初一数学不等式与不等式单元测试题及答案
新七年级数学下册第九章《不等式与不等式组》单元检测试卷(含答案)(1)

七年级数学第9章《不等式和不等式组》同步测试一、选择题(每题3分,共30分):1、若a >b ,则下列各式中一定成立的是( ) A .ma >mbB .c 2a >c 2bC .(1+c 2)a >(1+c 2)b D .1﹣a >1﹣b2、在数轴上表示不等式x >-2的解集,正确的是( )3、不等式a >b ,两边同时乘m 得am <bm ,则一定有( ) A .m =0B .m <0C .m >0D .m 为任何实数4、下列说法中,错误的是( ) A .x =1是不等式x <2的解B .-2是不等式2x -1<0的一个解C .不等式-3x >9的解集是x =-3D .不等式x <10的整数解有无数个5、已知实数a ,b 满足a +1>b +1,则下列选项错误的为( ) A .a >bB .a +2>b +2C .-a <-bD .2a >3b6、已知不等式组 有解,则 的取值范围为( )A .a>-2B .a≥-2C .a<2D .a≥27、如果不等式组⎩⎪⎨⎪⎧2x -1>3(x -1),x<m 的解集是x <2,那么m 的取值范围是( )A .m =2B .m >2C .m <2D .m≥28、小明准备用自己今年的零花钱买一台价值300元的英语学习机.现在他已存有45元,如果从现在起每月节省30元,设x 个月后他存够了所需钱数,则x 应满足的关系式是( ) A. 30x-45≥300 B. 30x+45≥300 C. 30x-45≤300 D. 30x+45≤3009、对于实数x ,我们规定[x]表示不大于x 的最大整数,例如[1.2]=1,[3]=3,[-2.5]=-3.若[x +410]=5,则x 的取值可以是( )A .40B .45C .51D .5610、若关于x 的不等式组⎩⎪⎨⎪⎧x -a≤0,2x +3a >0的解集中至少有5个整数解,则正数a 的最小值是( )A .3B .2C .1D.23二、填空题(每题3分,共15分):11、不等式3(x ﹣1)≤5﹣x 的非负整数解有_____个. 12、已知0≤a–b≤1且1≤a+b≤4,则a 的取值范围是13、已知关于x 的不等式组⎩⎪⎨⎪⎧5-3x≥-1,a -x <0无解,则a 的取值范围是 .14、若实数3是不等式2x -a -2<0的一个解,则a 可取的最小正整数为 . 15、某校规定期中考试成绩的40%和期末考试成绩的60%的和作为学生成绩总成绩.该校李红同学期中数学考了85分,她希望自己学期总成绩不低于90分,则她在期末考试中数学至少应得多少分?设她在期末应考x 分,可列不等式为 . 三、解答题(共55分):16、(6分)在爆破时,如果导火索燃烧的速度是每秒钟0.8 cm ,人跑开的速度是每秒钟4 m ,为了使点导火索的人在爆破时能够跑到100 m 以外的安全地区,设导火索的长为s cm. (1)用不等式表示题中的数量关系;(2) 要使人能跑到安全地区,则导火索的长度至少多长?17、(6分)已知关于x 的不等式ax <-b 的解集是x >1,求关于y 的不等式by >a 的解集.18、(8分)已知关于x 的不等式2m -mx 2>12x -1.(1)当m =1时,求该不等式的解集;(2)m 取何值时,该不等式有解,并求出解集.19、(8分)某商店5月1日举行促销优惠活动,当天到该商店购买商品有两种方案.方案一:用168元购买会员卡成为会员后,凭会员卡购买商店内任何商品,一律按商品价格的8折优惠;方案二:若不购买会员卡,则购买商店内任何商品,一律按商品价格的9.5折优惠.已知小敏5月1日前不是该商店的会员.(1)若小敏不购买会员卡,所购买商品的价格为120元时,实际应支付多少元? (2)请帮小敏算一算,所购买商品的价格在什么范围内时,采用方案一更合算?20、(10分)解不等式组并在数轴上表示解集.(1)⎩⎪⎨⎪⎧2x<5,①3(x +2)≥x+4,②(2) ⎩⎪⎨⎪⎧x -32(2x -1)≤4,①1+3x 2>2x -1,②21、(8分)春平中学要为学校科技活动小组提供实验器材,计划购买A 型、B 型两种型号的放大镜.若购买8个A 型放大镜和5个B 型放大镜需用220元;购买4个A 型放大镜和6个B 型放大镜需用152元.(1)求每个A 型放大镜和每个B 型放大镜各多少元;(2)春平中学决定购买A 型放大镜和B 型放大镜共75个,总费用不超过1 180元,那么最多可以购买多少个A 型放大镜?22、(9分)某科技有限公司准备购进A 和B 两种机器人来搬运化工材料,已知购进A 种机器人2个和B 种机器人3个共需16万元,购进A 种机器人3个和B 种机器人2个共需14万元,请解答下列问题:(1)求A 、B 两种机器人每个的进价;(2)已知该公司购买B 种机器人的个数比购买A 种机器人的个数的2倍多4个,如果需要购买A 、B 两种机器人的总个数不少于28个,且该公司购买的A 、B 两种机器人的总费用不超过106万元,那么该公司有哪几种购买方案?参考答案: 一、选择题:1、C2、C3、B4、C5、D6、C7、D8、B9、C 10、B 二、填空题: 11、3 12、≤a≤13、a≥2 14、515、40%×85+60%x≥90 三、解答题:16、(1)4×s0.8>100.(2)25 cm17、∵不等式ax <-b 的解集是x >1,∴a<0,-ba =1.∴b=-a ,b >0.∴不等式by >a 的解集为y >ab =-1,即不等式by >a 的解集为y >-1.18、(1)当m =1时,该不等式为2-x 2>12x -1,解得x <2.(2)∵2m -mx 2>12x -1,∴2m-mx >x -2.∴-mx -x >-2-2m.∴(m+1)x <2(1+m). ∵该不等式有解,∴m+1≠0,即m≠-1. 当m >-1时,不等式的解集为x <2; 当x <-1时,不等式的解集为x >2. 19、(1)120×0.95=114(元).(2)设购买商品的价格为x 元.由题意,得0.8x +168<0.95x.解得x >1 120. 当购买商品的价格超过1 120元时,采用方案一更合算. 20、(1)解不等式①,得x <52人教版七年级数学下册第九章不等式与不等式组复习检测试题(有答案)一、选择题。
人教版七年级下册数学第九章《不等式和不等式组》单元检测卷 (附答案)

人教版七年级下册数学第九章《不等式和不等式组》单元测试卷(基础)总分:100分一、选择题(每小题4分,共40分)1.(2020·四川省巴中中学七年级期中)在下列数学表达式:①-20<,②2-50x ≥,③1x =,④2-x x ,⑤-2x ≠,⑥2-1x x +<中,是不等式的有( ) A .2个B .3个C .4个D .5个2.(2020·重庆綦江区·七年级期末)把不等式x+2≤0的解集在数轴上表示出来,则正确的是( ) A . B . C .D .3.(2020·河南许昌市·)我市某一天的最高气温是9C ︒,最低气温是零下2C ︒,则当天我市气温变化范围()t C ︒是( )A .29t <<B .29t ≤≤C .29t -<<D .29t -≤≤4.(2021·浙江杭州市·八年级期末)若a b >,则下列各式中一定成立的是( ) A .22a b -<-B .11a b +>+C .22a b <D .33a b->- 5.(2021·湖南怀化市·八年级期末)下列不等式中,变形错误的是( ) A .x y >则11x y +>+ B .若a b ->-则a b < C .12x y ->则2x y <- D .若35x -<则53x <-6.(2021·浙江温州市·八年级期末)不等式213x -≤的解是( ) A .1≥xB .1x ≤C .2x ≥D .2x ≤7.(2021·沙坪坝区·重庆一中八年级期末)不等式480x -≥的解集在数轴上表示为( ) A .B .C .D .8.(2021·全国七年级)不等式组24020x x -⎧⎨+>⎩的解集在数轴上表示正确的是( )A .B .C .D .9.(2021·湖南娄底市·八年级期末)如果不等式()33a x a ->-的解集是1x <,那么a 的取值范围是( ) A .0a >B .0a <C .3a >D .3a <10.(2021·广西北海市·八年级期末)若不等式组无解,则a 的取值范围为( )A .4a >B .4a ≤C .04a <<D .4a ≥二、填空题(每小题5分,共30分)11.(2021·浙江宁波市·八年级期末)若a b >,则25a --________25b --(填“>”或“<”).12.(2020·浙江杭州市·九年级期末)不等式组()5831131<722x x x x⎧+>+⎪⎨--⎪⎩的最大整数解为__________.13.(2021·贵州铜仁市·八年级期末)不等式组321215x x ->⎧⎨-≤⎩的正整数解是______.14.(2021·湖南娄底市·八年级期末)关于x 的一元一次不等式组的解集在数轴上的表示如图所示,则此不等式组的解集是______________.15.(2021·湖南邵阳市·八年级期末)若关于x 的不等式组0721x m x -≤⎧⎨-≤⎩的解集中恰好有三个整数,则m 的取值范围是___.16.(2020·浙江绍兴市·八年级其他模拟)关于x 的不等式组314(1)x x x a->-⎧⎨<⎩的解是3x <,那么a 的取值范围是______.三、解答题一(每小题6分,共12分) 17.(2021·广西北海市·八年级期末)解不等式:431132x x +-->,并把解集在数轴上表示出来.18.(2021·湖南邵阳市·八年级期末)解不等式组:31211213x x x x +≥-⎧⎪+⎨>-⎪⎩,并在数轴上表示解集四、解答题二(每小题9分,共18分)19.(2021·安徽六安市·七年级期末)关于x 、y 的方程组2564x y mx ny +=-⎧⎨-=⎩.与关于x 、y 的方程组35168x y nx my -=⎧⎨+=-⎩的解相同,求2021(2)m n +20.(2021·湖南邵阳市·八年级期末)“一方有难,八方相助”是中华民族的优良传统.“新冠肺炎”疫情期间,我市向湖北省某县捐赠A 型医疗物资290件和B 型医疗物资100件.计划租用甲、乙两种型号的汽车共8辆运送过去.经了解,甲种汽车每辆最多能载A 型医疗物资40件和B 型医疗物资10件,乙种汽车每辆最多能载A 型医疗物资30件和B 型医疗物资20件. (1)请你帮助设计所有可能的租车方案;(2)如果甲种汽车每辆的运费是1200元,乙种汽车每辆的运费是1000元,这次运送的费用最少需要多少钱?答案解析一、选择题(每小题4分,共40分)1.(2020·四川省巴中中学七年级期中)在下列数学表达式:①-20<,②2-50x ≥,③1x =,④2-x x ,⑤-2x ≠,⑥2-1x x +<中,是不等式的有( ) A .2个 B .3个C .4个D .5个【答案】C 【分析】根据不等式的定义,用“>”、“≥”、“<”、“≤”、“≠”等不等号表示不相等关系的式子是不等式进行判断即可得. 【详解】根据不等式的定义可知①-2<0;②2x-5>0;⑤x≠-2;⑥x+2>x-1为不等式, 共4个, 故选:C . 【点睛】本题考查了不等式,一般地,用不等号表示不相等关系的式子叫不等式,解答此类题关键是要识别常见不等号:>、<、≤、≥、≠.2.(2020·重庆綦江区·七年级期末)把不等式x+2≤0的解集在数轴上表示出来,则正确的是( ) A . B .C .D .【答案】D 【解析】试题分析:根据一元一次不等式的解法解不等式x+2≤0,得x≤﹣2. 表示在数轴上为:.故选D考点:不等式的解集3.(2020·河南许昌市·)我市某一天的最高气温是9C ︒,最低气温是零下2C ︒,则当天我市气温变化范围()t C ︒是( )A .29t <<B .29t ≤≤C .29t -<<D .29t -≤≤【答案】D 【分析】利用不等式的定义即可得. 【详解】最高气温是9C ︒表示的是气温小于或等于9C ︒, 最低气温是零下2C ︒表示的是气温大于或等于2C -︒, 则当天我市气温变化范围是29t -≤≤, 故选:D . 【点睛】本题考查了列不等式,掌握列不等式的方法是解题关键.4.(2021·浙江杭州市·八年级期末)若a b >,则下列各式中一定成立的是( ) A .22a b -<- B .11a b +>+C .22a b <D .33a b->- 【答案】B 【分析】根据不等式的性质进行判断即可. 【详解】解:A 、在不等式两边同时减2,不等号方向不变,故错误; B 、在不等式两边同时加1,不等号方向不变,故正确; C 、在不等式两边同时乘2,不等号方向不变,故错误; D 、在不等式两边同时除以-3,不等号方向改变,故错误; 故选:B . 【点睛】本题考查了不等式的性质,解题关键是熟记不等式的性质,灵活运用不等式性质进行判断. 5.(2021·湖南怀化市·八年级期末)下列不等式中,变形错误的是( ) A .x y >则11x y +>+ B .若a b ->-则a b < C .12x y ->则2x y <- D .若35x -<则53x <-【答案】D根据不等式的性质解题:不等式的两边同时加(或减)同一个数(或式子),不等式的结果仍成立;不等式的两边同乘以(或除以)同一个不为零的正数,不等式的结果仍成立; 不等式的两边同乘以(或除以)同一个不为零的负数,不等式的方向要改变. 【详解】A. x y >则11x y +>+,正确,故A 不符合题意;B. 若a b ->-则a b <,正确,故B 不符合题意;C. 12x y ->则2x y <-,正确,故C 不符合题意; D. 若35x -<则53x >-,错误,故D 符合题意,故选:D . 【点睛】本题考查不等式的性质,是重要考点,难度较易,掌握相关知识是解题关键. 6.(2021·浙江温州市·八年级期末)不等式213x -≤的解是( ) A .1≥x B .1x ≤C .2x ≥D .2x ≤【答案】D 【分析】不等式移项合并,把x 系数化为1,即可求出解集. 【详解】不等式213x -≤, 移项合并得:24x ≤, 解得:2x ≤, 故选:D . 【点睛】本题考查了解一元一次不等式,熟练掌握运算法则是解本题的关键.7.(2021·沙坪坝区·重庆一中八年级期末)不等式480x -≥的解集在数轴上表示为( ) A .B .C .D .【分析】首先解出不等式的解集,然后看四个答案中哪个符合,即可解答;【详解】解:不等式4x-8≥0,4x≥8,x≥2;D符合;故选:D.【点睛】本题考查了在数轴上表示不等式的解集,不等式的解集在数轴上表示出来的方法:“>”空心圆点向右画折线,“≥”实心圆点向右画折线,“<”空心圆点向左画折线,“≤”实心圆点向左画折线.8.(2021·全国七年级)不等式组24020xx-⎧⎨+>⎩的解集在数轴上表示正确的是()A .B .C .D .【答案】C【分析】先求出不等式组的解集,再在数轴上表示出来即可.【详解】解:24020xx-⎧⎨+>⎩①②,解不等式①,得2x,解不等式②,得2x>-,∴不等式组的解集是22x-<,在数轴上表示为:,故选:C.【点睛】本题考查了一元一次不等式组和在数轴上表示不等式组的解集,能求出不等式组的解集是解题的关键.9.(2021·湖南娄底市·八年级期末)如果不等式()33a x a ->-的解集是1x <,那么a 的取值范围是( ) A .0a > B .0a <C .3a >D .3a <【答案】D 【分析】根据不等式的性质,不等式的两边同乘或除以同一个负数,不等号的方向改变,可得答案. 【详解】(3)3a x a ->-的解集是1x <,∴30a -<,解得:3a <, 故答案选D . 【点睛】本题考查了解一元一次不等式,由不等号方向改变,得出未知数的系数小于0是解题的关键. 10.(2021·广西北海市·八年级期末)若不等式组04x a x无解,则a 的取值范围为( )A .4a >B .4a ≤C .04a <<D .4a ≥【答案】D 【分析】不等式组整理后,根据不等式组无解确定出a 的范围即可. 【详解】解:不等式组整理得:4x a x,由不等式组无解,得到4a ≥. 故选:D . 【点睛】此题考查了解一元一次不等式组,熟练掌握不等式组的解法是解本题的关键.二、填空题(每小题5分,共30分)11.(2021·浙江宁波市·八年级期末)若a b >,则25a --________25b --(填“>”或“<”). 【答案】< 【分析】根据不等式的性质直接求解即可.【详解】∴22a b -<- ∴2525b a故答案是:<. 【点睛】本题考查了不等式的性质,熟悉相关性质是解题的关键.12.(2020·浙江杭州市·九年级期末)不等式组()5831131<722x x x x ⎧+>+⎪⎨--⎪⎩的最大整数解为__________.【答案】3 【分析】分别求出每一个不等式的解集,根据口诀:大小小大中间找确定不等式组的解集即可得出答案. 【详解】解:()5831131<722x x x x ⎧+>+⎪⎨--⎪⎩①②解不等式①可得:x >52-, 解不等式②可得:x <4, 则不等式组的解集为52-<x <4, ∴不等式组的最大整数解为3, 故答案为:3. 【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键. 13.(2021·贵州铜仁市·八年级期末)不等式组321215x x ->⎧⎨-≤⎩的正整数解是______.