2009年全国高考理科数学试题及答案-辽宁卷
2009年全国统一高考数学试卷(理科)(全国卷ⅱ)(含解析版)(1)

2009 年全国统一高考数学试卷(理科)(全国卷Ⅱ)一、选择题(共 12 小题,每小题 5 分,满分 60 分) 1.(5 分) A .﹣2+4i=( )B .﹣2﹣4iC .2+4iD .2﹣4i2.(5 分)设集合 A={x ||x |>3},B={x | A .φB .(3,4)3.(5 分)已知△ABC 中,cotA=﹣ ,则 cosA=( ) <0},则 A ∩B=( )C .(﹣2,1)D .(4,+∞)D .A .B .在点(1,1)处的切线方程为( ) B .x +y ﹣2=0C .x +4y ﹣5=0D .x ﹣4y +3=0C .4.(5 分)函数 A .x ﹣y ﹣2=05.(5 分)已知正四棱柱 ABCD ﹣A B C D 中,AA =2AB ,E 为 AA 中点,则异面 1 1 1 1 1 1 直线 BE 与 CD 所形成角的余弦值为( ) 1 A .B .C .D .6.(5 分)已知向量 =(2,1), =10,| + |= ,则| |=( )D .25A .B .C .57.(5 分)设 a=log π,b=log ,c=log 3,则( ) C .b >a >c3 2A .a >b >cB .a >c >bD .b >c >a8.(5 分)若将函数 y=tan (ωx + )(ω>0)的图象向右平移个单位长度 后,与函数 y=tan (ωx + )的图象重合,则 ω 的最小值为( )A .B .C .D .9.(5 分)已知直线 y=k (x +2)(k >0)与抛物线 C :y 2=8x 相交于 A 、B 两点, F 为 C 的焦点,若|FA |=2|FB |,则 k=( ) A .B .C .D .10.(5 分)甲、乙两人从 4 门课程中各选修 2 门,则甲、乙所选的课程中恰有1 门相同的选法有()A.6 种B.12 种C.24 种D.30 种11.(5 分)已知双曲线的右焦点为F,过F 且斜率为的直线交C 于A、B 两点,若=4 ,则C 的离心率为()A.B.C.D.12.(5 分)纸制的正方体的六个面根据其方位分别标记为上、下、东、南、西、北.现在沿该正方体的一些棱将正方体剪开、外面朝上展平,得到如图所示的平面图形,则标“△”的面的方位()A.南B.北C.西D.下二、填空题(共4小题,每小题5分,满分20分)13.(5 分)(x ﹣y )4 的展开式中x3y3 的系数为.14.(5 分)设等差数列{a }的前n 项和为S ,若a =5a ,则=.n n 5 315.(5 分)设OA 是球O 的半径,M 是OA 的中点,过M 且与OA 成45°角的平面截球O 的表面得到圆C.若圆C 的面积等于,则球O 的表面积等于.16.(5 分)求证:菱形各边中点在以对角线的交点为圆心的同一个圆上.三、解答题(共6小题,满分70分)17.(10 分)设△ABC 的内角A、B、C 的对边长分别为a、b、c,cos(A﹣C)+cosB= ,b2=ac,求B.18.(12 分)如图,直三棱柱ABC﹣A B C 中,AB⊥AC,D、E 分别为AA 、B C1 1 1 1 1的中点,DE⊥平面BCC .1(Ⅰ)证明:AB=AC;(Ⅱ)设二面角A﹣BD﹣C 为60°,求B C 与平面BCD 所成的角的大小.119.(12 分)设数列{a }的前n 项和为S ,已知a =1,S =4a +2(n∈N*).n n 1 n+1 n(1)设b =a ﹣2a ,证明数列{b }是等比数列;n n+1 n n(2)求数列{a }的通项公式.n20.(12 分)某车间甲组有10 名工人,其中有4 名女工人;乙组有5 名工人,其中有3 名女工人,现采用分层抽样方法(层内采用不放回简单随机抽样)从甲、乙两组中共抽取3 名工人进行技术考核.(Ⅰ)求从甲、乙两组各抽取的人数;(Ⅱ)求从甲组抽取的工人中恰有1 名女工人的概率;(Ⅲ)记ξ表示抽取的3 名工人中男工人数,求ξ的分布列及数学期望.21.(12 分)已知椭圆的离心率为,过右焦点F 的直线l 与C 相交于A、B 两点,当l 的斜率为1 时,坐标原点O 到l 的距离为,(Ⅰ)求a,b 的值;成立?若(Ⅱ)C 上是否存在点P,使得当l 绕F 转到某一位置时,有存在,求出所有的P 的坐标与l 的方程;若不存在,说明理由.22.(12 分)设函数f(x)=x2+aln(1+x)有两个极值点x 、x ,且x <x ,1 2 1 2 (Ⅰ)求a 的取值范围,并讨论f(x)的单调性;(Ⅱ)证明:f(x )>.22009年全国统一高考数学试卷(理科)(全国卷Ⅱ)参考答案与试题解析一、选择题(共12小题,每小题5分,满分60分)1.(5 分)A.﹣2+4i =()B.﹣2﹣4i C.2+4i D.2﹣4i【考点】A5:复数的运算.【专题】11:计算题.【分析】首先进行复数的除法运算,分子和分母同乘以分母的共轭复数,分子和分母进行乘法运算,整理成最简形式,得到结果.【解答】解:原式=故选:A.,【点评】本题考查复数的乘除运算,是一个基础题,在近几年的高考题目中,复数的简单的运算题目是一个必考的问题,通常出现在试卷的前几个题目中.2.(5 分)设集合A={x||x|>3},B={x| A.φB.(3,4)<0},则A∩B=()C.(﹣2,1)D.(4,+∞)【考点】1E:交集及其运算.【分析】先化简集合A 和B,再根据两个集合的交集的意义求解.【解答】解:A={x||x|>3}⇒{x|x>3 或x<﹣3},B={x| <0}={x|1<x<4},∴A∩B=(3,4),故选:B.【点评】本题属于以不等式为依托,求集合的交集的基础题,也是高考常会考的题型.3.(5 分)已知△ABC 中,cotA=﹣,则cosA=()A.B.C.D.【考点】GG:同角三角函数间的基本关系.【专题】11:计算题.【分析】利用同角三角函数的基本关系cosA 转化成正弦和余弦,求得sinA 和cosA 的关系式,进而与sin2A+cos2A=1 联立方程求得cosA 的值.【解答】解:∵cotA=∴A 为钝角,cosA<0 排除A 和B,再由cotA=故选:D.= ,和sin2A+cos2A=1 求得cosA= ,【点评】本题考查同角三角函数基本关系的运用.主要是利用了同角三角函数中的平方关系和商数关系.4.(5 分)函数A.x﹣y﹣2=0在点(1,1)处的切线方程为()B.x+y﹣2=0 C.x+4y﹣5=0 D.x﹣4y+3=0【考点】6H:利用导数研究曲线上某点切线方程.【专题】11:计算题.【分析】欲求切线方程,只须求出其斜率即可,故先利用导数求出在x=1 处的导函数值,再结合导数的几何意义即可求出切线的斜率.从而问题解决.【解答】解:依题意得y′=,因此曲线在点(1,1)处的切线的斜率等于﹣1,相应的切线方程是y﹣1=﹣1×(x﹣1),即x+y﹣2=0,故选:B.【点评】本小题主要考查直线的斜率、导数的几何意义、利用导数研究曲线上某点切线方程等基础知识,考查运算求解能力.属于基础题.5.(5 分)已知正四棱柱ABCD﹣A B C D 中,AA =2AB,E 为AA 中点,则异面1 1 1 1 1 1直线BE 与CD 所形成角的余弦值为()1A.B.C.D.【考点】LM:异面直线及其所成的角.【专题】11:计算题;31:数形结合;44:数形结合法;5G:空间角.【分析】由BA ∥CD ,知∠A BE 是异面直线BE 与CD 所形成角,由此能求出异1 1 1 1面直线BE 与CD 所形成角的余弦值.1【解答】解:∵正四棱柱ABCD﹣A B C D 中,AA =2AB,E 为AA 中点,1 1 1 1 1 1∴BA ∥CD ,∴∠A BE 是异面直线BE 与CD 所形成角,1 1 1 1设AA =2AB=2,1则A E=1,BE= = ,1= ,A B=1∴cos∠A BE=1== .∴异面直线BE 与CD 所形成角的余弦值为.1故选:C.【点评】本题考查异面直线所成角的余弦值的求法,是基础题,解题时要认真 审题,注意空间思维能力的培养.6.(5 分)已知向量 =(2,1), A .B .=10,| + |= C .5,则| |=( )D .25【考点】91:向量的概念与向量的模;9O :平面向量数量积的性质及其运算.【专题】5A :平面向量及应用.【分析】根据所给的向量的数量积和模长,对|a +b |=两边平方,变化为有模长和数量积的形式,代入所给的条件,等式变为关于要求向量的模长的方 程,解方程即可. 【解答】解:∵| + |= ∴( + )2= 2+ 2+2 ,| |= =50,得| |=5 故选:C .【点评】本题考查平面向量数量积运算和性质,根据所给的向量表示出要求模 的向量,用求模长的公式写出关于变量的方程,解方程即可,解题过程中注 意对于变量的应用.7.(5 分)设 a=log π,b=log ,c=log 3,则( ) C .b >a >c3 2A .a >b >cB .a >c >bD .b >c >a【考点】4M:对数值大小的比较.【分析】利用对数函数y=log x 的单调性进行求解.当a>1 时函数为增函数当0a<a<1 时函数为减函数,如果底a 不相同时可利用1 做为中介值.【解答】解:∵∵,故选A【点评】本题考查的是对数函数的单调性,这里需要注意的是当底不相同时可用1 做为中介值.8.(5 分)若将函数y=tan(ωx+)(ω>0)的图象向右平移个单位长度后,与函数y=tan(ωx+)的图象重合,则ω的最小值为()A.B.C.D.【考点】HJ:函数y=Asin(ωx+φ)的图象变换.【专题】11:计算题.【分析】根据图象的平移求出平移后的函数解析式,与函数y=tan(ωx+)的图象重合,比较系数,求出ω=6k+(k∈Z),然后求出ω的最小值.【解答】解:y=tan(ωx+),向右平移个单位可得:y=tan[ω(x﹣]=tan(ωx+ω+kπ=)+ )∴﹣∴ω=k+(k∈Z),又∵ω>0∴ωmin= .故选:D.【点评】本题是基础题,考查三角函数的图象的平移,待定系数法的应用,考查计算能力,是常考题.9.(5 分)已知直线y=k(x+2)(k>0)与抛物线C:y2=8x 相交于A、B 两点,F 为C 的焦点,若|FA|=2|FB|,则k=()A.B.C.D.【考点】K8:抛物线的性质.【专题】11:计算题;16:压轴题.【分析】根据直线方程可知直线恒过定点,如图过A、B 分别作AM⊥l 于M,BN ⊥l 于N,根据|FA|=2|FB|,推断出|AM|=2|BN|,点B 为AP 的中点、连接OB ,进而可知,进而推断出|OB|=|BF|,进而求得点B 的横坐标,则点B 的坐标可得,最后利用直线上的两点求得直线的斜率.【解答】解:设抛物线C:y2=8x 的准线为l:x=﹣2直线y=k(x+2)(k>0)恒过定点P(﹣2,0)如图过A、B 分别作AM⊥l 于M,BN⊥l 于N,由|FA|=2|FB|,则|AM|=2|BN|,点B 为AP 的中点、连接OB,则,∴|OB|=|BF|,点B 的横坐标为1,故点B 的坐标为,故选:D.【点评】本题主要考查了抛物线的简单性质.考查了对抛物线的基础知识的灵活运用.10.(5 分)甲、乙两人从4 门课程中各选修2 门,则甲、乙所选的课程中恰有1 门相同的选法有()A.6 种B.12 种C.24 种D.30 种【考点】D5:组合及组合数公式.【专题】11:计算题.【分析】根据题意,分两步,①先求所有两人各选修2 门的种数,②再求两人所选两门都相同与都不同的种数,进而由事件间的相互关系,分析可得答案.【解答】解:根据题意,分两步,①由题意可得,所有两人各选修2 门的种数C 2C 2=36,4 4②两人所选两门都相同的有为C 2=6 种,都不同的种数为C 2=6,4 4故选:C.【点评】本题考查组合公式的运用,解题时注意事件之间的关系,选用直接法或间接法.11.(5 分)已知双曲线的右焦点为F,过F 且斜率为的直线交C 于A、B 两点,若=4 ,则C 的离心率为()A .B .C .D .【考点】I3:直线的斜率;KA :双曲线的定义.【专题】11:计算题;16:压轴题.【分析】设双曲线的有准线为 l ,过 A 、B 分别作 AM ⊥l 于 M ,BN ⊥l 于 N ,BD ⊥ AM 于 D ,由直线 AB 的斜率可知直线 AB 的倾斜角,进而推,由双曲线的第二定义|AM |﹣|BN |=|AD |,进而根据【解答】解:设双曲线的右准线为 l , ,求得离心率. 