湘教版七年级数学下册单元测试题全套及参考答案
湘教版 七年级数学(下册) 第1章二元一次方程组 测试题及答案(2019年春)

第1章《二元一次方程组》单元测试卷一、填空题(每题2分,共20分)1.(2分)(2010春•安阳县校级期末)把方程2x﹣y﹣5=0化成含y的代数式表示x的形式:x=.2.(2分)(2014春•高安市期末)在方程3x﹣ay=8中,如果是它的一个解,那么a的值为.3.(2分)已知二元一次方程2x﹣y=1,若x=2,则y=3,若y=0,则x=.4.(2分)(2015春•武安市校级月考)方程x+y=2的正整数解是.5.(2分)(2012春•雁江区期中)某人买了60分的邮票和80分的邮票共20张,用去了13元2角,则60分的邮票买了14枚,80分的邮票买了6枚.6.(2分)若m的2倍与n的倍的和等于6,列为方程是2m+n=6.7.(2分)如果方程组的解是,则a=3,b=1.8.(2分)(2012春•如皋市校级期中)已知:a+b=10,a﹣b=20,则a﹣b2的值是﹣10.9.(2分)若x2a+by3与x6ya﹣b是同类项,则a+b=3.10.(2分)(2012春•鄂州月考)甲、乙两人在200米的环形跑道上练习径走,当他们从某处同时出发背向行走时,每30秒相遇一次;同向行走时,每隔4分钟相遇一次,设甲、乙的速度分别为每分钟x米,每分钟y米,则可列方程组.二、选择题:(每题3分,共18分)11.(3分)(2011春•海安县校级期末)下列各方程组中,属于二元一次方程组的是()A.B.C.D.12.(3分)(2009春•平谷区校级期末)方程组的解是()A .B .C .D .13.(3分)(2013春•冠县校级期末)已知的解是,则( )A .B .C .D .14.(3分)(2013春•邹平县期末)用加减消元法解方程组,下列变形正确的是( )A .B .C .D .15.(3分)既是方程2x﹣y=3,又是3x+4y﹣10=0的解是()A.B.C.D.16.(3分)(2011春•上饶县校级期末)初一年级学生在会议室开会,每排座位坐12人,则有11人无处坐;每排座位坐14人,则余1人独坐一排.这间会议室共有座位多少排()A.14 B.13 C.12 D.15三、解方程组(每题6分,共24分)17.(24分)(1)用代入法解(2)用代入法解(3)加减法解.(4)用加减法解:.21.(6分)(2010秋•长春校级期中)二元一次方程组解的和为非正数,求m的取值范围.四、用方程组解应用题(每题10分,共30分)22.(10分)有一只驳船,载重量是800吨,容积是795立方米,现在装运生铁和棉花两种物资,生铁每吨的体积为0.3立方米,棉花每吨的体积为4立方米,生铁和棉花各装多少吨,才能充分利用船的载重量和容积?23.(10分)有甲乙两种债券,年利率分别是10%与12%,现有400元债券,一年后获利45元,问两种债券各有多少?24.(12分)(2014秋•长汀县期末)(应用题)某商场计划拨款9万元从厂家购进50台电视机,已知该厂家生产三种不同型号的电视机,出厂价分别为:甲种每台1500元,乙种每台2100元,丙种每台2500元.(1)若商场同时购进其中两种不同型号电视机共50台,用去9万元,请你研究一下商场的进货方案;(2)若商场销售一台甲种电视机可获利150元,销售一台乙种电视机可获利200元,销售一台丙种电视机可获利250元.在同时购进两种不同型号电视机的方案中,为使销售利润最多,你选择哪一种进货方案?第1章《二元一次方程组》单元测试卷一、填空题(每题2分,共20分)1.(2分)(2010春•安阳县校级期末)把方程2x﹣y﹣5=0化成含y的代数式表示x的形式:x=.考点:解二元一次方程.专题:计算题.分析:本题是将二元一次方程变形,用一个未知数表示另一个未知数.先移项,再系数化为1即可.解答:解:用含y的代数式表示x:移项得2x=5+y,系数化为1得x=.点评:解题时可以参照一元一次方程的解法,利用等式的性质解题,可以把一个未知数当做已知数来处理.2.(2分)(2014春•高安市期末)在方程3x﹣ay=8中,如果是它的一个解,那么a的值为1.考点:二元一次方程的解.专题:方程思想.分析:知道了方程的解,可以把这对数值代入方程,得到一个含有未知数a的一元一次方程,从而可以求出a的值.解答:解:把代入方程3x﹣ay=8,得9﹣a=8,解得a=1.点评:解题关键是把方程的解代入原方程,使原方程转化为以系数a为未知数的方程.一组数是方程的解,那么它一定满足这个方程,利用方程的解的定义可以求方程中其他字母的值.3.(2分)已知二元一次方程2x﹣y=1,若x=2,则y=3,若y=0,则x=.考点:解二元一次方程.专题:方程思想.分析:利用解的定义,把x=2代入方程可得y=3;把y=0代入方程可得x=.解答:解:把x=2代入方程得2×1﹣y=1,解得y=3;把y=0代入方程得2x=1,解得x=.点评:解题关键是把方程的解代入原方程,使原方程转化为一元一次方程.4.(2分)(2015春•武安市校级月考)方程x+y=2的正整数解是.考点:解二元一次方程.分析:由题意求方程的解且要使x,y都是正整数,将方程移项将x和y互相表示出来,在由题意要求x>0,y>0根据以上两个条件可夹出合适的x值从而代入方程得到相应的y 值.解答:解:由已知方程x+y=2,移项得y=2﹣x∵x,y都是正整数,∴y=2﹣x>0,求得x≤1又∵x>0,根据以上两个条件可知,合适的x值只能是x=1,相应的y值为y=1.∴方程x+y=2的正整数解是:.点评:本题是求不定方程的整数解,先将方程做适当变形,确定其中一个未知数的取值范围,然后列举出适合条件的所有整数值,再求出另一个未知数的值.5.(2分)(2012春•雁江区期中)某人买了60分的邮票和80分的邮票共20张,用去了13元2角,则60分的邮票买了14枚,80分的邮票买了6枚.考点:二元一次方程组的应用.分析:本题中含有两个定量:邮票总张数,钱的总数.根据这两个定量可找到两个等量关系:60分邮票的张数+80分邮票的张数=20,0.6×60分邮票的张数+0.8×80分邮票的张数=13.2.解答:解:设买了60分的邮票x张,80分的邮票y枚.则,解得.故填14;6.点评:用二元一次方程组解决问题的关键是找到2个合适的等量关系.在本题中需找到两个定量:邮票总张数,钱的总数.在做题过程中还要注意钱的单位要统一.6.(2分)若m的2倍与n的倍的和等于6,列为方程是2m+n=6.考点:由实际问题抽象出二元一次方程.分析:根据m的2倍与n的倍的和等于6,可列出方程.解答:解:根据题意得:2m+n=6.故答案为:2m+n=6.点评:本题考查由实际问题抽象出二元一次方程,关键是求和,根据此可列方程.7.(2分)如果方程组的解是,则a=3,b=1.考点:二元一次方程组的解.专题:计算题.分析:将x与y的值代入方程组即可求出a与b的值.解答:解:将x=1,y=﹣1代入方程组得:,解得:a=3,b=1.故答案为:3;1.点评:此题考查了二元一次方程组的解,方程组的解即为能使方程组两方程成立的未知数的值.8.(2分)(2012春•如皋市校级期中)已知:a+b=10,a﹣b=20,则a﹣b2的值是﹣10.考点:解二元一次方程组;代数式求值.