【答案】2或3 【分析】根据不等式的基本性质分别解两个不等式,然后取公共解集,最后找出整数解即可.解:321215x x ->⎧⎨-≤⎩①② 解①,得1x > 解②,得3x ≤∴该不等式组的解集为13x <≤ ∴该不等式组的整数解为2或3 故答案为2或3. 【点睛】此题考查的是求不等式组的整数解,掌握不等式组的解法是解决此题的关键.14.(2021·湖南娄底市·八年级期末)关于x 的一元一次不等式组的解集在数轴上的表示如图所示,则此不等式组的解集是______________.【答案】13x -<≤. 【分析】根据不等式组解集确定的口诀,结合数轴,确定解集即可. 【详解】根据数轴的意义,得 不等式的解集为13x -<≤; 故答案为13x -<≤. 【点睛】本题考查了不等式组解集,利用数形结合思想,熟练掌握解集的确定要领是解题的关键. 15.(2021·湖南邵阳市·八年级期末)若关于x 的不等式组0721x m x -≤⎧⎨-≤⎩的解集中恰好有三个整数,则m 的取值范围是___. 【答案】5≤m <6 【分析】首先解不等式组求得解集,然后根据不等式组恰好有三个整数解,确定整数解,则可以得到一个关于m的不等式组求得m的范围.【详解】解:0 721 x mx-≤⎧⎨-≤⎩①②解不等式①,得:x m≤解不等式②,得:3x≥∴不等式组的解集为:3x m≤≤∵不等式组恰有三个整数解,∴不等式组的整数解为3、4、5,则5≤m<6.故答案为:5≤m<6.【点睛】本题考查不等式组的解法及整数解的确定.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.16.(2020·浙江绍兴市·八年级其他模拟)关于x的不等式组314(1)x xx a->-⎧⎨<⎩的解是3x<,那么a的取值范围是______.【答案】a≥3【分析】先解第一个不等式得到x<3,由于不等式组的解集为x<3,则利用同大取大可得到a的范围.【详解】解:314(1)x xx a->-⎧⎨<⎩①,解①得x<3,而不等式组的解集为x<3,所以a≥3.故答案为:a≥3.【点睛】本题考查了解一元一次不等式组:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,利用数轴可以直观地表示不等式组的解集.解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.三、解答题一(每小题6分,共12分)17.(2021·广西北海市·八年级期末)解不等式:431132x x +-->,并把解集在数轴上表示出来.【答案】57x <;数轴见解析 【分析】 根据一元一次不等式的解法:去分母,去括号,移项、合并同类项,系数化1,即可得到x 的范围,再把所得的x 的范围在数轴上表示出来即可.【详解】431132x x +-->, 去分母,得()()243316x x +-->,去括号,得28936x x +-+>,移项、合并同类项,得75x ->-,系数化为1,得57x <. 在数轴上表示此不等式的解集如图:【点睛】本题考查了一元一次不等式的解法,以及在数轴上表示不等式的解集,解题关键是明确不等式的性质,两边同时除以一个负数不等号的方向要改变,在数轴上表示不等式的解集时“>”,“≥”向右画,“<”,“≤”向左画,“≥”,“≤”用实心点,“>”,“<”用空心圆.18.(2021·湖南邵阳市·八年级期末)解不等式组:31211213x x x x +≥-⎧⎪+⎨>-⎪⎩,并在数轴上表示解集 【答案】24x -≤<,数轴见解析【分析】分别解出这两个不等式,即可得到不等式组的解集.【详解】 解:31211213x x x x +≥-⎧⎪⎨+>-⎪⎩①②,解不等式①得2x ≥-,解不等式②得4x <,∴不等式组的解集为24x -≤<,在数轴上表示不等式的解集为:【点睛】本题考查解不等式组,解题的关键是掌握解不等式组的方法.四、解答题二(每小题9分,共18分)19.(2021·安徽六安市·七年级期末)关于x 、y 的方程组2564x y mx ny +=-⎧⎨-=⎩.与关于x 、y 的方程组35168x y nx my -=⎧⎨+=-⎩的解相同,求2021(2)m n +【答案】1【分析】 由题意,根据方程组的解相同得到2563516x y x y +=-⎧⎨-=⎩,从而得到22x y =⎧⎨=-⎩,再代入计算,求出m 、n 的值,即可得到答案.【详解】解:根据题意,由2563516x y x y +=-⎧⎨-=⎩, 解得:22x y =⎧⎨=-⎩,代入48mx ny nx my -=⎧⎨+=-⎩, 得224228m n n m +=⎧⎨-=-⎩, 解得:31m n =⎧⎨=-⎩;则20212021(2)(32)1m n +=-=;【点睛】 本题考查了解二元一次方程组,解题的关键是掌握解二元一次方程组的方法进行解题.20.(2021·湖南邵阳市·八年级期末)“一方有难,八方相助”是中华民族的优良传统.“新冠肺炎”疫情期间,我市向湖北省某县捐赠A 型医疗物资290件和B 型医疗物资100件.计划租用甲、乙两种型号的汽车共8辆运送过去.经了解,甲种汽车每辆最多能载A 型医疗物资40件和B 型医疗物资10件,乙种汽车每辆最多能载A 型医疗物资30件和B 型医疗物资20件.(1)请你帮助设计所有可能的租车方案;(2)如果甲种汽车每辆的运费是1200元,乙种汽车每辆的运费是1000元,这次运送的费用最少需要多少钱?【答案】(1)租车的方案有两种:方案一:租用甲种汽车5辆,乙种汽车3辆;方案二:租用甲种汽车6辆,乙种汽车2辆;(2)这次运送的费用最少需要9000元.【分析】(1)设租用甲种汽车x 辆,乙种汽车(8-x)辆,根据题意列一元一次不等式组,解一元一次不等式组,找到符合题意的解即可;(2)由(1)中结论,分别计算租车费用,再比较大小即可解题.【详解】解:(1)设租用甲种汽车x 辆,乙种汽车(8-x)辆,得()()4030829010208100x x x x ⎧+-≥⎪⎨+-≥⎪⎩, 解得:5x 6≤≤,所以符合条件的x 可以取5,6,租车的方案有两种:方案一:租用甲种汽车5辆,乙种汽车3辆;方案二:租用甲种汽车6辆,乙种汽车2辆;⨯+⨯=9000元;(2)方案一:租车的费用:1200510003⨯+⨯=9200元;方案二:租车的费用:1200610002所以这次运送的费用最少需要9000元.【点睛】本题考查一元一次不等式(组)的实际应用,是重要考点,难度较易,掌握相关知识是解题关键.。
【3套试题】人教版七年级数学下第九章不等式与不等式组复习检测试题(有答案)

人教版七年级数学下第九章不等式与不等式组复习检测试题(有答案)人教版七年级数学下册第九章不等式与不等式组单元测试题复习检测试卷(有答案)一、选择题1.下列式子:①-2<0;②2x+3y<0;③x=3;④x+y中,是不等式的个数有A. 1个B. 2个C. 3个 D . 4个2.若m>n,则下列不等式中一定成立的是()A. m+2<n+3B. 2m<3nC. a-m<a-nD. ma2>na23.数a、b在数轴上的位置如图所示,则下列不等式成立的是()A. a>bB. ab>0C. a+b>0D. a+b<04.若关于x的一元一次不等式组的解集是x<5,则m的取值范围是()A. m≥5B. m>5C. m≤5D. m<55.某商品的标价比成本价高m%,根据市场需要,该商品需降价n%出售,为了不亏本,n应满足()A. n≤mB. n≤C. n≤D. n≤6.某种记事本零售价每本6元,凡一次性购买两本以上给予优惠,优惠方式有两种,第一种:“两本按原价,其余按七折优惠”;第二种:全部按原价的八折优惠,若想在购买相同数量的情况下,要使第一种办法比第二种办法得到的优惠多,最少要购买记事本()A. 5本B. 6本C. 7本D. 8本7.不等式组的解集在数轴上表示正确的是()A. B.C. D.8.不等式组的解集是()A. x>4B. x≤3C. 3≤x<4D. 无解9.如果不等式组只有一个整数解,那么a的范围是()A. 3<a≤4B. 3≤a<4C. 4≤a<5D. 4<a≤510. 现有三种不同的物体:“甲、乙、丙”,用天平称了两次,情况如图所示,那么“甲、乙、丙”这三种物体按质量从大到小的顺序排列为A. 丙甲乙B. 丙乙甲C. 乙甲丙D. 乙丙甲二、填空题1.不等式组:的解集是2.某采石场爆破时,点燃导火线的甲工人要在爆破前转移到400m以外的安全区域甲工人在转移过程中,前40m只能步行,之后骑自行车。
上海华育中学七年级数学下册第五单元《不等式与不等式组》测试卷(含答案解析)

一、选择题1.定义一种新运算“a☆b”的含义为:当a≥b时,a☆b=a+b;当a<b时,a☆b=a﹣b.例如:3☆(﹣4)=3+(﹣4)=﹣1,(-6)☆111 (6)6222=--=-,则方程(3x﹣7)☆(3﹣2x)=2的解为x=()A.1 B.125C.6或125D.62.不等式组1322<4xx->⎧⎨-⎩的解集是()A.4x>B.1x>-C.14x-<<D.1x<-3.不等式()2533x x->-的解集为()A.4x<-B.4x>C.4x<D.4x>-4.关于x的方程3a x-=的解是非负数,那么a 满足的条件是()A.3a>B.3a≤C.3a<D.3a≥5.已知不等式组1113x ax-<-⎧⎪-⎨≤⎪⎩的解集如图所示(原点没标出,数轴单位长度为1),则a 的值为()A.﹣1 B.0 C.1 D.26.某储运站现有甲种货物1530吨,乙种货物1150吨,安排用一列货车将这批货物运往青岛,这列货车可挂,A B两种不同规格的货厢50节.已知甲种货物35吨和乙种货物15吨可装满一节A型货厢,甲种货物25吨和乙种货物35吨可装满一节B型货厢,按此要求安排,A B两种货厢的节数,有几种运输方案()A.1种B.2种C.3种D.4种7.若a+b>0,且b<0,则a、b、-a、-b的大小关系为( )A.-a<-b<b<a B.-a<b<a<-b C.-a<b<-b<a D.b<-a<-b<a 8.已知点()121M m m--,在第四象限,则m的取值范围在数轴上表示正确的是()A.B.C.D.9.下列说法中不正确的是()A.若a b>,则a1b1->-B.若3a3b>,则a b>C .若a b >,且c 0≠,则ac bc >D .若a b >,则7a 7b -<- 10.若a b <,则下列各式中不一定成立的是( )A .11a b -<-B .33a b <C .a b ->-D .ac bc <11.若关于x 的方程 332x a += 的解是正数,则a 的取值范围是( )A .23a <B .23a >C .a 为任何实数D .a 为大于0的数 12.已知实数x ,y ,且2<2x y ++,则下列不等式一定成立的是( )A .x y >B .44x y ->-C .33x y ->-D .22x y > 二、填空题13.若0a b c ++=,且a b c >>,以下结论: ①0a >,0c >;②关于x 的方程0ax b c ++=的解为1x =; ③22()a b c =+ ④||||||||a b c abc a b c abc +++的值为0或2; ⑤在数轴上点A .B .C 表示数a 、b 、c ,若0b <,则线段AB 与线段BC 的大小关系是AB BC >.其中正确的结论是______(填写正确结论的序号). 14.不等式组63024x x x -⎧⎨<+⎩的解集是__.15.令a 、b 两个数中较大数记作{}max ,a b 如{}max 2,33=,已知k 为正整数且使不等式{}max 21,33k k +-+≤成立,则关于x 方程21136x k x---=的解是_____________.16.已知a 2a <+<a 的值为____________.17.若a b >0,cb<0,则ac________0. 18.若关于x 的不等式2310a x -->的最大整数解为2-,则实数a 的取值范围是_________.19.已知a 、b 的和,a 、b 的积及b 的相反数均为负,则a ,b ,a -,+a b ,b a -的大小关系是________.(用“<”把它们连接起来) 20.方程组24x y kx y +=⎧⎨-=⎩的解满足1x >,1y <,k 的取值范围是:__________.三、解答题21.解不等式:431132x x +-->,并把解集在数轴上表示出来.22.解不等式组32,121.25x x xx <+⎧⎪⎨++≥⎪⎩①②并把解集在数轴上表示出来.23.解不等式,并把解集在数轴上表示出来. (1)()4521x x +≤+(2)()1113125y y y +<--24.某木板加工厂将购进的A 型、B 型两种木板加工成C 型,D 型两种木板出售,已知一块A 型木板的进价比一块B 型木板的进价多10元,且购买2块A 型木板和3块B 型木板共花费220元.(1)A 型木板与B 型木板的进价各是多少元?(2)根据市场需求,该木板加工厂决定用不超过8780元购进A 型木板、B 型木板共200块,若一块A 型木板可制成2块C 型木板、1块D 型木板;一块B 型木板可制成1块C 型木板、2块D 型木板,且生产出来的C 型木板数量不少于D 型木板的数量的1113. ①该木板加工厂有几种进货方案?②若C 型木板每块售价30元,D 型木板每块售价25元,且生产出来的C 型木板、D 型木板全部售出,哪一种方案获得的利润最大,求出最大利润是多少? 25.解不等式,并把解表示在数轴上.417366x x +≥- 26.解不等式(组),并将解集表示在数轴上: (1)6194x x ->-(2)13215232(3)4x x x x -+⎧-≥⎪⎨⎪-->⎩【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】分3x-7≥3-2x 和3x-7<3-2x 两种情况,依据新定义列出方程求解可得. 【详解】解:当3x ﹣7≥3﹣2x ,即x ≥2时, 由题意得:(3x ﹣7)+(3﹣2x )=2, 解得:x =6;当3x ﹣7<3﹣2x ,即x <2时, 由题意得:(3x ﹣7)﹣(3﹣2x )=2,解得:x =125(不符合前提条件,舍去), ∴x 的值为6. 故选:D . 【点睛】本题主要考查解一元一次不等式及一元一次方程,解题的关键是根据新定义列出关于x 的不等式及解一元一次不等式、一元一次方程的能力.2.A解析:A 【分析】首先求出不等式组中每一个不等式的解集,再求出其公共解集. 【详解】解:解不等式13x ->得4x >, 解不等式224x -<得1x >-, ∴不等式组的解集为4x >. 【点睛】此题主要考查了解一元一次不等式组,关键是掌握解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.3.C解析:C 【分析】根据解一元一次不等式的方法解答即可. 【详解】解:去括号,得2539x x ->-, 移项、合并同类项,得4x ->-,不等式两边同时除以﹣1,得4x <. 故选:C . 【点睛】本题考查了一元一次不等式的解法,属于基础题目,熟练掌握解一元一次不等式的方法是关键.4.D解析:D 【分析】求出方程的解,根据已知得出a-3≥0,求出即可. 【详解】解:解方程a-x=3得:x=a-3, ∵方程的解是非负数, ∴a-3≥0, 解得:a≥3, 故选:D . 【点睛】本题考查了一元一次方程的解,解一元一次不等式,解一元一次方程的应用,关键是得出一个关于a 的不等式.5.D解析:D 【分析】首先解不等式组,求得其解集,又由数轴知该不等式组有3个整数解即可得到关于a 的方程,解方程即可求得a 的值. 【详解】解:∵1113x a x -<-⎧⎪-⎨≤⎪⎩,解不等式1x a -<-得:1x a <-, 解不等式113x-≤得:2x ≥-, ∴不等式组的解集为:21x a -≤<-, 由数轴知该不等式组有3个整数解, 所以这3个整数解为-2、-1、0, 则11a -=, 解得:2a =, 故选:D . 【点睛】本题考查了一元一次不等式组的整数解,以及在数轴上表示不等式的解集,熟练掌握运算法则是解本题的关键.6.C解析:C 【分析】设用A 型货厢x 节,B 型货厢()50x -节,根据题意列不等式组求解,求出x 的范围,看有几种方案. 【详解】解:设用A 型货厢x 节,B 型货厢()50x -节,根据题意列式:()()35255015301535501150x x x x ⎧+-≥⎪⎨+-≥⎪⎩,解得2830x ≤≤,因为x 只能取整数,所以x 可以取28,29,30,对应的()50x -是22,21,20,有三种方案. 故选:C . 【点睛】本题考查一元一次不等式组的应用,解题的关键是根据题意列出不等式组求解,需要注意结果要符合实际情况.7.C解析:C 【分析】根据不等式a+b >0得a >-b ,-a <b ,再根据b <0得b <-b ,再比较大小关系即可. 【详解】 解:∵a+b >0, ∴a >-b ,-a <b. ∵b <0, ∴b <-b , ∴-a <b <-b <a. 故选C. 【点睛】本题考查了不等式的性质与有理数的知识点,解题的关键是熟练的掌握有理数与不等式的性质.8.B解析:B 【分析】由点()121M m m --,在第四象限,可得出关于m 的一元一次不等式组,解不等式组即可得出m 的取值范围,再对照四个选项即可得出结论. 