第十讲常微分方程详解

第十讲常微分方程详解
第十讲常微分方程详解

第十讲 常微分方程

一、 考试要求

1、 了解微分方程及其阶、解、通解、初始条件和特解等概念。

2、 掌握变量可分离的微分方程、齐次微分方程和一阶线性微分方程的解法。会

解伯努力方程和全微分方程,会用简单的变量代换解某些微分方程。会用降阶法解下列形式的微分方程:y(n)=f(x),y //=f(x,y /)和y //=f(y,y /).

3、 掌握(会解)二阶常系数齐次线性微分方程的解法,并会解某些高于二阶的常

系数齐次线性微分方程。

4、 理解(了解)线性微分方程解的性质及解的结构定理,会解自由项为多项式、

指数函数、正弦函数、余弦函数以及它们的和与积的二阶常系数非齐次线性微分方程 。

5、 了解差分与差分方程及其通解与特解等概念。

6、 掌握一阶常系数线性差分方程的解法。

7、 会用微分方程和差分方程求解简单的经济应用问题。

8、 会解欧拉方程。

9、 会用微分方程解决一些简单的应用问题。

二、内容提要

(一)、一阶微分方程

'=y f x y (,), y y y x y x x ===0000,()

1 可分离变量微分方程

'==y f x y f x g y (,)()()

或 f x dx g y dy ()()+=0

直接积分: f x dx g y dy C ()()+=??

2 齐次方程

'=y f y x (), u y x

= 3 一阶线性微分方程

'+=y p x y q x ()() 或 '+=x p y x q y ()()

y e q x e dx C p x dx p x dx =??+-?

()()[()] 4 贝努里方程

'+=y p x y q x y n ()() , z y n =-1

5 全微分方程

M x y dx N x y dy N x M y (,)(,)+=?

=0???? M x y dx N x y dy C y y

x x

(,)(,)000+=?? 6 可用简单变量代换求解的微分方程

(二)、可降阶的高阶微分方程

1 y f x n ()()=, 连续积分n 次

2 ''='y f x y (,), '=y u

3 ''='y f y y (,), '=''=

?y u y du dy

u ,

(三)、高阶线性微分方程

1、''+'+=y p x y q x y f x ()()() (1)

''+'+=y p x y q x y ()()0 (2)

解的性质、结构

2、常系数线性齐次方程

(1) ''+'+=y py qy 0

特征方程,特征根三种情况:λλ12,

(2) y p y p y p y n n n n ()()+++'+=--1110

3、二阶常系数线性非齐次方程

''+'+=y py qy f x ()

(1) f x P x e n x ()()=α, 特解:

(2) f x e a x b x x ()[cos sin ]=+αββ, 特解:

(3) f x f x f x ()()()=+12, 特解:y x y x y x *()()()=+12

4、 欧拉方程

)(2x f by y ax y x =+'+''

令 dt dy dt

y d y x dt dy y x x t e x t -=''='?==222,ln , )()(22t e f by dt dy a dt dy dt

y d =++-?

三、 典型题型与例题

题型一、一阶微分方程的求解

解题步骤:

例1、 (98 1) 已知函数y=y(x)在任意点x 处的增量??y y x x =++12

α, 且当?x →0时,α是?x 的高阶无穷小量,y ()0=π, 则y(1)= .

例2、求

的通解xy dx

dy 2=。

例3、求0cos )cos (=+-dy x y x dx x y y x 的通解。

例4、(0734)微分方程31()2dy y y dx x x =-满足11x y ==的特解为

[解] 当x<1时,12221-=?=-'x e C y y y ,由y(0)=0得.11=C

所以).1(,12<-=x e y x

当x>1时,x e C y y y 2202=?=-'

由 22221

22111)1(lim lim -→→-=?-=-=-+e C e e e C x x x x 可见 )1(,)1(22>-=-x e e y x .

若补充定义:1)1(2-=e y ,则得),(+∞-∞上的连续函数

1

1,)1(,1)(222>≤???--=-x x e e e x y x x ,满足题中所要求的全部条件. 例5、 求微分方程0)2(=-+dx y x xdy 的一个解y=y(x),使得由曲线y=y(x)与直线x=1,x=2以及x 轴所围成的平面图形绕x 轴旋转一周的旋转体体积最小.

例6、解微分方程

'=

-y x y 122;

例7、x

dy dx

x x y +++=sin()0;