专题:计算题.分析:首先由已知解由a+b=10,a﹣b=20组成的关于a、b的二元一次方程组,再将所求得的a、b的值代入要求的代数式求解.解答:解:由已知得:,解得:,再代入得:a﹣b2=15﹣(﹣5)2=﹣10.故答案为:﹣10.点评:此题考查的知识点是解二元一次方程组,关键是正确解二元一次方程组.9.(2分)若x2a+by3与x6ya﹣b是同类项,则a+b=3.考点:解二元一次方程组;同类项.分析:先根据同类项的定义得出关于a、b的方程组,求出a、b的值即可.解答:解:∵x2a+by3与x6ya﹣b是同类项,∴,①+②得,3a=9,解得a=3;把a=3代入②得,3﹣b=3,解得b=0,∴a+b=3+=3.故答案为:3.点评:本题考查的是解二元一次方程组,熟知解二元一次方程组的加减消元法与代入消元法是解答此题的关键.10.(2分)(2012春•鄂州月考)甲、乙两人在200米的环形跑道上练习径走,当他们从某处同时出发背向行走时,每30秒相遇一次;同向行走时,每隔4分钟相遇一次,设甲、乙的速度分别为每分钟x米,每分钟y米,则可列方程组.考点:由实际问题抽象出二元一次方程组.分析:设甲、乙的速度分别为每分钟x米,每分钟y米,根据甲、乙两人在200米的环形跑道上练习径走,当他们从某处同时出发背向行走时,每30秒相遇一次;同向行走时,每隔4分钟相遇一次,可列出方程组.解答:解:设甲、乙的速度分别为每分钟x米,每分钟y米,则.故答案为:.点评:本题是个行程问题,一次相遇,一次追及,根据路程可列方程组求解.二、选择题:(每题3分,共18分)11.(3分)(2011春•海安县校级期末)下列各方程组中,属于二元一次方程组的是()A.B.C.D.考点:二元一次方程组的定义.分析:二元一次方程组的定义的三要点:(1)只有两个未知数;(2)未知数的项最高次数都应是一次;(3)都是整式方程.据此可来逐项分析解题.解答:解:A、此方程组里含有xy,是二次,不符合二元一次方程组的定义,故A选项不符合题意;B、此方程组里含有x,y,z是三元,不符合二元一次方程组的定义,故B选项不符合题意;C、此方程组符合二元一次方程组的定义,故C选项符合题意;D、此方程组里有分式方程,不符合二元一次方程组的定义,故D选项不符合题意.故选:C.点评:本题考查二元一次方程组的定义.解题过程中关键是要注意其三要点:1、只有两个未知数;2、未知数的项最高次数都应是一次;3、都是整式方程.12.(3分)(2009春•平谷区校级期末)方程组的解是()A.B.C. D.考点:二元一次方程组的解.分析:把四个选项分别代入原方程组,能是方程组中两个方程都成立的未知数的值,即是方程组的解.解答:解:A、方程组的解指两个未知数的值,所以A不是方程组的解;B、把代入x﹣y=1得,0≠1,所以B不是方程组的解;C、把代入x﹣y=1得,﹣1≠1,所以C不是方程组的解;D、把代入原方程组,同时满足两个方程,是原方程组的解.故选D.点评:所谓“方程组”的解,指的是该数值满足方程组中的每一方程的值.13.(3分)(2013春•冠县校级期末)已知的解是,则()A.B.C.D.考点:二元一次方程组的解.分析:先把x、y的值代入原方程组,得到关于a、b的方程组,再根据解二元一次方程组的方法,求出a、b的值即可.解答:解:把代入方程组,得,(1)×3﹣(2)×4,得9b﹣16b=7,解,得b=﹣1.把b=﹣1代入(1),得4a﹣3=5,解得a=2.则原方程组的解是.故选B.点评:此题比较简单,考查的是解二元一次方程组的代入消元法和加减消元法.14.(3分)(2013春•邹平县期末)用加减消元法解方程组,下列变形正确的是()A. B.C. D.考点:解二元一次方程组.分析:运用加减法解方程组时,要满足方程组中某一个未知数的系数相等或互为相反数,把原方程变形要根据等式的性质,本题中方程①×2,②×3,就可把y的系数变成互为相反数.解答:解:①×2得,4x+6y=6③,②×3得,9x﹣6y=33④,组成方程组得:.故选C.点评:二元一次方程组的解法有加减法和代入法两种,一般选用加减法解二元一次方程组较简单.运用加减法解方程组时,要满足方程组中某一个未知数的系数相等或互为相反数.15.(3分)既是方程2x﹣y=3,又是3x+4y﹣10=0的解是()A.B.C.D.考点:二元一次方程的解.分析:根据题意即可得到方程组:,解方程组即可求解.解答:解:根据题意得:,①×4+②得:x=2,把x=2代入①得:y=1.则方程组的解是:.故选A.点评:本题主要考查了一元一次方程组的解法,正确根据方程组的解的定义,转化为解方程组的问题是解题关键.16.(3分)(2011春•上饶县校级期末)初一年级学生在会议室开会,每排座位坐12人,则有11人无处坐;每排座位坐14人,则余1人独坐一排.这间会议室共有座位多少排()A.14 B.13 C.12 D.15考点:二元一次方程组的应用.分析:用二元一次方程组解决问题的关键是找到2个合适的等量关系,本题有两个定量:座位排数和学生人数.分析后可得出两个等量关系:12×排数+11=学生人数;14×(排数﹣1)+1=学生人数.解答:解:设这间会议室共有座位x排,有学生y人,则,解得.故选C.点评:解题关键是弄清题意,合适的等量关系,列出方程组.本题需注意:每排座位坐14人,则余1人独坐一排的含义是有(x﹣1)排坐了14人,那么学生数为14(x﹣1)+1.三、解方程组(每题6分,共24分)17.(24分)(1)用代入法解(2)用代入法解(3)加减法解.(4)用加减法解:.考点:解二元一次方程组.专题:计算题.分析:(1)由第二个方程得到y=2x﹣2,然后代入第一个方程求出x的值,再求出y的值即可;(2)由第一个方程得到x=2y,然后代入第二个方程求出y的值,再求出x的值即可;(3)相加求出x的值,相减求出y的值即可得解;(4)先把方程组整理成一般形式,然后再利用加减消元法求解即可.解答:解:(1),由②得,y=2x﹣2③,③代入①得,4x﹣3(2x﹣2)=5,解得x=,把x=代入③得,y=2×﹣2=﹣1,所以,方程组的解是;(2),由①得,x=2y③,③代入②得,2y+5y=,解得y=,把y=代入③得,x=,所以,方程组的解是;(3),①+②得,4x=12,解得x=3,①﹣②得,4y=4,解得y=1,所以,方程组的解是;(4)方程组可化为,②﹣①得,y=19,解得y=6,把y=6代入②得,x+×6=0,解得x=﹣7,所以,方程组的解是.点评:本题考查了解二元一次方程组,注意要按照题目要求的消元方法求解.21.(6分)(2010秋•长春校级期中)二元一次方程组解的和为非正数,求m的取值范围.考点:解二元一次方程组;解一元一次不等式.专题:计算题.分析:先把m当做已知,解关于x、y的二元一次方程组,求出x、y的值,再根据x+y为非正数得到关于x的一元一次方程,求出m的取值范围即可.解答:解:,②×2+①得,7x=5m+1,x=,代入②得,y=∵x+y为非正数,∴x+y=+≤0,解得m≤﹣10.故m的取值范围:m≤﹣10.点评:本题考查的是解二元一次方程及解一元一次不等式组,解答此题的关键是把m当作已知表示出x、y的值,再根据已知条件得到关于m的一元一次不等式,解此不等式即可求出m的取值范围.