杭州师范大学2017年《817高等代数》考研专业课真题试卷
杭州师范大学831高等代数2020年考研真题

f (n) (a) (x a)n 。 n!
10. n 阶矩阵 A 为幂等矩阵( A2 A)的充分必要条件是 r(A) r(E A) n ,这里 r(A) 为 A 的
秩, E 为 n 阶单位矩阵。
2020 年 考试科目代码 831 考试科目名称 高等代数 (本考试科目共 2 页,第 2 页)
杭州师范大学硕士研究生招生考试命题纸
杭州师范大学 2020 年招收攻读硕士研究生考试题
考试科目代码: 831 考试科目名称: 高等代数
说明:考生答题时一律写在答题纸上,否则漏批责任自负。
每题 15 分,共 150 分
1. 证明:一个非零实二次型可以分解为两个一次齐次多项式的乘积的充分必要条件是, 它 的秩为 2 且符合差为 0,或秩为 1。
6.设V 为 n 维欧式空间, 为V 的一个正交变换。设W 为V 的一个维数小于 n 的 -不变子空
间,令W 为W 的正交补。
(1)证明:W 也是一个 -不变子空间。
(2)证明:存在 V 的一组标准正交基 1, ,n 使得 在这组基下的矩阵为形如如下矩阵
A
A1 0
0 A2
,其中
A1
和
A2
2. 求正交线性替换将二次型化为标准型 f (x1, x2, x3) 2x12 2x22 2x32 2x1x2 2x1x3 2x2x3 。
3.已知线性方程组
ax1 x2 x1 bx2
x3 x3
4 3
。
x1 2bx2 x3 4
(1) a, b 取何值时,该方程组有解。
(2) 在有解的情况下,求出该方程组的解。
(1)证明:1, x a, (x a)2, , (x a)n 构成 P[x]n 的一组基,其中 a P 。
全国名校高等代数考研真题汇编(含部分答案)

考生注意: 1.本 试 卷 满 分 为 150 分,共计10道题,每题满分15 分,考试时间总计180 分钟;
2.答案必须写在答题纸上,写在试题纸上或草稿纸 上均无效。
一、设 是 阶单位矩阵, ,证明 的行列式等于 .
,矩阵 满足
二、设 是 阶幕零矩阵满足
,
.证明所有的 都相似于一个对角矩阵,
的特征值之和等于矩阵 的秩.
3.南开大学高等代数考研真题 2012年南开大学804高等代数考研真题 2011年南开大学802高等代数考研真题
4.厦 门 大 学 825高等代数考研真题 2014年厦门大学825高等代数考研真题 2013年厦门大学825高等代数考研真题 2012年厦门大学825高等代数考研真题 2011年厦门大学825高等代数考研真题
有
证明:
(1)
.
(2) 是 的不变子空间,则 也是的 不变子空间.
10.四川大学高等代数考研真题及 详解
2013年四川大学931高等代数考研真 题及详解
2011年四川大学高等代数考研真题
11.浙江大学高等代数考研真题
2012年浙江大学601高等代数考研真题
浙江大学2012年攻读硕士学位研究生入学试题 考试科目:高等代数(601)
5.中 山 大 学 877高等代数考研真题
2015年中山大学877高等代数考研真题 2014年中山大学874高等代数考研真题 2013年中山大学869高等代数考研真题 2012年中山大学869高等代数考研真题 2011年中山大学875高等代数考研真题 6.中南大学高等代数考研真题 2011年中南大学883高等代数考研真题 7.湖南大学高等代数考研真题 2013年湖南大学813高等代数考研真题 8.华 东 师 范 大 学 817高等代数考研真题 2013年华东师范大学817高等代数考研真题 2012年华东师范大学817高等代数考研真题 2011年华东师范大学817高等代数考研真题 9.华中科技大学高等代数考研真题及详解 2013年华中科技大学高等代数考研真题 2012年华中科技大学高等代数考研真题及详解 2011年华中科技大学高等代数考研真题 10.四川大学高等代数考研真题及详解 2013年四川大学931高等代数考研真题及详解 2011年四川大学高等代数考研真题 11.浙江大学高等代数考研真题 2012年浙江大学601高等代数考研真题
2017年考研数学一试卷真题及答案解析

