迁到高能级,此时原子处于激发态,处于不稳定状态。
2. 跃迁在激发态下,原子的电子会趋向于迅速由高能级跃迁到低能级,这个跃迁的过程伴随着光子的发射。
3. 能级结构原子内部的能级结构决定了发射光谱的特性,不同元素具有不同的能级结构,因而发射光谱对于元素的鉴定和定量分析具有重要意义。
三、吸收光谱产生机理1. 能级跃迁吸收光谱是由原子吸收外界光子导致能级跃迁而产生的,能级跃迁的规律与波长和频率的关系可以用于确定原子的能级结构和特性。
2. 共振吸收当外界光子与原子的能级跃迁能量匹配时,发生共振吸收现象,这种吸收现象对于不同元素的吸收光谱研究具有重要意义。
3. 吸收光谱谱线吸收光谱谱线的位置和强度反映了原子吸收外界光子的能力,可以用于分析样品中的元素及其含量。
四、荧光光谱产生机理1. 受激激发荧光光谱是原子在受到外界激发能量后处于激发态的荧光物质产生的光谱,激发的能量可以是光子或者其他激发源。
2. 荧光发射激发后的原子处于不稳定状态,随后电子会从激发态跃迁回到基态,并伴随着荧光发射。
3. 荧光光谱应用荧光光谱在物质分析、生物学、医学和环境保护等领域有着广泛的应用,对于研究物质的结构和性质具有重要的意义。
五、总结发射光谱、吸收光谱和荧光光谱是三种重要的原子光谱,它们具有独特的产生机理和应用价值。
通过对三种原子光谱的产生机理的深入理解,不仅可以帮助人们认识原子内部的结构和性质,还有助于解决实际问题和促进科学技术的发展。
荧光猝灭机理
荧光猝灭机理介绍•荧光猝灭是指某些物质在光激发后,荧光强度消失或减弱的现象。
•研究荧光猝灭机理对于理解光电转换和光谱分析等领域具有重要意义。
荧光猝灭机理的分类动态猝灭1.基态猝灭–分子间相互作用引起的基态猝灭称为静态猝灭。
–基态猝灭主要包括自相互作用和相异构体猝灭。
2.激发态猝灭–激发态猝灭是通过能量传递的方式,使得荧光能量被转移至另一个分子或物质中。
–激发态猝灭包括物质本身的激发态猝灭和引起分子间相互作用的激发态猝灭。
静态猝灭1.自相互作用–自相互作用主要包括分子内自猝灭和分子间相互作用导致的自猝灭。
–分子内自猝灭通常是由于分子结构的特殊性质引起的,如紧密堆积、光共振等。
–分子间相互作用导致的自猝灭可以是分子之间的电子能级重叠引发的,也可以是分子间的非辐射能量传递引起的。
2.相异构体猝灭–相异构体猝灭是指同一分子具有两种或多种不同的构象,其中一种构象具有荧光性质,而其他构象则不具有荧光性质。
–相异构体猝灭通常是由于构象间共振耦合引起的。
荧光猝灭机理的研究方法光谱法1.斯托克斯位移–斯托克斯位移是指荧光峰峰值位置与激发峰峰值位置之间的差值。
–通过观察斯托克斯位移的大小和变化,可以推测荧光猝灭机理。
2.荧光寿命–荧光寿命是指荧光消失的时间。
–荧光寿命的变化可以用来探索荧光猝灭的速率和机理。
热力学法1.溶剂效应–溶剂对荧光猝灭有显著影响。
–通过研究在不同溶剂中的荧光猝灭行为,可以了解溶剂效应对荧光猝灭机理的影响。
2.温度效应–温度对荧光猝灭有重要影响。
–通过改变温度,可以探索温度对荧光猝灭速率和机理的影响。
荧光猝灭应用领域1.生物医学领域–荧光猝灭技术在生物医学研究中有广泛应用,包括分子探针、荧光染料和荧光标记等方面。
–通过研究荧光猝灭机理,可以设计更高效的荧光探针,提高生物医学检测的准确性和灵敏度。
2.材料科学领域–荧光猝灭技术在材料科学中有重要的应用,如电子器件、能源材料等。
–研究荧光猝灭机理对于设计新型材料和提高材料性能具有重要意义。
《荧光基本原理》PPT课件
企业在维持竞争优势过 程中,必须深刻认识自 身的资源和能力,采取 适当的措施。因为一个 企业一旦在某一方面具 有了竞争优势,势必会 吸引到竞争对手的注意。
而影响企业竞争优势的持续时间,主要的是三个关键因素: (1)建立这种优势要多长时间? (2)能够获得的优势有多大? (3)竞争对手作出有力反应需要多长时间? 如果企业分析清楚了这三个因素,就会明确自己在建立和维持竞争优势中的地位了。
•政府和行业对 技术的重视
•新技术的发明 和进展
•技术传播的速 度
•折旧和报废速 度
OT机会与威胁分析方法一:波特五力模型
行业内竞争者的均衡 程度、增长速度、固 定成本比例、本行业 产品或服务的差异化 程度、退出壁垒等, 决定了一个行业内的 竞争激烈程度
购买者转而购买替代品的转移 成本;公司可以采取什么措施 来降低成本或增加附加值来降 低消费者购买替代品的风险?