过 A 、B 分别作 AM ⊥l 于 M ,BN ⊥l 于 N ,BD ⊥AM 于 D ,由直线 AB 的斜率为, 知直线 AB 的倾斜角为 60°∴∠BAD=60°,由双曲线的第二定义有: =∴,∴故选:A .【点评】本题主要考查了双曲线的定义.解题的关键是利用了双曲线的第二定义,找到了已知条件与离心率之间的联系.12.(5 分)纸制的正方体的六个面根据其方位分别标记为上、下、东、南、西、北.现在沿该正方体的一些棱将正方体剪开、外面朝上展平,得到如图所示的平面图形,则标“△”的面的方位()A.南B.北C.西D.下【考点】LC:空间几何体的直观图.【专题】16:压轴题.【分析】本题考查多面体展开图;正方体的展开图有多种形式,结合题目,首先满足上和东所在正方体的方位,“△”的面就好确定.【解答】解:如图所示.故选B【点评】本题主要考查多面体的展开图的复原,属于基本知识基本能力的考查.二、填空题(共4小题,每小题5分,满分20分)13.(5 分)(x ﹣y )4 的展开式中x3y3 的系数为6.【考点】DA:二项式定理.【分析】先化简代数式,再利用二项展开式的通项公式求出第r+1 项,令x,y 的指数都为1 求出x3y3 的系数【解答】解:只需求, 展开式中的含 xy 项的系数. 的展开式的通项为 得 r=2∵令 ∴展开式中 x 3y 3 的系数为 C 2=6 4故答案为 6.【点评】本题考查二项展开式的通项公式是解决二项展开式的特定项问题的工 具.14.(5 分)设等差数列{a }的前 n 项和为 S ,若 a =5a ,则 = 9 .n n 5 3 【考点】83:等差数列的性质.【专题】11:计算题.【分析】根据等差数列的等差中项的性质可知 S =9a ,S =5a ,根据 a =5a ,进 9 5 5 3 5 3 而可得则 的值.【解答】解:∵{a }为等差数列,n S =a +a +…+a =9a ,S =a +a +…+a =5a ,9 1 2 9 5 5 1 2 5 3 ∴故答案为 9【点评】本题主要考查了等差数列中等差中项的性质.属基础题.15.(5 分)设 OA 是球 O 的半径,M 是 OA 的中点,过 M 且与 OA 成 45°角的 平面截球 O 的表面得到圆 C .若圆 C 的面积等于8π . ,则球 O 的表面积等于【考点】LG:球的体积和表面积.【专题】11:计算题;16:压轴题.【分析】本题可以设出球和圆的半径,利用题目的关系,求解出具体的值,即可得到答案.【解答】解:设球半径为R,圆C 的半径为r,.因为由.得R2=2故球O 的表面积等于8π故答案为:8π,【点评】本题考查学生对空间想象能力,以及球的面积体积公式的利用,是基础题.16.(5 分)求证:菱形各边中点在以对角线的交点为圆心的同一个圆上.【考点】N8:圆內接多边形的性质与判定.【专题】14:证明题;16:压轴题.【分析】如图,菱形ABCD 的对角线AC 和BD 相交于点O,菱形ABCD 各边中点分别为M、N、P、Q,根据菱形的性质得到AC⊥BD,垂足为O,且AB=BC=CD=DA ,再根据直角三角形斜边上的中线等于斜边的一半得到OM=ON=OP=OQ= AB ,得到M、N、P、Q 四点在以O 为圆心OM 为半径的圆上.【解答】已知:如图,菱形ABCD 的对角线AC 和BD 相交于点O.求证:菱形ABCD 各边中点M、N、P、Q 在以O 为圆心的同一个圆上.证明:∵四边形ABCD 是菱形,∴AC⊥BD,垂足为O,且AB=BC=CD=DA,而M、N、P、Q 分别是边AB、BC、CD、DA 的中点,∴OM=ON=OP=OQ= AB,∴M、N、P、Q 四点在以O 为圆心OM 为半径的圆上.所以菱形各边中点在以对角线的交点为圆心的同一个圆上.【点评】本题考查了四点共圆的判定方法.也考查了菱形的性质以及直角三角形斜边上的中线等于斜边的一半.三、解答题(共6小题,满分70分)17.(10 分)设△ABC 的内角A、B、C 的对边长分别为a、b、c,cos(A﹣C)+cosB= ,b2=ac,求B.【考点】GG:同角三角函数间的基本关系;HP:正弦定理.【专题】11:计算题.【分析】本题考查三角函数化简及解三角形的能力,关键是注意角的范围对角的三角函数值的制约,并利用正弦定理得到sinB= (负值舍掉),从而求出答案.【解答】解:由cos(A﹣C)+cosB= 及B=π﹣(A+C)得cos(A﹣C)﹣cos(A+C)= ,∴cosAcosC+sinAsinC﹣(cosAcosC﹣sinAsinC)= ,∴sinAsinC= .又由b2=ac 及正弦定理得sin2B=sinAsinC,故∴,或(舍去),于是B= 或B= .又由b2=ac知b≤a 或b≤c所以B= .【点评】三角函数给值求值问题的关键就是分析已知角与未知角的关系,然后通过角的关系,选择恰当的公式,即:如果角与角相等,则使用同角三角函数关系;如果角与角之间的和或差是直角的整数倍,则使用诱导公式;如果角与角之间存在和差关系,则我们用和差角公式;如果角与角存在倍数关系,则使用倍角公式.18.(12 分)如图,直三棱柱ABC﹣A B C 中,AB⊥AC,D、E 分别为AA 、B C1 1 1 1 1的中点,DE⊥平面BCC .1(Ⅰ)证明:AB=AC;(Ⅱ)设二面角A﹣BD﹣C 为60°,求B C 与平面BCD 所成的角的大小.1【考点】LQ:平面与平面之间的位置关系.【专题】11:计算题;14:证明题.【分析】(1)连接BE,可根据射影相等的两条斜线段相等证得BD=DC,再根据相等的斜线段的射影相等得到AB=AC;(2)求B C 与平面BCD 所成的线面角,只需求点B 到面BDC 的距离即可,作AG1 1⊥BD 于G,连GC,∠AGC 为二面角A﹣BD﹣C 的平面角,在三角形AGC 中求出GC 即可.【解答】解:如图(I )连接 BE ,∵ABC ﹣A B C 为直三棱柱,1 1 1 ∴∠B BC=90°, 1∵E 为 B C 的中点,∴BE=EC .1 又 DE ⊥平面 BCC , 1∴BD=DC (射影相等的两条斜线段相等)而 DA ⊥平面 ABC ,∴AB=AC (相等的斜线段的射影相等).(II )求 B C 与平面 BCD 所成的线面角,1 只需求点 B 到面 BDC 的距离即可.1 作 AG ⊥BD 于 G ,连 GC ,∵AB ⊥AC ,∴GC ⊥BD ,∠AGC 为二面角 A ﹣BD ﹣C 的平面角,∠AGC=60°不妨设 ,则 AG=2,GC=4在 RT △ABD 中,由 AD•AB=BD•AG ,易得设点 B 到面 BDC 的距离为 h ,B C 与平面 BCD 所成的角为 α.1 1 利用可求得 h= 即 B C 与平面 BCD 所成的角为 30°. , ,又可求得 ,∴α=30°.1 【点评】本题主要考查了平面与平面之间的位置关系,考查空间想象能力、运 算能力和推理论证能力,属于基础题.19.(12 分)设数列{a }的前 n 项和为 S ,已知 a =1,S =4a +2(n ∈N *).n n 1 n +1 n (1)设 b =a ﹣2a ,证明数列{b }是等比数列;n n +1 n n(2)求数列{a }的通项公式.n【考点】87:等比数列的性质;8H:数列递推式.【专题】15:综合题.【分析】(1)由题设条件知b =a ﹣2a =3.由S =4a +2 和S =4a n﹣1+2 相减得1 2 1 n+1 n na =4a ﹣4a ,即a ﹣2a =2(a ﹣2a ),所以b =2b ,由此可知{b }n+1 n n﹣1 n+1 n n n﹣1 n n﹣1 n是以b =3 为首项、以2 为公比的等比数列.1(2)由题设知.所以数列是首项为,公差为的等差数列.由此能求出数列{a }的通项公式.n【解答】解:(1)由a =1,及S =4a +2,1 n+1 n得a +a =4a +2,a =3a +2=5,所以b =a ﹣2a =3.1 2 1 2 1 1 2 1由S =4a +2,①n+1 n则当n≥2 时,有S =4a n﹣1+2,②n①﹣②得a =4a ﹣4a ,所以a ﹣2a =2(a ﹣2a n﹣1),n+1 n n﹣1 n+1 n n又b =a ﹣2a ,所以b =2b (b ≠0),所以{b }是以b =3 为首项、以2 为n n+1 n n n﹣1 n n 1公比的等比数列.(6 分)(2)由(I)可得b =a ﹣2a =3•2n﹣1,等式两边同时除以2n+1,得n n+1 n.所以数列是首项为,公差为的等差数列.所以,即a =(3n﹣1)•2n﹣2(n∈N*).(13 分)n【点评】本题考查数列的性质和应用,解题时要掌握等比数列的证明方法,会求数列的通项公式.20.(12 分)某车间甲组有10 名工人,其中有4 名女工人;乙组有5 名工人,其中有3 名女工人,现采用分层抽样方法(层内采用不放回简单随机抽样)从甲、乙两组中共抽取3 名工人进行技术考核.(Ⅰ)求从甲、乙两组各抽取的人数;(Ⅱ)求从甲组抽取的工人中恰有1 名女工人的概率;(Ⅲ)记ξ表示抽取的3 名工人中男工人数,求ξ的分布列及数学期望.【考点】B3:分层抽样方法;CG:离散型随机变量及其分布列;CH:离散型随机变量的期望与方差.【专题】11:计算题;48:分析法.【分析】(Ⅰ)这一问较简单,关键是把握题意,理解分层抽样的原理即可.另外要注意此分层抽样与性别无关.(Ⅱ)在第一问的基础上,这一问处理起来也并不困难.直接在男工里面抽取一人,在女工里面抽取一人,除以在总的里面抽取2 人的种数即可得到答案.(Ⅲ)求ξ的数学期望.因为ξ的可能取值为0,1,2,3.分别求出每个取值的概率,然后根据期望公式求得结果即可得到答案.【解答】解:(Ⅰ)因为甲组有10 名工人,乙组有5 名工人,从甲、乙两组中共抽取3 名工人进行技术考核,根据分层抽样的原理可直接得到,在甲中抽取2 名,乙中抽取1 名.(Ⅱ)因为由上问求得;在甲中抽取2 名工人,故从甲组抽取的工人中恰有1 名女工人的概率(Ⅲ)ξ的可能取值为0,1,2,3,,,ξ0 1 2 3P故Eξ== .【点评】本题较常规,比08 年的概率统计题要容易.在计算P(ξ=2)时,采用求反面的方法,用直接法也可,但较繁琐.考生应增强灵活变通的能力.21.(12 分)已知椭圆的离心率为,过右焦点F 的直线l 与C 相交于A、B 两点,当l 的斜率为1 时,坐标原点O 到l 的距离为,(Ⅰ)求a,b 的值;成立?若(Ⅱ)C 上是否存在点P,使得当l 绕F 转到某一位置时,有存在,求出所有的P 的坐标与l 的方程;若不存在,说明理由.【考点】K4:椭圆的性质.【专题】15:综合题;16:压轴题.【分析】(I)设F(c,0),则直线l 的方程为x﹣y﹣c=0,由坐标原点O 到l 的距离求得c,进而根据离心率求得a 和b.(II)由(I)可得椭圆的方程,设A(x ,y )、B(x ,y ),l:x=my+1 代入1 12 2椭圆的方程中整理得方程△>0.由韦达定理可求得y +y 和y y 的表达式,1 2 1 2假设存在点P,使成立,则其充要条件为:点P 的坐标为(x +x ,1 2y +y ),代入椭圆方程;把A,B 两点代入椭圆方程,最后联立方程求得c,1 2进而求得P 点坐标,求出m 的值得出直线l 的方程.【解答】解:(I)设F(c,0),直线l:x﹣y﹣c=0,由坐标原点O 到l 的距离为则又,解得c=1 ,∴(II)由(I)知椭圆的方程为设A(x ,y )、B(x ,y )1 12 2由题意知l 的斜率为一定不为0,故不妨设l:x=my+1代入椭圆的方程中整理得(2m2+3)y2+4my﹣4=0,显然△>0.由韦达定理有:,,①假设存在点P,使成立,则其充要条件为:点P 的坐标为(x +x ,y +y ),1 2 1 2点P 在椭圆上,即.整理得2x 2+3y 2+2x 2+3y 2+4x x +6y y =6.1 12 2 1 2 1 2又A、B 在椭圆上,即2x 2+3y 2=6,2x 2+3y 2=6、1 12 2故2x x +3y y +3=0②1 2 1 2将x x =(my +1)(my +1)=m2y y +m(y +y )+1 及①代入②解得1 2 1 2 1 2 1 2∴,x +x = ,即1 2当当;【点评】本题主要考查了椭圆的性质.处理解析几何题,学生主要是在“算”上的功夫不够.