2017年考研数学一真题及答案解析一、选择题:1~8 小题,每小题 4 分,共 32 分,下列每小题给出的四个选项中,只有一项符合题目要求的,请将所选项前的字母填在 .答题纸..指定位置上. (1)若函数1,0(),0x f x axb x ì->ï=íï£î在0x =处连续,则( )()()11()22()02A abB abC abD ab ==-==【答案】A【解析】001112lim lim ,()2x x x f x ax ax a++®®-==!在0x =处连续11.22b ab a \=Þ=选A. (2)设函数()f x 可导,且'()()0f x f x >,则( )()()()(1)(1)(1)(1)()(1)(1)(1)(1)A f fB f fC f fD f f >-<->-<-【答案】C【解析】'()0()()0,(1)'()0f x f x f x f x >ì>\í>î!或()0(2)'()0f x f x <ìí<î,只有C 选项满足(1)且满足(2),所以选C 。
(3)函数22(,,)f x y z x y z =+在点(1,2,0)处沿向量()1,2,2u =的方向导数为( )()12()6()4()2A B C D 【答案】D【解析】2(1,2,0)122{2,,2},{4,1,0}{4,1,0}{,,} 2.|u |333f u gradf xy x z gradf gradf u ¶=Þ=Þ=×=×=¶选D.(4)甲乙两人赛跑,计时开始时,甲在乙前方10(单位:m )处,图中实线表示甲的速度曲线1()v v t =(单位:/m s ),虚线表示乙的速度曲线2()v v t =,三块阴影部分面积的数值依次为10,20,3,计时开始后乙追上甲的时刻记为0t (单位:s ),则( )()s 0000()10()1520()25()25A tB tC tD t =<<=>【答案】B【解析】从0到0t 这段时间内甲乙的位移分别为120(t),(t),t t v dt v dt òò则乙要追上甲,则210(t)v (t)10t v dt -=ò,当025t =时满足,故选C.(5)设a 是n 维单位列向量,E 为n 阶单位矩阵,则( )()()()()22T T T T A E B E C E D E aa aa aa aa -++-不可逆不可逆不可逆不可逆【答案】A【解析】选项A,由()0aa a a a -=-=T E 得()0aa -=T E x 有非零解,故0aa -=T E 。
2017年华南理工大学研究生入学考试专业课真题864_高等代数

864 华南理工大学2017年攻读硕士学位研究生入学考试试卷(请在答题纸上做答,试卷上做答无效,试后本卷必须与答题纸一同交回) 科目名称:高等代数适用专业:基础数学, 应用数学, 计算数学, 概率论与数理统计, 运筹学与控制论共2页第 1 页1. (15分) 设g (x ), h (x )是数域P 上的多项式, ∂(g (x )) = m, ∂(h (x )) = n ,且(g (x ), h (x )) = 1. 又设f (x )是P 上的任一个次数< n + m 的多项式. 证明:存在r (x ), s (x ) ∈ P [x ]使得f (x ) = r (x )g (x ) + s (x )h (x ),其中r (x ) = 0或者∂(r (x )) < n , ∂(s (x )) < m .这里A 为三阶方阵, X = (x 1, x 2, x 3)1, b = (b 1, b 2, b 3)1 /= 0. 知η1, η2, η3是AX = b 的三个解向量, η1 + η2 = (1, 2, 3)1, η2 + η3 (0, −1, 1)1, η3 + η1 = (1, 0, −1)1, 求该方程组的基础解系.1, 己 =3. (20分) 设A 为n 阶方阵, A 的(i, j )-元素a ij = |i − j |, 求行列式|A |的值.4. (20分) 己知α, α, α是三维欧氏空间V 的一组基, 且这组基的度量矩阵 11 A = −1 −1 20 ,0 1 4求V 的一组标准正交基(用α1, α2, α3表示出来).第 2 页 6. (20分) 设f (x ), g (x )是数域P 上的多项式, (f (x ), g (x )) = 1, A 是P 上的n 阶方阵. 证明: f (A )g (A ) = 0当且仅当r (f (A )) + r (g (A )) = n .7. (20分) 设A 是复数域C 上的任一个n 阶方阵.(1) 设λ1是A 的一个特征值, 证明: 存在C 上的n 阶可逆方阵T 使得 λ1T −1AT = 0 b 12 b 22 · · · · ·b 1n b 2n (2) 对n 作归纳法证明, A 必相似于一个上三角矩阵:λ c 12 · · · c 1n c 2n .。
2017年考研(数学三)真题试卷(题后含答案及解析)