四、用方程组解应用题(每题10分,共30分)22.(10分)有一只驳船,载重量是800吨,容积是795立方米,现在装运生铁和棉花两种物资,生铁每吨的体积为0.3立方米,棉花每吨的体积为4立方米,生铁和棉花各装多少吨,才能充分利用船的载重量和容积?考点:二元一次方程组的应用;一元一次方程的应用专题:应用题.分析:设生铁运x吨,则棉花运(800﹣x)吨,利用容积是795m3,得出等式求出即可.解答:解:设生铁运x吨,则棉花运(800﹣x)吨,由题意得出:0.3x+4(800﹣x)=795,解得:x=650,800﹣650=150(吨),答:生铁运650吨,棉花运150吨.点评:此题主要考查了一元一次方程的应用,根据两者的体积与重量之间的关系得出等式是解题关键.23.(10分)有甲乙两种债券,年利率分别是10%与12%,现有400元债券,一年后获利45元,问两种债券各有多少?考点:二元一次方程组的应用.专题:应用题.分析:设甲债券x元,乙债券y元,则根据“共有400元债券”及“一年后获利45元”可分别列出方程,联立求解可得出答案.解答:解:设甲债券x元,乙债券y元,由题意得:,解得:,即甲债券150元,乙债券250元.答:甲债券150元,乙债券250元.点评:本题考查了二元一次方程组的应用,解答此类题目,一定要仔细审题,设出未知数,得出等量关系,然后联立方程求解.24.(12分)(2014秋•长汀县期末)(应用题)某商场计划拨款9万元从厂家购进50台电视机,已知该厂家生产三种不同型号的电视机,出厂价分别为:甲种每台1500元,乙种每台2100元,丙种每台2500元.(1)若商场同时购进其中两种不同型号电视机共50台,用去9万元,请你研究一下商场的进货方案;(2)若商场销售一台甲种电视机可获利150元,销售一台乙种电视机可获利200元,销售一台丙种电视机可获利250元.在同时购进两种不同型号电视机的方案中,为使销售利润最多,你选择哪一种进货方案?考点:二元一次方程组的应用.专题:优选方案问题.分析:(1)因为要购进两种不同型号电视机,可供选择的有3种,那么将有三种情况:甲乙组合,甲丙组合,乙丙组合.等量关系为:台数相加=50,钱数相加=90000;(2)算出各方案的利润加以比较.解答:解:(1)解分三种情况计算:①设购甲种电视机x台,乙种电视机y台.解得.②设购甲种电视机x台,丙种电视机z台.则,解得:.③设购乙种电视机y台,丙种电视机z台.则解得:(不合题意,舍去);(2)方案一:25×150+25×200=8750.方案二:35×150+15×250=9000元.答:购甲种电视机25台,乙种电视机25台;或购甲种电视机35台,丙种电视机15台.购买甲种电视机35台,丙种电视机15台获利最多.点评:本题主要考查学生的分类讨论思想和对于实际问题中方程组解的取舍情况.弄清题意,合适的等量关系,列出方程组仍是解决问题的关键.本题还需注意可供选择的将有三种情况:甲乙组合,甲丙组合,乙丙组合.。
湘教版七年级下册数学第1章达标检测试卷(含答案)

湘教版七年级下册数学第1章达标检测试卷(本试卷分第Ⅰ卷和第Ⅱ卷,考试时间:120分钟,赋分:120分)第Ⅰ卷 (选择题 共36分)一、选择题(本大题共12小题,每小题3分,共36分)1.若方程■x -2y =x +5是二元一次方程,■是被弄污的x 的系数,请推断■的值的情况是( )A .不可能是-1B .不可能是-2C .不可能是1D .不可能是22.(博兴县期中)若方程3x |m|-2=3y n +1+4是二元一次方程,则m ,n 的值分别为( )A .2,-1B .-3,0C .3,0D .±3,03.(广丰区期末)二元一次方程2x +y =10的正整数解有( )A .2个B .3个C .4个D .5个4.下列各方程组中是二元一次方程组的是 ( )A .⎩⎪⎨⎪⎧a +13b =1,a =b 2B .⎩⎪⎨⎪⎧3x -2y =5,2y -z =10C .⎩⎪⎨⎪⎧x 3+y 2=1,xy =1D .⎩⎪⎨⎪⎧x -y =27,x +11y =405 5.用加减法解下列四个方程组:(1)⎩⎪⎨⎪⎧2.5x +3y =1,①-2.5x +2y =4;② (2)⎩⎪⎨⎪⎧3x +4y =7,①4x -4y =8;②(3)⎩⎪⎨⎪⎧14x +5y =32,①y =0.5x +11.5;② (4)⎩⎪⎨⎪⎧3x -5y =7,①3x -6y =8.② 其中方法正确且最适宜的是 ( )A .(1)①-②B .(2)②-①C .(3)①+②D .(4)②-①6.七年级有两个班植树,一天共植树30棵,已知甲班的植树棵数是乙班植树棵数的2倍,设甲、乙两班分别植树x 棵,y 棵,那么可列方程组( )A .⎩⎪⎨⎪⎧x +y =30,x =2yB .⎩⎪⎨⎪⎧x +y =30,2x =y C .⎩⎪⎨⎪⎧x =30-y ,y =2+x D .⎩⎪⎨⎪⎧x +y =30,x =y +27.若|3x +2y -4|+27(5x +6y)2=0,则x ,y 的值分别是 ( )A .⎩⎪⎨⎪⎧x =6,y =-5B .⎩⎪⎨⎪⎧x =3,y =-52 C .⎩⎪⎨⎪⎧x =8,y =10 D .⎩⎪⎨⎪⎧x =5,y =-1128.若关于x ,y 的二元一次方程组⎩⎪⎨⎪⎧x +2y =5k +2,x -y =4k -5 的解满足x +y =9,则k 的值是 ( )A .1B .2C .3D .49.方程组⎩⎪⎨⎪⎧x +y =-1,x +z =0,y +z =1的解是( ) A .⎩⎪⎨⎪⎧x =-1,y =1,z =0 B .⎩⎪⎨⎪⎧x =1,y =0,z =-1 C .⎩⎪⎨⎪⎧x =0,y =1,z =-1 D .⎩⎪⎨⎪⎧x =-1,y =0,z =110.(郯城县期末)如果方程组⎩⎪⎨⎪⎧ax -by =13,4x -5y =41 与⎩⎪⎨⎪⎧ax +by =3,2x +3y =-7有相同的解,则a ,b 的值是 ( )。
湘教版七年级下册数学第4章 相交线与平行线含答案【参考答案】

湘教版七年级下册数学第4章相交线与平行线含答案一、单选题(共15题,共计45分)1、若将△ABC沿射线OT方向平移一段距离后与△DEF完全重合,则①AD=BE=CF;②AD∥BE∥CF;③AB=DE,AC=DF,BC=EF;④AB∥DE,AC∥DF,BC∥EF中一定成立的是()A.②④B.①③C.①③④D.①②③④2、如图,将边长为 6 的正方形ABCD沿其对角线AC剪开,再把△ABC沿着AD 方向平移,得到△A′B′C′,当两个三角形重叠部分为菱形时,则DA′为()A.3B.4C.2 ﹣1D.6 ﹣63、如图所示,AD⊥BC,DE∥AB,则∠ADE与∠B的关系是()A.相等B.互补C.互余D.不能确定4、如图,已知直线m∥n,直角三角板ABC的顶点A在直线m上,则∠α等于()A.21°B.48°C.58°D.30°5、如图,在Rt△ABO中,斜边AB=1.若OC∥BA,∠AOC=36°,则()A.点B到AO的距离为sin54°B.点B到AO的距离为tan36°C.点A到OC的距离为sin36°sin54°D.点A到OC的距离为cos36°sin54°6、如图,下列不能判定AB∥CD的条件是()A.