例8、. 4

2的通解求y x y x

dx dy =-

例9、.0)1()( 32=++++dy x dx y x x 求解

题型二、可降阶的高阶微分方程

例10、(001) 微分方程xy y ''+'=30的通解为____,

(整理)常微分方程发展简史经典阶段

第一讲 常微分方程发展简史——经典阶段 一、引 言 Newton 和Lebinitz 创立的微积分是不严格的, 18世纪的数学家们一方面努力探索微积分严格化的途径, 一方面往往又不顾基础问题的困难而大胆前进, 大大地扩展了微积分的应用范围, 尤其是与力学的有机结合, 当时几乎所有的数学家也是力学家. Newton 和Lebinitz 都处理过与常微分方程有关的问题. 微积分的产生的一个重要的动因来自于人们探求物质世界运动规律的需求. 一般地, 认识规律 很难完全靠实验观测认识清楚,因为人们不太可能观测到运动的全过程. 运动是服从一定的客观规律的, 物质运动与瞬时变化率之间有着紧密的联系, 而这种联系, 用数学语言表述出来, 即抽象为某种数学结构, 其结果往往形成一个微分方程, 一旦求出其解或研究清楚其动力学行为, 运动规律就一目了然了. 在微分方程模型建立过程中, 平衡原理扮演着重要的角色. 微分方程模型通常均是建立在平衡原理基础之上的.``平衡"是我们在现实生活中随处可见的现象. 如:物理学中的能量守恒和动量守恒等定律以及力的平衡等都是在描述物理中的一些平衡现象. 再如考虑一段时间内(或一定范围内)物质的变化,容易发现这段时间内物质的改变量与它的增加量和减少量之差也处于平衡的状态, 这种平衡规律称为物质平衡.所谓平衡原理是指自然界的任何物质在其变化的过程中一定受到某种平衡关系的支配.注意发掘实际问题中的平衡原理无疑应该是从物质运动机理的角度组建数学模型的一个关键问题. 作为例子, 我们介绍著名的Malthus 模型, 它是最简单的生态学模型, 也是本书中唯一的线性模型. 给定一个种群, 我们的目的是确定种群的数量是如何随着时间而发展变化的. 为此,我们作出如下假设: 模型假设: 121()H 初始种群规模已知00()x t x =,种群数量非常大,世代互相重叠,因此种群的数量可以看作是连续变化的; 221()H 种群在空间分布均匀,没有迁入和迁出 (或迁入和迁出平衡); 321()H 种群的出生率和死亡率为常数,即不区分种群个体的大小、年龄、性别等. 421()H 环境资源是无限的. 确定变量和参数: 为了把问题转化为数学问题, 我们首先确定建模中需要考虑的变量和参数: t: 自变量, x(t): t 时刻的种群密度, b: 瞬时出生率, d: 瞬时死亡率. 模型的建立与求解: 考查时间段[,]t t t +? (不失一般性, 设0t ?>), 由物质平衡原理,在此时间段内种群的数量满足: t t ?+时刻种群数量 – t 时刻种群数量 = t ?内新出生个体数 – t ?内死亡个体数,

常微分方程知识点总结

常微分方程知识点总结 常微分方程知识点你学得怎么样呢?下面是的常微分方程知识 点总结,欢迎大家阅读! 微分方程的概念 方程对于学过中学数学的人来说是比较熟悉的;在初等数学中 就有各种各样的方程,比如线性方程、二次方程、高次方程、指数方程、对数方程、三角方程和方程组等等。这些方程都是要把研究的问题中的已知数和数之间的关系找出来,列出包含一个数或几个数的一个或者多个方程式,然后取求方程的解。 但是在实际工作中,常常出现一些特点和以上方程完全不同的 问题。比如:物质在一定条件下的运动变化,要寻求它的运动、变化的规律;某个物体在重力作用下自由下落,要寻求下落距离随时间变化的规律;火箭在发动机推动下在空间飞行,要寻求它飞行的轨道,等等。 物质运动和它的变化规律在数学上是用函数关系来描述的,因此,这类问题就是要去寻求满足某些条件的一个或者几个函数。也就是说,凡是这类问题都不是简单地去求一个或者几个固定不变的数值,而是要求一个或者几个的函数。 解这类问题的基本思想和初等数学解方程的基本思想很相似, 也是要把研究的问题中已知函数和函数之间的关系找出来,从列出的包含函数的一个或几个方程中去求得函数的表达式。但是无论在方程

的形式、求解的具体方法、求出解的性质等方面,都和初等数学中的解方程有许多不同的地方。 在数学上,解这类方程,要用到微分和导数的知识。因此,凡是表示函数的导数以及自变量之间的关系的方程,就叫做微分方程。 微分方程差不多是和微积分同时先后产生的,苏格兰数学家耐普尔创立对数的时候,就讨论过微分方程的近似解。牛顿在建立微积分的同时,对简单的微分方程用级数来求解。后来瑞士数学家雅各布?贝努利、欧拉、法国数学家克雷洛、达朗贝尔、拉格朗日等人又不断地研究和丰富了微分方程的理论。 常微分方程的形成与发展是和力学、天文学、物理学,以及其他科学技术的发展密切相关的。数学的其他分支的新发展,如复变函数、李群、组合拓扑学等,都对常微分方程的发展产生了深刻的影响,当前计算机的发展更是为常微分方程的应用及理论研究提供了非常 有力的工具。 牛顿研究天体力学和机械力学的时候,利用了微分方程这个工具,从理论上得到了行星运动规律。后来,法国天文学家勒维烈和英国天文学家亚当斯使用微分方程各自计算出那时尚未发现的海王星 的位置。这些都使数学家更加深信微分方程在认识自然、改造自然方面的巨大力量。 微分方程的理论逐步完善的时候,利用它就可以精确地表述事物变化所遵循的基本规律,只要列出相应的微分方程,有了解方程的方法。微分方程也就成了最有生命力的数学分支。

常微分方程练习题及答案复习题)

常微分方程练习试卷 一、 填空题。 1. 方程23 2 10d x x dt +=是 阶 (线性、非线性)微分方程. 2. 方程 ()x dy f xy y dx =经变换_______,可以化为变量分离方程 . 3. 微分方程 3230d y y x dx --=满足条件(0)1,(0)2y y '==的解有 个. 4. 设常系数方程 x y y y e αβγ'''++=的一个特解*2()x x x y x e e xe =++,则此方程的系数α= ,β= ,γ= . 5. 朗斯基行列式 ()0W t ≡是函数组12(),(),,()n x t x t x t 在a x b ≤≤上线性相关的 条件. 6. 方程 22(2320)0xydx x y dy ++-=的只与y 有关的积分因子为 . 7. 已知 ()X A t X '=的基解矩阵为()t Φ的,则()A t = . 8. 方程组 20'05??=???? x x 的基解矩阵为 . 9.可用变换 将伯努利方程 化为线性方程. 10 .是满足方程 251y y y y ''''''+++= 和初始条件 的唯一解. 11.方程 的待定特解可取 的形式: 12. 三阶常系数齐线性方程 20y y y '''''-+=的特征根是 二、 计算题 1.求平面上过原点的曲线方程, 该曲线上任一点处的切线与切点和点(1,0)的连线相互垂直. 2.求解方程13 dy x y dx x y +-=-+. 3. 求解方程 222()0d x dx x dt dt += 。 4.用比较系数法解方程. . 5.求方程 sin y y x '=+的通解. 6.验证微分方程 22(cos sin )(1)0x x xy dx y x dy -+-=是恰当方程,并求出它的通解.