2017年考研(数学三)真题试卷(题后含答案及解析)题型有:1. 选择题 2. 填空题 3. 解答题一、选择题下列每题给出的四个选项中,只有一个选项符合题目要求。
1.若函数f(x)=在x=0处连续,则( )A.ab=1/2B.ab=-C.ab=0D.ab=2正确答案:A解析:=1/2a,∵f(x)在x=0处连续,1/2a=bab=1/2,选A.2.二元函数z=xy(3-x-y)的极值点是( )A.(0,0)B.(0,3)C.(3,0)D.(1,1)正确答案:D解析:=-1,从而AC-B2>0,从而(1,1)为极值点.3.设函数f(x)可导,且f(x)f’(x)>0,则( )A.f(1)>f(-1)B.f(1)<f(-1)C.|f(1)|>f(-1)|D.|f(1)|<|f(-1)|正确答案:C解析:举特例,设f(x)=ex,可排除BD;设f(x)=-ex,可排除A,故选C.4.若函数收敛,则k=( )A.1B.2C.-1D.-2正确答案:C解析:因为原级数收敛,所以1+k=0k=-1.选C.5.设α为n维单位向量,E为n阶单位矩阵,则( )A.E-ααT不可逆B.E+ααT不可逆C.E+2ααT不可逆D.E-2ααT不可逆正确答案:A解析:选项A,由(E-ααT)α=α-α=0得(E-ααT)x=0有非零解,故|E-ααT|=0.即E-ααT不可逆,选项B,由r(ααT)=1得ααT的特征值为n-1个0,1故E-ααT的特征值为n-1个1,2,故可逆.6.已知矩阵A=,则( )A.A与C相似,B与C相似B.A与C相似,B与C不相似C.A与C不相似,B与C相似D.A与C不相似,B与C不相似正确答案:B解析:由(λE-A)=0可知A的特征值为2,2,1因为2E-A=得r(2E-A)=1,∴A可相似对角化。
且A~由|λE-B|=0可知B特征值为2,2,1因为2E-B=得r(2E-B)=2,∴B不可能相似对角化,显然C可相似对角化,∴A~C,且B不相似于C.7.设A,B,C为三个随机事件,且A与C相互独立,B与C相互独立,则A∪B与C相互独立的充分必要条件是( )A.A与B相互独立B.A与B互不相容C.AB与C相互独立D.AB与C互不相容正确答案:C解析:由题设知,P(AC)=P(A)P(C),P(BC)=P(B)P(C),由A∪B与C相互独立知,P(A∪B)C=P(A∪B)P(C)=P(AC)+P(BC)-P(ABC)而P[(A∪B)∩C]=P(AC∪BC)=P(AC)+P(BC)-P(ABC)P(ABC)=P(AB)P(C),即AB与C相互独立.8.设X1,X2,…,Xn(n≥2)为来自总体N(μ,1)的简单随机样本,记Xi,则下列结论不正确的是( )A.(X1-μ)2服从χ2分布B.2(Xn-x1)2服从χ2分布C.)2服从χ2分布D.n(-μ)2服从χ2分布正确答案:B二、填空题9.∫-ππ(sin3x+)dx=_______.正确答案:π3/2解析:∫-ππ(sin3x+)dx=2∫0π(2∫0π/2πcost.πcostdt=2π2∫0π/2πcos2tdt=2π22.=π3/2.10.差分方程yt+1-2yt=2t通解为yt=_______.正确答案:φt=C.2t+t.2t解析:由yt+1-2y1=2tλ=2,∴=C2t设y1*=C1t21,则y1+1*=C1(t+1)2i+1=2tt2i(C∈R).11.设生产某产品的平均成本(Q)=1+e-Q,其中产量为Q,则边际成本为_______.正确答案:1+(1-Q)e-Q解析:C=Q=Q(1+e-Q)C’(Q)=1+e-Q-Qe-Q=1+(1-Q)e-Q.12.设函数f(x,y)具有一阶连续偏导数,且(x,y)=yeydx+x(1+y)eydy,f(0,0)=0,则f(x,y)=_______.正确答案:xyey解析:f’k=yey,f’y=x(1+y)ey,f(x,y)=∫yeydx=xyey+c(y),故f’y=xey+xyey+c’(y)=xey+xyey,故c’(y)=0,由f(0,0)=0,即f(x,y)=xyey.13.设矩阵A=,α1、α2、α3为线性无关的三维向量组,则向量组Aα1、Aα2、Aα3的秩为_______.正确答案:2解析:由a1,a2,a3,线性无关,可知矩阵a1,a2,a3,可逆,故r(Aa1,Aa2,Aa3)=r(A(a1,a2,a3))=r(A)再由r(A)=2得r(Aa1,Aa2,Aa3)=2.14.设随机变量X的概率分布为P{X=-2}=1/2,P={X=1}=a,P{X=3}=b,若EX=0,则DX=_______.正确答案:9/2解析:由归一性得+a+b=1,再由EX=0得-1+a+3b=0故a=b=1/4,故EX2=(-2)2×=9/2,DX=EX2-(EX)2=9/2.三、解答题解答应写出文字说明、证明过程或演算步骤。