所谓“算”,主要讲的是算理和算法.算法是解决问题采用的计算的方法,而算理是采用这种算法的依据和原因,一个是表,一个是里,一个是现象,一个是本质.有时候算理和算法并不是截然区分的.例如:三角形的面积是用底乘高的一半还是用两边与夹角的正弦的一半,还是分割成几部分来算?在具体处理的时候,要根据具体问题及题意边做边调整,寻找合适的突破口和切入点.22.(12 分)设函数f(x)=x2+aln(1+x)有两个极值点x 、x ,且x <x ,1 2 1 2 (Ⅰ)求a 的取值范围,并讨论f(x)的单调性;(Ⅱ)证明:f(x )>.2【考点】6B:利用导数研究函数的单调性;6D:利用导数研究函数的极值;R6:不等式的证明.【专题】11:计算题;14:证明题;16:压轴题.【分析】(1)先确定函数的定义域然后求导数fˊ(x),令g(x)=2x2+2x+a,由题意知x 、x 是方程g(x)=0 的两个均大于﹣1 的不相等的实根,建立不1 2等关系解之即可,在函数的定义域内解不等式fˊ(x)>0 和fˊ(x)<0,求出单调区间;(2)x 是方程g(x)=0 的根,将a 用x 表示,消去a 得到关于x 的函数,研2 2 2究函数的单调性求出函数的最大值,即可证得不等式.【解答】解:(I)令g(x)=2x2+2x+a,其对称轴为.由题意知x 、x 是方程g(x)=0 的两个均大于﹣1 的不相等的实根,1 2其充要条件为,得(1)当x∈(﹣1,x )时,f'(x)>0,∴f(x)在(﹣1,x )内为增函数;1 1(2)当x∈(x ,x )时,f'(x)<0,∴f(x)在(x ,x )内为减函数;1 2 1 2(3)当x∈(x ,+∞)时,f'(x)>0,∴f(x)在(x ,+∞)内为增函数;2 2(II)由(I)g(0)=a>0,∴,a=﹣(2x2 +2x )2 2∴f(x )=x 2+aln(1+x )=x 2﹣(2x2 +2x )ln(1+x )2 2 2 2 2 2 2设h(x)=x2﹣(2x2+2x)ln(1+x),(﹣<x<0)则h'(x)=2x﹣2(2x+1)ln(1+x)﹣2x=﹣2(2x+1)ln(1+x)当故时,h'(x)>0,∴h(x)在单调递增,.【点评】本题主要考查了利用导数研究函数的单调性,以及利用导数研究函数的极值等有关知识,属于中档题.。
2009年高考理科数学(全国)卷(I)

2009年普通高等学校招生全国统一考试理科数学(必修+选修Ⅱ)本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分.第I 卷1至2页,第II 卷3至4页.考试结束后,将本试卷和答题卡一并交回.第Ⅰ卷一、选择题:共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.(1)设集合A={4,5,7,9},B={3,4,7,8,9},全集U=A B ,则集合[u (A B )中的元素共有(A )3个 (B )4个 (C )5个 (D )6个 (2)已知1iZ+=2+I,则复数z= (A )-1+3i (B)1-3i (C)3+i (D)3-i (3) 不等式11X X +-<1的解集为 (A ){x }{}011x x x 〈〈〉 (B){}01x x 〈〈(C ){}10x x -〈〈 (D){}0x x 〈(4)设双曲线22221x y a b-=(a >0,b >0)的渐近线与抛物线y=x 2+1相切,则该双曲线的离心率等于(A (B )2 (C (D(5) 甲组有5名同学,3名女同学;乙组有6名男同学、2名女同学。
若从甲、乙两组中各选出2名同学,则选出的4人中恰有1名女同学的不同选法共有(A )150种 (B )180种 (C )300种 (D)345种 (6)设a 、b 、c 是单位向量,且a ·b =0,则()()a c b c -∙-的最小值为(A )2- (B 2 (C )1- (D)1(7)已知三棱柱111ABC A B C -的侧棱与底面边长都相等,1A 在底面ABC 上的射影为BC 的中点,则异面直线AB 与1CC 所成的角的余弦值为(A (B (C (D) 34(8)如果函数()cos 2y x φ=3+的图像关于点43π⎛⎫⎪⎝⎭,0中心对称,那么π的最小值为 (A )6π (B )4π (C )3π (D) 2π(9) 已知直线y=x+1与曲线y ln()x a =+相切,则α的值为(A)1 (B)2 (C) -1 (D)-2(10)已知二面角α-l-β为600 ,动点P 、Q 分别在面α、β内,P 到β,Q到α的距离为P 、Q 两点之间距离的最小值为(B)2 (C) (D)4 (11)函数()f x 的定义域为R ,若(1)f x +与(1)f x -都是奇函数,则 (A) ()f x 是偶函数 (B) ()f x 是奇函数 (C) ()(2)f x f x =+ (D) (3)f x +是奇函数(12)已知椭圆C: 2212x y +=的又焦点为F ,右准线为L ,点A L ∈,线段AF 交C 与点B 。
2009年全国高考理科数学试题及答案-全国1

2009年普通高等学校招生全国统一考试理科数学(必修+选修Ⅱ) 本试卷分第卷(选择题)和第卷(非选择题)两部分.第卷1至2页,第卷3至4页.考试结束后,将本试卷和答题卡一并交回.第Ⅰ卷考生注意: 1.答题前,考生在答题卡上务必用0.5毫米黑色墨水签字笔将自己的姓名、准考证号、填写清楚 ,并贴好条形码.请认真核准条形码上的准考证号、姓名和科目. 2.每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号.在试题卷上作答无效.......... 3.本卷共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.参考公式: 如果事件A B ,互斥,那么 球的表面积公式()()()P A B P A P B +=+24πS R = 如果事件A B ,相互独立,那么 其中R 表示球的半径()()()P A B P A P B ∙=∙球的体积公式 如果事件A 在一次试验中发生的概率是P ,那么 34π3V R =n 次独立重复试验中恰好发生k 次的概率其中R 表示球的半径一、选择题(1)设集合A={4,5,7,9},B={3,4,7,8,9},全集U=A B ,则集合[()u AB I中的元素共有(A )(A )3个 (B )4个 (C )5个 (D )6个解:{3,4,5,7,8,9}AB =,{4,7,9}(){3,5,8}U A BC A B =∴=故选A 。
也可用摩根律:()()()U U U C AB C A C B =(2)已知1iZ+=2+i,则复数z=(B ) (A )-1+3i (B)1-3i (C)3+i (D)3-i 解:(1)(2)13,13z i i i z i =+⋅+=+∴=- 故选B 。
(3) 不等式11X X +-<1的解集为( D )(A ){x }{}011x x x 〈〈〉 (B){}01x x 〈〈(C ){}10x x -〈〈 (D){}0x x 〈 解:验x=-1即可。
2009年(全国卷II)(含答案)高考理科数学

2009年普通高等学校招生全国统一考试(2全国Ⅱ卷)数学(理)试题一、选择题( 本大题共12 题, 共计60 分)1、=( )A.-2+4iB.-2-4iC.2+4iD.2-4i2、设集合A={x|x>3},B={x|},则A∩B=()A. B.(3,4) C.(-2,1) D.(4,+∞)3、已知△ABC中,,则cosA=( )A. B. C. D.4、曲线在点(1,1)处的切线方程为( )A.x-y-2=0B.x+y-2=0C.x+4y-5=0D.x-4y-5=05、已知正四棱柱ABCD—A1B1C1D1中,AA1=2AB,E为AA1中点,则异面直线BE与CD1所成角的余弦值为( )A. B. C. D.6、已知向量a=(2,1),a·b=10,|a+b|=,则|b|=( )A. B. C.5 D.257、设a=log3π,,,则( )A.a>b>cB.a>c>bC.b>a>cD.b>c>a8、若将函数y=tan()(ω>0)的图象向右平移个单位长度后,与函数y=tan()的图象重合,则ω的最小值为…()A. B. C. D.9、已知直线y=k(x+2)(k>0)与抛物线C:y2=8x相交于A、B两点,F为C的焦点.若|FA|=2|FB|,则k=( )A. B. C. D.10、甲、乙两人从4门课程中各选修2门,则甲、乙所选的课程中至少有1门不相同的选法共有( )A.6种B.12种C.30种D.36种11、已知双曲线C:(a>0,b>0)的右焦点为F,过F且斜率为的直线交C于A、B两点.若,则C的离心率为( )A. B. C. D.12、纸制的正方体的六个面根据其方位分别标记为上、下、东、南、西、北.现在沿该正方体的一些棱将正方体剪开、外面朝上展平,得到右侧的平面图形,则标“Δ”的面的方位是( )A.南B.北C.西D.下二、填空题( 本大题共 4 题, 共计20 分)13、()4的展开式中x3y3的系数为___________.14、设等差数列{a n}的前n项和为S n,若a5=5a3.则=___________.15、设OA是球O的半径,M是OA的中点,过M且与OA成45°角的平面截球O的表面得到圆C,若圆C的面积等于,则球O的表面积等于______________.16、已知AC,BD为圆O:x2+y2=4的两条相互垂直的弦,垂足为M(1,),则四边形ABCD的面积的最大值为_____________.三、解答题( 本大题共 6 题, 共计70 分)17、(10分) 设△ABC的内角A,B,C的对边长分别为a,b,c,cos(A-C)+cosB=,b2=ac,求B.18、(12分)如图,直三棱柱ABC—A1B1C1中,AB⊥AC,D、E分别为AA1、B1C的中点,DE⊥平面BCC1.(Ⅰ)证明:AB=AC;(Ⅱ)设二面角A-BD-C为60°,求B1C与平面BCD所成的角的大小.19、(12分)设数列{a n}的前n项和为S n,已知a1=1,S n+1=4a n+2.(Ⅰ)设b n=a n+1-2a n,证明数列{b n}是等比数列;(Ⅱ)求数列{a n}的通项公式.20、(12分)某车间甲组有10名工人,其中有4名女工人;乙组有5名工人,其中有3名女工人,现采用分层抽样方法(层内采用不放回简单随机抽样)从甲、乙两组中共抽取3名工人进行技术考核. (Ⅰ)求从甲、乙两组各抽取的人数;(Ⅱ)求从甲组抽取的工人中恰有1名女工人的概率;(Ⅲ)记ξ表示抽取的3名工人中男工人数,求ξ的分布列及数学期望.21、(12分)已知椭圆C:(a >b >0)的离心率为,过右焦点F 的直线l与C 相交于A 、B 两点,当l 的斜率为1时,坐标原点O 到l 的距离为.(Ⅰ)求a,b 的值;(Ⅱ)C 上是否存在点P,使得当l 绕F 转到某一位置时,有成立?若存在,求出所有的P 的坐标与l 的方程;若不存在,说明理由.22、(12分)设函数=x 2+aln(1+x)有两个极值点x 1,x 2,且x 1<x 2.(Ⅰ)求a 的取值范围,并讨论的单调性;(Ⅱ)证明: ()21224In f x ->.2009年普通高等学校招生全国统一考试(2全国Ⅱ卷)数学(理)试题答案解析:一、选择题( 本大题共12 题, 共计60 分)1、(5分) A解析:.故选A.2、(5分) B解析:∵(x-1)(x-4)<0,∴1<x<4,即B={x|1<x<4},∴A∩B=(3,4).故选B.3、(5分) D解析:∵,∴A为钝角.又∵,∴.代入sin2A+cos2A=1,求得.故选D.4、(5分) B解析:∵,∴y′|x=1=-1.∴切线的斜率k=-1.∴切线方程为y-1=-(x-1),即x+y-2=0.故选B.5、(5分) C解析:如图所示,连接A1B,因A1D1BC,所以四边形A1BCD1为平行四边形,所以A1B∥D1C,则异面直线BE与CD1所成的角即为BE与BA1所成的角. 不妨设AB=1,则AA1=2,设∠ABE=α,∠ABA1=β,则,,,.∴cos(β-α)=cosβcosα+sinβsinα=.故选C. 6、(5分) C解析:设b=(x,y),由得解方程组得或则|b|=.故选C.7、(5分) A解析:∵a=log3π>log33=1,,.