∠B+∠BCD=180°B.∠1=∠2C.∠3=∠4D.∠B=∠57、如图,已知AD∥BC,∠B=30°,DB平分∠ADE,则∠DEC=()A.30°B.60°C.90°D.120°8、如图,直线a∥b,Rt△ABC的直角顶点B落在直线a上,若∠1=27°,则∠2的度数是()A.53°B.63°C.73°D.83°9、直线AB上有一点O,OM⊥AB于O,另有直角∠COD在平角∠AOB内绕O点左右摆动(OC与OA,OD与OB不重合),在摆动时,始终与∠MOD保持相等的角是()A.∠BODB.∠AOCC.∠COMD.没有10、如图中直线l1, l2被l3所截,则同位角有()对.A.1对B.2对C.3对D.4对11、有下列命题:①两点之间,线段最短;②相等的角是对顶角;③当a≥0时,|a|=a;④内错角互补,两直线平行.其中是真命题的有()A.1个B.2个C.3个D.4个12、如图,某天然气公司的主输气管道从A市的北偏东方向直线延伸,测绘员在A处测得要安装天然气的M小区在A市的北偏东方向,测绘员由A 处沿主输气管道步行1000米到达点C处,测得M小区位于点C的北偏西方向,试在主输气管道上寻找支管道连接点N,使点N到该小区铺设的管道最短,此时铺设的管道的最短距离约是().(参考数据:,)A.366米B.650米C.634米D.700米13、如图所示,已知CD∥AB,OE平分∠DOB,OE⊥OF,∠AOF=25°,求∠CDO 的度数()A.50°B.45°C.35°D.65°14、如图,直线m∥n,∠1=70°,∠2=30°,则∠A等于()A.40°B.45°C.50°D.55°15、下列命题:①对顶角相等;②垂直于同一条直线的两条直线平行;③过一点只有一条直线与已知直线平行;④过一点只有一条直线与已知直线垂直;⑤垂线段最短.正确的个数有()A.1 个B.2 个C.3 个D.4 个二、填空题(共10题,共计30分)16、如图,在四边形ABCD中,∠B=120°,∠B与∠ADC互为补角,点E在BC 上,将△DCE沿DE翻折,得到△DC′E,若AB∥C′E,DC′平分∠ADE,则∠A 的度数为________°.17、如图,一条公路修到湖边时,需拐弯绕湖而过;如果第一次拐角∠A是120°,第二次拐角∠B是150°,第三次拐角是∠C,这时的道路恰好和第一次拐弯之前的道路平行,则∠C是________18、如图,已知AB∥CD,CE、BE的交点为E,现作如下操作:第一次操作,分别作∠ABE和∠DCE的平分线,交点为E1,第二次操作,分别作∠ABE1和∠DCE1的平分线,交点为E2,第三次操作,分别作∠ABE2和∠DCE2的平分线,交点为E3,…,第n次操作,分别作∠ABEn﹣1和∠DCEn﹣1的平分线,交点为En.若∠En=1度,那∠BEC等于________度19、如图,a∥b,∠1=76°,∠3=72°,则∠2的度数是________.20、如图,,点E在线段BC上.若,,则的度数为________.21、如图,已知矩形纸片的一条边经过一个含30°角的直角三角尺的直角顶点,矩形纸片的一组对边分别与直角三角尺的两边相交,∠2=115°,则∠1的度数是________.22、如图所示,若FE∥ON,OE平分∠MON,∠FEO = 28°,则∠MFE =________.23、如图,两个直角三角板ABC与CDE按如图所示的方式摆放,其中∠B=∠D=30°,∠ACB=∠ECD=30°,,且、、共线,将沿DC方向平移得到,若点落在上,则平移的距离为________.24、如图,已知AE//BD,∠1=3∠2,∠2=26°,则∠C=________25、如图所示,已知∠C=100°,若增加一个条件,使得AB∥CD,试写出符合要求的一个条件________.三、解答题(共5题,共计25分)26、如图在四边形ABCD中,∠B=∠D=90°,AE、CF分别平分∠BAD和∠BCD.试问直线AE、CF的位置关系如何?请说明你的理由.27、如图,,,试说明:.28、如图,∠ABC=∠ADE,∠1+∠2=180°, ∠BEC=80°,将求∠CGF的过程填写完整.解:因为∠ABC=∠ADE,所以BC∥①(②).所以∠2=③又因为∠1+∠2=180°,所以∠1+④=180°.所以BE∥GF(⑤).所以∠CGF=⑥(⑦).因为CEB=80°,所以∠CGF=⑧.29、对于同一平面内的三条直线abc给出下列五个判断(1)a‖b;(2)b‖c ;(3)a⊥b ;(4)a∥c ;(5)a⊥c,以其中两个论断为条件,一个论断为结论,组成一个正确的命题。
2019-2020学年湘教版七年级数学下册 第二章 整式的乘除单元测试卷(含答案)

第二章 整式的乘除单元测试题(时限:100分钟 总分:100分)班级 姓名 总分一、 选择题(本题共8小题,每小题4分,共32分)1. 下列运算中,正确的是( )A. 236x x x ⋅=B. ()333b a ab = C. 2523a a a =+ D. ()3293x x = 2. 下列运算中错误的是 ( )A. 31222x x xn n =÷-+ B. 0)(44=÷n n n xy y x C. 6152+-+=÷n n n x x x D. 1223)()()(+-+-=-÷-n n n x x x 3. 下列计算错误的是 ( )A. 1)1)(1(32+=+-+x x x xB. ()44222++=+x x x C. 1)1)(1(2+=+-x x x D. ()12122+-=-x x x 4. 当43=a 时,代数式a a a a 7)72828(23÷+-的值为( ) A. 425 B. 41 C. 49- D. 4- 5. 在下列多项式中,不能用平方差公式计算的是( ) A. ))((b a b a -+ B. ())2(2y x y x ---C. ())2(2y x y x +--D. )5.0)(21(x y y x +- 6. 计算22)21()21(-+a a 得( ) A. 412-a B. 1614-a C. 1612124+-a a D. 1612124--a a 7. 若6))(2(2-+=+-bx x a x x ,则( )A. 5,3-==b aB. 1,3==b aC. 1,3-=-=b aD. 5,3-=-=b a8. 下列计算中正确的个数是 ( )① ()z y y x z y x 222422142-=÷-; ② n n n n n xy y x y x 231)3()3(=-÷-+; ③ 927)31()39(4337+-=-÷-a a a a ; ④221)21()41(2--=-÷+a a a a . A. 1个 B. 2个 C. 3个 D. 4个二、填空题(本题共8小题,每小题4分,共32分)9.532()()a a a -⋅-⋅=__________________.10.b a b a 324728÷=__________________.11.)2)(2(y x y x +---=__________________.12.2)5121(y x --=__________________. 13. 