【详解】解:由点()121M m m --,在第四象限,得1-2010m m >⎧⎨-<⎩, ∴0.51m m <⎧⎨<⎩即不等式组的解集为:0.5m <, 在数轴上表示为:故选:B . 【点睛】此题考查了象限及点的坐标的有关性质、在数轴上表示不等式的解集、解一元一次不等式组,需要综合掌握其性质9.C解析:C 【分析】根据不等式的基本性质对各选项进行逐一分析即可. 【详解】解:A 、∵a >b ,∴a-1>b-1,故本选项正确,不符合题意; B 、∵3a >3b ,∴a >b ,故本选项正确,不符合题意;C 、∵a >b 且c≠0,当c >0时,ac >bc ;当c <0时,ac <bc ,故本选项错误,符合题意;D 、∵a >b ,∴-a <-b ,∴7-a <7-b ,故本选项正确,不符合题意. 故选:C . 【点睛】本题考查的是不等式的性质,熟记不等式的基本性质是解答此题的关键.10.D解析:D 【分析】根据不等式的性质进行解答. 【详解】A 、在不等式的两边同时减去1,不等式仍成立,即11a b -<-,故本选项不符合题意.B 、在不等式的两边同时乘以3,不等式仍成立,即33a b <,故本选项不符合题意.C 、在不等式的两边同时乘以-1,不等号方向改变,即a b ->-,故本选项不符合题意.D 、当0c ≤时,不等式ac bc <不一定成立,故本选项符合题意. 故选:D . 【点睛】本题考查了不等式的性质,做这类题时应注意:在不等式两边同乘以(或除以)同一个数时,不仅要考虑这个数不等于0,而且必须先确定这个数是正数还是负数,如果是负数,不等号的方向必须改变.11.A解析:A 【分析】先解方程,再结合题意列出不等式,解之即可得出答案. 【详解】 解:∵3x+3a=2, ∴x=233a- , 又∵方程的解为正数, ∴233a->0, ∴a <23. 故选:A. 【点睛】本题考查一元一次不等式与一元一次方程的综合运用,正确理解一元一次方程解的意义及熟练求解一元一次不等式是解题关键.12.B解析:B 【分析】根据不等式的性质逐项排除即可. 【详解】 解:∵2<2x y ++∴x <y ,故选项A 不符合题意;∴44x y ->-,故B 选项符合题意;33x y --<,故选项C 不符合题意;22x y<,故D 选项不符合题意. 故答案为B . 【点睛】本题主要考查了不等式的性质,给不等式左右两边乘以(除以)一个大于0的代数式(数),不等式符号不变,反之改变.二、填空题13.②③⑤【分析】①根据a+b+c=0且a >b >c 推出a >0c <0即可判断;②根据a+b+c=0求出a=-(b+c )又ax+b+c=0时ax=-(b+c )方程两边都除以a 即可判断;③根据a=-(b+c )解析:②③⑤ 【分析】①根据a+b+c=0,且a>b>c推出a>0,c<0,即可判断;②根据a+b+c=0求出a=-(b+c),又ax+b+c=0时ax=-(b+c),方程两边都除以a即可判断;③根据a=-(b+c)两边平方即可判断;④分为两种情况:当b>0,a>0,c<0时,去掉绝对值符号得出aa+bb+cc-+abcabc-,求出结果,当b<0,a>0,c<0时,去掉绝对值符号得出aa+bb-+cc-+abcabc,求出结果,即可判断;⑤求出AB=a-b=-b-c-b=-2b-c=-3b+b-c,BC=b-c,根据b<0利用不等式的性质即可判断.【详解】解:(1)∵a+b+c=0,且a>b>c,∴a>0,c<0,∴①错误;∵a+b+c=0,a>b>c,∴a>0,a=-(b+c),∵ax+b+c=0,∴ax=-(b+c),∴x=1,∴②正确;∵a=-(b+c),∴两边平方得:a2=(b+c)2,∴③正确;∵a>0,c<0,∴分为两种情况:当b>0时,aa+bb+cc+abcabc=aa+bb+cc-+abcabc-=1+1+(-1)+(-1)=0;当b<0时,aa+bb+cc+abcabc=aa+bb-+cc-+abcabc=1+(-1)+(-1)+1=0;∴④错误;∵a+b+c=0,且a>b>c,b<0,∴a>0,c<0,a=-b-c,∴AB=a-b=-b-c-b=-2b-c=-3b+b-c,BC=b-c,∵b<0,∴-3b>0,∴-3b+b-c>b-c,∴AB>BC,∴⑤正确;即正确的结论有②③⑤.故答案为:②③⑤.【点睛】本题考查了比较两线段的长,数轴,有理数的加法、除法、乘方,一元一次方程的解,绝对值等知识点的综合运用,题目比较典型,但是一道比较容易出错的题目.14.【分析】分别解两个不等式得到和x <4然后根据同大取大同小取小大于小的小于大的取中间小于小的大于大的无解确定不等式组的解集【详解】解:解不等式得:解不等式得:则不等式组的解集为故答案为【点睛】本题考查 解析:2x【分析】分别解两个不等式得到2x 和x <4,然后根据同大取大,同小取小,大于小的小于大的取中间,小于小的大于大的无解确定不等式组的解集. 【详解】解:解不等式630x -,得:2x , 解不等式24x x <+,得:4x <,则不等式组的解集为2x , 故答案为2x . 【点睛】本题考查了解一元一次不等式组:求解出两个不等式的解集,然后按照“同大取大,同小取小,大于小的小于大的取中间,小于小的大于大的无解”确定不等式组的解集.15.【分析】根据新定义分两种情况分别列出不等式求解得出k 的值代入分别求解可得【详解】①当时解得:;②当时解得:;∵为正整数解析:95【分析】根据新定义分213213k k k +>-+⎧⎨+≤⎩、21333k k k +≤-+⎧⎨-+≤⎩两种情况,分别列出不等式求解得出k的值,代入分别求解可得. 【详解】①当213213k k k +>-+⎧⎨+≤⎩时,解得:213k <≤;②当21333k k k +≤-+⎧⎨-+≤⎩时,解得:203k ≤≤; ∵k 为正整数,16.2【分析】先根据无理数的估算得出和的取值范围再解一元一次不等式组即可得【详解】即即即解得又为整数故答案为:2【点睛】本题考查了无理数的估算解一元一次不等式组熟练掌握无理数的估算方法是解题关键解析:2【分析】【详解】274064<<,<34<<,161825<<,<,即45<<,3402a <+<325a ∴<+<<,即325a <+<,解得13a <<,又a 为整数,2a ∴=,故答案为:2.【点睛】本题考查了无理数的估算、解一元一次不等式组,熟练掌握无理数的估算方法是解题关键.17.<【分析】根据有理数的除法判断出ab 同号再根据有理数的除法判断出bc 异号然后根据有理数的乘法运算法则判断即可【详解】解:∵>0∴ab 同号∵<0∴bc 异号∴ac 异号∴ac <0故答案为<【点睛】本题考查解析:<【分析】根据有理数的除法判断出a 、b 同号,再根据有理数的除法判断出b 、c 异号,然后根据有理数的乘法运算法则判断即可.【详解】解:∵a b>0, ∴a 、b 同号, ∵c b<0, ∴b 、c 异号,∴a 、c 异号,∴ac <0.故答案为<.【点睛】本题考查有理数的乘法,有理数的除法,熟记运算法则是解题关键.18.【分析】先求出不等式的解再根据不等式的最大整数解确定a 的取值范围即可【详解】解:解得∵不等式的最大整数解为∴解得:;故答案为:【点睛】本题考查的是不等式的解正确的解不等式是解题的关键 解析:512a -<≤- 【分析】先求出不等式的解,再根据不等式的最大整数解确定a 的取值范围即可.【详解】解:解2310a x -->, 得213<-a x , ∵不等式2310a x -->的最大整数解为2-, ∴21-2-13<-≤a , 解得:512a -<≤-; 故答案为:512a -<≤-. 【点睛】 本题考查的是不等式的解,正确的解不等式是解题的关键.19.【分析】根据相反数正负数和有理数加减运算的性质分析即可得到答案【详解】∵∴∴∴∵∴∴∵∴∴即故答案为:【点睛】本题考查了相反数正负数有理数大小比较有理数加减运算的知识;解题的关键是熟练掌握相反数正负 解析:a a b b a b a <+<<-<-【分析】根据相反数、正负数和有理数加减运算的性质分析,即可得到答案.【详解】∵0b -<∴0b >∴0b a a -+>∴b a a ->-,b a a +>∵0a b ⨯<∴0a <∴0a ->∵0a b +<∴b a <-∴0a a b b a b a <+<<<-<-即a a b b a b a <+<<-<-故答案为:a a b b a b a <+<<-<-.【点睛】本题考查了相反数、正负数、有理数大小比较、有理数加减运算的知识;解题的关键是熟练掌握相反数、正负数和有理数加减运算的性质,从而完成求解.20.【分析】先求出方程组的解再得出关于k 的不等式组求出不等式组的解集即可【详解】解:解方程组得:∵关于xy 的方程组的解满足∴解得:-1<k <3故答案为-1<k <3【点睛】本题考查了解二元一次方程组和解一解析:13k -<<【分析】先求出方程组的解,再得出关于k 的不等式组,求出不等式组的解集即可.【详解】解:解方程组得:22x k y k +⎧⎨-⎩==, ∵关于xy 的方程组24x y k x y +⎧⎨-⎩==的解满足1x >,1y <, ∴2121k k +⎧⎨-⎩><, 解得:-1<k <3,故答案为-1<k <3.【点睛】本题考查了解二元一次方程组和解一元一次不等式组,能得出关于k 的不等式组是解此题的关键.三、解答题21.57x <;数轴见解析 【分析】根据一元一次不等式的解法:去分母,去括号,移项、合并同类项,系数化1,即可得到x 的范围,再把所得的x 的范围在数轴上表示出来即可.【详解】431132x x +-->, 去分母,得()()243316x x +-->,去括号,得28936x x +-+>,移项、合并同类项,得75x ->-,系数化为1,得57x <. 在数轴上表示此不等式的解集如图:【点睛】本题考查了一元一次不等式的解法,以及在数轴上表示不等式的解集,解题关键是明确不等式的性质,两边同时除以一个负数不等号的方向要改变,在数轴上表示不等式的解集时“>”,“≥”向右画,“<”,“≤”向左画,“≥”,“≤”用实心点,“>”,“<”用空心圆. 22.解集为:31x -<.在数轴上表示见解析.【分析】分别求出不等式组中两不等式的解集,找出两解集的公共部分确定出不等式组的解集,表示在数轴上即可.【详解】 解:32,12125x x x x <+⎧⎪⎨++≥⎪⎩①②,由①得:1x <;由②得:3x ≥-,∴不等式组的解集为31x -≤<,表示在数轴上,如图所示:.【点睛】本题考查了解一元一次不等式组,以及在数轴上表示不等式的解集,熟练掌握不等式组的解法是解本题的关键.23.(1)32x ≤-,数轴见解析;(2)y >5,数轴见解析 【分析】先对不等式进行求解,求出解集,然后在数轴上表示出解集即可.【详解】解:(1)∵()4521x x +≤+,即4225x x -≤-,即32x ≤-, ∴不等式的解集为:32x ≤-;(2)()1113125y y y +<-- 即133522y y y +-<-, 即33102y -<-, 故5y >, 故不等式的解集为:5y >.【点睛】本题考查的是一元一次不等式的解法,解此类题目经常用到数轴,注意x 或y 是否取得到,若取得到则为实心否则为空心.24.(1)A 型木板的进价为50元/块,B 型木板的进价为40元/块;(2)①该木板加工厂有4种进货方案;方案1:购进A 型木板75块,B 型木板125块;方案2:购进A 型木板76块,B 型木板124块;方案3:购进A 型木板77块,B 型木板123块;方案4:购进A 型木板78块,B 型木板122块.②方案1购进A 型木板75块,B 型木板125块利润最大,最大利润为7625元.【分析】(1)设A 型木板的进价为x 元/块,B 型木板的进价为y 元/块,根据“一块A 型木板的进价比一块B 型木板的进价多10元,购买2块A 型木板和3块B 型木板共花费220元”,即可得出关于x ,y 的二元一次方程组,解之即可得出结论;(2)①设购入A 型木板m 块,则购入B 型木板(200-m )块,由购进木板的总资金不超过8780元且生产出来的C 型木板数量不少于D 型木板的数量的1113,即可得出关于m 的一元一次不等式组,解之即可得出m 的取值范围,结合m 为整数即可得出各进货方案; ②根据利润=销售收入-进货成本,分别求出4个进货方案的销售利润,比较后即可得出结论.【详解】解:(1)设A 型木板的进价为x 元/块,B 型木板的进价为y 元/块,依题意,得:1023220x y x y -=⎧⎨+=⎩,解得:5040 xy=⎧⎨=⎩.答:A型木板的进价为50元/块,B型木板的进价为40元/块.(2)①设购入A型木板m块,则购入B型木板(200-m)块,依题意,得:()()() 50402008780112200220013m mm m m m+-≤⎧⎪⎨+-≥+-⎡⎤⎪⎣⎦⎩,解得:75≤m≤78.∵m为整数,∴m=75,76,77,78.∴该木板加工厂有4种进货方案,方案1:购进A型木板75块,B型木板125块;方案2:购进A型木板76块,B型木板124块;方案3:购进A型木板77块,B型木板123块;方案4:购进A型木板78块,B型木板122块.②方案1获得的利润为(75×2+125)×30+(75+125×2)×25-75×50-125×40=7625(元),方案2获得的利润为(76×2+124)×30+(76+124×2)×25-76×50-124×40=7620(元),方案3获得的利润为(77×2+123)×30+(77+123×2)×25-77×50-123×40=7615(元),方案4获得的利润为(78×2+122)×30+(78+122×2)×25-78×50-122×40=7610(元).∵7625>7620>7615>7610,∴方案1购进A型木板75块,B型木板125块利润最大,最大利润为7625元.【点睛】本题考查了二元一次方程组的应用以及一元一次不等式组的应用,解题的关键是:(1)找准等量关系,正确列出一元一次方程;(2)①根据各数量之间的关系,正确列出一元一次不等式组;②利用利润=销售收入-进货成本,分别求出4个进货方案的销售利润.25.3x≤,见解析【分析】先去分母,然后移项、合并同类项,系数化为1,即可得到答案.【详解】解:去分母,得2417x x≥+-移项,得4271x x-≤-合并同类项,得26x≤系数化为1,得3x≤;把解表示在数轴上如图:【点睛】本题考查了解一元一次不等式,解题的关键是掌握解不等式的方法进行解题.26.(1)x<1,数轴见解析;(2)﹣5≤x< 2,数轴见解析【分析】(1)先解一元一次不等式,再在数轴上表示出不等式的解集;(2)先解一元一次不等式组,再在数轴上表示出不等式组的解集;【详解】解:(1)6194x x ->-6941x x ->-+33x ->-解得:x <1,在数轴上表示如下:(2)13215232(3)4x x x x -+⎧-≥⎪⎨⎪-->⎩①②解不等式①得:x≥﹣5解不等式②得:x < 2∴不等式组的解集为﹣5≤x < 2 ;在数轴上表示如下:.【点睛】本题主要考查求一元一次不等式和一元一次不等式组的解集和数轴,解题的关键是熟练掌握解一元一次不等式和一元一次不等式组的方法.。
精选七年级数学下册第九章《不等式与不等式组》单元综合练习题(含答案解析)

人教版七年级数学下册第九章不等式与不等式组检测题 (word 版,含答案)人教版七年级数学下册第九章 不等式与不等式组单元测试题题一、选择题1.下列说法不一定成立的是( )A. 若a>b ,则a +c>b +cB. 若a +c>b +c ,则a>bC. 若a>b ,则ac 2>bc 2D. 若ac 2>bc 2,则a>b2.如图是关于x 的不等式2x -a ≤-1的解集,则a 的取值是( )A. a ≤-1B. a ≤-2C. a =-1D. a =-2 3.下列解不等式2+x 3>2x -15的过程中,出现错误的一步是( ) ①去分母,得5(x +2)>3(2x -1); ②去括号,得5x +10>6x -3; ③移项,得5x -6x >-10-3;④合并同类项、系数化为1,得x >13.A. ①B. ②C. ③D. ④ 4.不等式组的解集表示在数轴上正确的是( )5.在关于x ,y 的方程组中,未知数满足x ≥0,y >0,那么m 的取值范围在数轴上应表示为( )6.若不等式组2x -1>3(x -1),x<m 的解集是x <2,则m 的取值范围是( ) A. m =2 B. m >2 C. m <2 D. m ≥2 7.如果关于x 的不等式组无解,那么m 的取值范围为( )A. m ≤-1B. m <-1C. -1<m ≤0D. -1≤m <0 8.若关于x 的不等式组的解集中至少有5个整数解,则正数a 的最小值是( )A. 3B. 2C. 1D. 239.“一方有难,八方支援”,雅安芦山4•20地震后,某单位为一中学捐赠了一批新桌椅,学校组织初一年级200名学生搬桌椅.规定一人一次搬两把椅子,两人一次搬一张桌子,每人限搬一次,最多可搬桌椅(一桌一椅为一套)的套数为( ) A. 60 B. 70 C. 80 D. 90 10.某市出租车的收费标准是:起步价8元(即行驶距离不超过3千米都需付8元车费),超过3千米以后,每增加1千米,加收2.6元(不足1千米按1千米计).某人打车从甲地到乙地经过的路程是x 千米,出租车费为21元,那么x 的最大值是( ) A. 11 B. 8 C. 7 D. 5 二、填空题。
【3套打包】长沙市七年级数学下册第九章《不等式与不等式组》测试题(含答案解析)