∴a>b>c.故选A.8、(5分) D解析:将函数y=tan()(ω>0)的图象向右平移个单位,得y=tan(),又因平移后函数的图象与y=tan()的图象重合,∴(k∈Z),即,∴当k=0时,,即ω的最小值为.故选D.9、(5分) D解析:设A(x1,y1),B(x2,y2),由题意得k2x2+(4k2-8)x+4k2=0,Δ=16(k2-2)2-4k2·4k2>0.得-1<k<1,即0<k<1,,x1x2=4.又∵|FA|=2|FB|,由抛物线定义,知F(2,0),抛物线的准线方程为x=-2,∴|FA|=x1+2,|FB|=x2+2,∴x1+2=2x2+4,即x1=2x2+2.代入x1·x2=4,得x22+x2-2=0,∴x2=1,或x2=-2(舍去,因x2>0).∴x1=2×1+2=4.∴.∴.又0<k<1,∴.故选D.10、(5分) C解析:由题意知甲、乙所选的课程有一门相同的选法为种,甲、乙所选的课程都不相同的选法有种,所以甲、乙所选的课程中至少有一门不相同的选法共有24+6=30种.故选C.11、(5分) A解析:设A(x1,y1),B(x2,y2),F(c,0),由, 得(c-x1,-y1)=4(x2-c,y2),∴y1=-4y2.设过F点斜率为的直线方程为, ∴则有∴将y1=-4y2分别代入①②得化简得∴.化简得16c2=9(3a2-b2)=9(3a2-c2+a2).∴25c2=36a2.∴,即.12、(5分) B解析:如右图所示正方体,要展开成要求的平面图,必须剪开棱BC,剪开棱D1C1使正方形DCC1D1向北的方向展平.剪开棱A1B1,使正方形ABB1A1向南的方向展开,然后拉开展平,则标“Δ”的面的方位则为北.故选B.二、填空题( 本大题共 4 题, 共计20 分)13、(5分) 6解析:设展开式中第r+1项为x3y3项,由展开式中的通项,得=.令,得r=2.∴系数为.14、(5分) 9解析:由a5=5a3,得,.15、(5分) 8π解析:如图所示,设球半径为R,球心O到截面圆的距离为d,在Rt△ONB 中,d2=R2-BN2.①又∵π·BN2=,∴.在△ONM中,d=OM·sin45°=,②将②代入①得,∴R2=2.=4πR2=8π.∴S球16、(5分) 5解析:如图所示,设|ON|=d1,|OP|=d2,则d12+d22=|OM|2=12+()2=3. 在△ONC中,d12=|OC|2-|CN|2=4-|CN|2,∴.同理在△OBP中,.S四边形=S△CAD+S△CAB====.当且仅当d1=d2时取等号,即d1=d2=时取等号.三、解答题( 本大题共 6 题, 共计70 分)17、(10分) 解:由cos(A-C)+cosB=及B=π-(A+C)得cos(A-C)-cos(A+C)=,cosAcosC+sinAsinC-(cosAcosC-sinAsinC)=,.又由b2=ac及正弦定理得sin2B=sinAsinC.故,或(舍去),于是或.又由b2=ac知b≤a或b≤c,所以.18、(12分) 解法一:(Ⅰ)取BC的中点F,连接EF,则EF,从而EF DA.连接AF,则ADEF为平行四边形,从而AF∥DE.又DE⊥平面BCC1,故AF⊥平面BCC1,从而AF⊥BC,即AF为BC的垂直平分线,所以AB=AC,(Ⅱ)作AG⊥BD,垂足为G,连接CG.由三垂线定理知CG⊥BD,故∠AGC为二面角A-BD-C的平面角.由题设知∠AGC=60°.设AC=2,则.又AB=2,,故.由AB·AD=AG·BD得,解得,故AD=AF.又AD⊥AF,所以四边形ADEF为正方形.因为BC⊥AF,BC⊥AD,AF∩AD=A,故BC⊥平面DEF,因此平面BCD⊥平面DEF. 连接AE、DF,设AE∩DF=H,则EH⊥DF,EH⊥平面BCD.连接CH,则∠ECH为B1C与平面BCD所成的角.因ADEF为正方形,,故EH=1,又,所以∠ECH=30°,即B1C与平面BCD所成的角为30°.解法二:(Ⅰ)以A为坐标原点,射线AB为x轴的正半轴,建立如图所示的直角坐标系A—xyz,设B(1,0,0),C(0,b,0),D(0,0,c),则B1(1,0,2c),E(,,c).于是=(,,0),=(-1,b,0).由DE⊥平面BCC1知DE⊥BC,·=0,求得b=1,所以AB=AC.(Ⅱ)设平面BCD的法向量=(x,y,z),则·=0,·=0.又=(-1,1,0), =(-1,0,c).故令x=1,则y=1, , =(1,1,).又平面ABD的法向量=(0,1,0).由二面角A-BD-C为60°知,〈〉=60°,故·=||·||·cos60°,求得.于是=(1,1,), =(1,-1,),cos〈,〉=,〈,〉=60°,所以B1C与平面BCD所成的角为30°.19、(12分) 解:(Ⅰ)由已知有a1+a2=4a1+2,解得a2=3a1+2=5,故b1=a2-2a1=3,又a n+2=S n+2-S n+1=4a n+1+2-(4a n+2)=4a n+1-4a n;于是a n+2-2a n+1=2(a n+1-2a n),即b n+1=2b n.因此数列{b n}是首项为3,公比为2的等比数列.(Ⅱ)由(Ⅰ)知等比数列{b n}中b1=3,公比q=2,所以a n+1-2a n=3×2n-1,于是,因此数列{}是首项为,公差为的等差数列,,所以a n=(3n-1)·2n-2.20、(12分) 解:(Ⅰ)由于甲组有10名工人,乙组有5名工人,根据分层抽样原理,若从甲、乙两组中共抽取3名工人进行技术考核,则从甲组抽取2名工人,乙组抽取1名工人.(Ⅱ)记A表示事件:从甲组抽取的工人中恰有1名女工人,则.(Ⅲ)ξ的可能取值为0,1,2,3.A i表示事件:从甲组抽取的2名工人中恰有i名男工人,i=0,1,2.B表示事件:从乙组抽取的是1名男工人.A i与B独立,i=0,1,2.P(ξ=0)=P(A0·)=P(A0)·P()=,P(ξ=1)=P(A0·B+A1·)=P(A0)·P(B)+P(A1)·P()=,P(ξ=3)=P(A2B)=P(A2)·P(B)=,P(ξ=2)=1-[P(ξ=0)+P(ξ=1)+P(ξ=3)]=.故ξ的分布列为ξ0 1 2 3PEξ=0×P(ξ=0)+1×P(ξ=1)+2×P(ξ=2)+3×P(ξ=3)=.21、(12分) 解:(Ⅰ)设F(c,0),当l的斜率为1时,其方程为x-y-c=0,O到l的距离为,故,c=1.由,得,.(Ⅱ)C上存在点P,使得当l绕F转到某一位置时,有成立,由(Ⅰ)知C的方程为2x2+3y2=6,设A(x1,y1),B(x2,y2),(ⅰ)当l不垂直于x轴时,设l的方程为y=k(x-1).C上的点P使成立的充要条件是P点的坐标为(x1+x2,y1+y2),且2(x1+x2)2+3(y1+y2)2=6,整理得2x12+3y12+2x22+3y22+4x1x2+6y1y2=6.又A、B在C上,即2x12+3y12=6,2x22+3y22=6.故2x1x2+3y1y2+3=0.①将y=k(x-1)代入2x2+3y2=6,并化简得(2+3k2)x2-6k2x+3k2-6=0,于是,,y1·y2=k2(x1-1)(x2-1)=.代入①解得k2=2,此时,于是y1+y2=k(x1+x2-2)=,即P(,).因此,当时,P(,),l的方程为;当时,P(,),l的方程为.(ⅱ)当l垂直于x轴时,由=(2,0)知,C上不存在点P使成立,综上,C上存在点P(,)使成立,此时l的方程.22、(12分) 解:(Ⅰ)由题设知,函数的定义域是x>-1,,且f′(x)=0有两个不同的根x1,x2,故2x2+2x+a=0的判别式Δ=4-8a>0,即,且,.①又x1>-1,故a>0.因此a的取值范围是(0,).当x变化时,与f′(x)的变化情况如下表:x (-1,x1) x1(x1,x2) x2(x2,+∞) f′(x)+ 0 - 0 +极大值极小值因此在区间(-1,x1)和(x2,+∞)上是增函数,在区间(x1,x2)上是减函数. (Ⅱ)由题设和①知<x2<0,a=-2x2(1+x2),于是f(x2)=x22-2x2(1+x2)ln(1+x2).设函数g(t)=t2-2t(1+t)ln(1+t),则g′(t)=-2(1+2t)ln(1+t).当时,g′(t)=0;当t∈(,0)时,g′(t)>0,故g(t)在区间[,0)上是增函数.于是,当t∈(,0)时,.因此.。
2009年高考理科数学试题及答案-全国卷1

2009年普通高等学校招生全国统一考试(全国1卷)理科数学(必修+选修Ⅱ)一、选择题(1)设集合A={4,5,7,9},B={3,4,7,8,9},全集U=A B ,则集合[u (AB )中的元素共有(A )3个 (B )4个 (C )5个 (D )6个 (2)已知1iZ+=2+I,则复数z= (A )-1+3i (B)1-3i (C)3+I (D)3-i (3) 不等式11X X +-<1的解集为 (A ){x }{}011x x x 〈〈〉 (B){}01x x 〈〈(C ){}10x x -〈〈 (D){}0x x 〈(4)设双曲线22221x y a b-=(a >0,b >0)的渐近线与抛物线y=x 2+1相切,则该双曲线的离心率等于(A (B )2 (C (D (5) 甲组有5名同学,3名女同学;乙组有6名男同学、2名女同学。
若从甲、乙两组中各选出2名同学,则选出的4人中恰有1名女同学的不同选法共有 (A )150种 (B )180种 (C )300种 (D)345种 (6)设a 、b 、c 是单位向量,且a ·b =0,则()()a c b c -∙-的最小值为(A )2-(B 2 (C )1- (D)1(7)已知三棱柱111ABC A B C -的侧棱与底面边长都相等,1A 在底面ABC 上的射影为BC 的中点,则异面直线AB 与1CC 所成的角的余弦值为(A )4(B )4(C )4(D) 34(8)如果函数()cos 2y x φ=3+的图像关于点43π⎛⎫⎪⎝⎭,0中心对称,那么π的最小值为 (A )6π (B )4π (C )3π (D) 2π(9) 已知直线y=x+1与曲线y ln()x a =+相切,则α的值为(10)已知二面角α-l-β为600,动点P 、Q 分别在面α、β内,P 到βQ 到α的距离为则P 、Q 两点之间距离的最小值为(11)函数()f x 的定义域为R ,若(1)f x +与(1)f x -都是奇函数,则 (A) ()f x 是偶函数 (B) ()f x 是奇函数 (C) ()(2)f x f x =+ (D) (3)f x +是奇函数(12)已知椭圆C: 2212x y +=的又焦点为F ,右准线为L ,点A L ∈,线段AF 交C 与点B 。
2009高考数学全国卷及答案理

2009年普通高等学校招生全国统一考试理科数学(必修+选修Ⅱ)本试卷分第错误!未找到引用源。
卷(选择题)和第错误!未找到引用源。
卷(非选择题)两部分.第错误!未找到引用源。
卷1至2页,第错误!未找到引用源。
卷3至4页.考试结束后,将本试卷和答题卡一并交回.第Ⅰ卷考生注意:1.答题前,考生在答题卡上务必用0.5毫米黑色墨水签字笔将自己的姓名、准考证号、填写清楚 ,并贴好条形码.请认真核准条形码上的准考证号、姓名和科目.2.每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号.在试题卷上作答无效.......... 3.本卷共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.参考公式:如果事件A B ,互斥,那么 球的表面积公式如果事件A B ,相互独立,那么 其中R 表示球的半径()()()P A B P A P B = 球的体积公式如果事件A 在一次试验中发生的概率是P ,那么 34π3V R = n 次独立重复试验中恰好发生k 次的概率 其中R 表示球的半径一、选择题(1)设集合A={4,5,7,9},B={3,4,7,8,9},全集U=AB ,则集合[()u A B I 中的元素共有(A )(A )3个 (B )4个 (C )5个 (D )6个解:{3,4,5,7,8,9}A B =,{4,7,9}(){3,5,8}U A B C A B =∴=故选A 。