Special lecture notes
经过这套精确考虑溶剂效应的计算之后,你不可能只从一个输 出文件中就能读出你需要的激发或者发射光谱。 而是需要从第一步和第三步读出的能量差值手工计算得到特征 吸收波长(紫外); 从第六步和第七步读出的能量差值手工计算得到特征发射波长 (荧光)。 如果只从读第二步的结果作为紫外光谱,只读第四步的结果作 为荧光光谱,那么你就还没有领会到为什么要用非平衡溶剂处 理顺势的激发及发射过程。
➢市场分析人员经常使用这一工具来扫描、分析整个行业和市场,获取相关 的市场资讯,为高层提供决策依据,其中,S、W是内部因素,O、T是外部 因素。
➢它在制定公司发展战略和进行竞争对手分析中也经常被使用。 SWOT的 分析技巧类似于波士顿咨询(BCG)公司的增长/份额矩阵(The Growth/Share Matrix),
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1光致电子转移(PET)
递给荧光基团的键合基团(RecePtor),负责光吸收并产生荧光发射信号的荧光基团(Fluorophorc)-其荧光发射强度反映键合基团的结合状态,以及连接键合集团和荧光基团的连接基团(Spacer)。
键合基团和荧光基团通常为电子给体或者电子受体。
光致电子转移是指电子给体或电子受体受光激发后,激发态的电子给体与电子受体之间发生电子转移从而导致荧光的淬灭过程.例如,当荧光分子传感器的键合基团是电子给体,荧光基团是电子受体时,具体PET作过程如下:在光激发下,具有电子给予能力的键合基团能够将其处于最高能级的电子转入激发态下荧光基团空出的电子轨道,使被光激发的电子无法直接跃迁巨}到原基态轨道发射荧光,从而导致荧光的淬灭;当键合基团与底物结合后,降低了键合基团的给电子能力,抑制了PET过程,荧光基团中被光激发的电子可以直接跃迁回到原基态轨道,从而增强了的荧光基团的荧光发射。
因此在未结合底物前,传感器分子表现为荧光淬灭,一旦键合基团与底物相结合,荧光基团就会发射荧光(见图)
由于与客底物结合前后的荧光强度差别很大,呈现明显的“关”、“开"状态,因此这类荧光化学传感器又被称为荧光分子开关。
PET荧光分子传感器的作用机制可由前线轨道理论“来进一步说明(见图
1.5).
2分子内电荷转移(ICT)
ICT荧光化学传感器由推电子基团、吸电子基团通过p电子体系连接而成,在基态时表现为极化结构,一端为缺电子部分,另一端为富电子部分;而在光激发下,偶极矩增大,强化了这种极化特征,容易发生ICT过程(如图)。
ICT荧光化学传感器的工作原理有两种(见图l.7a):当底物是缺电子基团(阳离子)时,一种是底物与吸电子基团结合,将增大分子内电荷转移程度,导致荧光光谱红移;一种是底物与推电子基团结合,则使原来向共扼体系转移的孤对电子用于与阳离子形成配位键,导致ICT推一拉电子的特征下降,导致荧光光谱蓝移。
当底物是富电子基团(阴离子)时,情况相反。
一般情况下,ICT荧光化学传感器对荧光强度的影响不如PET荧光化学传感器显著.典型例子是同时含有吸电子取代基、推电子取代基的电子体系,如氨基邻苯二甲酞亚胺、二苯基烯、氟代香豆素等。
ICT荧光化学传感器的缺点是对外部环境的变化十分敏感,有较强的溶剂化效应。
在ICT中,有一种情况被称为扭曲的分子内电荷转移(TICT twisted Intramolecular charge transfer)。
在具有推一拉电子共扼体系的荧光分子中,如果推电子基(如二甲氨基)通过可旋转的单键与荧光团相连接,当荧光团被光子激发时,由于强烈的分子内光致电荷转移,导致原来与芳环共平面的电子给体绕单键旋转,而与芳环平面处于正交状态,原来的共辘系统被破坏,部分电荷转移变为完全的电子转移,形成TICT激发态(见图)。
当形成TICT激发态时,原有的ICT荧光则被淬灭。
TICT态常常不发射荧光或者发射弱的长波荧光,少数情况下会出现ICT与TICT双重荧光现象。
3荧光共振能量转移(FRET)
FRET荧光传感器分子的组成与其他类型传感器有所不同,除了含有键合基团(Reccptor)彩!连接基团(Spacer),还含有两个负责光吸收井产生荧光发射信号荧光基团(FluoroPhore),而这两个荧光基团一个是能量给体(Energy donor,D),另一个是能量受体(Energy acceptor,A)。
荧光共振能量转移是指在一定波长的光激发下,荧光基团中的能量给体(D)产生荧光发射,并通过偶极一偶极之间的相互作用把能量无辐射地转移给其附近的处于基态的能量受体(A)荧光基团的过程.FRET过程的发生与很多因素如光谱重叠的程度、
跃迁偶极的相对方向,给体(D)和受体(A)之间的距离等有关。
首先,能量给体(D)的发射光谱与能量受体(A)的吸收光谱有明显的重叠,能量受体必须能够在能量给体的发射波长处吸收能量,但能量受体可以是荧光发射基团,也可以是荧光淬灭基团.对于前一种情形,激发能量给体时,可以观察到能量受体的荧光发射;而后一种情形,只能观察到能量给体的荧光变
化。
其次,能量给体与能量受体相隔的距离必须远大于它们之间的碰撞直径(有时甚至相距远达70—100Å)时,才可能发生能量给体与能量受体的非辐射能量转移,又称为长距离能量转移。
另外,能量给体(D)与能量受体(A)还必须以适当的方式排列。
利用FRET效率对距离的强的依赖性,FRET广泛应用于蛋白质和核酸的结构及动力学研究、分子结合的测定等领域.