常微分方程第5章答案

1.给定方程组 x = x x= (*) a)试验证u(t)= ,v(t)= 分别是方程组(*)的满足初始条件u(0)= , v(0)= 的解. b)试验证w(t)=c u(t)+c v(t)是方程组(*)的满足初始条件w(0)= 的解,其中是任意常数.解:a) u(0)= = u (t)= = u(t) 又v(0)= = v (t)= = = v(t) 因此u(t),v(t)分别是给定初值问题的解. b) w(0)= u(0)+ u(0)= + = w (t)= u (t)+ v (t) = + = = = w(t) 因此w(t)是给定方程初值问题的解. 2. 将下面的初值问题化为与之等价的一阶方程组的初值问题: a) x +2x +7tx=e ,x(1)=7, x (1)=-2 b) x +x=te ,x(0)=1, x (0)=-1,x (0)=2,x (0)=0 c) x(0)=1, x (0)=0,y(0)=0,y (0)=1 解:a)令x =x, x = x , 得 即 又x =x(1)=7 x (1)= x (1)=-2 于是把原初值问题化成了与之等价的一阶方程的初值问题: x =x(1)= 其中x=. b) 令=x ===则得: 且(0)=x(0)=1, = (0)=-1, (0)= (0)=2, (0)= (0)=0 于是把原初值问题化成了与之等价的一阶方程的初值问题: = x(0)= , 其中x= . c) 令w =x,w =,w =y,w =y ,则原初值问题可化为: 且 即w w(0)= 其中w= 3. 试用逐步逼近法求方程组 =x x= 满足初始条件 x(0)= 的第三次近似解.

常微分方程第一章

第一章一阶微分方程 1、1学习目标: 1、理解微分方程有关得基本概念,如微分方程、方程阶数、解、通解、初始条件、初值问题等得定义与提法、掌握处理微分方程得三种主要方法: 解析方法, 定性方法与数值方法、 2、掌握变量分离法,用变量替换将某些方程转化为变量分离方程, 掌握一阶线性方程得猜测检验法, 常数变易法与积分因子法, 灵活运用这些方法求解相应方程, 理解与掌握一阶线性方程得通解结构与性质、 3、能够大致描述给定一阶微分方程得斜率场, 通过给定得斜率场描述方程解得定性性质; 理解与掌握欧拉方法, 能够利用欧拉方法做简单得近似计算、 4、理解与掌握一阶微分方程初值问题解得存在唯一性定理, 能够利用存在唯一性定理判别方程解得存在性与唯一性并解决与之相关得问题, 了解解对初值得连续相依性与解对初值得连续性定理, 理解适定性得概念、 5、理解自治方程平衡点, 平衡解, 相线得概念, 能够画出给定自治方程得相线, 判断平衡点类型进而定性分析满足不同初始条件解得渐近行为、 6、理解与掌握一阶单参数微分方程族得分歧概念, 掌握发生分歧得条件, 理解与掌握各种分歧类型与相应得分歧图解, 能够画出给定单参数微分方程族得分歧图解, 利用分歧图解分析解得渐近行为随参数变化得状况、 7、掌握在给定得假设条件下, 建立与实际问题相应得常微分方程模型, 并能够灵活运用本章知识进行模型得各种分析、 1、2基本知识: (一)基本概念 1.什么就是微分方程: 联系着自变量、未知函数及它们得导数(或微分)间得关系式(一般就是 指等式),称之为微分方程、 2.常微分方程与偏微分方程: (1)如果在微分方程中,自变量得个数只有一个,则称这种微分方程为常微分方程,例 如, 、 (2)如果在微分方程中,自变量得个数为两个或两个以上,则称这种微分方程为偏微 分方程、例如, 、 本书在不特别指明得情况下, 所说得方程或微分方程均指常微分方程、 3.微分方程得阶数: 微分方程中出现得未知函数最高阶导数得阶数、例如, 就是二阶常微分方程; 与就是二阶偏微分方程、 4.n阶常微分方程得一般形式: , 这里就是得已知函数,而且一定含有得项;就是未知函数,就是自变量、 5.线性与非线性: (1) 如果方程得左端就是及得一次有理式,则称为n阶线性微分方程、

常微分方程的大致知识点

常微分方程的大致知识点Last revision on 21 December 2020

常微分方程的大致知识点 (一)初等积分法 1、线素场与等倾线 2、可分离变量方程 3、齐次方程(一般含有x y y x 或的项) 4、一阶线性非齐次方程 常数变易法,或])([)()(?+??=-C dx e x b e y dx x a dx x a 5、伯努力方程 令n y z -=1,则dx dy y n dx dz n --=)1(,可将伯努力方程化成一阶线性非齐次或一阶线性齐次 6、全微分方程 若x N y M ??=??,则C y x u =),(,(留意书上公式) 若 x N y M ??≠??,则找积分因子,(留意书上公式) 7、可降阶的二阶微分方程 ),(22dx dy x f dx y d =,令dx dy dx y d p dx dy ==22,则 ),(22dx dy y f dx y d =,令dy dp p dx y d p dx dy ==22,则 8、正交轨线族 (二)毕卡序列 ?+=x x dx y x f y y 0),(001,?+=x x dx y x f y y 0),(102,?+=x x dx y x f y y 0),(203,其余类推 (三)常系数方程 1、常系数齐次0)(=y D L 方法:特征方程 单的实根21,λλ,x x e C e C y 2121λλ+= 单的复根i βαλ±=2,1,)sin cos (21x C x C e y x ββα+= 重的实根λλλ==21,x e x C C y λ)(21+= 重的复根i βαλ±=2,1,i βαλ±=4,3,]sin )(cos )[(4321x x C C x x C C e y x ββα+++=