人教版数学七年级下册第9章《不等式与不等式组》检测题(含答案)人教版七年级数学下册第九章不等式与不等式组单元测试题检测题一、单选题(每小题只有一个正确答案)1.下列各式是一元一次不等式的是()A.B.C.D.2.若a>b,则下列各式中一定成立的是()A.ma>mb B.c2a>c2b C.(1+c2)a>(1+c2)b D.1﹣a>1﹣b 3.如果的解集是,那么的取值范围是()A.B.C.D.4.如图,天平左盘中物体A的质量为,,天平右盘中每个砝码的质量都是1g,则的取值范围在数轴上可表示为()A.B.C.D.5.已知不等式组有解,则的取值范围为()A.a>-2 B.a≥-2 C.a<2 D.a≥26.将不等式组的解集在轴上表示出来,应是( )A. B.C. D.>的整数解的个数为()7.不等式组A.0个B.2个C.3个D.无数个8.已知不等式组的解集是2<x<3,则关于x的方程ax+b=0的解为( ) A.x=B.x=C.x=D.x=9.已知0≤a–b≤1且1≤a+b≤4,则a的取值范围是( )A.1≤a≤2B.2≤a≤3C.≤a≤D.≤a≤10.已知(m+4)x|m|–3+6>0是关于x的一元一次不等式,则m的值为()A.4 B.±4 C.3 D.±311.若点M(2m﹣1,m+3)在第二象限,则m取值范围是()A.m> B.m<﹣3 C.﹣3<m< D.m<12.某校组织开展“校园安全”的知识竞赛,共有20道题,答对一题记10分,答错(或不答)一题记-5分.小明参加本次竞赛得分要超过100分,他至少要答对题()A.13道 B.14道 C.15道 D.16道二、填空题13.不等式组的解集是____________;14.若,则比较大小:________.15.如果三个连续自然数的和不大于9,那么这样自然数共有_____组.16.不等式3(x﹣1)≤5﹣x的非负整数解有_____个.17.在实数范围内定义一种新运算“⊕”,其运算规则为:a⊕b=2a+3b.如:1⊕5=2×1+3×5=17.则不等式x⊕4<0的解集为_____.三、解答题18.求不等式的解集,并把解集在数学轴表示出来(1)3x+2<2x+4(2)19.解下列不等式组,并把它们的解集在数轴上表示出来.(1)><; (2)<20.已知2x+3=2a,y-2a=4,并且a-<x+y≤2a+,求a的取值范围.21.某慈善组织租用甲、乙两种货车共16辆,把蔬菜266吨、水果169吨全部运到灾区,已知一辆甲种货车同时可装蔬菜18吨、水果10吨;一辆乙种货车同时可装蔬菜16吨、水果11吨.(1)若将这批货物一次性运到灾区,有哪几种租车方案?(2)若甲种货车每辆需付燃油费1500元,乙种货车每辆需付燃油费1200元,应选(1)中的哪种方案,才能使所付的燃油费最少?最少的燃油费是多少元?22.由于雾霾天气持续笼罩某地区,口罩市场出现热卖.某商店用8000元购进甲、乙两种口罩,销售完后共获利2800元,其进价和售价如下表:(1)求该商店购进甲、乙两种口罩各多少袋?(2)该商店第二次仍以原价购进甲、乙两种口罩,购进乙种口罩袋数不变,而购进甲种口罩袋数是第一次的2倍,甲种口罩按原售价出售,而乙种口罩让利销售.若两种口罩销售完毕,要使第二次销售活动获利不少于3680元,则乙种口罩最低售价为每袋多少元?23.已知实数是一个不等于的常数,解不等式组,并根据的取值情况写出其解集.24.阅读下列材料:解答“已知,且,,试确定的取值范围”的过程如下:解:,又,,又,同理得:由得,的取值范围是请按照上述方法,解答下列问题:若,且,,求的取值范围;若,且,,求最大值.参考答案1.B2.C3.B4.D5.C6.C7.C8.D9.C10.A11.C12.B 13.﹣9<x≤﹣3 14.> 15.3组. 16.3 17.18.(1)x<2;(2)x ≤-5.19.(1)不等式组的解集为x>3;(2)不等式组的解集为-1≤x人教版七年级数学下册 第九章 不等式与不等式组 单元测试题(解析版)一、选择题(共10小题,每小题3分,共30分)1.2019年2月1日某市最高气温是8℃,最低气温是-2℃,则当天该市气温变化范围t (℃)是( )A .t >8B .t <2C . -2<t <8D . -2≤t ≤82.下列x 的值中,是不等式x >3的解的是( )A . -3B . 0C . 2D . 43.下列不等式变形正确的是( )A . 由a >b ,得ac >bcB . 由a >b ,得a -2<b -2C . 由-21>-1,得-2a>-a D . 由a >b ,得c -a <c -b4.如果a +b <0,且b >0,那么a ,b ,-a ,-b 的大小关系为( ) A .a <b <-a <-b B . -b <a <-a <b C .a <-b <-a <b D .a <-b <b <-a5.定义运算:a *b ,当a >b 时,有a *b =a ,当a <b 时,有a *b =b ,如果(x +3)*2x =x +3,那么x 的取值范围是( )A .x <3B .x >3C .x <1D . 1<x <36.若关于x 、y 的二元一次方程组的解满足x -y >-2,则a 的取值范围是( )A .a <4B . 0<a <4C . 0<a <10D .a <107.已知点M (1-2m ,m -1)在第四象限内,那么m 的取值范围是( ) A .m >1 B .m <21 C .21<m <1D .m <21或m >18.已知不等式组有解,则a 的取值范围为( )A .a >-2B .a ≥-2C .a <2D .a ≥29.在关于x 、y 的方程组中,未知数满足x ≥0,y >0,那么m 的取值范围在数轴上应表示为( ) A . B .C .D .10.为了举行班级晚会,小张同学准备去商店购买20个乒乓球做道具,并买一些乒乓球拍做奖品.已知乒乓球每个1.5元,球拍每个25元,如果购买金额不超过200元,且买的球拍尽可能多,那么小张同学应该买的球拍的个数是( )A . 5B . 6C . 7D . 8二、填空题(共8小题,每小题3分,共24分)11.某不等式的解集在数轴上的表示如图所示,则该不等式的解集是___________.12.如果2x -5<2y -5,那么-x ______-y .(填“<、>、或=”) 13.若关于x 的不等式(a -2)x >a -2解集为x <1,化简|a -3|=______. 14.关于x 的方程3(x +2)=k +2的解是正数,则k 的取值范围是________. 15.不等式组:的解集是________.16.关于x 的不等式组的解集为1<x <4,则a 的值为________.17.把m 个练习本分给n 个学生.若每人分3本,则余80本;若每人分5本,则最后一个同学有练习本但不足5本.那么n =________.18.圣诞节班主任老师购买了一批贺卡准备送给学生,若每人三张,那么还余59张,若每人5张,那么最后一个学生分到贺卡,但不足四张,班主任购买的贺卡共______张.三、解答题(共7小题,共66分) 19.(8分)解不等式:6x -1≤5;把解集在数轴上表示出来.20. (8分)阅读理解:我们把称作二阶行列式,规定他的运算法则为=ad -bc .如=2×5-3×4=-2.如果有>0,求x 的解集.21. (8分)已知方程组的解为非负数,求整数a 的值.22. (8分)若关于x 的方程2x -3m =2m -4x +4的解不小于87-,求m 的最小值.23. (10分)解不等式组:并把解集在数轴上表示出来.24. (12分)某汽车专卖店销售A,B两种型号的新能源汽车.上周售出1辆A型车和3辆B型车,销售额为96万元;本周已售出2辆A型车和1辆B型车,销售额为62万元.(1)求每辆A型车和B型车的售价各为多少元.(2)甲公司拟向该店购买A,B两种型号的新能源汽车共6辆,购车费不少于130万元,且不超过140万元.则有哪几种购车方案?25. (12分)学校计划利用校友慈善基金购买一些平板电脑和打印机.经市场调查,已知购买1台平板电脑比购买3台打印机多花费600元,购买2台平板电脑和3台打印机共需8 400元.(1)求购买1台平板电脑和1台打印机各需多少元?(2)学校根据实际情况,决定购买平板电脑和打印机共100台,要求购买的总费用不超过168 000元,且购买打印机的台数不低于购买平板电脑台数的2倍.请问最多能购买平板电脑多少台?答案解析1.【答案】D【解析】由题意得-2≤t ≤8.故选D. 2.【答案】D【解析】∵不等式x >3的解集是所有大于3的数,∴4是不等式的解.故选D. 3.【答案】D【解析】A.由a >b ,得ac >bc (c >0),故此选项错误; B .由a >b ,得a -2>b -2,故此选项错误; C .由-21>-1,得-2a>-a (a >0),故此选项错误; D .由a >b ,得c -a <c -b ,此选项正确.故选D. 4.【答案】D【解析】∵设b =1,a =-2,则有-b =-1,-a =2,a <-b <b <-a .故选D. 5.【答案】A【解析】∵(x +3)*2x =x +3,∴x +3>2x ,x <3,故选A. 6.【答案】D【解析】在关于x 、y 的二元一次方程组中,①+②,得4x -4y =2-a ,即x -y =21-4a, ∵x -y >-2,∴21-4a>-2,解得a <10,故选D. 7.【答案】B【解析】根据题意,可得解不等式①,得m <21,解不等式②,得m <1,∴m <21,故选B. 8.【答案】C 【解析】不等式组由(1)得x ≥a ,由(2)得x <2,故原不等式组的解集为a ≤x <2, ∵不等式组有解,∴a 的取值范围为a <2.故选C.9.【答案】C【解析】①×2-②,得3x=3m+6,即x=m+2,把x=m+2代入②,得y=3-m,由x≥0,y>0,得到解得-2≤m<3,表示在数轴上,如图所示:,故选C.10.【答案】B【解析】设小张同学应该买的球拍的个数为x,根据题意得20×1.5+25x≤200,解得x≤6.8,所以x的最大整数值为6,所以小张同学应该买的球拍的个数是6个.故选B.11.【答案】x>-2【解析】观察数轴可得该不等式的解集为x>-2.故答案为x>-2.12.【答案】>【解析】如果2x-5<2y-5,两边都加5可得2x<2y;同除以(-2)可得-x>-y.13.【答案】3-a【解析】∵关于x的不等式(a-2)x>a-2解集为x<1,∴a-2<0,即a<2,∴原式=3-a.故答案为3-a.14.【答案】k>4【解析】由方程3(x+2)=k+2去括号移项,得3x=k-4,∴x=,∵关于x的方程3(x+2)=k+2的解是正数,∴x=>0,∴k>4.15.【答案】x>5【解析】解①得x>1,解②得x>5,所以不等式组的解集为x>5.故答案为x>5.16.【答案】5【解析】解不等式2x+1>3,得x>1,解不等式a-x>1,得x<a-1,∵不等式组的解集为1<x <4,∴a -1=4,即a =5,故答案为5.17.【答案】41或42 【解析】根据题意得解得40<n <42.5,∵n 为整数,∴n 的值为41或42.故答案为41或42.18.【答案】152【解析】设本班有x 人(x 是正整数),最后的学生得到的贺卡为y (y 是整数,0<y ≤3), 根据题意有3x +59=5(x -1)+y ,解得x =32-21y ,由于x 取正整数,y 为整数,0<y ≤3,∴y 只能取2,∴x =32-1=31,那么班主任购买的贺卡数为3x +59=152(张),故填152.19.【答案】6x -1≤5,6x ≤6,x ≤1,在数轴上表示为【解析】利用不等式的性质1及性质2求出解集.20.【答案】解:由题意得2x -(3-x )>0,去括号得2x -3+x >0,移项合并同类项得3x >3,把x 的系数化为1得x >1.【解析】首先看懂题目所给的运算法则,再根据法则得到2x -(3-x )>0,然后去括号、移项、合并同类项,再把x 的系数化为1即可.21.【答案】解: ①×3+②,得5x =6a +5-a ,即x =a +1≥0,解得a ≥-1; ②-①×2,得5y =5-a -4a ,即y =1-a ≥0,解得a ≤1; 则-1≤a ≤1,即a 的整数值为-1,0,1.【解析】用加减消元法解方程组,求出x 和y (x 和y 均为含有a 的代数式),再根据x 、y 的取值即可列出关于a 的不等式组,即可求出a 的取值范围,进一步即可求解.22.【答案】解:关于x 的方程2x -3m =2m -4x +4的解为x =,根据题意,得≥87-,去分母,得4(5m +4)≥21-8(1-m ),去括号,得20m +16≥21-8+8m ,移项,合并同类项,得12m ≥-3,系数化为1,得m ≥-41.所以当m ≥-41时,方程的解不小于87-,m 的最小值为-41. 【解析】首先求解关于x 的方程2x -3m =2m -4x +4,即可求得x 的值,根据方程的解的解不小于87-,即可得到关于m 的不等式,即可求得m 的范围,从而求解. 23.【答案】解:解不等式①,得x <2,解不等式②,得x ≥-1,在数轴上表示为:∴不等式组的解集为-1≤x <2.【解析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了,确定不等式组的解集.24.【答案】解:(1)每辆A 型车和B 型车的售价分别是x 万元,y 万元. 则解得答:每辆A 型车的售价为18万元,每辆B 型车的售价为26万元;(2)设购买A 型车a 辆,则购买B 型车(6-a )辆, 则依题意得解得2≤a ≤341. ∵a 是正整数,∴a =2或a =3.∴共有两种方案:方案一:购买2辆A 型车和4辆B 型车; 人教版七年级下册第九章不等式和不等式组 综合训练题一、选择题(每题3分,满分30分)1.据北京气象台“天气预报”报道,今天的最低气温是C 017,最高气温是C 025,则今天气温t (C 0)的范围是( )A .17<tB .25>tC .21=tD .2517≤≤t2.设“○”、“□”、“△”分别表示三种不同的物体,用天平比较它们质量的大小,两次情况如图1所示,那么每个“○”、“□”、“△”这样的物体,按质量从小到大的顺序排列为( )A .○□△B .○△□C .□○△D .△□○3.若0<<b a ,则下列式子:①21+<+b a ;②1>b a ;③ab b a <+;④ba 11<中,正确的有( ) A .1个 B .2个 C .3个 D .4个4.某商贩去菜摊买黄瓜,他上午买了30斤,价格为每斤x 元;下午,他又买了20斤,价格为每斤y 元,后来他以每斤2y x +的价格卖完后,结果发现自己赔了钱,其原因是( ) A .y x < B .y x > C .y x ≥ D .y x ≤5.把不等式组110x x +⎧⎨-⎩≤>0,的解集表示在数轴上,正确的为图中的( )6.如果不等式03≤m x —的正整数解是1、2、3,那么实数m 的取值范围是( )A .93<<mB .129<<mC .129≤≤mD .129<≤m7.不等式组⎩⎨⎧>->-03042x x 的解集为( )A .2>xB .3<xC .2>x 或3<xD .32<<x8.关于x 的方程11=+x a 的解是负数,则a 的取值范围是( ) A .1<a B .1<a 且0≠a C .1≤a D .1≤a 且0≠a 9.甲地离学校4km ,乙地离学校1km ,记甲乙两地之间的距离为d km ,则d 的取值为( )A .3B .5C .3或5D .53≤≤d10.如图2是测量一颗玻璃球体积的过程:(1)将300ml 的水倒进一个容量为500ml 的杯子中;(2)将四颗相同的玻璃球放入水中,结果水没有满;(3)再加一颗同样的玻璃球放入水中,结果水满AB CD图1 (1) (2) (3)图2溢出.根据以上过程,推测这样一颗玻璃球的体积在( )A .320cm 以上,330cm 以下B .330cm 以上,340cm 以下C .340cm 以上,350cm 以下D .350cm 以上,360cm 以下二、填空题(每题3分,满分30分)11.不等式013>—x 的解集是 .12.不等式组⎪⎩⎪⎨⎧>>+010121x x —的解集为 .13.在平面直角坐标系中,若点P (3—m ,1+m )在第二象限,则m 的取值范围 为 .14.使代数式234—x 的值不大于53+x 的值的x 的最大整数值是 . 15.若三角形的三边长分别为3、4、1—x ,则x 的取值范围是 . 16.已知不等式组⎩⎨⎧<≥+0123a x x —无解,则a 的取值范围是 .17.已知)2(2643—x x +≤+,则1+x 的最小值等于图3。
(完整版)2020人教版数学七年级下册第9章不等式与不等式组单元测试题(含答案),推荐文档