也可用摩根律:()()()U U U C A B C A C B =(2)已知1iZ +=2+i,则复数z=(B ) (A )-1+3i (B)1-3i (C)3+i (D)3-i 解:(1)(2)13,13z i i i z i =+⋅+=+∴=- 故选B 。
(3) 不等式11X X +-<1的解集为( D )(A ){x }{}011x x x 〈〈〉 (B){}01x x 〈〈(C ){}10x x -〈〈 (D){}0x x 〈解:验x=-1即可。
高考理科数学试卷普通高等学校招生全国统一考试2009
高考理科数学试卷普通高等学校招生全国统一考试注意事项: 1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至3页,第Ⅱ卷3至5页. 2.答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置. 3.全部答案在答题卡上完成,答在本试题上无效. 4.考试结束后,将本试题和答题卡一并交回.第Ⅰ卷一. 选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)已知集合{1,}A =2,3,{|(1)(2)0,}B x x x x =+-<∈Z ,则AB =(A ){1}(B ){12},(C ){0123},,,(D ){10123}-,,,, (2)已知(3)(1)i z m m =++-在复平面内对应的点在第四象限,则实数m 的取值范围是(A )(31)-,(B )(13)-,(C )(1,)∞+(D )(3)∞--,(3)已知向量(1,)(3,2)m =-,=a b ,且()⊥a +b b ,则m= (A )-8(B )-6 (C )6 (D )8(4)圆2228130x y x y +--+=的圆心到直线10ax y +-=的距离为1,则a= (A )43-(B )34-(C )3(D )2(5)如图,小明从街道的E 处出发,先到F 处与小红会合,再一起到位于G 处的老年公寓参加志愿者活动,则小明到老年公寓可以选择的最短路径条数为(A )24 (B )18 (C )12 (D )9(6)右图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为(A )20π(B )24π(C )28π(D )32π(7)若将函数y=2sin 2x 的图像向左平移π12个单位长度,则评议后图象的对称轴为(A )x=kπ2–π6 (k ∈Z) (B )x=kπ2+π6 (k ∈Z) (C )x=kπ2–π12 (k ∈Z) (D )x=kπ2+π12 (k ∈Z)(8)中国古代有计算多项式值的秦九韶算法,右图是实现该算法的程序框图.执行该程序框图,若输入的x=2,n=2,依次输入的a 为2,2,5,则输出的s=(A )7 (B )12 (C )17 (D )34 (9)若cos(π4–α)=35,则sin 2α=(A )725(B )15(C )–15(D )–725(10)从区间[]0,1随机抽取2n 个数1x ,2x ,…,nx ,1y ,2y ,…,ny ,构成n 个数对()11,x y ,()22,x y ,…,(),n n x y ,其中两数的平方和小于1的数对共有m 个,则用随机模拟的方法得到的圆周率π的近似值为(A )4n m (B )2n m (C )4m n (D )2m n(11)已知F1,F2是双曲线E 22221x y a b-=的左,右焦点,点M 在E 上,M F1与x 轴垂直,sin 2113MF F ∠=,则E 的离心率为(AB )32(CD )2 (12)已知函数学.科网()()f x x ∈R 满足()2()f x f x -=-,若函数1x y x+=与()y f x =图像的交点为1122(,),(,),,(,),m m x y x y x y ⋅⋅⋅则1()mi i i x y =+=∑(A )0 (B )m (C )2m (D )4m第II 卷本卷包括必考题和选考题两部分.第(13)题~第(21)题为必考题,每个试题考生都必须作答.第(22)题~第(24)题为选考题,考生根据要求作答.二、填空题:本大题共3小题,每小题5分(13)△ABC 的内角A 、B 、C 的对边分别为a 、b 、c ,若cos A=45,cos C=513,a=1,则b=. (14)α、β是两个平面,m 、n 是两条直线,有下列四个命题:(1)如果m ⊥n ,m ⊥α,n ∥β,那么α⊥β. (2)如果m ⊥α,n ∥α,那么m ⊥n.(3)如果α∥β,m ⊂α,那么m ∥β. (4)如果m ∥n ,α∥β,那么m 与α所成的角和n 与β所成的角相等.其中正确的命题有.(填写所有正确命题的编号)(15)有三张卡片,分别写有1和2,1和3,2和3。
2009年全国高考数学试题——全国卷1(理科)含答案
2009年普通高等学校招生全国统一考试理科数学(必修+选修Ⅱ)本试卷分第错误!未找到引用源。
卷(选择题)和第错误!未找到引用源。
卷(非选择题)两部分.第错误!未找到引用源。
卷1至2页,第错误!未找到引用源。
卷3至4页.考试结束后,将本试卷和答题卡一并交回.第Ⅰ卷考生注意: 1.答题前,考生在答题卡上务必用0.5毫米黑色墨水签字笔将自己的姓名、准考证号、填写清楚 ,并贴好条形码.请认真核准条形码上的准考证号、姓名和科目. 2.每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号.在试题卷上作答无效..........3.本卷共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.参考公式: 如果事件A B ,互斥,那么 球的表面积公式()()()P A B P A P B +=+24πS R =如果事件A B ,相互独立,那么 其中R 表示球的半径()()()P A B P A P B =球的体积公式如果事件A 在一次试验中发生的概率是P ,那么 34π3V R =n 次独立重复试验中恰好发生k 次的概率其中R 表示球的半径()(1)(01,2)kkn kn n P k C P P k n -=-= ,,,一、选择题(1)设集合A={4,5,7,9},B={3,4,7,8,9},全集U=A B ,则集合[u (A B )中的元素共有 (A )3个 (B )4个 (C )5个 (D )6个 (2)已知1iZ +=2+I,则复数z=(A )-1+3i (B)1-3i (C)3+I (D)3-i (3) 不等式11X X +-<1的解集为(A ){x }{}011x x x 〈〈〉 (B){}01x x 〈〈 (C ){}10x x -〈〈 (D){}0x x 〈(4)设双曲线22221x y ab-=(a >0,b >0)的渐近线与抛物线y=x 2+1相切,则该双曲线的离心率等于(A (B )2 (C (D(5) 甲组有5名同学,3名女同学;乙组有6名男同学、2名女同学。
【深度解析高考真题】2009年全国统一高考数学试卷(理科)(全国卷ⅰ)(20200515082636)
2 .3 .4 .5 .6 .7 . 2009年全国统一高考数学试卷(理科)、选择题(共12小题,每小题5分,满分60分)(5 分)设集合A={4,5, 7, 9},B={3,4,7,8,元素共有()A. 3个(5分)已知A.- 1+3i9},全集(全国卷I )U=A U B,则集合?u (A H B)中的A.—B.—C•丄 D.—64328. (5分)如果函数y=3cos(2x+®的图象关于点(丄-,0)中心对称,那么|创的最小值为()2B. 4个Z1+1=2+i,则复数z=(B. 1 - 3i(5分)不等式v 1的解集为A. {x| 0v x v 1} U{x|x> 1} C. {x| - 1 v x v 0}心率为()A.二C. 5个D.C. 3+i D.B. {x| 0v x v 1}D. {x|x v0}22X=(5分)已知双曲线B. 2 (a>0, b>0)的渐近线与抛物线y=/+1相切,则该双曲线的离D. 1■(5分)甲组有5名男同学,3名女同学;乙组有6名男同学、2名女同学.若从甲、各选出2名同学,则选出的4人中恰有1名女同学的不同选法共有(乙两组中A. 150种B. 180种C. 300 种D. 345 种A.- 21的最小值为()B.二-2C.- 1D. 1-/2(5分)已知三棱柱ABC- A1B1C1的侧棱与底面边长都相等,A1在底面ABC上的射影中点,则异面直线AB与CG所成的角的余弦值为(D为BC的9. (5分)已知直线y=x+1与曲线y=ln (x+a)相切,贝U a的值为()A. 1B. 2C.- 1D.- 210 . (5分)已知二面角a- l - B为60°动点P、Q分别在面a B内,P到B的距离为'呢,Q到的距离为:-.■;,则P、Q两点之间距离的最小值为()C- 11 . (5分)函数f (x)的定义域为R,若f (x+1)与f (x- 1)都是奇函数,贝U()A. f (x)是偶函数B. f (x)是奇函数C. f (x)=f (x+2)D. f (x+3)是奇函数12. (5分)已知椭圆C:牙+/=1的右焦点为F,右准线为I,点A€ l,线段AF交C于点B,洞=O ,则I上I =()A. :B. 2C.二D. 3二、填空题(共4小题,每小题5分,满分20分)13. _____________________________________________________________ (5分)(x-y)的展开式中,x7y3的系数与x3y7的系数之和等于_____________________________ .14. _____________________________________________________________ (5分)设等差数{a n}的前n项和为S n,若S9=81,则a2+a5+a s= _________________________ .15. (5分)直三棱柱ABC- A1B1C1的各顶点都在同一球面上,若AB=AC=AA=2,/ BAC=120,则球的表面积等于_______ .TT TT16. (5 分)若—-■ _____________________ ,则函数y=tan2xtan3x 的最三、解答题(共6小题,满分70分)17. (10 分)在厶ABC中,内角A、B、C的对边长分别为a、b、c,已知a2-c2=2b,且sinAcosC=3cosAsinC 求b.18. (12分)如图,四棱锥S- ABCD中,底面ABCD为矩形,SD丄底面ABCD AD^2,DC=SD=2 点M在侧棱SC上,/ ABM=60(I)证明:M是侧棱SC的中点;(U)求二面角S- AM - B的大小.SB21 . (12分)如图,已知抛物线E: f=x与圆M : (x-4) 2+y2=r2(r>0)相交于A、B、C、D四个占八、、・(I )求r的取值范围;(U)当四边形ABCD的面积最大时,求对角线AC、BD的交点P的坐标.19. (12分)甲、乙二人进行一次围棋比赛,约定先胜3局者获得这次比赛的胜利,比赛结束,假设在一局中,甲获胜的概率为0.6,乙获胜的概率为0.4,各局比赛结果相互独立,已知前2局中,甲、乙各胜1局.(I)求甲获得这次比赛胜利的概率;(U)设E表示从第3局开始到比赛结束所进行的局数,求E的分布列及数学期望.22. (12 分)设函数f (x) =x^+3bx2+3cx有两个极值点X1、血,且X1 € [ - 1,0],X2 € [ 1,2].(1)求b、c 满足的约束条件,并在下面的坐标平面内,画出满足这些条件的点( b,c)的区域;(2)证明:亠—丄.2009年全国统一高考数学试卷(理科)(全国卷I )参考答案与试题解析20. (12分)在数列{a n}中,a i=1, a n+i= (1—) a n+ L. 门珂(1 )设b n=:,求数列{ b n}的通项公式;n(2)求数列{a n}的前n项和S.一、选择题(共12小题,每小题5分,满分60分)1. (5 分)设集合A={4, 5, 7, 9} , B={3, 4, 7, 8, 9},全集U=A U B,则集合?U(A H B)中的元素共有()A. 3个B. 4个C. 5个D. 6个【考点】1H:交、并、补集的混合运算.【分析】根据交集含义取A、B的公共元素写出A H B,再根据补集的含义求解.