常微分方程基本概念习题附解答

§1.2 常微分方程基本概念习题及解答 1.dx dy =2xy,并满足初始条件:x=0,y=1的特解。 解:y dy =2xdx 两边积分有:ln|y|=x 2+c y=e 2x +e c =cex 2另外y=0也是原方程的解,c=0时,y=0 原方程的通解为y= cex 2,x=0 y=1时 c=1 特解为y= e 2 x . 2. y 2dx+(x+1)dy=0 并求满足初始条件:x=0,y=1的特解。 解:y 2dx=-(x+1)dy 2y dy dy=-11+x dx 两边积分: -y 1=-ln|x+1|+ln|c| y=|)1(|ln 1+x c 另外y=0,x=-1也是原方程的解 x=0,y=1时 c=e 特解:y=| )1(|ln 1+x c 3.dx dy =y x xy y 32 1++ 解:原方程为:dx dy =y y 21+31x x + y y 21+dy=3 1x x +dx 两边积分:x(1+x 2)(1+y 2)=cx 2 4. (1+x)ydx+(1-y)xdy=0 解:原方程为: y y -1dy=-x x 1+dx 两边积分:ln|xy|+x-y=c

另外 x=0,y=0也是原方程的解。 5.(y+x )dy+(x-y)dx=0 解:原方程为: dx dy =-y x y x +- 令 x y =u 则dx dy =u+x dx du 代入有: -112++u u du=x 1dx ln(u 2+1)x 2=c-2arctgu 即 ln(y 2+x 2)=c-2arctg 2x y . 6. x dx dy -y+22y x -=0 解:原方程为: dx dy =x y +x x ||-2)(1x y - 则令 x y =u dx dy =u+ x dx du 211 u - du=sgnx x 1dx arcsin x y =sgnx ln|x|+c 7. tgydx-ctgxdy=0 解:原方程为:tgy dy =ctgx dx 两边积分:ln|siny|=-ln|cosx|-ln|c| siny=x c cos 1=x c cos 另外y=0也是原方程的解,而c=0时,y=0. 所以原方程的通解为sinycosx=c. 8 dx dy +y e x y 32 +=0 解:原方程为:dx dy =y e y 2e x 3

常微分方程第五章微分方程组总结

一.线性微分方程组的一般理论 1. 线性微分方程组一般形式为: 1111122112211222221122()()()(),()()()(), 1 , ()()()(),n n n n n n n nn n n x a t x a t x a t x f t x a t x a t x a t x f t x a t x a t x a t x f t '=++++??'=++++??????'=++++? () 记: 1112121 22212111222()()()()()()()()()()()()(), , ()n n n n nn n n n a t a t a t a t a t a t A t a t a t a t f t x x f t x x f t x x f t x x ??????=?????? '????????????'??????'===????????????'?????? 非齐次线性方程组表示为: ()() x A t x f t '=+ 齐次线性方程组表示为: ()x A t x '= 2.齐次线性方程组的一般理论 (1)定理 (叠加原理) 如果12(),(),,()n x t x t x t ? 是齐次方程组()x A t x '= 的k 个 解,则它们的线性组合1212()()()n n c x t c x t c x t ++?+ 也是齐次方程组的解,这里 12,,,n c c c ?是任意常数 (2)向量函数线性相关性 定义在区间],[b a 上的函数12(),(),,()n x t x t x t ? ,如果存在不全为零的常数

常微分方程教学设计

常微分方程教学设计 第一讲基本概念定义1如果在一个(或者一组m(有限个))方程中,未知的(unknown)量是一个(或一组m有限个))函数,并且在方程中含有未知函数只关于某一个自变量(independentvariable)的导数或微分,则称这方程为常微分方程(ordinarydifferentialequation)(或者常微分方程组(ODE’s)),简称常微分方程(组)为微分方程(DE)(组(DE’s))或方程(组).(提示)常微分方程之例:若x是自变量t的未知函数,其他的量都是已知的,则下列方程(一阶线性齐次方程)(正规形式),(一阶线性非齐次方程)(正规形式),(二阶线性齐次方程),(二阶线性非齐次方程),(Riccati 方程)(一阶非线性方程)都是常微分方程,微分方程中可以不出现未知函数x本身,但必须实质上含有未知函数x的导数.注意,在本教程中不讨论延迟(retarded)常微分方程:常微分方程组之例:记vector),是自变量t的函数,用个变量为m维列矢量(column,其中,,简记的已知函数,(以后都这样表示,不要误解为矢量x的是常微分方程组.函数),则矢量(vector)方程n阶微分方程可以通过变换组:定义2微分方程中实质上含有的未知函数x的最高阶导数的阶数称为这微分方程关于x的阶.微分方程组中各个未知函数的最高阶导数的阶数之和称为微分方程组的阶(计算阶数时把未知函数本身认为是未知函数的零阶导数).(提示)方程组的