若n 281632=⨯,则n =__________________.14.)103()108()1025.1(358⨯-⨯⨯-⨯⨯=__________________. 15.232111()(2)253x y x xy -⋅-+=__________________. 16. 如果15)122)(122(=-+++y x y x ,那么y x +的值是__________________.三、解答题(本题共5小题,共36分)17.计算:(本小题满分16分) (1)236274)31()9132(ab b a b a -÷-; (2)223)21()81)(4(ab ab ab ---;(3)a ab a b a b a 22)2()(22÷--++; (4))123)(123(--+-y x y x .18.化简求值(本小题满分15分)(1)[]x y x y x y x y x 4)25)(2()23)(23(÷-+-+-,其中203,10-==y x .(2)22342(2)9(912)3a ab a ab a b ab --⋅-+÷,其中2,1-=-=b a .(3))1)(3()3)(3()1(2--+-++-x x x x x ,其中222=-x x .19. (本小题满分5分)某同学在计算)14)(14(32++时,把3写成14-后,发现可以连续运用平方差公式计算:225116)14)(14()14)(14)(14()14)(14(322222=-=+-=++-=++.请借鉴该同学的经验,计算:1584221)211)(211)(211)(211(+++++.参考答案(二)整式的乘除一、1. B 2. B 3.C 4. B 5. C 6.C 7. B 8. D二、9. 10a 10. ab 4 11.224y x - 12.222515141y xy x ++ 13.17 14. 17103⨯ 15. 36473824141401y x y x y x -+-16. 2± 三、17.(1) 162-b a(2)4241b a (3) ab 4 (4)1412922-+-y xy x 18. (1)97(2)7(3)1 19. 2。
湘教版七年级数学下册第一至三章测试卷附答案

月考卷二(第1~3章) 数学 七年级下册(湘教版)时间:90分钟 满分:120分题 号一二三总 分得 分一㊁选择题(每小题3分,共30分)1.(博才中学模拟)下列运算正确的是()A.(2ˑ103)2=206B .(a 2)3=a 5C .m 2㊃n 2=(m n )4 D.(-x 3)2㊃x 2=x 82.下列运算不正确的是()A .-2x ㊃3x 2=-6x 3B .(-3a 2b 3)2=9a 4b 6C .-2m (m -3)=-2m 2+6mD.(x +y )2=(x -y )2+2x y 3.用150张白铁皮做罐头盒,每张白铁皮可制盒身15个或盒底41个,一个盒身与两个盒底配成一套罐头盒,设用x 张白铁皮制盒身,则所列方程为( )A.2ˑ15x =41(150-x )B .15x =2ˑ41(150-x )C .2ˑ41x =15(150-x ) D.41x =2ˑ15(150-x )4.方程组x -y =1,2x +y =5{的解是( )A.x =-1,y =2{B .x =2,y =-1{C .x =-2,y =-1{ D.x =2,y =1{5.如果方程组x =4,a x +b y =5{的解与方程组y =3,b x +a y =2{的解相同,那么a ,b 的值是( )A.a =2,b =1{B .a =2,b =-1{C .a =-2,b =1{ D.a =-2,b =-1{6.若x 2-a x +12=(x +2)(x +6),则a 的值为( )A.8B .-8C .14 D.-147.已知方程组2x +y =2,x +2y =7,{则x +y 的值为( )A.-1B .0C .2 D.38.下列多项式乘法中,可以用平方差公式计算的是( )A.(-a +b )(a -b )B .(x +2)(2+x )C .13x +y æèçöø÷y -13x æèçöø÷ D.(x -2)(x +1)9.把代数式3x 3-6x 2y +3x y 2因式分解,结果正确的是( )A.x (3x +y )(x -3y )B .3x (x 2-2x y +y 2)C .x (3x -y )2 D.3x (x -y )210.为庆祝 六一 儿童节,某班学生准备分组外出活动,若每组8人,则余下2人;若每组9人,则少5人.设该班的人数为x ,分成的组数为y ,由题意可列方程组( )A.8y =x +2,9y +5=x {B .8y +2=x ,9y =x -5{C .8y =x -2,9y =x +5{ D.8y =x +2,9y =x +5{二㊁填空题(每小题4分,共32分)11.(2019合肥)因式分解:x 3-10x 2+25x =.12.如图,阴影部分的面积为.13.已知方程组x +y =7,3x -5y =-3,{则3(x +y )-(3x -5y )的值是.14.(南雅中学模拟)如果4x 2+k x +49是完全平方式,那么k 的值为.15.若(2x +a )(x -1)的结果中不含x 的一次项,则a =.16.某学校实行小班化教学,若每间教室安排20名学生,则恰好缺少3间教室,若每间教室安排24名学生,则恰好空出1间教室,那么这所学校共有 间教室.17.已知|m -1|+(n -9)2=0,将m x 2-n y 2因式分解得 .18.已知x =1,y =2{是关于x ,y 的二元一次方程组2a x -b y =3,a x +b y =6{的解,则a +b =.三㊁解答题(共58分)19.(6分)(2019广州)解方程组:x -y =1,x +3y =9.{20.(8分)先化简,再求值:(a +b )(2a -b )+b 2(1-a ),其中a =1,b =0.㊃72㊃21.(8分)如图,一块长方形铁皮的长为3x +5,宽为2x +3,现在从铁皮的四个角分别剪去一个边长为x 的小正方形.(1)求剩余铁皮的面积;(2)若用剩余的铁皮构造一个无盖的长方体容器,该容器的体积是多少?22.(8分)已知x =a ,y =b {是方程组2x +y =3,2x -y =1{的解,求代数式4a (a -b )+b (4a -b )+5的值.23.(8分)(长郡双语模拟)若x 2-y 2=12,x +y =6,求x ,y 的值.24.(8分)在解方程组a x +5y =15,4x -b y =-2{时,由于粗心,甲看错了方程组中的a 得解为x =-3,y =-1,{乙看错了方程组中的b 得解为x =5,y =4.{(1)甲把a 看成了什么,乙把b 看成了什么?(2)求出原方程组的正确解.25.(12分)某地为了鼓励居民节约用水,决定实行两种收费制度,即每月用水量不超过14吨时,每吨按政府补贴优惠价收费;每月用水量超过14吨时,超过部分每吨按市场调节价收费.小英家1月份用水20吨,交水费29元;2月份用水18吨,交水费24元.求每吨水的政府补贴优惠价和市场调节价分别是多少.㊃82㊃。
(新课标)湘教版七年级数学下册《相交线与平行线》单元综合检测及答案解析一