【解答】解:A U B={3, 4, 5, 7, 8, 9},A H B={4, 7, 9}二?U(A H B)={3, 5, 8}故选A.也可用摩根律:?U(A H B)= (?U A)U(?U B)故选:A.【点评】本题考查集合的基本运算,较简单.2. (5分)已知]=2+i,则复数z=()A.- 1+3iB. 1 - 3iC. 3+iD. 3-【考点】A1:虚数单位i、复数.【分析】化简复数直接求解,利用共轭复数可求z.【解答】解:| •亍「丨’■「,••• z=1 - 3i故选:B.【点评】求复数,需要对复数化简,本题也可以用待定系数方法求解.3. (5分)不等式一」v 1的解集为()A. {x|0v x v 1} U {x|x> 1}B. {x|0v x v 1}C. {x| - 1v x v 0}D. {x|x v 0} 【考点】7E:其他不等式的解法.【分析】本题为绝对值不等式,去绝对值是关键,可利用绝对值意义去绝对值,也可两边平方去绝对值.【解答】解:•••—< 1,•••|X+1| v|x- 1| ,••• x2+2x+1 v x2- 2x+1.••• xv 0.•••不等式的解集为{x| x v 0}.故选:D.【点评】本题主要考查解绝对值不等式,属基本题.解绝对值不等式的关键是去绝对值,去绝对值的方法主要有:利用绝对值的意义、讨论和平方.2 24. (5分)已知双曲线‘一 - =1 (a> 0, b> 0)的渐近线与抛物线y=xM相切,则该双曲线的离界b2心率为()A. 「;B. 2C. 口D. . '■【考点】KC:双曲线的性质;KH:直线与圆锥曲线的综合.【专题】11:计算题.【分析】先求出渐近线方程,代入抛物线方程,根据判别式等于0,找到a和b的关系,从而推断出a和c的关系,答案可得.2 2 ,【解答】解:由题双曲线的一条渐近线方程为—,a2 L a代入抛物线方程整理得ax2- bx+a=0,因渐近线与抛物线相切,所以b2- 4a2=0,即,-■:--,故选:C.【点评】本小题考查双曲线的渐近线方程直线与圆锥曲线的位置关系、双曲线的离心率,基础题.故选:D.【点评】考查向量的运算法则;交换律、分配律但注意不满足结合律.7. (5分)已知三棱柱ABC- A1B1C1的侧棱与底面边长都相等,A1在底面ABC上的射影D为BC的5. (5分)甲组有5名男同学,3名女同学;乙组有6名男同学、2名女同学.若从甲、乙两组中各选出2名同学,则选出的4人中恰有1名女同学的不同选法共有()A. 150 种B. 180 种C. 300 种D. 345 种【考点】D1:分类加法计数原理;D2:分步乘法计数原理.【专题】50:排列组合.【分析】选出的4人中恰有1名女同学的不同选法,1名女同学来自甲组和乙组两类型.【解答】解:分两类(1)甲组中选出一名女生有C51?C31?C62=225种选法;(2)乙组中选出一名女生有C52?C61?C21=120种选法.故共有345种选法.故选:D.【点评】分类加法计数原理和分类乘法计数原理,最关键做到不重不漏,先分类,后分步!■ ■ -,则〔丄1的最小值为()【考点】90:平面向量数量积的性质及其运算.【专题】16:压轴题.【分析】由题意可得 b |W2,故要求的式子即日吐-(丑+b) ?c+芒=1 - |邑+b卜| c |cos衣小J [片1 - . Leos〔「]一,,,再由余弦函数的值域求出它的最小值.【解答】解』是单位向量,八|,二一_ i.,丨•- =:I .r ? \「,=-・:,—(「:,.)? ■+=0-(■:■)? +1=1 -| 一- I .,•COS< ..,=1 - 「cos:二-…J .厂匚A|1'电:;中点,则异面直线AB与CG所成的角的余弦值为()A. B.匹C. D.-4444【考点】L0:空间中直线与直线之间的位置关系.【分析】首先找到异面直线AB与CG所成的角(如/ A1AB);而欲求其余弦值可考虑余弦定理,则只要表示出A1B的长度即可;不妨设三棱柱ABC- A1B1C1的侧棱与底面边长为1,利用勾股定理即可求之.【解答】解:设BC的中点为D,连接A1D、AD、A1B,易知9= A1AB即为异面直线AB与CC所成的角;并设三棱柱ABC- A1B1C1的侧棱与底面边长为1,则| AD| = _ , | A1DI =- , | A1 B| =」,〜丄2由余弦定理,得cos 9故选:D.【点评】本题主要考查异面直线的夹角与余弦定理.8. (5 分)如果函数y=3cos(2x+©)的图象关于点(一,0)中心对称,那么|创的最小值为()K TT'IT7TA.——B.C.——D.——643且【考点】HB:余弦函数的对称性.【专题】11:计算题.【分析】先根据函数y=3cos(2x+"的图象关于点:—.-中心对称,令代入函数使其等3 -3于0,求出©的值,进而可得I ©I的最小值.【解答】解:•••函数y=3cos(2x+©)的图象关于点:—.-中心对称.3— - t1 1 .—•••:_-:『--- .玄匚E由此易得 |> ' K. 故选:A.【点评】本题主要考查余弦函数的对称性.属基础题.9. (5分)已知直线y=x+1与曲线y=ln (x+a)相切,贝U a的值为()D.—2【考点】6H:利用导数研究曲线上某点切线方程.【分析】切点在切线上也在曲线上得到切点坐标满足两方程;又曲线切点处的导数值是切线斜率得第三个方程.【解答】解:设切点P (x o, y o),贝U y o=x o+1, y o=ln (x o+a),--x o+a=1【考点】LQ:平面与平面之间的位置关系.【专题】11:计算题;16:压轴题.【分析】分别作QA丄a于A, AC丄l于C, PB丄B于B, PD丄l于D,连CQ BD则/ ACQ=Z PBD=60 , 在三角形APQ中将PQ表示出来,再研究其最值即可.【解答】解:如图分别作QA丄a于A, AC丄l于C, PB丄B于B, PD丄l于D,连CQ, BD 则/ ACQ=/ PDB=60,总二:,I :,又T :厂.“ T- - .: |当且仅当AP=0,即点A与点P重合时取最小值.故选:C.O, x o=—1:B.评】本题考查导数的几何意义,常利用它求曲线的切线10A. 1B. 2C.—1的距离为一•,则P、Q两点之间距离的最小值为()B内,P到B的距离为V, Q到a【点评】本题主要考查了平面与平面之间的位置关系,以及空间中直线与平面之间的位置关系,考查空间想象能力、运算能力和推理论证能力,属于基础题.11. (5分)函数f (x)的定义域为R,若f (x+1)与f (x- 1)都是奇函数,贝U( )A. f (x)是偶函数B. f (x)是奇函数C. f (x) =f (x+2)D. f (x+3)是奇函数【考点】31:奇函数、偶函数.【专题】16:压轴题.【分析】首先由奇函数性质求f (x)的周期,然后利用此周期推导选择项. 【解答】解::f (x+1)与f (x- 1)都是奇函数,•••函数f (x)关于点(1 , 0)及点(-1, 0)对称,二 f (x) +f (2 - x) =0, f (x) +f (- 2 - x) =0,故有 f (2 -x) =f (- 2 -x),函数f (x)是周期T=[2-( - 2) ]=4的周期函数.f (- x- 1+4) =- f (x- 1 +4),f (- x+3) =- f (x+3),f (x+3)是奇函数.故选:D.【点评】本题主要考查奇函数性质的灵活运用,并考查函数周期的求法. 由题意丨—I ■,故FM二,故B点的横坐标为丄,纵坐标为土二3 3 3即BM二-,3故AN=1,故选:A.【点评】本小题考查椭圆的准线、向量的运用、椭圆的定义,属基础题.2 「_,12. (5 分)已知椭圆C^-+y2=1的右焦点为F,右准线为I,点A€ I,线段AF交C于点B,若F23FE, 则| '11=()A. 二B. 2C. 「;D. 3【考点】K4:椭圆的性质.【专题】11:计算题;16:压轴题.【分析】过点B作BM丄x轴于M,设右准线I与x轴的交点为N,根据椭圆的性质可知FN=1,进而根据祝二3五,求出BM, AN,进而可得| AF| .【解答】解:过点B作BM丄x轴于M ,二、填空题(共4小题,每小题5分,满分20分)13. (5分)(x-y) 10的展开式中,x7y3的系数与x3y7的系数之和等于-240【考点】DA:二项式定理.【专题】11:计算题.【分析】首先要了解二项式定理:(a+b) n=C n0a n b0+C n1a n- 1b1+C n2a n-2b2++C n r a n-r b r++C n n a0b n,各项的通项公式为:T r+1=G r a n-r b r.然后根据题目已知求解即可.【解答】解:因为(x-y) 10的展开式中含x7y3的项为C103x10 - 3y3(- 1) 3=- Ce^y3, 含x3y7的项为Ci07x10-7y7 (- 1) 7二-C107x3y7.由Ci03=G07=120知,x7y3与x3y7的系数之和为-240.故答案为-240.【点评】本题是基础题,解题思路是:先求底面外接圆的半径,转化为直角三角形,求出球的半径, 这是三棱柱外接球的常用方法;本题考查空间想象能力,计算能力.• a2+a5+a8=3a5=27 故答案是27【点评】本题考查前n项和公式和等差数列的性质.16. (5分)若——=,则函数y=tan2xtan3x的最大值为—_15. (5分)直三棱柱ABC- A1B1C1的各顶点都在同一球面上,若AB=AC=AA=2,/ BAC=120,则此球的表面积等于20n .【考点】LR球内接多面体.【专题】11:计算题;16:压轴题.【分析】通过正弦定理求出底面外接圆的半径,设此圆圆心为0',球心为0,在RT^OBO中,求出球的半径,然后求出球的表面积.【解答】解:在△ ABC中AB=AC=2 / BAC=120,可得■ : : ■;由正弦定理,可得△ ABC外接圆半径r=2,设此圆圆心为O',球心为O,在RT\OBO中,易得球半径J.,故此球的表面积为4nR=20n故答案为:20 n【考点】3H:函数的最值及其几何意义;GS:二倍角的三角函数.【专题】11:计算题;16:压轴题.【分析】见到二倍角2x就想到用二倍角公式,之后转化成关于tanx的函数,将tanx看破成整体,最后转化成函数的最值问题解决.n, 3 2tan4z 2t42/. ■' . -ii—.-.-ii. .■- , ^|17“ 丄丄,1 1 ' 1畀t2乜三)刁故填:-8.【点评】本题主要考查二倍角的正切,二次函数的方法求最大值等,最值问题是中学数学的重要内容之一,它分布在各块知识点,各个知识水平层面.以最值为载体,可以考查中学数学的所有知识点.三、解答题(共6小题,满分70分)17. (10分)在厶ABC中,内角A、B、C的对边长分别为a、b、c,已知a2- 4=20且sinAcosC=3cosAsinp 【考点】HR余弦定理.【分析】根据正弦定理和余弦定理将sinAcosC=3cosAsin(化成边的关系,再根据a2- c2=2b即可得到答案.【解答】解:法一:在△ ABC中I sinAcosC=3cosAsinC则由正弦定理及余弦定理有:【点评】此题主要考查二项式定理的应用问题,对于公式:(a+b)n=C h0a n b0+C n1a n _1b1+C n2a n_2b2++G r a n 「r b r++C n n a°b n,属于重点考点,同学们需要理解记忆.14. (5分)设等差数列{a n}的前n项和为S n,若S9=81,则a2+a5+a s= 27【考点】83:等差数列的性质;85:等差数列的前n项和.【分析】由S9解得a5即可.a5=9【解答】9(ai+an)-【解答】解:令tanx=t,v——宀,^-=-8亠bH屮~2ab —-3―2bZ~'c,化简并整理得:2 (a2- c2) =b2.又由已知a2- c2=2b^ 4b=b2.解得b=4或b=0 (舍);法二:由余弦定理得:a2- c2=b2- 2bccosA又a2- c2=2b, 0.所以b=2ccosA+2①又sinAcosC=3cosAsinC••• sin AcosC+cosAsi nC=4cosAs in Csin A+C) =4cosAs inC即sinB=4cosAsinC由正弦定理得.…二,c故b=4ccosA②由①,②解得b=4.【点评】本题主要考查正弦定理和余弦定理的应用.