阶:例中的方程组是n阶方程组.注意:但是如果我们把例2中的方程组看成是一个矢量x的方程,而且其中关于x的每个分量的阶都是一阶的,因此也可称它(关于x是一阶的).n 阶微分方程的一般形式为:,其中函数F在其变量的某一区域(domain)中有定义,并且一定含有未知函数x对自变量t 的n阶导数.定义3假设有在区间I上有直到n阶的连续导数的函数:以是由隐式或参数形式决定的)在区间I上满足恒等式,(可我们就说该函数是在区间I上方程的解(solution).称区间I是解的定义区间.微分方程的解根据函数的形式可分为显式(explicit)解,隐式(implicit)解和参数形式解.(提示)n阶微分方程的解可由对方程逐次进行n 次积分得到:,其中是的n次累次积分.为n个任意独立的实常数,2例:一阶方程义区间是:当时为的通解可以写成;当时为,其中c是非零实常数.定.严格而言不能写成的形式,因为后者的定义域不是一个区间.但是可以写成在不同区间上的两个通解:,和和.如果把这些解写成形式.则称为隐式解,这种隐式解也称为方程的积分.定义4微分方程的解,或隐式解在t-x平面上的几何图形是一条曲线,称为微分方程的积分曲线(integralcurve).如果在积分曲线上函数积分(integral)定义5已就最高阶导数解出的微分方程等于常数,则也称为微分方程的一个常微分方程之例:若x 是自变量t的未知函数,其他的量都是已知的,则下列方程

常微分方程期末复习提要(1)

常微分方程期末复习提要 中央电大 顾静相 常微分方程是广播电视大学本科开放教育数学与应用数学专业的统设必修课程.本课程的主要任务是要使学生掌握常微分方程的基本理论和方法,增强运用数学手段解决实际问题的能力.本课程计划学时为54,3学分,主要讲授初等积分法、基本定理、线性微分方程组、线性微分方程、定性理论简介等内容。本课程的文字教材是由潘家齐教授主编、中央电大出版社出版的主辅合一型教材《常微分方程》.现已编制了28学时的IP 课件供学生在网上学习. 一、复习要求和重点 第一章 初等积分法 1.了解常微分方程、常微分方程的解的概念,掌握常微分方程类型的判别方法. 常微分方程与解的基本概念主要有:常微分方程,方程的阶,线性方程与非线性方程,解,通解,特解,初值问题。 2.了解变量分离方程的类型,熟练掌握变量分离方程解法. (1)显式变量可分离方程为: )()(d d y g x f x y = ; 当0≠g 时,通过积分??+=C x x f y g y d )()(d 求出通解。 (2)微分形式变量可分离方程为: y y N x M x y N x M d )()(d )()(2211=; 当0)()(21≠x M y N 时,通过积分 ??+=C x x M x M y y N y N d ) ()(d )()(2112求出通解。 3.了解齐次方程的类型,熟练掌握齐次方程(即第一类可化为变量可分离的方程)的解法. 第一类可化为变量可分离方程的一阶齐次微分方程为: )(d d x y g x y = ; 令x y u =,代入方程得x u u g x u -=)(d d ,当0)(≠-u u g 时,分离变量并积分,得?=-u u g u x C )(d 1e ,即)(e u C x ?=,用x y u =回代,得通解)(e x y C x ?=. 4.了解一阶线性方程的类型,熟练掌握常数变易法,掌握伯努利方程的解法. (1)一阶线性齐次微分方程为: 0)(d d =+y x p x y 通解为:?=-x x p C y d )(e 。 (2)一阶线性非齐次微分方程为: )()(d d x f y x p x y =+; 用常数变易法可以求出线性非齐次方程的通解:??+?=-]d e )([e d )(d )(x x f C y x x p x x p 。 (3)伯努利方程为:)1,0()()(d d ≠=+n y x f y x p x y n ,

常微分方程解

第四章常微分方程数值解 [课时安排]6学时 [教学课型]理论课 [教学目的和要求] 了解常微分方程初值问题数值解法的一些基本概念,如单步法和多步法,显式和隐式,方法的阶数,整体截断误差和局部截断误差的区别和关系等;掌握一阶常微分方程初值问题的一些常用的数值计算方法,例如欧拉(Euler)方法、改进的欧拉方法、龙贝-库塔(Runge-Kutta)方法、阿达姆斯(Adams)方法等,要注意各方法的特点及有关的理论分析;掌握构造常微分方程数值解的数值积分的构造方法和泰勒展开的构造方法的基本思想,并能具体应用它们导出一些常用的数值计算公式及评估截断误差;熟练掌握龙格-库塔(R-K)方法的基本思想,公式的推导,R-K公式中系数的确定,特别是能应用“标准四阶R-K公式”解题;掌握数值方法的收敛性和稳定性的概念,并能确定给定方法的绝对稳定性区域。 [教学重点与难点] 重点:欧拉方法,改进的欧拉方法,龙贝-库塔方法。 难点:R—K方法,预估-校正公式。 [教学内容与过程] 4.1 引言 本章讨论常微分方程初值问题 (4.1.1) 的数值解法,这也是科学与工程计算经常遇到的问题,由于只有很特殊的方程能用解析方法求解,而用计算机求解常微分方程的初值问题都要采用数值方法.通常我们假定(4.1.1)中 f(x,y)对y满足Lipschitz条件,即存在常数L>0,使对,有 (4.1.2) 则初值问题(4.1.1)的解存在唯一. 假定(4.1.1)的精确解为,求它的数值解就是要在区间上的一组离散点 上求的近似.通常取 ,h称为步长,求(4.1.1)的数值解是按节点的顺序逐步

推进求得.首先,要对方程做离散逼近,求出数值解的公式,再研究公式的局部截断误差,计算稳定性以及数值解的收敛性与整体误差等问题. 4.2 简单的单步法及基本概念 4.2.1 Euler法、后退Euler法与梯形法 求初值问题(4.1.1)的一种最简单方法是将节点的导数用差商 代替,于是(4.1.1)的方程可近似写成 (4.2.1) 从出发,由(4.2.1)求得再将 代入(4.2.1)右端,得到的近似,一般写成 (4.2.2) 称为解初值问题的Euler法. Euler法的几何意义如图4-1所示.初值问题(4.1.1)的解曲线y=y(x)过点,从出发,以为斜率作一段直线,与直线交点于,显然有 ,再从出发,以为斜率作直线推进到上一点,其余类推,这样得到解曲线的一条近似曲线,它就是折线.