新课标 2017-2018学年湘教版七年级数学下册第4章相交线与平行线检测题【本检测题满分:100分,时间:90分钟】一、选择题(每小题3分,共30分)1.如图,已知点P是直线a外的一点,点A,B,C在直线a上,且PB a⊥错误!未找到⊥错误!未找到引用源。
,垂足为B,PA PC引用源。
,则下列错误的语句是()A.线段PB的长是点P到直线a的距离B.PA,PB,PC错误!未找到引用源。
三条线段中,PB错误!未找到引用源。
最短C.线段AC的长是点A到直线PC的距离D.线段PC的长是点C到直线PA的距离第1题图第2题图2.如图,已知ON l⊥错误!未找到引用源。
,OM l⊥错误!未找到引用源。
,所以OM与ON重合,其理由是()A.两点确定一条直线B.在同一平面内,经过一点有且只有一条直线与已知直线垂直C.在同一平面内,过一点只能作一条垂线D.垂线段最短3.某商品的商标可以抽象为如图所示的三条线段,其中AB CD∥,∠的度数是()45∠=︒错误!未找到引用源。
,则FDCEABA.30°B.45°C.60°D.75°4.下列说法不正确的是()第3题图A.若两相等的角有一边平行,则另一边也互相平行B.两条直线相交,所成的两组对顶角的平分线互相垂直C.两条平行线被第三条直线所截,同旁内角的平分线互相垂直D.在同一个平面内,经过直线外一点,有且只有一条直线与这条直线垂直5.如下图,下列判断正确的是()第5题图A.图(1)中∠1和∠2是一组对顶角B.图(2)中∠1和∠2是一组对顶角C.图(3)中∠1和∠2是一组邻补角D.图(4)中∠1和∠2是一组邻补角6.如图所示,直线a ,b 被直线c 所截,现给出下列四种条件:①∠2=∠6;②∠2=∠8;③∠1+∠4=180°,其中能判断是a b ∥的条件的序号是( )A.①②B.①③C.②③D.①②③第6题图第7题图7.如图,MN AB ∥,P ,Q 为直线MN 上的任意两点,PAB △的面积为1S ,QAB △的面积为2S ,则( )A.12S S <B.12S S =C.12S S >D.不能确定8.如图,一条公路修到湖边时,需拐弯绕道而过,如果第一次拐的角120A ∠=︒,第二次拐的角150B ∠=︒,第三次拐的角是C ∠,这时的道路恰好和第一次拐弯之前的道路平行,则C ∠是( )A.120°B.130°A B CC.140°D.150°第8题图二、填空题(每小题3分,共24分)9.两条平行线被第三条直线所截,一组同旁内角的平分线的位置关系是互相.10.如图,AO OB∠,∠=120°,射线OD平分AOB ⊥,垂足为O,AOC则COD∠= .第10题图第11题图11.如图,直线AB CD⊥,垂足为O,直线EF经过点O,COF∠的度∠=30°,则AOE数为.12.如图,若∠5= ,则AD BC∥;若∠1=∠2,则∥;若∠3=∠4,则∥;若∠D+∠=180°,则∥.第12题图BE CD13.如图,已知85∠=︒,∠1=∠2,则ADC∠= .A第13题图第14题图第15题图14.如图是一块电脑主板,每一个转角处都是直角,数据如图所示,单位是mm,则该主板的周长为mm.15.如图,已知直线⊥,∥,EF CD∥,HL FGAB CD∠1=40°,那EHL∠的度数为.16.如图,AC BC⊥错误!未找到引用源。
湘教版七年级数学下册《1.2乘法公式》同步测试题带答案
湘教版七年级数学下册《1.2乘法公式》同步测试题带答案学校:___________班级:___________姓名:___________考号:___________A 组·基础达标 逐点击破知识点1 平方差公式1.计算(x +6y )(x −6y )的结果为( )A .x 2−6y 2B .x 2−y 2C .x 2−36y 2D .36x 2−y 22.若(n −m )与一个多项式的乘积可以利用平方差公式计算,则这个多项式可以是( )A .m −nB .m +nC .mn −1D .n −m3.下列各式中能用平方差公式计算的是( )A .(x −y )(−x +y )B .(−x −y )(x −y )C .(x +y )(−x −y )D .(y −x )(y −x )4.下列运算结果正确的是( )A .3a −2a =1B .a 2⋅a 3=a 6C .(−a )4=−a 4D .(a +3)(a −3)=a 2−95.计算4a 2−(2a +1)(2a −1)的结果是( )A .1B .−1C .8a 2+1D .4a 2−16.计算:(a +b )(b −a )=______________.7.运用平方差公式计算:(1) (3x +7y )(3x −7y );(2) (mn −3n )(mn +3n );(3) (−2x +3y )(−2x −3y );(4) (13x −y)(−13x −y).知识点2 运用平方差公式简便运算8.计算100022522−2482的结果是( )A .62 500B .1 000C .500D .250 9.[教材P16例4变式]运用平方差公式计算:(1) 99.8×100.2;(2) 4013×3923.B 组·能力提升 强化突破10.如图,在边长为a的正方形中,剪去一个边长为b的小正方形(a>b,如图①),将余下的部分剪开后拼成一个梯形(如图②).根据两个图形阴影部分面积的关系,可以得到一个关于a,b 的恒等式为()A.(a−b)2=a2−2ab+b2B.(a+b)2=a2+2ab+b2C.a2−b2=(a+b)(a−b)D.a(a+b)=a2+ab11.如图,点D,C,H,G分别在长方形ABJI的边上,点E,F在CD上.若正方形ABCD的面积等于15,图中阴影部分的面积总和为6,则正方形EFGH的面积等于()A.3 B.4 C.5 D.6.12.先化简,再求值:2m−m(m−2)+(m+3)(m−3),其中m=52C组·核心素养拓展素养渗透13.【运算能力】先观察下面的解题过程,然后解答问题.题目:化简(2+1)(22+1)(24+1).解:(2+1)(22+1)(24+1)=(2−1)(2+1)(22+1)(24+1)=(22−1)(22+1)(24+1)=(24−1)(24+1)=28−1.问题:化简(3+1)(32+1)(34+1)(38+1)×⋯×(364+1).参考答案课堂导学例题引路【思路分析】运用公式(x+y)⋅(x−y)=x2−y2进行计算.其中(1)中−2x相当于公式中的y相当于公式中的y;(2)中−3n相当于公式中的x,2m相当于公式中的y;(3)将2024×2026 x,12化为(2025−1)×(2025+1),再运用平方差公式计算.例(1)【规范解答】(−2x+1y)(−2x−1y)=(−2x)2−(12y)2 =4x 2−14y 2.(2) (2m −3n)(−2m −3n) =(−3n +2m)(−3n −2m)=(−3n)2−(2m)2=9n 2−4m 2.(3) 202520252−2024×2026 =202520252−(2025−1)×(2025+1) =202520252−20252+1 =2025.A 组·基础达标 逐点击破知识点1 平方差公式1.C 2.B 3.B 4.D 5.A6.b 2−a 2[解析](a +b)(b −a)=(b +a)(b −a)=b 2−a 2.7.