2020人教版数学七年级下册第9章 不等式与不等式组单元测试题单元测试题(1)一、填空题1.用“>”或“<”填空:(1)m +3______m -3;(2)4-2x ______5-2x ;(3)______-2;13-y 3y(4)a <b <0,则a 2______b 2; (5)若,则2x ______3y .23yx -<-2.满足5(x -1)≤4x +8<5x 的整数x 为______.3.若,则x 的取值范围是______.11|1|=--xx 4.若点M (3a -9,1-a )是第三象限的整数点,则M 点的坐标为______.5.一个两位数,它的十位数字比个位数字小2,如果这个数大于20且小于40,那么此数为_______.二、选择题6.若a ≠0,则下列不等式成立的是( ).(A)-2a <2a (B)-2a <2(-a )(C)-2-a <2-a(D)aa 22<-7.下列不等式中,对任何有理数都成立的是( ).(A)x -3>0(B)|x +1|>0(C)(x +5)2>0(D)-(x -5)2≤08.若a <0,则关于x 的不等式|a |x <a 的解集是( ).(A)x <1(B)x >1(C)x <-1(D)x >-19.如下图,对a ,b ,c 三种物体的重量判断正确的是( ).(A)a <c (B)a <b (C)a >c (D)b <c10.某商贩去菜摊卖黄瓜,他上午卖了30斤,价格为每斤x 元;下午他又卖了20斤,价格为每斤y 元.后来他以每斤元的价格卖完后,结果发现自己赔了钱,其原因2yx +是( ).(A)x <y(B)x >y(C)x ≤y(D)x ≥y三、解不等式(组),并把解集在数轴上表示出来11..12.11252476312-+≥---x x x ⎪⎩⎪⎨⎧<+-+--≤+.121331),3(410)8(2x x x x四、解答题13.x 取何整数时,式子与的差大于6但不大于8.729+x 2143-x14.如果关于x 的方程3(x +4)-4=2a +1的解大于方程的解.求a 3)43(414-=+x a x a 的取值范围.15.不等式的解集为x >2.求m 的值.m m x ->-2)(3116.某车间经过技术改造,每天生产的汽车零件比原来多10个,因而8天生产的配件超过200个.第二次技术改造后,每天又比第一次技术改造后多做配件27个,这样只做了4天,所做配件个数就超过了第一次改造后8天所做配件的个数.求这个车间原来每天生产配件多少个?17.仔细观察下图,认真阅读对话:根据对话的内容,试求出饼干和牛奶的标价各是多少?18.为了保护环境,某造纸厂决定购买20台污水处理设备,现有A,B两种型号的设备,其中每台的价格、日处理污水量如下表:A型B型价格(万元/台)2420处理污水量(吨/日)480400经预算,该纸厂购买设备的资金不能高于410万元.(1)该企业有几种购买方案;(2)若纸厂每日排出的污水量大于8060吨而小于8172吨,为了节约资金,该厂应选择哪种购买方案?19.某班级为准备元旦联欢会,欲购买价格分别为2元,4元和10元的三种奖品,每种奖品至少购买1件,共买16件,恰好用去50元.若2元的奖品购买a件.(1)用含a的代数式表示另外两种奖品的件数;(2)请你设计购买方案,并说明理由.参考答案第九章 不等式与不等式组测试1.(1)>;(2)<;(3)>;(4)>;(5)>. 2.9,10,11,12,13.3.x <1. 4.(-3,-1) 5.24或35. 6.C . 7.D . 8.C 9.C 10.B .11.x ≤2,解集表示为12.-1<x ≤1,解集表示为13.,整数解为-3,-2,-1,0,1,2,3,4,5.6310<≤-x 14.,解得. 15.x >6-2m ,m =2.a a 316372->-187>a 16.设原来每天生产配件x 个.200<8(x +10)<4(x +10+27). 15<x <17. x =16.17.设饼干x 元,牛奶y 元.8<x <10,x 为整数,⎪⎩⎪⎨⎧-=+>+<.8.0109.0,10,10y x y x x ⎩⎨⎧==∴.1.1,9y x 18.(1)设购买A 型设备x 台,B 型设备(20-x )台.24x +20(20-x )≤410. x ≤2.5, ∴x =0,1,2.三种方案:方案一:A :0台;B :20台; 方案二:A :1台;B :19台;方案三:A :2台;B :18台.(2)依题意8060<480x +400(20-x )<8172.0.75<x <2.15,x =1,2.当x =1时,购买资金为404万元;x =2时,购买资金为408万元.为节约资金,应购买A 型1台,B 型19台.19.(1)4元的件数;;10元的件数:3455a -⋅-37a (2)有两种方案:方案一:2元10件,4元5件,10元1件;方案二:2元13件,4元1件,10元2件.单元测试题(2)一.选择题 (每小题3分,共30分)1. 若,则下列式子错误的是( )x y >A.B.C.D.33x y ->-33x y ->-32x y +>+33x y>2. 如图表示了某个不等式的解集, 该解集所含的整数解的个数是( )A 4 B. 5 C. 6 D.73. 若不等式组的解集为,则a 的取值范围为( )⎩⎨⎧->+<+1472,03x x a x 0<xA a >0 B. a =0 C. a >4 D. a =44. 不等式组的解集是( )⎩⎨⎧≥->+0302x x A. B. C. D.32≤≤-x 32≥-<x x 或32<<-x 32≤<-x 5. 不等式组的解集在数轴上表示正确的是( )⎩⎨⎧-≥-111x x <6. 如果不等式组有解,那么的取值范围是( )⎩⎨⎧><m x x 3m A.>3BC. <3D m 3≥m m 3≤m7. 中央电视台2套“开心辞典”栏目中,有一期的题目如图所示,两个天平都平衡,则三个球体的重量等于个正方体的重量( )A.2B.3C.4D.58. 韩日“世界杯”期间,重庆球迷一行56人从旅馆剩出租车道到球场为中国对加油,现有A,B 两个出租车队,A 队比B 队少3辆车,若全部安排剩A 队的车,每辆5人,车不够,每辆坐 6人,有的车未坐满,则A 队有出租车( )A.11辆B.10辆C.9辆D.8辆9. 甲从一个鱼摊上买了三条鱼,平均每条元,又从另一个鱼摊买了两条鱼,平均每条元,后a b 来他又以每条的价格把鱼全部卖给了乙,结果发现赔了钱,原因是( )2ba +A.B.C.D.的大小无关b a >b a <b a =b a 和10. 某次知识竞赛共有30道选择题,称对一题得10分,若答错或不答一道题,则扣3分,要使总得分不少于70分则应该至少答对几道题?若设答对题,可得式子为( )x A. B.103(30)70x x -->103(30)70x x --≤C.D. 10370x x -≥103(30)70x x --≥二.填空题 (每小题3分,共30分)11. 不等式(m -2)x >2-m 的解集为x <-1,则m 的取值范围是__________________。
山东省潍坊第二中学七年级数学下册第九单元《不等式与不等式组》经典测试卷(含答案解析)
一、选择题1.不等式32x x -≤的解集在数轴上表示正确的是( )A .B .C .D . B解析:B【分析】先求出不等式的解集,再根据不等式在数轴上的表示方法即可得.【详解】 32x x -≤,23x x --≤-,33x -≤-,1≥x ,由此可知,只有选项B 表示正确,故选:B .【点睛】本题考查了在数轴上表示一元一次不等式的解集,熟练掌握不等式的解法是解题关键. 2.若关于x 的不等式组21x x a <⎧⎨>-⎩无解,则a 的取值范围是( ) A .3a ≤-B .3a <-C .3a >D .3a ≥ D 解析:D【分析】利用不等式组取解集的方法:大大小小找不到即可得到a 的范围.【详解】 ∵关于x 的不等式组21x x a <⎧⎨>-⎩无解, ∴a-1≥2,∴a≥3.故选:D.【点睛】考查了一元一次不等式组:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,利用数轴可以直观地表示不等式组的解集.解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.3.某种商品的进价为800元,出售时标价为1200元,后来由于该商品积压,商店准备打折销售,但要保证利润率不低于5%,则至多可打( )A .6折B .7折C .8折D .9折B解析:B【详解】设可打x 折,则有1200×10x -800≥800×5%, 解得x≥7.即最多打7折.故选B .【点睛】本题考查的是一元一次不等式的应用,解此类题目时注意利润和折数,计算折数时注意要除以10.解答本题的关键是读懂题意,求出打折之后的利润,根据利润率不低于5%,列不等式求解. 4.已知关于x 的方程9314x kx -=+有整数解,且关于x 的不等式组155222228x x x k x +⎧>+⎪⎪⎨-⎪≥-⎪⎩有且只有4个整数解,则不满足条件的整数k 为( ).A .8-B .8C .10D .26A 解析:A【分析】解不等式组和方程得出关于x 的范围及x 的值,根据不等式组有4个整数解和方程的解为整数得出k 的范围,继而可得整数k 的取值.【详解】解:解关于x 的方程9x-3=kx+14得:179x k=-, ∵方程有整数解,∴9-k=±1或9-k=±17,解得:k=8或10或-8或26, 解不等式组155222228x x x k x +⎧>+⎪⎪⎨-⎪≥-⎪⎩得不等式组的解集为2528k x -≤<, ∵不等式组有且只有四个整数解, ∴20128k -<≤, 解得:2<k≤30; 所以满足条件的整数k 的值为8、10、26,故选:A .【点睛】本题主要考查方程的解和一元一次不等式组的解,熟练掌握解方程和不等式组的能力,并根据题意得到关于k 的范围是解题的关键.5.如果点P(m ,1m -)在第四象限,则m 的取值范围是( )A .0m >B .01m <<C .1m <D .1m D解析:D【分析】根据点P(m ,1m -)在第四象限列出关于m 的不等式组,解之可得.【详解】∵点P(m ,1m -)在第四象限, ∴010m m >⎧⎨-<⎩, 解得m >1,故选:D .【点睛】本题考查了解一元一次不等式组以及点的坐标,正确把握各象限内点的坐标特点是解题关键.6.若关于x 的一元一次方程x −m +2=0的解是负数,则m 的取值范围是A .m ≥2B .m >2C .m <2D .m ≤2C 解析:C【解析】试题分析:∵程x ﹣m+2=0的解是负数,∴x=m ﹣2<0,解得:m <2,故选C . 考点:解一元一次不等式;一元一次方程的解.7.若m n <,则下列各式中正确的是( )A .33m n +>+B .33m n ->-C .33m n ->-D .33m n > C 解析:C【分析】根据不等式的基本性质依次分析各项即可得到结果.【详解】∵m <n∴m+3<n+3,故A 选项错误;m-3<n-3,故B 选项错误;-3m >-3n ,故C 选项正确; 33m n <,故D 选项错误; 故选C.【点睛】本题考查了不等式的基本性质,解答本题的关键是熟练掌握不等式的基本性质:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变;(2)不等式两边乘(或除以)同一个正数,不等号的方向不变;(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.8.对一个实数x 按如图所示的程序进行操作,规定:程序运行从“输入一个实数x ”到“判断结果是否大于190?”为一次操作,如果操作恰好进行两次就停止了,那么x 的取值范围是( )A .822x <B .822x <C .864x <≤D .2264x <≤ D解析:D【分析】 根据“操作恰好进行两次就停止了”可得第一次运行的结果小于等于190,第二次运行的结果大于190,由此建立不等式组,再解不等式组即可得.【详解】由题意得:()321903322190x x -≤⎧⎪⎨-->⎪⎩①②, 解不等式①得:64x ≤,解不等式②得:22x >,则不等式组的解集为2264x <≤,故选:D .【点睛】本题考查了一元一次不等式组的应用,根据程序运行的次数,正确建立不等式组是解题关键.9.下列是一元一次不等式的是( )A .21x >B .22x y -<-C .23<D .29x < A解析:A【分析】根据一元一次不等式的定义对各选项进行逐一分析即可.【详解】解:A 、21x >中含有一个未知数,并且未知数的最高次数等于1,是一元一次不等式,故本选项正确;B 、22x y -<-中含有两个未知数,故本选项错误;C 、23<中不含有未知数,故本选项错误;D 、29x <中含有一个未知数,但未知数的最高次数等于1,不是一元一次不等式,故本选项错误.故选:A .【点睛】本题考查的是一元一次不等式的定义,即含有一个未知数,未知数的最高次数是1的不等式,叫做一元一次不等式.10.若关于x?的不等式组2x 1x 3x a +<-⎧⎨>⎩无解,则实数 a?的取值范围是( ) A .a 4<-B .a 4=-C .a 4?≥-D . a 4>- C 解析:C【分析】 先解出第一个不等式的解集,再根据题意确定a 的取值范围即可.【详解】解:2x 1x 3x a +<-⎧⎨>⎩①② 解①的:x ﹤﹣4,∵此不等式组无解,∴a≥﹣4,故选:C .【点睛】本题考查一元一次不等式组的解法,熟知不等式组解集应遵循的原则“同大取大,同小取小,大小小大取中间,大大小小无解”是解答的关键.二、填空题11.先阅读短文,回答后面所给出的问题:对于三个数a 、b 、c 中,我们给出符号来表示其中最大(小)的数,规定{}min ,,a b c 表示这三个数中最小的数,{}max ,,a b c 表示这三个数中最大的数.例如:{}min 1,2,31-=-,{}max 1,2,33-=;{}(1)min 1,2,1(1)a a a a ≤-⎧-=⎨->-⎩,若{}{}min 4,4,4max 2,1,2x x x x +-=+,则x 的值为_______.或【分析】根据新定义法则分x 或x+4或x ﹣4最小2或x+1或2x 最大几种情况分别列出一元一次不等式组和一元一次方程进行解答即可【详解】(1)当最小时则即无解此情况不成立(2)当最小时则即解得此时:即 解析:43或2- 【分析】 根据新定义法则,分x 或x+4或x ﹣4最小、2或x+1或2x 最大几种情况,分别列出一元一次不等式组和一元一次方程进行解答即可.【详解】(1)当4最小时,则4444x x +>⎧⎨->⎩,即00x x >⎧⎨<⎩, x 无解,此情况不成立.(2)当4x +最小时,则4444x x x ≥+⎧⎨-≥+⎩,即00x x ≤⎧⎨≤⎩, ∴解得0x ≤,此时:12x +<,22x <,{}max 2,1,22x x ∴+=,42x ∴+=,即2x =-.(3)当4x -最小时,则4444x x x>-⎧⎨+>-⎩,即00x x >⎧⎨>⎩, ∴解得0x >,此时无法判断,{}max 2,1,2x x +的值,则分情况讨论如下:①当2最大时:2122x x ≥+⎧⎨≥⎩,即11x x ≤⎧⎨≤⎩, 01x ∴<≤,此时:42x -=,2x =(舍去).②当2x 最大时:2221x x x >⎧⎨>+⎩,即11x x >⎧⎨>⎩, 1x ∴>,此时有:42x x -=,43x =. ③当1x +最大时,1212x x x +>⎧⎨+>⎩,即11x x >⎧⎨<⎩,无解,此情况不成立. 综上所述:43x =或2x =-. 【点睛】本题考查新定义下解一元一次不等式组和一元一次方程的能力,由已知等式找到x 的分界点以及准确分类讨论是解答的关键.12.a b ≥,1a -+_____1b -+≤【分析】根据不等式的性质判断即可【详解】∵a≥b ∴-a≤-b ∴-a+1≤-b+1故答案为≤【点睛】本题考查不等式的性质需要特别注意不等式两边同时乘除一个负数不等号要变号解析:≤【分析】根据不等式的性质判断即可.【详解】∵a≥b∴-a≤-b∴ -a+1≤-b+1故答案为≤.【点睛】本题考查不等式的性质,需要特别注意不等式两边同时乘除一个负数不等号要变号. 13.已知点()6,29P m m --关于x 轴对称的点在第三象限,则m 的整数解是______.5【分析】利用平面直角坐标系中点的坐标特点得出m 的取值范围【详解】解:∵点P(m ﹣62m ﹣9)关于x 轴的对称点在第三象限∴点P 在第二象限∴m ﹣6<0且2m ﹣9>0解得:<m<6∴m 的取值范围是<m<解析:5【分析】利用平面直角坐标系中点的坐标特点得出m 的取值范围.【详解】解:∵点P (m ﹣6,2m ﹣9)关于x 轴的对称点在第三象限,∴点P 在第二象限,∴m ﹣6<0且2m ﹣9>0, 解得:92<m<6, ∴m 的取值范围是92<m<6, ∴m 的整数解为5;故答案为 5.【点睛】本题考查了各象限内点的坐标的符号特征以及解不等式,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-),要注意先判断出点P 在第二象限.14.小张同学在解一元一次不等式时,发现一个不等式右边的数被墨迹污染看不清了,所看到的部分不等式是13x -<■,他查看练习本后的答案知道这个不等式的解是2x >,则被污染的数是__________.−5【分析】设被污染的数为a 表示出不等式的解集根据已知解集确定出a 的值即可【详解】解:设被污染的数为a 不等式为1−3x <a 解得:x >由已知解集为x >2得到=2解得:a =−5故答案为:−5【点睛】此题 解析:−5【分析】设被污染的数为a ,表示出不等式的解集,根据已知解集确定出a 的值即可.【详解】解:设被污染的数为a ,不等式为1−3x <a .解得:x >1-3a , 由已知解集为x >2,得到1-3a =2, 解得:a =−5,故答案为:−5【点睛】此题考查了不等式的解集,熟练掌握运算法则是解本题的关键.15.若关于x 的不等式组2()102153x m x 的解集为76x -<<-,则m 的值是______.