第五章常微分方程习题

第五章 常微分方程 §1 常微分方程的基本概念与分离变量法 1. xy dx dy 2=,并求满足初始条件:0,1x y ==的特解. 2.2(1)0y dx x dy ++=,并求满足初始条件:0,1x y ==的特解. 3.(1)(1)0x ydx y xdy ++-= 4.(ln ln )0x x y dy ydx --= 5. x y dy e dx -= 答案 1.通解2 x y ce =;特解2 x y e = 2.通解1ln 1y c x = ++;另有解0y =;特解11ln 1y x = ++ 3.ln ;0x y xy c y -+== 4.1ln y cy x += 5.y x e e c =+ §2 一阶线性微分方程 1.(1)( )是微分方程。 (A ) (B ) (C ) (D ) (2)( )不是微分方程。 (A ) (B ) (C ) (D )

2.求微分方程的通解 ;(2)。 (1) 3.求微分方程的特解 (1);(2) 4.解下列微分方程 ;(2); (1) 答案1.(1)B;(2)C 2.(1)y=cx;(2)y4-x4=C。 3.(1)2/x3;(2)。 4.(1); (2)y=Csinx; §3 二阶常系数线性微分方程 1.求下列微分方程的通解 ;(2); (1) (3) (5) 2.求微分方程的特解 3.求下列微分方程的通解

(1) ; (2) ; (3) ; (4) 。 4.求方程2100y y y '''++=满足初始条件0 2x y ==和01x y ='=的特解 5.求方程221y y y x '''+-=+的一个特解 6.求方程22x y y y xe '''+-=的一个特解 7.求方程32(41)x y y y x e '''-+=-的一个特解 答案 1.(1) ; (2) ; (3) ; (4) ; (5) ; (6) 。 2. 3.(1) ; (2) ; (3) ; (4) 。

第三章一阶线性微分方程组第一讲一阶微分方程组及解的存在唯一性定理

第一讲 一阶微分方程组及解的存在惟一性定理(2课时) 一、 目的与要求: 了解高阶微分方程与一阶微分方程组的等价关系, 理解用向量和矩阵来研 究一阶微分方程组的作用, 了解微分方程组解的存在唯一性定理. 二、重点:一阶微分方程组的向量和矩阵表示及解的存在唯一性定理. 三、难点:向量和矩阵列的收敛性的定义, 二者的范数定义及其相关性质. 四、教学方法:讲练结合法、启发式与提问式相结合教学法. 五、教学手段:传统板书与多媒体课件辅助教学相结合. 六、教学过程: 1 课题引入 在前两章里,我们研究了含有一个未知函数的常微分方程的解法及其解的性质.但是,在很多实际和理论问题中,还要求我们去求解含有多个未知函数的微分方程组,或者研究它们的解的性质. 例如,已知在空间运动的质点(,,)P x y z 的速度与时间t 及该点的坐标的关系为(,,)x y z v v v v

123(,,,)(,,,)(,,,)x y z v f t x y z v f t x y z v f t x y z =?? =??=? 且质点在时刻0t 经过点000(,,)x y z ,求该质点的运动轨迹。 因为,x y dx dy v v dt dt ==和z dz v dt =, 所以这个问题其实就是求 一阶微分方程组 123(,,,) (,,,)(,,,)x f t x y z y f t x y z z f t x y z =?? =??=? 的满足初始条件 00(),x t x = 00(),y t y = 00()z t z = 的解(),(),()x t y t z t . 另外,在n 阶微分方程 (1.12) () (1) (,,, ,)n n y f x y y y -'= 中,令 (1) 121,, ,n n y y y y y y --'''===就可 以把它化成等价的一阶微分方程组

常微分方程解题方法总结.doc

常微分方程解题方法总结 来源:文都教育 复习过半, 课本上的知识点相信大部分考生已经学习过一遍 . 接下来, 如何将零散的知 识点有机地结合起来, 而不容易遗忘是大多数考生面临的问题 . 为了加强记忆, 使知识自成 体系,建议将知识点进行分类系统总结 . 著名数学家华罗庚的读书方法值得借鉴, 他强调读 书要“由薄到厚、由厚到薄”,对同学们的复习尤为重要 . 以常微分方程为例, 本部分内容涉及可分离变量、 一阶齐次、 一阶非齐次、 全微分方程、 高阶线性微分方程等内容, 在看完这部分内容会发现要掌握的解题方法太多, 遇到具体的题 目不知该如何下手, 这种情况往往是因为没有很好地总结和归纳解题方法 . 下面以表格的形 式将常微分方程中的解题方法加以总结,一目了然,便于记忆和查询 . 常微分方程 通解公式或解法 ( 名称、形式 ) 当 g( y) 0 时,得到 dy f (x)dx , g( y) 可分离变量的方程 dy f ( x) g( y) 两边积分即可得到结果; dx 当 g( 0 ) 0 时,则 y( x) 0 也是方程的 解 . 解法:令 u y xdu udx ,代入 ,则 dy 齐次微分方程 dy g( y ) x dx x u g (u) 化为可分离变量方程 得到 x du dx 一 阶 线 性 微 分 方 程 P ( x)dx P ( x) dx dy Q(x) y ( e Q( x)dx C )e P( x) y dx