(1) 解:原式=(3x)2−(7y)2=9x 2−49y 2.(2) 原式=(mn)2−(3n)2=m 2n 2−9n 2.(3) 原式=(−2x)2−(3y)2=4x 2−9y 2.(4) 原式=(−y)2−(13x)2=y 2−19x 2.知识点2 运用平方差公式简便运算8.C9.(1) 解:99.8×100.2 =(100−0.2)×(100+0.2)=1002−0.22=9999.96.(2) 4013×3923 =(40+13)×(40−13) =402−(13)2 =159989.B 组·能力提升 强化突破10.C11.A[解析]设大、小正方形的边长分别为a ,b 则有a 2=15阴影部分面积为12×(a +b)(a −b)=6 即a 2−b 2=12,可得b 2=3.即所求面积是3.故选A .12.解:2m −m(m −2)+(m +3)(m −3) =2m −m 2+2m +m 2−9=4m −9.当m =52时,原式=4×52−9=10−9=1. C 组·核心素养拓展 素养渗透13.解:原式=12(32−1)(32+1)(34+1)(38+1)×⋯×(364+1) =12(34−1)(34+1)(38+1)×⋯×(364+1) =12(38−1)(38+1)×⋯×(364+1) =12(316−1)×⋯×(364+1) =12(364−1)(364+1) =12(3128−1).。
湘教版七年级数学下册第4章测试题及答案
湘教版七年级数学下册第4章测试题及答案4.1 平面上两条直线的位置关系一.选择题(共5小题)1.a,b,c为同一平面内的任意三条直线,那么它们的交点可能有()个.A.1,2或3 B.0,1,2或3 C.1或2 D.以上都不对2.下列选项中正确的是()A.相等的角是对顶角B.两直线平行,同旁内角相等C.直线外一点到这条直线的垂线段,叫点到直线的距离D.经过直线外一点,有且只有一条直线与这条直线平行3.图中,∠1、∠2是对顶角的为()A.B.C.D.4.对于同一平面内的三条直线a,b,c,下列命题中不正确的是()A.若a∥b,b∥c,则a∥c B.若a⊥b,a⊥c,则b⊥cC.若a∥b,a⊥c,则b⊥c D.若a⊥b,a⊥c,则b∥c5.下列各图中,∠1和∠2是对顶角的是()A.B.C.D.二.填空题(共5小题)6.如图,直线AB、CD、EF交于点O.(1)∠COE的对顶角是.(2)∠AOF的对顶角是.(3)∠BOF的邻补角是.(4)∠BOE的邻补角是.(第6题图)7.观察下列图形,并阅读,图形下面的相关字.(第7题图)两条直线相交最多有1个交点三条直线相交最多有3个交点四条直线相交最多有6个交点则n条直线最多有个交点.8.同一平面内的5条直线两两相交,最多有个交点,最多把平面分成个部分,最多构成对对顶角.9.如图,直线AB,CD相交于点O,若∠BOD=∠BOD+18°,则∠AOD=.(第9题图)10.如图所示,其中共有对对顶角.(第10题图)三.解答题(共4小题)11.如图,直线AB与CD相交于点O,OE平分∠AOD,OF平分∠BOD.(1)填空:∠AOC=50°,∠FOD=度;(2)∠AOC=α°.则∠EOD=(用含α的式子表示);(3)探究∠EOD与∠FOD的数量关系,并说明理由.(第11题图)12.(合作探究题)在同一平面内三条直线交点有多少个?甲:同一平面三直线相交交点的个数为0个,因为a∥b∥c,如图(1)所示.乙:同一平面内三条直线交点个数只有1个,因为a,b,c交于同一点O,如图(2)所示.以上说法谁对谁错?为什么?(第12题图)13.(原创题)如图所示,在∠AOB内有一点P.(1)过P画l1∥OA;(2)过P画l2∥OB;(3)用量角器量一量l1与l2相交的角与∠O的大小有怎样关系?(第13题图)14.探索研究:A:观察如图所示中的各图,寻找对顶角(不含平角):(第14题图)(1)如图a,图中共有对不同对顶角;(2)如图b,图中共有对不同的对顶角;(3)如图c,图中共有对不同的对顶角;(4)研究(1)﹣(3)小题中直线条数与对顶角的对数之间的关系,若有n条直线相交于一点,则可形成对对顶角;(5)计算2013条直线相交于一点,则可形成对对顶角.B:(1)3条直线两两相交最多有个交点,此时有对不同的对顶角;(2)4条直线两两相交最多有个交点,此时有对不同的对顶角;(3)n条直线两两相交最多有个交点,此时有对不同的对顶角;(4)计算2013条直线最多有个交点,则可形成对不同的对顶角,那么2013条直线最多形成对不同的对顶角.参考答案一.1.B 2.D 3.C 4.B 5.D二.6.∠DOF;∠BOE;∠AOF和∠BOE;∠AOE和∠BOF.7.8.10;16;209.144°10.4三.11.解:(1)∵∠AOC=50°,∴∠BOD=∠AOC=50°,∵OF平分∠BOD,∴∠FOD=;(2)∵OE平分∠AOD,∴∠EOD=,∵∠AOD=180°﹣∠AOC=(180﹣α)°,∴∠EOD=(180﹣α)°=(90﹣α)°.(3)∠EOD+∠FOD=90°,理由:∵OE平分∠AOD,OF平分∠BOD,∴∠DOE=∠AOD,∠DOF=∠BOD,∵∠BOD+∠AOD=180°,∴∠DOE+∠DOF=(∠BOD+∠AOD)=90°.12.解:甲、乙说法都不对,都少了三种情况.a∥b,c与a,b相交如答图(1);a,b,c两两相交如答图(2),所以三条直线互不重合,交点有0个或1个或2个或3个,共四种情况.(第12题答图)13.解:(1)(2)如答图.(3)l1与l2夹角有两个:∠1,∠2;∠1=∠O,∠2+∠O=180°,所以l1和l2的夹角与∠O相等或互补.(第13题答图)14.A.解:(1)有2对对顶角;(2)有6对对顶角;(3)有12对对顶角;(4)有n条直线时,有n(n﹣1)对对顶角;(5)n=2013时,可形成2013×2012=4050156对顶角.B解:(1)如答图(1),可得三条直线两两相交,最多有3个交点;有6对对顶角.(2)如图(2),可得四条直线两两相交,最多有6个交点;又12对对顶角.(3)由(1),得=3,由(2),得=6;∴可得,n条直线两两相交,最多有个交点(n为正整数,且n≥2).有n(n﹣1)对对顶角.(第14题答图)(4)当n=2013时,有2025078个交点,有4050156对对顶角.4.2 平移一.选择题(共5小题)1.如图,将△ABC沿BC边上的中线AD平移到△A'B'C'的位置,已知△ABC的面积为18,阴影部分三角形的面积为8.若AA'=1,则A'D等于()(第1题图)A.3 B.2 C.32 D.232.下列四组图形都含有两个可以重合的三角形,其中可以通过平移其中一个三角形得到另一个三角形的是()A.B.C.D.3.如图,将△ABC沿着由点B到点C的方向平移到△DEF,已知AB=7,BC=6,EC=4,那么平移的距离为()(第3题图)A.1 B.2 C.3 D.64.下列现象是平移的是()A.电梯从底楼升到顶楼B.卫星绕地球运动C.碟片在光驱中运行D.树叶从树上落下5.如图,在直角三角形ABC中,∠BAC=90°,AB=3,AC=4,将沿直线向右平移2.5个单位得到,连接.有下列结论:①AC∥DF;②AD∥BE,AD=BE;③∠ABE=∠DEF;④ED⊥AC.