【分析】先解不等式组得出其解集为结合可得关于的方程解之可得答案【详解】解:由①得:由②得:不等式的解集为:∵关于的不等式组的解集为【点睛】本题考查的是利用一元一次不等式组的解集求参数熟悉相关性质是解 解析:152【分析】 先解不等式组得出其解集为1262mx ,结合76x -<<-可得关于m 的方程,解之可得答案.【详解】解:2()102153x m x ①②由①得:2210x m +->,221x m >-+, 12x m >-+由②得:212x <-,6x <-, ∴不等式的解集为:162m x -+<<- ∵关于x 的不等式组的解集为76x -<<-,172m ∴-+=- 152m ∴= 【点睛】本题考查的是利用一元一次不等式组的解集求参数,熟悉相关性质是解题的关键. 16.若干名学生住宿舍,每间住 4人,2人无处住;每间住 6人,空一间还有一间不空也不满,问多少学生多少宿舍?设有x 间宿舍,则可列不等式组为____【分析】先根据每间住人人无处住可得学生人数再根据每间住人空一间还有一间不空也不满建立不等式组即可得【详解】设有间宿舍则学生有人由题意得:故答案为:【点睛】本题考查了列一元一次不等式组理解题意正确找出解析:()142626x x ≤+--<【分析】先根据“每间住 4人,2人无处住”可得学生人数,再根据“每间住 6人,空一间还有一间不空也不满”建立不等式组即可得.【详解】设有x 间宿舍,则学生有()42x +人,由题意得:()142626x x ≤+--<,故答案为:()142626x x ≤+--<.【点睛】本题考查了列一元一次不等式组,理解题意,正确找出不等关系是解题关键. 17.若关于x 、y 的二元一次方程组23224x y m x y +=-+⎧⎨+=⎩的解满足32x y +>-,则满足条件的m 的取值范围是____________.【分析】先将m 看做常数解方程组求出再代入可得关于m 的不等式解之可得答案【详解】①-②得:将代入②得:∵∴+∴故答案为:【点睛】本题主要考查了解二元一次方程组和解一元一次不等式熟练掌握运算法则是解本题 解析:72m <【分析】先将m 看做常数解方程组求出2x m =-、2y m =+,再代入32x y +>-可得关于m 的不等式,解之可得答案.【详解】 23224x y m x y +=-+⎧⎨+=⎩①② ①2⨯-②得:2x m =-,将2x m =-代入②得:2y m =+, ∵32x y +>-, ∴2m - +322m +>-, ∴72m <.故答案为:72m <. 【点睛】 本题主要考查了解二元一次方程组和解一元一次不等式,熟练掌握运算法则是解本题的关键.注意:不等式两边都乘以或除以同一个负数不等号方向要改变.18.若不等式25123x x +-≤-的解集中x 的每一个值,都能使关于x 的不等式3(1)552()x x m x -+>++成立,则m 的取值范围是__________.【分析】首先通过解不等式得出的解集和的解集然后根据题意建立一个关于m 的不等式从而确定m 的范围即可【详解】解得解得∵不等式的解集中的每一个值都能使关于的不等式成立解得【点睛】本题主要考查不等式的解集掌 解析:35m <- 【分析】 首先通过解不等式得出25123x x +-≤-的解集和3(1)552()x x m x -+>++的解集,然后根据题意建立一个关于m 的不等式,从而确定m 的范围即可.【详解】 25123x x +-≤-, 解得45x ≤. 3(1)552()x x m x -+>++, 解得12m x -<. ∵不等式25123x x +-≤-的解集中x 的每一个值,都能使关于x 的不等式3(1)552()x x m x -+>++成立,1425m -∴>, 解得35m <-. 【点睛】本题主要考查不等式的解集,掌握解不等式的方法是解题的关键.19.为改善教学条件,学校准备对现有多媒体设备进行升级改造,已知购买3个键盘和1个鼠标需要190元;购买2个键盘和3个鼠标需要220元.经过与经销商洽谈,键盘打八折,鼠标打八五折,若学校计划购买键盘和鼠标共50件,且总费用不超过1820元,则最多可购买键盘_____个.20【分析】直接利用已知得出二元一次方程组求出键盘与鼠标的单价再利用总费用不超过1820元得出不等式求出答案【详解】解:设键盘每个价格为x 元鼠标每个价格为y 元根据题意可得:解得:则设购买键盘a 个则鼠解析:20 【分析】直接利用已知得出二元一次方程组求出键盘与鼠标的单价,再利用总费用不超过1820元,得出不等式求出答案. 【详解】解:设键盘每个价格为x 元,鼠标每个价格为y 元,根据题意可得:319023220x y x y +=⎧⎨+=⎩, 解得:5040x y =⎧⎨=⎩,则设购买键盘a 个,则鼠标(50﹣a )个, 根据题意可得:50×0.8a +40×0.85(50﹣a )≤1820, 解得:a ≤20,故最多可购买键盘20个. 故答案为:20. 【点睛】本题咔嚓的是二元一次方程组与一元一次不等式,根据题意正确列式是解题的关键. 20.若关于x 的不等式2x ﹣m≥1的解集如图所示,则m =_____.3【分析】根据不等式的解集可得关于m 的方程根据解方程可得答案【详解】解:解不等式得x≥由不等式的解集是x≥2得=2解得m =3故答案为:3【点睛】本题主要考查的是一元一次不等式的解法将数轴和不等式结合解析:3 【分析】根据不等式的解集,可得关于m 的方程,根据解方程,可得答案. 【详解】 解:解不等式得 x≥12+m , 由不等式的解集是x≥2,得12+m =2, 解得m =3, 故答案为:3.【点睛】本题主要考查的是一元一次不等式的解法,将数轴和不等式结合起来观察是解题的关键.三、解答题21.已知,点O 是数轴的原点,点A 、点B 是数轴上不重合的两个点,且点A 在点B 的左边,点M 是线段AB 的中点.在上述条件下,解决问题:(1)如果点A 表示的数是4,点B 表示的数是6,那么点M 表示的数是 ;(2)如果点A 表示的数是-3,点M 表示的数是2,那么点B 表示的数是 ;(3)如果点A 表示的数是a ,点B 表示的数是b ,那么点M 表示的数是 ;(用含a ,b 的代数式表示) ,所以AM =BM .因此得到关于x 的方程:x -a =b -x .你能解出这个方程吗?(4)如果点A 表示的数是-2,点C 表示的数是3,点B 是线段OC 上的一点,点M 表示的数为m ,则m 的取值范围是 ;(5)如果点E 表示的数是1,点F 表示的数是x ,点A 从点E 出发,以每分钟1个单位长度的速度向右运动,点B 从点F 出发,以每分钟3个单位长度的速度向右运动,设运动时间为t (t >0).①当x =5时,如果EM =6,那么t 的值是 ; ②当t ≤3时,如果EM ≤9,求x 的取值范围. 解析:(1)5;(2)7;(3)2a b +,2a b x +=;(4)﹣1≤m ≤12;(5)①2;②1<x ≤7 【分析】(1)设点M 表示的数是m ,分别表示出AM 和BM 的距离,再根据AM=BM 求解即可得出答案;(2)设点B 表示的数是b ,分别表示出AM 和BM 的距离,再根据AM=BM 求解即可得出答案;(3)设点M 表示的数是m ,分别表示出AM 和BM 的距离,再根据AM=BM 求解即可得出答案;x a b x -=-根据解一元一次方程的一般步骤即可得出答案;(4)设点B 表示的数是b ,根据点B 的位置在点O 和点C 之间建立不等式,再将点M 表示的数代入求解即可得出答案;(5)①分别表示出点M 表示的数、点A 表示的数及点B 表示的数,再根据2a bm +=代入求解即可得出答案;②先表示出A 、B 、M 所表示的数,得出EM 的值,再根据给出的范围建立不等式求解即可得出答案. 【详解】(1)设点M 表示的数是m ,则AM 之间的距离是4m -,BM 之间的距离是6m -, 点M 是线段AB 的中点,∴AM=BM ,即46m m -=-, 解得:5m =, 点M 表示的数是5;(2)设点B 表示的数是b点A 表示的数是-3,点M 表示的数是2,∴AM=5,BM=2b -点M 是线段AB 的中点,且点A 在点B 的左边,∴AM=BM ,5=2b ∴-解得:7b =∴点B 表示的数是7;(3)设点M 表示的数是m ,点A 表示的数是a ,点B 表示的数是b ,则AM 之间的距离是m a -,BM 之间的距离是b m -, 点M 是线段AB 的中点,∴AM=BM ,即m a b m -=-, 解得:2a bm +=, x a b x -=-移项,得x x b a +=+ 合并同类项,得2xa b将系数化为1,得2a bx +=(4)设点B 表示的数是bO 是原点,点A 表示的数是-2,点C 表示的数是3,点B 是线段OC 上的一点,03b ∴≤≤22b m -+=112m ∴-≤≤;(5)①点E 表示的数是1,EM=6,∴点M 表示的数是16=7+点F 表示的数是x ,且x=5∴点A 表示的数是1t +,点B 表示的数为53t +15372t t+++∴= 解得:2t =; ②由题意得点A 表示的数是1t +,点B 表示的数为3x t +,∴点M 表示的数是132t x t+++ 点E 表示的数是1,∴1312t x tEM +++=-,1x > 即13192t x t+++-≤ 化简得194xt -≤3t ≤ 1934x -∴≥解得:7x ≤∴x 的取值范围为17x <≤.【点睛】本题考查了根据数轴表示两点间的距离、一元一次方程的应用、一元一次不等式的应用,解题的关键是结合数轴将点表示成具体的数.22.某班班主任对在某次考试中取得优异成绩的同学进行表彰.她到商场购买了甲、乙两种笔记本作为奖品,若购买甲种笔记本15个,乙种笔记本20个,共花费250元;若购买甲种笔记本10个,乙种笔记本25个,共花费225元. (1)求购买一个甲种、一个乙种笔记本各需多少元?(2)班主任决定再次购买甲、乙两种笔记本共35个,如果班主任此次购买甲、乙两种笔记本的总费用不超过300元,求至多需要购买多少个甲种笔记本? 解析:(1)一个甲种笔记本需10元,一个乙种笔记本需5元;(2)25个 【分析】(1)设购买一个甲种笔记本需x 元,一个乙种笔记本需y 元列二元一次方程组解答; (2)设需要购买a 个甲种笔记本,列不等式解答. 【详解】解:(1)设购买一个甲种笔记本需x 元,一个乙种笔记本需y 元,15202501025225x y x y +=⎧⎨+=⎩,解得105x y =⎧⎨=⎩, 答:购买一个甲种笔记本需10元,一个乙种笔记本需5元. (2)设需要购买a 个甲种笔记本,105(35)300a a +-≤,解得:25a ≤,答:至多需要购买25个甲种笔记本. 【点睛】此题考查二元一次方程组的实际应用,不等式的实际应用,正确理解题意是解题的关键. 23.某商店有A 商品和B 商品,已知A 商品的单价比B 商品单价多12元,若购买400件B 商品与购买100件A 商品所用钱数相等. (1)求A ,B 两种商品的单价分别是多少元.(2)已知该商店购买B 商品的件数比购买A 商品的件数的2倍少4,如果需要购买A ,B 两种商品的总件数不少于32,且该商店购买的A ,B 两种商品的总费用不超过296元,那么该商店有哪几种购买方案?说明理由.解析:(1)A 种商品的单价为16元,B 种商品的单价为4元;(2)有两种方案:方案(1):m =12,2m ﹣4=20 即购买A 商品的件数为12件,则购买B 商品的件数为20件;方案(2):m =13,2m ﹣4=22 即购买A 商品的件数为13件,则购买B 商品的件数为22件. 【分析】(1)设B 种商品的单价为x 元,A 种商品的单价为(x -12)元,根据等量关系:购买400件A 商品与购买100件B 商品所用钱数相等,列出方程求解即可.(2)设购买A 商品的件数为m 件,则购买B 商品的件数为(2m ﹣4)件,根据不等关系:①购买A 、B 两种商品的总件数不少于32件,②购买的A 、B 两种商品的总费用不超过296元可分别列出不等式,联立求解可得出m 的取值范围,进而讨论各方案即可. 【详解】设B 种商品的单价为x 元,则A 种商品的单价为(x +12)元, 由题意得:400100(12)x x =+ , 解得x =4, 则x +12=16(元),答:A 种商品的单价为16元、B 种商品的单价为4元.设购买A 商品的件数为m 件,则购买B 商品的件数为(2m ﹣4)件, 由题意得:2432164(24)296m m m m +-≥⎧⎨+-≤⎩,解得:12≤m ≤13, ∵m 是整数,∴m =12或13,故有如下两种方案:方案(1):m =12,2m ﹣4=20 即购买A 商品的件数为12件,则购买B 商品的件数为20件;方案(2):m =13,2m ﹣4=22 即购买A 商品的件数为13件,则购买B 商品的件数为22件. 【点睛】本题考点是一元一次方程及一元一次不等式组的应用,注意找到正确的等量关系是解题的重点.24.解下列不等式(组) (1)5261x x -<+;(2)2151132513(1)x x x x -+⎧-≤⎪⎨⎪-<+⎩. 解析:(1)x >﹣3;(2)﹣1≤x <2 【分析】(1)根据不等式的性质解一元一次不等式解答即可;(2)分别求出每个不等式的解集,再求其解集的公共部分即可解答. 【详解】解:(1)移项、合并同类项,得:﹣x <3, 化系数为1,得:x >﹣3, ∴不等式的解集为x >﹣3;(2)2151132513(1)x x x x -+⎧-≤⎪⎨⎪-<+⎩①②, 解①得:x≥﹣1, 解②得:x <2,∴不等式组的解集为﹣1≤x <2. 【点睛】本题考查不等式的性质、解一元一次不等式(组),熟练掌握一元一次不等式(组)的解法是解答的关键,求解时注意不等号的方向.25.一直关于x 的不等式()1a x 2->两边都除以1a -,得2x 1a<-. (1)求a 的取值范围; (2)试化简1a a 2-++. 解析:(1)a 1>;(2)2a 1+. 【分析】(1)根据不等式的基本性质,得到关于a 的不等式,即可求解; (2)根据求绝对值的法则以及a 的范围,即可得到答案. 【详解】(1)∵ 关于x 的不等式()1a x 2->两边都除以1a -,得2x 1a<-, ∴ 1a 0-<, ∴ a 1>; 2()由(1)得a 1>, ∴1a 0-<,a 20+>,∴1a a 2a 1a 22a 1-++=-++=+. 【点睛】本题主要考查不等式的性质以及求绝对值的法则,熟练掌握不等式的性质是解题的关键. 26.受疫情影响,口罩价格不断走高.3月20日当天口罩的价格是年初的1.5倍;3月20日当天,王老师购买4盒口罩比年初多花了48元. (1)那么3月20日当天口罩的价格为每盒多少元?(2)3月20日,按照(1)中的口罩价格,某售卖点共卖出1000盒口罩.3月21日,政府决定投入储备口罩并规定其销售价在3月20日的基础上下调0.7%a 出售.该售卖点按规定价出售一批储备口罩和非储备口罩,该售卖点的非储备口罩仍按3月20日的价格出售,3月21日当天的两种口罩总销量比3月20日增加了20%,且储备口罩的销量占总销量的56,两种口罩销售的总金额比3月20日至少提高了1%10a ,求a 的最大值. 解析:(1)3月20日当天口罩的价格为每盒36元.(2)a 的最大值为25. 【分析】(1)可设年初口罩的价格为每盒x 元,则3月20日当天口罩的价格为每盒1.5x 元,根据3月20日当天,王老师购买4盒口罩比年初多花了48元列出方程即可求解;(2)根据两种口罩销售的总金额比3月20日至少提高了1%10a ,列出不等式即可求解. 【详解】解:(1)设年初口罩的价格为每盒x 元,则3月20日当天口罩的价格为每盒1.5x 元,依题意有4 1.5448x x ⨯-=,解得24x = ,1.5 1.52436x =⨯=.∴3月20日当天口罩的价格为每盒36元. (2)1000×(1+20%)=1200(盒),5120010006⨯==1000(盒),1200-1000=200(盒),依题意有()13620010003610.7%1000361%10a a ⎛⎫⨯+⨯-≥⨯+ ⎪⎝⎭, 解得a≤25. 故a 的最大值为25. 【点睛】本题考查了一元一次方程的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出一元一次方程;(2)根据各数量之间的关系,正确列出一元一次不等式.27.已知方程组2523x y mx y m-=+⎧⎨+=⎩的解满足条件0x >,0y <,求m 的取值范围.解析:21m -<<【分析】首先利用含m 的式子表示出x 、y ,再根据x >0,y >0可得关于m 的不等式组,再解不等式组即可. 【详解】2523x y m x y m -=+⎧⎨+=⎩①② ②×2-①得:1y m =-,把1y m =-代入②得:2x m =+, ∵0x >,0y <,∴2010m m +>⎧⎨-<⎩,解得:21m -<<. 【点睛】本题主要考查了二元一次方程组和一元一次不等式组,关键是用含m 的式子表示出x 、y . 28.某市出租车的计费标准如下:行程3km 以内(含3km ),收费7元.行程超过3km ,如果往返乘同一出租车并且中间等候时间不超过3min ,超过3km 的部分按每千米1.6元计费,另加收1.6元等候费;如果返程时不再乘坐此车,超过3km 的部分按每千米2.4元计费.小文等4人从A 处到B 处办事,在B 处停留时间在3min 之内,然后返回A 处.现在有两种往返方案:方案一:去时4人同乘一辆出租车,返回都乘公交车(公交车票为每人2元); 方案二:4人乘同一辆出租车往返.