伯努利方程 解法:令 u y1 n,有 du (1 n) y n dy , dy P( x) y Q( x) y n(n≠0,1)代入得到du (1 n) P(x)u (1 n)Q(x) dx dx 求解特征方程:2 pq 三种情况: 二阶常系数齐次线性微分方程 y p x y q x y0 二阶常系数非齐次线性微分方程 y p x y q x y f ( x) (1)两个不等实根:1, 2 通解: y c1 e 1x c2 e 2x (2) 两个相等实根:1 2 通解: y c1 c2 x e x (3) 一对共轭复根:i , 通解: y e x c1 cos x c2 sin x 通解为 y p x y q x y 0 的通解与 y p x y q x y f ( x) 的特解之和. 常见的 f (x) 有两种情况: x ( 1)f ( x)e P m ( x) 若不是特征方程的根,令特解 y Q m ( x)e x;若是特征方程的单根,令特 解 y xQ m ( x)e x;若是特征方程的重根, 令特解 y*x2Q m (x)e x; (2)f (x) e x[ P m ( x) cos x p n ( x)sin x]

《常微分方程》课程大纲

《常微分方程》课程大纲 一、课程简介 课程名称:常微分方程学时/学分:3/54 先修课程:数学分析,高等代数,空间解析几何,或线性代数(行列式,矩阵与线性方程组,线性空间F n,欧氏空间R n,特征值与矩阵的对角化), 高等数学(多元微积分,无穷级数)。 面向对象:本科二年级或以上学生 教学目标:围绕基本概念与基本理论、具体求解和实际应用三条主线开展教学活动,通过该课程的教学,希望学生正确理解常微分方程的基本概念,掌握基本理论和主要方法,具有一定的解题能力和处理相关应用问题的思维方式,如定性分析解的性态和定量近似求解等思想,并希望学生初步了解常微分方程的近代发展,为学习动力系统学科的近代内容和后续课程打下基础。 二、教学内容和要求 常微分方程的教学内容分为七部分,对不同的内容提出不同的教学要求。(数字表示供参考的相应的学时数,第一个数为课堂教学时数,第二个数为习题课时数) 第一章基本概念(2,0) (一)本章教学目的与要求: 要求学生正确掌握微分方程,通解,线性与非线性,积分曲线,线素场(方

向场),定解问题等基本概念。本章教学重点解释常微分方程解的几何意义。 (二)教学内容: 1.由实际问题:质点运动即距离与时间关系(牛顿第二运动定律),放射性元素衰变过程,人口总数发展趋势估计等,通过建立数学模型,导出微分方程。 2.基本概念(常微分方程,偏微分方程,阶,线性,非线性,解,定解问题,特解,通解等)。 3.一阶微分方程组的几何定义,线素场(方向场),积分曲线。 4.常微分方程所讨论的基本问题。 第二章初等积分法(4,2) (一)本章教学目的与要求: 要求学生熟练掌握分离变量法,常数变易法,初等变换法,积分因子法等初等解法。 本章教学重点对经典的几类方程介绍基本解法,勾通初等积分法与微积分学基本定理的关系。并通过习题课进行初步解题训练,提高解题技巧。 (二)教学内容: 1. 恰当方程(积分因子法); 2. 分离变量法 3. 一阶线性微分方程(常数变易法) 4. 初等变换法(齐次方程,伯努利方程,黎卡提方程)

常微分方程第1章教案

第一章 绪论 定义:指含有未知量的等式. 代数方程:2210x x -+ = 1=,3121x x x --=+ 超越方程:sin cos 1x x +=,221x e x x =+- 以上都是一元方程,一般形式可以写成()0F x = 二元方程2210x y +-=的一般形式可以写成(,)0F x y =,同理三元方程22210 x y z ++-=等等 根据对未知量施加的运算不同进行方程的分类,高等数学的运算主要是微分和积分运算 一、引例 例1:已知一曲线通过点(1,2),且在该曲线上任一点(,)M x y 处的切线的斜率为2x ,求这曲线的方程. 解:设所求曲线的方程为()y f x =,由题意 1d 2(1)d 2(2)x y x x y =?=???=? 由(1)得2d y x x =?,即2y x C =+ (3) 把条件“1x =时,2y =,”代入上式(3)得221 C =+,1C ∴= 把1C =代入式(3),得所求曲线方程:21y x =+ 例2:列车在平直道路上以20m/s (相当于72km/h )的速度行驶,当制动时列车获得加速度20.4m /s -.问开始制动后需要多长时间列车才能停住,以及列车在这段时间里行驶了多少路程? 解:设列车在开始制动后t s 时行驶了s m.根据题意,反映制动阶段列车运动规律的函数()s s t =应满足关系式 00 220d 0.4(4) d d 20(5)d 0*t t t s t s v t s ===?=-???==???=??() 把式(4)两端积分一次,得1d 0.4d s v t C t = =-+ (6)

第一讲§1.1微分方程与解(2课时)

第一讲 §1.1 微分方程与解(2课时) 一、目的要求:了解微分方程与相关学科的密切关系;掌握微分方程的有关基本概念。 二、重点: 1. 通过讲授微分方程的一些具体应用实例(如利用相关的物理、化学、生物、工程等有关规律建立反映实际问题的模型),使学生认识到学习本课程的生要性。 2. 基本概念:常(偏)微分方程、阶、解(显式和隐式)、通解(显式和隐式)、特解、积分曲线、定解条件、Cauchy 问题等。 三、难点:分析模型;通解的定义。 四、教学方法:讲练结合法、启发式与提问式相结合教学法。 五、教学手段:传统板书与多媒体课件辅助教学相结合。 六、教学过程: 1.课题导入: 什么是微分方程?它是怎样产生的?这是首先要回答的问题. 300多年前,由牛顿(Newton,1642-1727)和莱布尼兹(Leibniz,1646-1716)所创立的微积分 学,是人类科学史上划时代的重大发现,而微积分的产生和发展,又与求解微分方程问题密切相关. 这是因为,微积分产生的一个重要动因来自于人们探求物质世界运动规律的需求.一般地,运动规律很难全靠实验观测认识清楚,因为人们不太可能观察到运动的全过程. 然而,运动物体(变量)与它的瞬时变化率(导数)之间,通常在运动过程中按照某种己知定律存在着联系,我们容易捕捉到这种联系,而这种联系,用数学语言表达出来,其结果往往形成一个微分方程. 一旦求出这个方程的解,其运动规律将一目了然. 在初等数学中,曾经学习过代数方程,例如: ⑴3210x x -+=; 1=; ⑶3121x x x --=+ 中,对未知数x 所施加的是代数运算,因此它们都是代数方程。 还学习过三角方程、指数方程、对数方程等,例如: ⑴sin cos 1x x += ⑵2 21x e x x =+- ⑶1ln x x += 中,出现了未知量x 的超越函数,因此它们都是超越方程。并用它们解决了一些有趣的应用问题,使我们初步体会到方程论(主要是设未知量、列方程和求解方程的方法)对于解决实际问题的重要性。 在高等代数中,又学习过高次代数方程,n 元线性代数方程组。这些方程(组)有一个共同特点,就是作为未知而要求的是一个或几个特定的值(称为方程的根或解)。 但在高等数学中,常常需要研究的是另外一类性质上完全不同的方程。在这类方程中,作为未知而要去求的已经不再是一个或几个特定的值,而是一个函数。这类方程称为函数方程。例如:

常微分方程期末试题知识点复习考点归纳总结参考

期末考试 一、填空题(每空2 分,共16分)。 1.方程22d d y x x y +=满足解的存在唯一性定理条件的区域是 . 2. 方程组 n x x x R Y R Y F Y ∈∈=,),,(d d 的任何一个解的图象是 维空间中的一条积分曲线. 3.),(y x f y '连续是保证方程),(d d y x f x y =初值唯一的 条件. 4.方程组???????=-=x t y y t x d d d d 的奇点)0,0(的类型是 5.方程2)(2 1y y x y '+'=的通解是 6.变量可分离方程()()()()0=+dy y q x p dx y N x M 的积分因子是 7.二阶线性齐次微分方程的两个解)(1x y ?=,)(2x y ?=成为其基本解组的充要条件是 8.方程440y y y '''++=的基本解组是 二、选择题(每小题 3 分,共 15分)。 9.一阶线性微分方程 d ()()d y p x y q x x +=的积分因子是( ). (A )?=x x p d )(e μ (B )?=x x q d )(e μ (C )?=-x x p d )(e μ (D )?=-x x q d )(e μ 10.微分方程0d )ln (d ln =-+y y x x y y 是( ) (A )可分离变量方程 (B )线性方程 (C )全微分方程 (D )贝努利方程 11.方程x (y 2-1)d x+y (x 2-1)d y =0的所有常数解是( ). (A) 1±=x (B)1±=y

(C )1±=y , 1±=x (D )1=y , 1=x 12.n 阶线性非齐次微分方程的所有解( ). (A )构成一个线性空间 (B )构成一个1-n 维线性空间 (C )构成一个1+n 维线性空间 (D )不能构成一个线性空间 13.方程222+-='x y y ( )奇解. (A )有一个 (B )有无数个 (C )只有两个 (D )无 三、计算题(每小题8分,共48分)。 14.求方程22 2d d x y xy x y -=的通解 15.求方程0d )ln (d 3=++y x y x x y 的通解 16.求方程2 221)(x y x y y +'-'=的通解

常微分方程基本知识点

常微分方程基本知识点 第一章 绪论 1. 微分方程的概念(常微分与偏微),什么是方程的阶数,线性与非线性,齐次与非齐次,解、特解、部分解和通解的概念及判断! (重要) 例:03)(22=-+y dx dy x dx dy (1阶非线性); x e dx y d y =+22sin 。 2.运用导数的几何意义建立简单的微分方程。(以书后练习题为主) (习题1,2,9题) 例:曲线簇cx x y -=3满足的微分方程是:__________. 第二章 一阶方程的初等解法 1.变量分离方程的解法(要能通过适当的变化化成变量分离方程);(重要) 2.齐次方程的解法(变量代换);(重要) 3.线性非齐次方程的常数变易法; 4.分式线性方程、贝努利方程、恰当方程的概念及判断(要能熟练的判断各种类型的一阶方程)(重要); 例题:(1).经变换_____y c u os =___________后, 方程1cos sin '+=+x y y y 可化为___线性_____方程; (2).经变换_____y x u 32-=____________后, 方程1 )32(1 '2+-=y x y 可化为____变量分离__方程; (3).方程0)1(222=+-dy e dx ye x x x 为:线性方程。

(4).方程221 'y x y -=为:线性方程。 5.积分因子的概念,会判断某个函数是不是方程的积分因子; 6.恰当方程的解法(分项组合方法)。(重要) 第三章 一阶方程的存在唯一性定理 1.存在唯一性定理的内容要熟记,并能准确确定其中的h ; 2.会构造皮卡逐步逼近函数序列来求第k 次近似解!(参见书上例题和习题 3.1的1,2,3题) 第四章 高阶微分方程 1.n 阶线性齐次(非齐次)微分方程的概念,解的概念,基本解组,解的线性相关与线性无关,齐次与非齐次方程解的性质; 2.n 阶线性方程解的Wronskey 行列式与解的线性相关与线性无关的关系; 3.n 阶线性齐次(非齐次)微分方程的通解结构定理!!(重要) 4.n 阶线性非齐次微分方程的常数变易法(了解); 5.n 阶常系数线性齐次与非齐次微分方程的解法(Eurler 待定指数函数法确定基本解组),特解的确定(比较系数法、复数法);(重要) 例题:t te x x 24=-'',确定特解类型? (习题4.2相关题目) 6.2阶线性方程已知一个特解的解法(作线性齐次变换)。(重要) 7.其他如Euler 方程、高阶方程降阶、拉普拉斯变换法等了解。

相关文档
最新文档