例如,当荧光分子传感器的两个荧光基团都是荧光发射基团时,具体FRET工作过程如下(见图1.8):在光激发下,荧光基团中的能量给体(D)产生荧光发射;传感器分子通过键合基团键合底物来调节能量给体(D)和能量受体(A)之间的距离以及排列方向。
如果底物的加入使这些因素均在适当范围,能量给体(D)可将能量通过非辐射转移给能量受体(A),表现为能量受体(A)的荧光发射;如果底物的加入使这些因素与FRET因素不能匹配,则会抑制FRET过程,则表现为能量给体(D)的荧光发射(图)。
4激基缔/复合物(exeimer/exciplex)
基于激基缔/复合物(excimer/exciplex)的荧光化学传感器分子的特点是在一个分子中含有两个荧光基团,如多环芳烃萘、蒽和芘等,并且两个基团处于分子的合适位置。
当两个荧光基团相同时,其中一个荧光基团(单体)被激发后,会和另一个处于基态的荧光基团形成分子内激基缔合物(excimer)。
激基缔合物的荧光发射光谱取代了单体的发射峰,呈现出一个新的强而宽的、长波长的、无精细结构的荧光发射峰。
当两个荧光基团不同时,则称之为激基复合物(exciplex)。
激基缔/复合物形成与否的关键是两个荧光基团之间的距离,只有激发态分子与基态分子之间的距离约为3.5Å时,才能形成激基缔/复合物.
基于激基缔/复合物(excimer/exciplex)的荧光化学传感器就是利用受体结合底物后导致激基缔/复合物构型的形成或破坏,使激基缔/复合物的荧光增强或消失,通过单体、激基缔/复合物的荧光光谱变化表达底物识别的信息。
因此,构型的变化是此类信息产生的原因,图给出了加入底物后可以形成激基缔合物的荧光化学传感器的工作原理。
萘、芘、蒽等荧光团由于具有较长的激发单线态寿命,容易
形成激基缔/复合物,常常被用于此类荧光化学传感器中。
杂原子对荧光的影响比较复杂,有时增强荧光,有时减弱荧光。
主要看杂原子化合物的结构。
简单杂环化合物的荧光量子产率很小,几乎为0,但当他们与苯环相并后的产物荧光大大增强。
含氮杂环化合物的分子中含有N原子。
在非极性介质中它们的荧光很弱,随着介质极性的提高,其荧光强度亦随之提高。
取代基的影响
取代基的性质对荧光体的荧光特性和强度均有强烈影响,芳烃和杂环化合物荧光光谱和荧光产率常随取代基而改变,取代基对荧光体的激发和发射光谱以及荧光效率的影响规律和机理,是人们甚为光注的领域,可惜人们对激发态分子的性质了解甚少,影响规律多出自实验总结和猜测。
(a)推电子取代基增加荧光属于这类基团的有
.含有这类基团的荧光体,其激发态是有环外的前几或氨基上的非键电子(n电子)激发转移到环上而产生的。
由于他们的n电子云几乎与芳环上的轨道成品活性,实际上共享了共轭而电子结构,扩大了共轭双键体系.因此,这类化合物的吸收光谱与发射光谱的波长,都比未取代的芳族化合物的波长长,荧光效率也提高很多,但在应用这类荧光体是要特别小心,因为这类基团都含有未键和的n电子。
他们容易与极性溶剂生成氢键。
当取代基是酸基或碱基是,在酸碱性介质中容易转。