(1)若A ,B 两地相距1.2km ,方案一付费_____元,方案二付费______元; (2)若A ,B 两地相距2.5km ,方案一付费_____元,方案二付费______元; (3)设A ,B 两地相距x km (x <12),请问选择那种方案更省钱?解析:(1)15,8.6;(2)15,11.8;(3)当0<x <5时,方案二更省; 当x=5时,方案一、二一样; 当5<x <12时,方案一更省. 【分析】(1)根据题意分别列出表示两种方案费用的代数式,进行计算即可得到答案; (2)根据题意分别列出表示两种方案费用的代数式,进行计算即可得到答案; (3)当0<x≤1.5时,得到方案一:15元;方案二:8.6元,于是得到方案二更省钱;当1.5<x≤3时,求得方案一:15元;方案二:()7 1.623 1.6 3.2 3.8x x +-+=+,即当x=3,有最大费用13.4元,13.4<15,于是得到方案二更省钱;当x >3时;求得方案一:7+2.4(x-3)+8=2.4x+7.8;方案二:7+1.6(2x-3)+1.6=3.2x+3.8;列方程或不等式,再讨论即可得到结论. 【详解】解:(1) 1.2<3,∴ 方案一:7+42=7+8=15⨯(元),方案二:7+1.6=8.6(元), 故答案为:15,8.6. (2)∵2.5<3,∴方案一付费:7+4×2=15元,方案二付费:()7+53 1.6 1.611.8-⨯+=, 故答案为:15,11.8. (3)当0<x≤1.5时, 方案一:7+42=7+8=15⨯元; 方案二:7+1.6=8.6元, ∴方案二更省钱; 当1.5<x≤3时,方案一:7+42=7+8=15⨯元;方案二:()7 1.623 1.6 3.2 3.8x x +-+=+,即当x=3,最大费用为:13.4元, 方案二:13.4<15∴方案二更省钱; 当x >3时;方案一:()7 2.438 2.47.8x x +-+=+; 方案二:()7 1.623 1.6 3.2 3.8x x +-+=+; 当2.47.8 3.2 3.8x x +=+时, 解得:5x =; ∴当x=5时,两者均可, 当2.47.8x +<3.2 3.8x +时,0.8x ∴-<4-, ∴x >5,所以x >5时方案一更省, 当2.47.8x +>3.2 3.8x +时,0.8x ∴->4-, ∴x <5,所以x <5时,方案二更省;综上可得:当0<x <5时,方案二更省; 当x=5时,方案一、二一样; 当5<x <12 时,方案一更省. 【点睛】本题考查了列代数式,一元一次方程的应用,一元一次不等式的应用,最优化选择问题,解答本题的关键是根据题目所示的收费标准,列出x 的关系式,再计算与比较.。
无锡滨湖区河埒中学七年级数学下册第五单元《不等式与不等式组》测试卷(含答案解析)
一、选择题1.已知关于x 的不等式组3x 05m x +⎧⎨-⎩<>的所有整数解的和为-9,则m 的取值范围( )A .3≤m <6B .4≤m <8C .3≤m <6或-6≤m <-3D .3≤m <6或-8≤m<-42.不等式()2533x x ->-的解集为( ) A .4x <-B .4x >C .4x <D .4x >-3.如图是测量一物体体积的过程:步骤一:将180 mL 的水装进一个容量为300 mL 的杯子中; 步骤二:将三个相同的玻璃球放入水中,结果水没有满; 步骤三:再将一个同样的玻璃球放入水中,结果水满溢出.根据以上过程,推测一个玻璃球的体积在下列哪一范围内?(1 mL=1 cm 3)( ). A .10 cm 3以上,20 cm 3以下 B .20 cm 3以上,30 cm 3以下 C .30 cm 3以上,40 cm 3以下 D .40 cm 3以上,50 cm 3以下 4.关于x 的方程3a x -=的解是非负数,那么a 满足的条件是( ) A .3a >B .3a ≤C .3a <D .3a ≥5.不等式-3<a≤1的解集在数轴上表示正确的是( ) A . B . C .D .6.不等式组23x x ≥-⎧⎨<⎩的整数解的个数是( ) A .4个B .5个C .6个D .无数个7.若关于x 的不等式组255332x x x x a +⎧>-⎪⎪⎨+⎪<+⎪⎩只有5个整数解,则a 的取值范围( )A .1162a -<-B .116a 2-<<-C .1162a -<-D .1162a --8.若实数3是不等式2x a 20--<的一个解,则a 可取的最小整数为( ) A .2B .3C .4D .59.下列说法中不正确的是( )A .若a b >,则a 1b 1->-B .若3a 3b >,则a b >C .若a b >,且c 0≠,则ac bc >D .若a b >,则7a 7b -<-10.若关于x 的不等式组0722x m x -<⎧⎨-≤⎩的整数解共有3个,则m 的取值范围是( )A .5<m <6B .5<m ≤6C .5≤m ≤6D .6<m ≤711.小圆想用7天的时间背诵若干首诗词,背诵计划如下: ①将诗词分为4组,第n 组有n x 首,1,2,3,4n =;②对于第n 组诗词,第n 天背诵第一遍,第(1)n +天背诵第二遍,第(3)n +天背诵第三遍,三遍后完成背诵,其它天无需背诵,1,2,3,4n =; ③每天最多背诵8首,最少背诵2首,A .10首B .11首C .12首D .13首12.若关于x 的不等式组327x x a-<⎧⎨<⎩的解集是x a <,则a 的取值范围是( ).A .3aB .3a >C .3aD .3a <二、填空题13.“x 的4倍与1的差不大于3”用不等式表示为 ________________ .14.关于x ,y 的二元一次方程组23224x y m x y +=-+⎧⎨+=⎩的解满足x +y >﹣1,则m 的取值范围是_____.15.关于x 的不等式组0321x a x -≥⎧⎨->⎩有3个整数解,则a 的取值范围是________.16.在平面直角坐标系 xOy 中,点(,)P a b 的“变换点”Q 的坐标定义如下:当a b 时,Q点坐标为(,)b a -;当a b <时,Q 点坐标为(,)a b -. (1)(2,3)-的变换点坐标是_____________.(2)若(,0.52)a a -+的变换点坐标是(,)m n ,则m 的最大值是_____________. 17.已知点N 的坐标为()8a a -,,则点N 一定不在第____象限18.若ab>0,cb<0,则ac________0.19.定义[]x表示不大于x的最大整数、{}[]x x x=-,例如[]22=,[]2.83-=-,[]2.82=,{}20=,{}2.80.8=,{}2.80.2-=,则满足{}[]2x x=的非零实数x值为_______.20.如果不等式组2{223xax b+≥-<的解集是01x≤<,那么+a b的值为.三、解答题21.解不等式组103124xx+≥⎧⎪⎨-<⎪⎩,并把它的解集表示在数轴上.22.某水果店购买某种水果的进价为18元/千克,在销售过程中有10%的水果损耗,该水果店以a元/千克的标价出售该种水果.(1)为避免亏本,求a的最小值.(2)若该水果店以标价销售了70%的该种水果,在扣除10%损耗后,剩下的20%水果按10元/千克的价格售完.为确保销售该种水果所得的利润率不低于20%,求a的最小值.23.解不等式或不等式组,并把解集在数轴上表示出来.(1)432136x x-+>-;(2)2(1)0210xx+<⎧⎨-⎩.24.(1)解方程组26m nm n=⎧⎨+=⎩(2)解不等式组26015aa+<⎧⎨-≤⎩(3)计算:()33532a a a a⋅⋅+(4)计算:()()34++x x25.已知方程组2523x y mx y m-=+⎧⎨+=⎩的解满足条件0x>,0y<,求m的取值范围.26.长沙市正在举行文化艺术节活动,一商店抓住商机,决定购进甲,乙两种艺术节纪念品.若购进甲种纪念品2件,乙种纪念品3件,需要400元;若购进甲种纪念品3件,乙种纪念品5件,需要650元.(1)求购进甲、乙两种纪念品每件各需多少元?(2)若该商店决定购进这两种纪念品共70件,其中乙种纪念品的数量不少于40件,考虑到资金周转,用于购买这70件纪念品的资金不能超过5750元,那么该商店共有几种进货方案?【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】先求解不等式组,再根据条件判断出含参代数式的范围,从而求得参数的范围即可. 【详解】解原不等式得:35m x x ⎧<-⎪⎨⎪>-⎩,即53m x -≤<-,由所有整数解的和为-9,可知原不等式包含的整数为-4,-3,-2或-4,-3,-2,-1,0,1, 当整数为-4,-3,-2时,则13m-2<-≤-,解得:36m ≤<, 当整数为-4,-3,-2,-1,0,1时,则23m1<-≤,解得:63m -≤<-, 故选:C . 【点睛】本题考查含参不等式组求解问题,熟练掌握对含参代数式范围的确定是解题关键.2.C解析:C 【分析】根据解一元一次不等式的方法解答即可. 【详解】解:去括号,得2539x x ->-, 移项、合并同类项,得4x ->-, 不等式两边同时除以﹣1,得4x <. 故选:C . 【点睛】本题考查了一元一次不等式的解法,属于基础题目,熟练掌握解一元一次不等式的方法是关键.3.C解析:C 【解析】分析:本题可设玻璃球的体积为x ,再根据题意列出不等式组求得解集得出答案即可.详解:设玻璃球的体积为x ,则有33001804300180x x -⎧⎨-⎩<>解得30<x <40.故一颗玻璃球的体积在30cm 3以上,40cm 3以下. 故选C .点睛:此题考查一元一次不等式组的运用,解此类题目常常要根据题意列出不等式组,再化简计算得出x 的取值范围.4.D解析:D 【分析】求出方程的解,根据已知得出a-3≥0,求出即可. 【详解】解:解方程a-x=3得:x=a-3, ∵方程的解是非负数, ∴a-3≥0, 解得:a≥3, 故选:D . 【点睛】本题考查了一元一次方程的解,解一元一次不等式,解一元一次方程的应用,关键是得出一个关于a 的不等式.5.A解析:A 【分析】根据在数轴上表示不等式解集的方法求解即可. 【详解】 解:∵-3<a≤1,∴1处是实心原点,且折线向左. 故选:A . 【点睛】本题考查了在数轴上表示不等式的解集,掌握“小于向左,大于向右”是解题的关键.6.B解析:B 【分析】本题首先求解该不等式组公共解集,继而在解集内确定整数解. 【详解】由已知得:23x -≤<,该范围内包含5个整数解:2-,1-,0,1,2. 故选:B .本题考查求不等式的整数解,解题关键在于确定公共解集,其次确定答案时要确保不重不漏.7.A解析:A 【分析】分别解两个不等式得到得x <20和x >3-2a ,由于不等式组只有5个整数解,则不等式组的解集为3-2a <x <20,且整数解为15、16、17、18、19,得到14≤3-2a <15,然后再解关于a 的不等式组即可. 【详解】255332x x x x a +⎧>-⎪⎪⎨+⎪<+⎪⎩①② 解①得x <20 解②得x >3-2a ,∵不等式组只有5个整数解, ∴不等式组的解集为3-2a <x <20, ∴14≤3-2a <15,1162a ∴-<-故选A 【点睛】本题主要考查对不等式的性质,解一元一次不等式,一元一次不等式组的整数解等知识点的理解和掌握,能求出不等式14≤3-2a <15是解此题的关键.8.D解析:D 【分析】将x 3=代入不等式得到关于a 的不等式,求解即可. 【详解】根据题意,x 3=是不等式的一个解, ∴将x 3=代入不等式,得:6a 20--<, 解得:4a >,则a 可取的最小整数为5, 故选:D. 【点睛】此题考查不等式的解的定义,解一元一次不等式,正确理解不等式的解的定义将x=3代入得到关于a 的不等式是解题的关键.9.C【分析】根据不等式的基本性质对各选项进行逐一分析即可.【详解】解:A、∵a>b,∴a-1>b-1,故本选项正确,不符合题意;B、∵3a>3b,∴a>b,故本选项正确,不符合题意;C、∵a>b且c≠0,当c >0时,ac>bc;当c<0时,ac<bc,故本选项错误,符合题意;D、∵a>b,∴-a<-b,∴7-a<7-b,故本选项正确,不符合题意.故选:C.【点睛】本题考查的是不等式的性质,熟记不等式的基本性质是解答此题的关键.10.B解析:B【分析】分别求出不等式组中不等式的解集,利用取解集的方法表示出不等式组的解集,根据解集中整数解有3个,即可得到m的范围.【详解】解不等式x﹣m<0,得:x<m,解不等式7﹣2x≤2,得:x≥52,因为不等式组有解,所以不等式组的解集为52≤x<m,因为不等式组的整数解有3个,所以不等式组的整数解为3、4、5,所以5<m≤6.故选:B.【点睛】此题考查了一元一次不等式组的整数解,表示出不等式组的解集,根据题意找出整数解是解本题的关键.11.D解析:D【分析】根据表格及题意可得第2天、第3天、第4天、第5天的背诵最多的诗词,然后根据不等式的关系可进行求解.【详解】解:由表格及题可得:∵每天最多背诵8首,最少背诵2首,∴由第2天、第3天、第4天、第5天可得:128x x +≤①,238x x +≤②,1348x x x ++≤③,248x x +≤④,①+②+④-③得:2316x ≤, ∴2163x ≤, ∴123416181333x x x x +++≤+=, ∴7天后,小圆背诵的诗词最多为13首; 故选D . 【点睛】本题主要考查一元一次不等式的应用,熟练掌握不等式的性质与求法是解题的关键.12.C解析:C 【分析】分别求出每一个不等式的解集,根据口诀:同小取小并结合不等式组的解集可得a 的范围. 【详解】 解:327x x a -<⎧⎨<⎩①②,①式化简得:39,3x x <<又∵该不等式的解集为x a <,∴3a . 故选C . 【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.二、填空题13.4x-13【分析】的4倍与1的差即4x-1不大于就是据此列不等式【详解】由题意得4x-13故答案为:4x-13【点睛】此题考查列不等式正确理解语句是解题的关键解析:4x-1≤3, 【分析】x 的4倍与1的差即4x-1,不大于就是≤,据此列不等式.【详解】 由题意得4x-1≤3, 故答案为:4x-1≤3. 【点睛】此题考查列不等式,正确理解语句是解题的关键.14.【分析】先将方程组中的两个方程相加化简可得再代入可得一个关于m 的一元一次不等式然后解不等式即可得【详解】两个方程相加得:即由题意得:解得故答案为:【点睛】本题考查了二元一次方程组一元一次不等式熟练掌 解析:3m <【分析】先将方程组中的两个方程相加化简可得2x y m +=-+,再代入1x y +>-可得一个关于m 的一元一次不等式,然后解不等式即可得. 【详解】23224x y m x y +=-+⎧⎨+=⎩, 两个方程相加得:3336x y m +=-+,即2x y m +=-+,由题意得:21m -+>-, 解得3m <, 故答案为:3m <. 【点睛】本题考查了二元一次方程组、一元一次不等式,熟练掌握二元一次方程组的特殊解法是解题关键.15.【分析】先解出不等式组根据它有3个整数解求出a 的取值范围【详解】解:解不等式组得∵它有3个整数解∴解是-2-10∴故答案是:【点睛】本题考查函参不等式组求参数问题解题的关键是掌握解不等式组的方法 解析:32a -<≤-【分析】先解出不等式组,根据它有3个整数解求出a 的取值范围. 【详解】解:解不等式组得1a x ≤<, ∵它有3个整数解, ∴解是-2,-1,0, ∴32a -<≤-. 故答案是:32a -<≤-. 【点睛】本题考查函参不等式组求参数问题,解题的关键是掌握解不等式组的方法.16.【分析】(1)-2<3满足时点的坐标为据此写出即可;(2)分和两种情况讨论解答【详解】(1)∵-2<3满足∴的变换点坐标是故填::(2)当≥时≥此时该点的变换点坐标是≤;当<时<此时该点的变换点坐标解析:()2,3--43【分析】(1)-2<3,满足a b <时,点的坐标为(,)a b -,据此写出即可; (2)分a b 和a b <,两种情况讨论解答. 【详解】(1)∵-2<3,满足a b <, ∴(2,3)-的变换点坐标是()2,3--, 故填:()2,3--:(2)当a ≥0.52a -+时,a ≥43,此时该点的变换点坐标是(0.52,)a a -+-, 0.52m a =-+≤43;当a <0.52a -+时,a <43,此时该点的变换点坐标是(,0.52)a a -, m a =<43, 故m 的最大值是43, 故填:43. 【点睛】本题考查不等式的应用、点的坐标特征,读懂“变换点”的坐标定义是关键.17.二【分析】根据四个象限的符合特点列出相应的不等式组即可得出结果【详解】解:由题意得解这四组不等式组可知无解因此点N 横坐标为负纵坐标为正不能同时成立即点N 一定不在第二象限故答案为:二【点睛】本题考查平解析:二 【分析】根据四个象限的符合特点,列出相应的不等式组,即可得出结果. 【详解】 解:由题意得,080a a >⎧⎨->⎩,080a a >⎧⎨-<⎩,080a a <⎧⎨->⎩,080a a <⎧⎨-<⎩, 解这四组不等式组可知080a a <⎧⎨->⎩无解,因此点N 横坐标为负,纵坐标为正,不能同时成立,即点N 一定不在第二象限. 