属基础题.18. (12分)如图,四棱锥S—ABCD中,底面ABCD为矩形,SD丄底面ABCD AD农,DC=SD=2 点M在侧棱SC上,/ ABM=60(I)证明:M是侧棱SC的中点;(U)求二面角S- AM - B的大小.【考点】L0:空间中直线与直线之间的位置关系;MJ:二面角的平面角及求法.【专题】11:计算题;14:证明题.【分析】(I )法一:要证明M是侧棱SC的中点,作MN // SD交CD于N,作NE丄AB交AB于E,连ME、NB,贝U MN 丄面ABCD,ME丄AB,砸二设MN=x,贝U NC=EB=x 解RT\ MNE 即可得x的值,进而得到M为侧棱SC的中点;法二:分别以DA、DC DS为x、y、z轴如图建立空间直角坐标系D-xyz,并求出S点的坐标、C 点的坐标和M点的坐标,然后根据中点公式进行判断;法三:分别以DA、DC、DS为x、y、z轴如图建立空间直角坐标系D-xyz,构造空间向量,然后数乘向量的方法来证明.(U)我们可以以D为坐标原点,分别以DA、DC、DS为x、y、z轴如图建立空间直角坐标系D- xyz,我们可以利用向量法求二面角S- AM - B的大小.【解答】证明:(I )作MN // SD交CD于N, 作NE丄AB交AB于E,连ME、NB,贝U MN 丄面ABCD, ME丄AB,E=AD=^设MN=x,贝U NC=EB=x在RT\ MEB 中,•••/ MBE=60 、二.在RT\ MNE 中由ME^NE^+MN2:3x2=x2+2解得x=1,从而w二丄一i • M为侧棱SC的中点M .(I )证法二:分别以DA、DC、DS为x、y、z轴如图建立空间直角坐标系 D - xyz,则A S,o, OL B(近,c(o?占眄现 o, 2:.设M (0, a, b) (a>0, b>0),解得入=1所以M是侧棱SC的中点.(U)由(I)得1 :!. 1:1 r, -- 一_:,19. (12分)甲、乙二人进行一次围棋比赛,约定先胜3局者获得这次比赛的胜利,比赛结束,假设在一局中,甲获胜的概率为0.6,乙获胜的概率为0.4,各局比赛结果相互独立,已知前2局中,甲、乙各胜1局.(I)求甲获得这次比赛胜利的概率;(U)设E表示从第3局开始到比赛结束所进行的局数,求E的分布列及数学期望.设 f j :. ;,.■ . ■■. | , r 分别是平面SAM、MAB 的法向量,」丄y-[「二二,」.:,得严kSM『或-2(") 二12-/(a-2)2+b2f2_2a=2(b-2)个方程组得a=1, b=1即M (0, 1, 1)(口■!!扎二0 f T1 厂N扎二0 上一且工一D!•AS=O n2•AB=O分别令「十,■亍得z i=i, yi=i, y2=o, z2=2,>=2+0+2 _V6面角S- AM - B的大小arcco证法三:设■":',—亠:.圧「-亠•亠- :"| . ' : : '■【点评】空间两条直线夹角的余弦值等于他们方向向量夹角余弦值的绝对值;空间直线与平面夹角的余弦值等于直线的方向向量与平面的法向量夹角的正弦值; 空间锐二面角的余弦值等于他的两个半平面方向向量夹角余弦值的绝对值;是侧棱SC的中点.S【考点】C8:相互独立事件和相互独立事件的概率乘法公式; CH:离散型随机变量的期望与方差.【专题】11:计算题. CG:离散型随机变量及其分布列【分析】(1)由题意知前2局中,甲、乙各胜1局,甲要获得这次比赛的胜利需在后面的比赛中先胜两局,根据各局比赛结果相互独立,根据相互独立事件的概率公式得到结果.(2)由题意知E表示从第3局开始到比赛结束所进行的局数,由上一问可知E的可能取值是2、3, 由于各局相互独立,得到变量的分布列,求出期望.【解答】解:记A i表示事件:第i局甲获胜,(i=3、4、5)B表示第j局乙获胜,j=3、4(1)记B表示事件:甲获得这次比赛的胜利,•••前2局中,甲、乙各胜1局,•••甲要获得这次比赛的胜利需在后面的比赛中先胜两局,B=A3A4+ B3A4A5 +A3 B4A5由于各局比赛结果相互独立,•P (B)=P (A3A4)+P (B3A4A5)+P (A3B4A5)=0.6X 0.6+0.4 x 0.6 x 0.6+0.6 x 0.4 x 0.6=0.648(2)E表示从第3局开始到比赛结束所进行的局数,由上一问可知E的可能取值是2、3由于各局相互独立,得到E的分布列P ( E =2 =P (A3A4+B3B4)=0.52P(E =)=1 - p(三=2 =1- 0.52=0.48•E E =X 0.52+3x 0.48=2.48.【点评】认真审题是前提,部分考生由于考虑了前两局的概率而导致失分,这是很可惜的,主要原因在于没读懂题•另外,还要注意表述,这也是考生较薄弱的环节.【专题】11:计算题;15:综合题.【分析】(1 )由已知得n+1+ -2n,即b n+1=b n+~2n,由此能够推导出所求的通项公式.(2 )由题设知a n=2 n - '12n_1,由错位相减法能求出T n=4-,故 ( 2+4+-+2n )22(佬+'.从而导出数列{a n}的前n项+••+■■2叶1【解答】解:(1 )由已知得b1=ai=1,且n+1即b n+1=b n+ -,从而b2=b1丄,严I 2护b n=b n- 1 +b3=b2+于是2n_L4丄+••+丄=2 -—-—2尹|严(n> 2).(n> 2).又b1=1,故所求的通项公式为b n=2(2)由(1) 知a n=2n1|2n_1nn-120. (12分)在数列{&}中,a1=1,a n+1= (1」)a n+ -.n 2n(1)设山二〜’,求数列{b n}的通项公式;n(2)求数列{a n}的前n项和S h.【考点】8E:数列的求和;8H:数列递推式.21i +•+•• +-/ -,①23),故S n= (2+4+-+2n),②1T n=1[1—=2123•T n=4;=2n+22叶1221••• Sn=n (n+1) +)" - - 4.2W【点评】本题考查数列的通项公式和前n项和的求法,解题时要注意错位相减法的合理运用. *進弧滲2 2 .4V _ ______________ 解这个方程组得-I— -. "2 221. (12分)如图,已知抛物线E: y2=x与圆M : (x-4) 2+y2=r2(r>0)相交于A、B、C、D四个占八、、・(I )求r的取值范围;(U)当四边形ABCD的面积最大时,求对角线AC BD的交点P的坐标. (II)设四个交点的坐标分别为•「.、匚;工二, > 、u:]・1 .【考点】IR:两点间的距离公式;JF:圆方程的综合应用;K8:抛物线的性质.【专题】15:综合题;16:压轴题.【分析】(1)先联立抛物线与圆的方程消去y,得到x的二次方程,根据抛物线E: f=x与圆M : (x-4) 2+y2=r2 (r>0)相交于A、B、C、D四个点的充要条件是此方程有两个不相等的正根,可求出r的范围.(2)先设出四点A,B,C, D的坐标再由(1)中的x二次方程得到两根之和、两根之积,表示出面积并求出其的平方值,最后根据三次均值不等式确定得到最大值时的点P的坐标. 【解答】解:(I )将抛物线E: y2=x代入圆M: (x- 4) 2+y2=r2(r>0)的方程,消去y2,整理得x2—7x+16- r2=0 (1)抛物线E: y2=x与圆M : (x-4) 2+y2=r2 (r>0)相交于A、B、C、D四个点的充要条件是:方程(1)有两个不相等的正根[49-4 (16-r2)>0• K [ + 竝2= 了 > 0则直线AC BD的方程分别为y-伍=、:[;"' ? (x-X1), y两J jY 1 (x-X1), 解得点P的坐标为(.—二,0),则由(I)根据韦达定理有X1+X2=7,X1x2=16-r2,-亠八;-U则=一一・_? | :•: -7 、厂--'■- ■-'■•:I ,「一 . :•:,•- ■:. j-,-:■■- I 一二「丁 . r 一、一—-- i -r -l L令 r -■,则今=(7+2t) 2( 7 - 2t)下面求S2的最大值.由三次均值有:!'当且仅当7+2t=14 - 4t,即十-丄时取最大值.6经检验此时:」「「满足题意.iui故所求的点P的坐标为—-I .【点评】本题主要考查抛物线和圆的综合问题.圆锥曲线是高考必考题,要强化复习.22. (12 分)设函数f (x) =x3+3bx2+3cx有两个极值点X1、x2,且X1 € [ - 1,0],x2 € [ 1,2].(1)求b、c 满足的约束条件,并在下面的坐标平面内,画出满足这些条件的点( b, c)的区域;Vis(2)证明:亠厂—■丄.【考点】6D:利用导数研究函数的极值;7B:二元一次不等式(组)与平面区域;R6:不等式的证明.【专题】11:计算题;14:证明题;16:压轴题. 【分析】(1)根据极值的意义可知,极值点X1、X2是导函数等于零的两个根,根据根的分布建立不等关系,画出满足条件的区域即可;(2)先用消元法消去参数b,利用参数c表示出f (X2)的值域,再利用参数c的范围求出f (X2) 的范围即可.【解答】解:(I) f (x) =3x2+6bx+3c, (2 分)依题意知,方程f (x) =0有两个根*、X2,且X1 € [ - 1,0],X2€ [1,2] 等价于f (- 1)> 0,f (0)< 0,f (1)< 0,f (2)> 0.r c>2b-l 由此得b,c满足的约束条件为(4分)、亡>-4匕-4满足这些条件的点(b,c)的区域为图中阴影部分.(6分)【点评】本题主要考查了利用导数研究函数的极值,以及二元一次不等式(组)与平面区域和不等式的证明,属于基础题.(II )由题设知f(X2)=3x22+6bx2+3c=0, 则 X _ —■-,故二〔_ 工•- —::'. (8分)由于X2€ [1, 2],而由(I )知c<0,故[I M ■- : i — l •又由(I )知-2< c<0,(10 分)所以-1 -;'一丄.。
2009年全国高考数学试题——全国卷1(理科)含答案
2009年普通高等学校招生全国统一考试理科数学(必修+选修Ⅱ)本试卷分第错误!未找到引用源。
卷(选择题)和第错误!未找到引用源。
卷(非选择题)两部分.第错误!未找到引用源。
卷1至2页,第错误!未找到引用源。
卷3至4页.考试结束后,将本试卷和答题卡一并交回.第Ⅰ卷考生注意:1.答题前,考生在答题卡上务必用0.5毫米黑色墨水签字笔将自己的姓名、准考证号、填写清楚 ,并贴好条形码.请认真核准条形码上的准考证号、姓名和科目.2.每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号.在试题卷上作答无效..........3.本卷共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.参考公式: 如果事件A B ,互斥,那么球的表面积公式()()()P A B P A P B +=+24πS R =如果事件A B ,相互独立,那么 其中R 表示球的半径()()()P A B P A P B =球的体积公式如果事件A 在一次试验中发生的概率是P ,那么 34π3V R =n 次独立重复试验中恰好发生k 次的概率其中R 表示球的半径()(1)(01,2)kkn kn n P k C P P k n -=-= ,,,一、选择题(1)设集合A={4,5,7,9},B={3,4,7,8,9},全集U=A B ,则集合[u (A B )中的元素共有 (A )3个 (B )4个 (C )5个 (D )6个 (2)已知1iZ +=2+I,则复数z=(A )-1+3i (B)1-3i (C)3+I (D)3-i (3) 不等式11X X +-<1的解集为(A ){x }{}011x x x 〈〈〉 (B){}01x x 〈〈 (C ){}10x x -〈〈 (D){}0x x 〈(4)设双曲线22221x y ab-=(a >0,b >0)的渐近线与抛物线y=x 2+1相切,则该双曲线的离心率等于(A (B )2 (C (D(5) 甲组有5名同学,3名女同学;乙组有6名男同学、2名女同学。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
本文由教育网站大全编辑整理,中国两千万教师上网主页,您还等什么? 输入www.0010100.com,掌握一手教育咨询,下载最新试卷,马上设为主页吧!
发表教育论文,推荐到 《文科爱好者》杂志:www.wkahz.cn《理科爱好者》杂志:www.lkahz.cn 《读与写》杂志:www.duyuxie.cn
2009年普通高等学校招生全国统一考试(辽宁卷) 数学(理工农医类) 一- 选择题(每小题5分,共60分) (1)已知集合M={x|-3(A) {x|-5(C) {x|-5(2)已知复数12zi,那么1z=
(A)52555i (B)52555i (C)1255i (D)1255i (3)平面向量a与b的夹角为060,(2,0)a,1b 则2ab (A)3 (B) 23 (C) 4 (D)12 (4) 已知圆C与直线x-y=0 及x-y-4=0都相切,圆心在直线x+y=0上,则圆C的方程为 (A)22(1)(1)2xy (B) 22(1)(1)2xy (C) 22(1)(1)2xy (D) 22(1)(1)2xy (5)从5名男医生、4名女医生中选3名医生组成一个医疗小分队,要求其中男、女医生都有,则不同的组队方案共有 (A)70种 (B) 80种 (C) 100种 (D)140种
(6)设等比数列{na}的前n 项和为nS,若63SS=3 ,则69SS =
(A) 2 (B) 73 (C) 83 (D)3 (7)曲线y=2xx在点(1,-1)处的切线方程为 (A)y=x-2 (B) y=-3x+2 (C)y=2x-3 (D)y=-2x+1 (8)已知函数()fx=Acos(x)的图象如图所示,2()23f,则(0)f= (A)23 (B)- 12 (C) 23 (D) 12 本文由教育网站大全编辑整理,中国两千万教师上网主页,您还等什么? 输入www.0010100.com,掌握一手教育咨询,下载最新试卷,马上设为主页吧!
发表教育论文,推荐到 《文科爱好者》杂志:www.wkahz.cn《理科爱好者》杂志:www.lkahz.cn 《读与写》杂志:www.duyuxie.cn
(9)已知偶函数()fx在区间0,)单调增加,则满足(21)fx<1()3f的x 取值范围是 (A)(13,23) (B) [13,23) (C)(12,23) (D) [12,23)
(10)某店一个月的收入和支出总共记录了 N个数据1a,2a,。。。Na,其中收入记为正数,支出记为负数。该店用右边的程序框图计算月总收入S和月净盈利V,那么在图中空白的判断框和处理框中,应分别填入下列四个选项中的
(A)A>0,V=S-T (B) A<0,V=S-T (C) A>0, V=S+T (D)A<0, V=S+T
(11)正六棱锥P-ABCDEF中,G为PB的中点,则三棱锥D-GAC与三棱锥P-GAC体积之比为 (A)1:1 (B) 1:2 (C) 2:1 (D) 3:2 (12)若1x满足225xx, 2x满足222log(1)5xx, 1x+2x= (A)52 (B)3 (C) 72 (D)4 (13)某企业有3个分厂生产同一种电子产品,第一、二、三分厂的产量之比为1:2:1,用分层抽样方法(每个分厂的产品为一层)从3个分厂生产的电子产品中共取100 本文由教育网站大全编辑整理,中国两千万教师上网主页,您还等什么? 输入www.0010100.com,掌握一手教育咨询,下载最新试卷,马上设为主页吧!
发表教育论文,推荐到 《文科爱好者》杂志:www.wkahz.cn《理科爱好者》杂志:www.lkahz.cn 《读与写》杂志:www.duyuxie.cn
件作使用寿命的测试,由所得的测试结果算得从第一、二、三分厂取出的产品的使用寿命的平均值分别为980h,1020h,1032h,则抽取的100件产品的使用寿命的平均值为 h. (14)等差数列na的前n项和为nS,且53655,SS则4a (15)设某几何体的三视图如下(尺寸的长度单位为m)。
则该几何体的体积为 3m (16)以知F是双曲线221412xy的左焦点,(1,4),AP是双曲线右支上的动点,则PFPA的最小值为 。 (17)(本小题满分12分) 如图,A,B,C,D都在同一个与水平面垂直的平面内,B,D为两岛上的两座灯塔的塔顶。测量船于水面A处测得B点和D点的仰角分别为075,030,于水面C处测得B点和D点的仰
角均为060,AC=0.1km。试探究图中B,D间距离与另外哪两点间距离相等,然后求B,D的距离(计算结果精确到0.01km,21.414,62.449) 本文由教育网站大全编辑整理,中国两千万教师上网主页,您还等什么? 输入www.0010100.com,掌握一手教育咨询,下载最新试卷,马上设为主页吧!
发表教育论文,推荐到 《文科爱好者》杂志:www.wkahz.cn《理科爱好者》杂志:www.lkahz.cn 《读与写》杂志:www.duyuxie.cn
(18)(本小题满分12分) 如图,已知两个正方行ABCD 和DCEF不在同一平面内,M,N分别为AB,DF的中点。 (Ⅰ)若平面ABCD ⊥平面DCEF,求直线MN与平面DCEF所成角的正值弦; (Ⅱ)用反证法证明:直线ME 与 BN 是两条异面直线。
(19)(本小题满分12分) 某人向一目射击4次,每次击中目标的概率为13。该目标分为3个不同的部分,第一、二、三部分面积之比为1:3:6。击中目标时,击中任何一部分的概率与其面积成正比。 (Ⅰ)设X表示目标被击中的次数,求X的分布列; (Ⅱ)若目标被击中2次,A表示事件“第一部分至少被击中1次或第二部分被击中2次”,求P(A) 本文由教育网站大全编辑整理,中国两千万教师上网主页,您还等什么? 输入www.0010100.com,掌握一手教育咨询,下载最新试卷,马上设为主页吧!
发表教育论文,推荐到 《文科爱好者》杂志:www.wkahz.cn《理科爱好者》杂志:www.lkahz.cn 《读与写》杂志:www.duyuxie.cn
(20)(本小题满分12分) 已知,椭圆C过点A3(1,)2,两个焦点为(-1,0),(1,0)。 (Ⅰ)求椭圆C的方程; (Ⅱ)E,F是椭圆C上的两个动点,如果直线AE的斜率与AF的斜率互为相反数,证明直线EF的斜率为定值,并求出这个定值。
(21)(本小题满分12分) 已知函数21()(1)ln,12fxxaxaxa (Ⅰ)讨论函数()fx的单调性;
(Ⅱ)证明:若5a,则对任意x1,x2(0,),x1x2,有1212()()1fxfxxx。 本文由教育网站大全编辑整理,中国两千万教师上网主页,您还等什么? 输入www.0010100.com,掌握一手教育咨询,下载最新试卷,马上设为主页吧!
发表教育论文,推荐到 《文科爱好者》杂志:www.wkahz.cn《理科爱好者》杂志:www.lkahz.cn 《读与写》杂志:www.duyuxie.cn
请考生在第(22)、(23)、(24)三题中任选一题做答,如果多做,则按所做的第一题记分。做答时用2B铅笔在答题卡上把所选题目的题号涂黑。 (22)(本小题满分10分)选修4-1:几何证明选讲
已知ABC中,AB=AC, D是ABC外接圆劣弧AC上的点(不与点A,C重合),延长BD至E。 (Ⅰ)求证:AD的延长线平分CDE;
(Ⅱ)若BAC=30,ABC中BC边上的高为2+3,求ABC外接圆的面积。 本文由教育网站大全编辑整理,中国两千万教师上网主页,您还等什么? 输入www.0010100.com,掌握一手教育咨询,下载最新试卷,马上设为主页吧!
发表教育论文,推荐到 《文科爱好者》杂志:www.wkahz.cn《理科爱好者》杂志:www.lkahz.cn 《读与写》杂志:www.duyuxie.cn
(23)(本小题满分10分)选修4-4 :坐标系与参数方程 在直角坐标系xOy中,以O为极点,x正半轴为极轴建立极坐标系,曲线C的极坐标方程为cos(3)=1,M,N分别为C与x轴,y轴的交点。 (Ⅰ)写出C的直角坐标方程,并求M,N的极坐标; (Ⅱ)设MN的中点为P,求直线OP的极坐标方程。
(24)(本小题满分10分)选修4-5:不等式选讲 设函数()|1|||fxxxa。
(Ⅰ)若1,a解不等式()3fx; (Ⅱ)如果xR,()2fx,求a的取值范围。 本文由教育网站大全编辑整理,中国两千万教师上网主页,您还等什么? 输入www.0010100.com,掌握一手教育咨询,下载最新试卷,马上设为主页吧!
发表教育论文,推荐到 《文科爱好者》杂志:www.wkahz.cn《理科爱好者》杂志:www.lkahz.cn 《读与写》杂志:www.duyuxie.cn
参考答案 (1) B (2) D (3) B (4)B (5)A (6)B (7)D (8) C (9) A (10) C (11)C (12)C (13)1013 (14) 13 (15) 4 (16)9 (17)解: 在△ABC中,∠DAC=30°, ∠ADC=60°-∠DAC=30°, 所以CD=AC=0.1 又∠BCD=180°-60°-60°=60°, 故CB是△CAD底边AD的中垂线,所以BD=BA, ……5分 在△ABC中,sinsinABACBCAABC
即sin60326,sin1520ACAB 因此, 3260.3320BDkm。 故B,D的距离约为0.33km。 ……12分
(18)(I)解法一: 取CD的中点G,连接MG,NG。 设正方形ABCD,DCEF的边长为2,
则MG⊥CD,MG=2,NG=2 因为平面ABCD⊥平面DCED, 所以MG⊥平面DCEF, 可得∠MNG是MN与平面DCEF所成的角。
因为MN=6,所以6sin3NMG为MN与平面DCEF所成角的正弦值 ……6分 解法二: 设正方形ABCD,DCEF的边长为2,以D为坐标原点,分别以射线DC,DF,DA为x,y,z轴正半轴建立空间直角坐标系如图.
则M(1,0,2),N(0,1,0),可得MN=(-1,1,2).