故答案为:二 【点睛】本题考查平面直角坐标系中各象限内点的坐标的符合,把符合问题转化为解不等式是解题关键.18.<【分析】根据有理数的除法判断出ab 同号再根据有理数的除法判断出bc 异号然后根据有理数的乘法运算法则判断即可【详解】解:∵>0∴ab 同号∵<0∴bc 异号∴ac 异号∴ac <0故答案为<【点睛】本题考查解析:<【分析】根据有理数的除法判断出a 、b 同号,再根据有理数的除法判断出b 、c 异号,然后根据有理数的乘法运算法则判断即可.【详解】解:∵a b>0, ∴a 、b 同号, ∵c b<0, ∴b 、c 异号,∴a 、c 异号,∴ac <0.故答案为<.【点睛】本题考查有理数的乘法,有理数的除法,熟记运算法则是解题关键.19.【分析】20.1【分析】先解不等式组再根据条件得到ab 的值然后可求出a+b 的值【详解】解得因为所以考点:不等式组解析:1【分析】先解不等式组,再根据条件得到a ,b 的值,然后可求出a+b 的值.【详解】 解2223x a x b ⎧+≥⎪⎨⎪-<⎩得3422b a x +-≤<,因为01x ≤<,所以4202a a -==,, 3112b b +==-,, 1a b +=.考点:不等式组.三、解答题21.13x -≤<,在数轴上表示见解析.【分析】先对不等式组进行化简,然后在数轴上分别画出x 的取值,它们的公共部分就是不等式组的解集.【详解】 解:103124x x +≥⎧⎪⎨-<⎪⎩①② 由①得:1x ≥-由②得:318x -<,∴3x <,∴不等式组的解集为13x -≤<在数轴上表示如下:【点睛】本题考查了一元一次不等式组的解,解此类题目常常要结合数轴来判断.要注意x 是否取得到,若取得到则x 在该点是实心的.反之x 在该点是空心的.22.(1)a 的最小值为20;(2)28a ≥.【分析】(1)根据只能售出所进商品的110%-,且销售额大于等于进价即可列出不等式,求解即可;(2)根据70%按照标价a 元/千克出售,20%水果按10元/千克出售,且销售额应该大于等于(120%)18+⨯列出不等式求解即可.【详解】解:(1)由题意得:(110%)18a -≥,解得20a ≥,即a 的最小值为20;(2)由题意得:70%20%10(120%)18a ⋅+⨯≥+⨯,解得28a ≥.【点睛】本题考查一元一次不等式的应用.熟记商品销售时所用的常用公式是解题关键.注意本题与销售了多少千克无关.23.(1) 2.4x <,数轴见解析;(2)1x <-,数轴见解析【分析】(1)根据去分母、去括号、移项、合并、系数化为1求出不等式的解集即可;(2)分别解两个不等式得到1x <-和12x,然后根据同大取大,同小取小,大于小的小于大的取中间,小于小的大于大的无解确定不等式组的解集,再用数轴表示解集.【详解】解:(1)去分母得:2(4)326x x ->+-, 82326x x ->+-,23268x x -->--,512x ->-,2.4x <,在数轴上表示为:;(2)()210210x x ⎧+<⎨-⎩①②, 解不等式①得:1x <-, 解不等式②得:12x, 所以不等式组的解集是1x <-, 在数轴上表示为:.【点睛】本题考查了解一元一次不等式(组):求解出两个不等式的解集,然后按照“同大取大,同小取小,大于小的小于大的取中间,小于小的大于大的无解”确定不等式组的解集. 24.(1)42n m =⎧⎨=⎩;(2)-43a ≤<-;(3)99a ;(4)2712x x ++; 【分析】(1)根据代入消元法解方程组即可;(2)解不等式组即可;(3)根据幂的运算性质计算即可;(4)根据多项式乘以多项式计算即可;【详解】(1)26m n m n =⎧⎨+=⎩, 把2=m n 代入6+=m n 中,得到:26m m +=,解得:2m =,∴4n =,∴方程组的解为42n m =⎧⎨=⎩. (2)26015a a +<⎧⎨-≤⎩, 由260a +<得:3a <-,由15-≤a 得:4a ≥-,∴不等式组的解集为:-43a ≤<-.(3)原式99989a a a =+=. (4)原式224312712x x x x x =+++=++.【点睛】本题主要考查了二元一次方程组求解,不等式组求解,整式乘法的应用,准确计算是解题的关键. 25.21m -<<【分析】首先利用含m 的式子表示出x 、y ,再根据x >0,y >0可得关于m 的不等式组,再解不等式组即可.【详解】2523x y m x y m -=+⎧⎨+=⎩①② ②×2-①得:1y m =-,把1y m =-代入②得:2x m =+,∵0x >,0y <,∴2010m m +>⎧⎨-<⎩, 解得:21m -<<.【点睛】本题主要考查了二元一次方程组和一元一次不等式组,关键是用含m 的式子表示出x 、y . 26.(1)购进甲种纪念品每件需50元,购进乙种纪念品每件需100元;(2)该商店共有6种进货方案【分析】(1)设购进甲种纪念品每件需x 元,购进乙种纪念品每件需y 元,根据“若购进甲种纪念品2件,乙种纪念品3件,需要400元;若购进甲种纪念品3件,乙种纪念品5件,需要650元”,即可得出关于x ,y 的二元一次方程组,解之即可得出结论;(2)设购进乙种纪念品m 件,则购进甲种纪念品(70−m )件,根据“购进乙种纪念品的数量不少于40件,且用于购买这70件纪念品的资金不能超过5750元”,即可得出关于m 的一元一次不等式组,解之即可得出m 的取值范围,再结合m 为正整数即可得出结论.【详解】解:(1)设购进甲种纪念品每件需x元,购进乙种纪念品每件需y元,依题意,得:23400 35650x yx y+=⎧⎨+=⎩,解得:50100 xy=⎧⎨=⎩.答:购进甲种纪念品每件需50元,购进乙种纪念品每件需100元;(2)设购进乙种纪念品m件,则购进甲种纪念品(70﹣m)件,依题意,得:4050(70)1005750mm m≥⎧⎨-+≤⎩,解得:40≤m≤45,又∵m为正整数,∴m可以为40,41,42,43,44,45,∴该商店共有6种进货方案.【点睛】本题考查了一元一次不等式组的应用以及二元一次方程组的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,正确列出一元一次不等式组.。
七年级数学-不等式与不等式组测试题(有答案)
ACD B七年级数学-不等式与不等式组测试题一、选择题:(每题3分,共30分)1.下列根据语句列出的不等式错误的是( )A. “x的3倍与1的和是正数”,表示为3x+1>0.B. “m的15与n的13的差是非负数”,表示为15m-13n≥0.C. “x与y的和不大于a的12”,表示为x+y≤12a.D. “a、b两数的和的3倍不小于这两数的积”,表示为3a+b≥ab.2.给出下列命题:①若a>b,则ac2>bc2;②若ab>c,则b>ca;③若-3a>2a,则a<0;•④若a<b,则a-c<b-c,其中正确命题的序号是( )A.③④B.①③C.①②D.②④3.解不等式3x-32<2x-2中,出现错误的一步是( )A.6x-3<4x-4B.6x-4x<-4+3C.2x<-1D.x>-1 24.不等式12,39xx-<⎧⎨-≤⎩的解集在数轴上表示出来是( )5. .下列结论:①4a>3a;②4+a>3+a;③4-a>3-a中,正确的是( )A.①②B.①③C.②③D.①②③6.某足协举办了一次足球比赛,记分规则是:胜一场积3分,平一场积1分,负一场积0分.若甲队比赛了5场共积7分,则甲队可能平了( )A.2场B.3场C.4场D.5场7.某班学生在颁奖大会上得知该班获得奖励的情况如下表:已知该班共有28人获得奖励,其中获得两项奖励的有13人,那么该班获得奖励最多的一位同学可获得的奖励为( )A.3项B.4项C.5项D.6项8.若│a │>-a,则a 的取值范围是( )A.a>0B.a ≥0C.a<0D.自然数9.不等式23>7+5x 的正整数解的个数是( )A.1个B.无数个C.3个D.4个10.已知(x+3)2+│3x+y+m │= 0中,y 为负数,则m 的取值范围是( )A.m>9B.m<9C.m>-9D.m<-9二、填空题:(每题3分,共24分)11.若y=2x-3,当x______时,y ≥0;当x______时,y<5.12.若x=3是方程2x a --2=x-1的解,则不等式(5-a)x<12的解集是_______. 13.若不等式组2123x a x b -<⎧⎨->⎩的解集为-1<x<1,则a=_______,b=_______.14. (2008苏州)6月1日起,某超市开始有偿..提供可重复使用的三种环保购物袋,每只售价分别为1元、2元和3元,这三种环保购物袋每只最多分别能装大米3公斤、5公斤和8公斤.6月7日,小星和爸爸在该超市选购了3只环保购物袋用来装刚买的20公斤散装大米,他们选购的3只环保购物袋至少..应付给超市 元. 15.不等式组204060x x x +>⎧⎪->⎨⎪-<⎩的解集为________.16.小明用100元钱去购买笔记本和钢笔共30分,已知每本笔记本2元,•每枝钢笔5元,那么小明最多能买________枝钢笔.17.如果不等式组212x m x m >+⎧⎨>+⎩的解集是x>-1,那么m 的值是_______.18.关于x 、y 的方程组321431x y a x y a +=+⎧⎨+=-⎩的解满足x>y,则a 的取值范围是_________.三、解答题:(共46分)19.解不等式(组)并把解集在数轴上表示出来(每题4分,共16分)(1)5(x+2)≥1-2(x-1) (2) 273125yyy+>-⎧⎪-⎨≥⎪⎩(3)42x--3<522x+; (4)32242539x xx xx+>⎧⎪->-⎨⎪->-⎩20. (5分)k取何值时,方程23x-3k=5(x-k)+1的解是负数.21. (5分)某种客货车车费起点是2km以内2.8元.往后每增加455m车费增加0.5元.现从A 处到B处,共支出车费9.8元;如果从A到B,先步行了300m然后乘车也是9.8元,求AB的中点C到B处需要共付多少车费?22.(5分)(1)A、B、C三人去公园玩跷跷板,从下面的示意图(1)•中你能判断三人的轻重吗?(2)P、Q、R、S四人去公园玩跷跷板,从示意图(2)•中你能判断这四个人的轻重吗?23. (7分)某市“全国文明村”白村果农王保收获枇杷20吨,桃子12吨.现计划租用甲、乙两种货车共8辆将这批水果全部运往外地销售,已知一辆甲种货车可装枇杷4吨和桃子1吨,一辆乙种货车可装枇杷和桃子各2吨.(1)王保如何安排甲、乙两种货车可一次性地运到销售地?有几种方案?(2)若甲种货车每辆要付运输费300元,乙种货车每辆要付运输费240元,则果农王灿应选择哪种方案,使运输费最少?最少运费是多少?24.(8分) 2011年我市筹备30周年庆典,园林部门决定利用现有的3490盆甲种花卉和2950,两种园艺造型共50个摆放在迎宾大道两侧,已知搭配一个A种造型需盆乙种花卉搭配A B甲种花卉80盆,乙种花卉40盆,搭配一个B种造型需甲种花卉50盆,乙种花卉90盆.(1)某校九年级(1)班课外活动小组承接了这个园艺造型搭配方案的设计,问符合题意的搭配方案有几种?请你帮助设计出来.(2)若搭配一个A种造型的成本是800元,搭配一个B种造型的成本是960元,试说明(1)中哪种方案成本最低?最低成本是多少元?参考答案一、1.D 2.A 3.D 4.A 5. C 6.C 7.B 8.B 9.C 10.A二、11.x ≥32,x<4 ; 12.x<120; 13.a=1,b=-2; 14.8 ; 15.4<x<6 ; 16.13; 17.-3; 18.a>-6.三、19. (1)x ≥-1 (2)2≤y<8;(3)x>-3; (4)-2<x<320.k<1221.设走xm 需付车费y 元,n 为增加455m 的次数.∴y=2.8+0.5n,可得n=70.5=14 ∴2000+455×13<x ≤2000+455×14即7915<x ≤8370,又7915<x-300≤8370∴8215<x ≤8670,故8215<x ≤8370,CB 为2x ,且4107.5<2x ≤4185, 4107.52000455-=4.63<5,41852000455-=4.8<5, ∴n=5代入y=2.8+0.5×5=5.3(元)∴从C 到B 需支付车费5.3元.22.(1)C 的重量>A 的重量>B 的重量(2)从图中可得S>P,P+R>Q+S ,R>Q+(S-R),∴R>Q;由P+R>Q+S ,S-P<R-Q ∴ (Q+R-P)-P<R-Q ∴P>Q,同理R>S,∴R>S>P>Q23. 解:(1)设安排甲种货车x 辆,则安排乙种货车(8-x )辆,依题意,得4x + 2(8-x )≥20,且x + 2(8-x )≥12,解此不等式组,得 x ≥2,且 x ≤4, 即 2≤x ≤4.∵ x 是正整数,∴ x 可取的值为2,3,4.因此安排甲、乙两种货车有三种方案:甲种货车 乙种货车 方案一 2辆 6辆(2)方案一所需运费 300×2 + 240×6 = 2040元;方案二所需运费 300×3 + 240×5 = 2100元;方案三所需运费 300×4 + 240×4 = 2160元.所以王保应选择方案一运费最少,最少运费是2040元.24. 解:设搭配A 种造型x 个,则B 种造型为(50)x -个,依题意,得: 8050(50)34904090(50)2950x x x x +-⎧⎨+-⎩≤≤ ,解这个不等式组,得:3331x x ⎧⎨⎩≤≥,3133x ∴≤≤ x Q 是整数,x ∴可取313233,,,∴可设计三种搭配方案:①A 种园艺造型31个 B 种园艺造型19个②A 种园艺造型32个 B 种园艺造型18个③A 种园艺造型33个 B 种园艺造型17个.(2)方法一:由于B 种造型的造价成本高于A 种造型成本.所以B 种造型越少,成本越低,故应选择方案③,成本最低,最低成本为:338001796042720⨯+⨯=(元) 方法二:方案①需成本:318001996043040⨯+⨯=(元)方案②需成本:328001896042880⨯+⨯=(元)方案③需成本:338001796042720⨯+⨯=元∴应选择方案③,成本最低,最低成本为42720元。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
记住:只要努力,成功不是梦!
第1页
所有的题都会+所有会的题都对=满分
检测试卷
一、选择题(8*4′=32′)
1.(2007浙江金华)不等式260x的解集在数轴上表示正确的是( )
2、(2007四川内江)不等式2(1)3xx的解集在数轴上表示出来应为( )
3、(2007山东枣庄)不等式2x-7<5-2x的正整数解有( )
(A)1个 (B)2个
(C)3个 (D)4个
4、(2007湖北天门)关于x的不等式2x-a≤-1的解集如图所示,
则a的取值是( )。
A、0 B、-3 C、-2 D、-1
5、(2007云南双柏)不等式xx32的解集是( )
A.2x B.2x C.1x D
.1x
6、(2007山东东营)不等式2x-7<5-2x的正整数解有( )
(A)1个 (B)2个 (C)3个 (D)4个
7、(2007湖北黄冈)将不等式84113822xxxx的解集在数轴上表示出来,正确的是( )
8、(2007江苏南京)不等式组2110xx,≤的解集是( )
A.12x B.12x C.1x≤ D.112x≤
二、填空题(8*4′=32′)
9、(2007山东济南)不等式210x的解集是 .
1 2 3 0 -1 -2
B.
3 4 5 2 1 0
C.
1 2 3 0 -1 -2
A.
3 4 5 2 1 0
D.
3 0 3
A. 3 0 3 B. 3 0 3 C. 3 0 3 D.
0 1
-1 -
2
记住:只要努力,成功不是梦!
第2页
所有的题都会+所有会的题都对=满分
10、(2007浙江湖州)不等式x-2>0的解集是 。
11、(2007湖北宜昌)不等式组x–2<22x–1>0的解是 .
12、(2007湖北咸宁)不等式组3610xx>的整数解是_________________。
13、(2007山东德州)不等式组2752312xxxx的整数解是 .
14、(2007湖北天门)已知关于x的不等式组0x230ax>>的整数解共有6个,则a的取值范围
是 。
15、(2007广东梅州)不等式组110210xx,.的解为 .
16、(2007贵州遵义)不等式组3010xx≥的解集是 .
三、解答题(17-20题 7分一题,21题8分)
17、(2003·苏州)解不等式组:xxx12102
18、解不等式组3(1)5412123xxxx ①≤ ②,并将解集在数轴上表示出来.
记住:只要努力,成功不是梦!
第3页
所有的题都会+所有会的题都对=满分
19、解不等式组331213(1)8xxxx,,≥并写出该不等式组的整数解.
20、(2007上海)解不等式组:3043326xxx,,并把解集在数轴上表示出来.
21、(2007南充)某商店需要购进一批电视机和洗衣机,根据市场调查,决定电视机进货量不少于洗衣机
的进货量的一半.电视机与洗衣机的进价和售价如下表:
类 别 电视机 洗衣机
进价(元/台) 1800 1500
售价(元/台) 2000 1600
计划购进电视机和洗衣机共100台,商店最多可筹集资金161 800元.
(1)请你帮助商店算一算有多少种进货方案?(不考虑除进价之外的其它费用)
(2)哪种进货方案待商店销售购进的电视机与洗衣机完毕后获得利润最多?并求出最多利润.(利润
=售价-进价)