其中正确的结论有()(第5题图)A.4个B.3个C.2个D.1个二.填空题(共3小题)6.如图,图中是重叠的两个直角三角形.现将其中一个直角三角形沿BC方向平移得到△DEF.如果AB=9cm,BE=4cm,DH=3cm,则图中阴影部分面积为cm2.(第6题图)7.如图,在△ABC中,BC=5cm,把△ABC沿直线BC的方向平移到△DEF的位置,若EC=2cm,则平移的距离为cm.(第7题图)8.如图,将周长为6的△ABC沿BC方向平移1个单位得到△DEF,则四边形ABFD的周长为.(第8题图)三.解答题(共2小题)9.四边形ABCD在平面直角坐标系的位置如图所示,将四边形ABCD先向下平移2个单位,再向左平移3个单位得到四边形A1B1C1D1,解答下列各题:(1)请在图中画出四边形A1B1C1D1;(2)请写出四边形A1B1C1D1的顶点B1、D1坐标;(3)请求出四边形A1B1C1D1的面积.(第9题图)10.如图,在△ABC中,AB=6cm,BC=4cm,AC=3cm.将△ABC沿着与AB垂直的方向向上平移3cm,得到△DEF.(1)四边形ABDF是什么四边形?(2)求阴影部分的面积?(第10题图)参考答案一.1.B 2.D 3.B 4.A 5.A二.6.30 7.3 8.8三.9.解:(1)如答图,四边形A1B1C1D1即为所求;(第9题答图)(2)B1坐标为(﹣2,1)、D1坐标为(1,1);(3)四边形A1B1C1D1的面积=×3×2+×3×3=7.5.10.解:(1)由平移,可得DF=AB,DF∥AB,∴四边形ABDF是平行四边形,又由平移的方向可得,∠ABD=90°,∴四边形ABDF是矩形;(2)由平移,可得△ABC≌△FDE,BD=3cm,∴S△ABC=S△FDE,∴阴影部分的面积=矩形ABDF的面积=6×3=18cm2.4.3 平行线的性质一.选择题(共5小题)1.已知直线m∥n,将一块含30°角的直角三角板ABC按如图方式放置(∠ABC=30°),其中A,B两点分别落在直线m,n上,若∠1=20°,则∠2的度数为()(第1题图)A.20°B.30°C.45°D.50°2.如图,直线a∥b,直线l与a、b分别相交于A、B两点,过点A作直线l的垂线交直线b于点C,若∠1=58°,则∠2的度数为()(第2题图)A.58°B.42°C.32°D.28°3.如图,已知直线a、b被直线c所截,那么∠1的同位角是()(第3题图)A.∠2 B.∠3 C.∠4 D.∠54.将一副三角板如图放置,使点A在DE上,BC∥DE,则∠ACE的度数为()(第4题图)A.10°B.15°C.20°D.25°5.如图,直线AB∥CD,∠C=44°,∠E为直角,则∠1等于()(第5题图)A.132°B.134°C.136°D.138°二.填空题(共10小题)6.如图,a∥b,∠1=110°,∠3=40°,则∠2=°.(第6题图)7.一个小区大门的栏杆如图所示,BA垂直地面AE于A,CD平行于地面AE,那么∠ABC+∠BCD=度.(第7题图)8.已知直线a∥b,点M到直线a的距离是4cm,到直线b的距离是2cm,那么直线a和直线b之间的距离为.9.如图,直线a∥b,∠1=120°,∠2=40°,则∠3等于.(第9题图)10.将直尺和直角三角板按如图方式摆放,已知∠1=30°,则∠2的大小是.(第10题图)三.解答题(共5小题)11.如图1,E是直线AB,CD内部一点,AB∥CD,连接EA,ED.(1)探究猜想:①∠A=30°,∠D=40°,则∠AED等于多少度?②若∠A=20°,∠D=60°,则∠AED等于多少度?③猜想图1中∠AED、∠EAB、∠EDC的关系并说明理由.(2)拓展应用,如图2,线段FE与长方形ABCD的边AB交于点E,与边CD 交于点F.图2中①②分别是被线段FE隔开的2个区域(不含边界),P是位于以上两个区域内的一点,猜想∠PEB,∠PFC,∠EPF的关系(不要求说明理由)(第11题图)12.已知一个角的两边与另一个角的两边分别平行,请结合图,探索这两个角之间的关系,并说明理由.(1)如图①,AB∥CD,BE∥DF,∠1与∠2的关系是;证明:(2)如图②,AB∥CD,BE∥DF,∠1与∠2的关系是;证明:(3)经过上述证明,我们可得出结论,如果一个角的两边与另一个角的两边分别平行,那么这两个角;(4)若这两个角的两边分别平行,且一个角比另一个角的3倍少60°,则这两个角分别是多少度?解:(第12题图)13.已知,直线AB∥CD,E为AB、CD间的一点,连接EA、EC.(1)如图①,若∠A=20°,∠C=40°,则∠AEC=°.(2)如图②,若∠A=x°,∠C=y°,则∠AEC=°.(3)如图③,若∠A=α,∠C=β,则α,β与∠AEC之间有何等量关系.并简要说明.(第13题图)14.已知△ABC 中,∠A=60°,∠ACB=40°,D为BC边延长线上一点,BM平分∠ABC,E为射线BM 上一点.(第14题图)(1)如图1,连接CE,①若CE∥AB,求∠BEC的度数;②若CE平分∠ACD,求∠BEC的度数.(2)若直线CE垂直于△ABC的一边,请直接写出∠BEC的度数.15.如图所示,已知∠1+∠2=180°,∠3=∠B,试判断∠AED与∠C的大小关系,并对结论进行说理.(第15题图)参考答案一.1.D 2.C 3.A 4.B 5.B二.6.70 7.270 8.6cm或2cm 9.80°10.60°三.11.解:(1)①过点E作EF∥AB,∵AB∥CD,∴AB∥CD∥EF,∵∠A=30°,∠D=40°,∴∠1=∠A=30°,∠2=∠D=40°,∴∠AED=∠1+∠2=70°;②过点E作EF∥AB,∵AB∥CD,∴AB∥CD∥EF,∵∠A=20°,∠D=60°,∴∠1=∠A=20°,∠2=∠D=60°,∴∠AED=∠1+∠2=80°;③猜想:∠AED=∠EAB+∠EDC.理由:过点E作EF∥CD,∵AB∥DC∴EF∥AB(平行于同一条直线的两直线平行),∴∠1=∠EAB,∠2=∠EDC(两直线平行,内错角相等),∴∠AED=∠1+∠2=∠EAB+∠EDC(等量代换).(2)如答图2,当点P在①区域时,∵AB∥CD,∴∠BEF+∠CFE=180°,∴∠PEF+∠PFE=(∠PEB+∠PFC)﹣180°.∵∠PEF+∠PFE+∠EPF=180°,∴∠EPF=180°﹣(∠PEF+∠PFE)=180°﹣(∠PEB+∠PFC)+180°=360°﹣(∠PEB+∠PFC);当点P在区域②时,如答图3所示,∵AB∥CD,∴∠BEF+∠CFE=180°,∵∠EPF+∠FEP+∠PFE=180°,∴∠EPF=∠PEB+∠PFC.(第11题答图)12.解:(1)∠1=∠2.证明如下:∵AB∥CD,∴∠1=∠3,∵BE∥DF,∴∠2=∠3,∴∠1=∠2;(2)∠1+∠2=180°.证明如下:∵AB∥CD,∴∠1=∠3,∵BE∥DF,∴∠2+∠3=180°,∴∠1+∠2=180°;(3)如果一个角的两边与另一个角的两边分别平行,那么这两个角相等或互补;(4)设一个角的度数为x,则另一个角的度数为3x﹣60°,当x=3x﹣60°,解得x=30°,则这两个角的度数分别为30°,30°;当x+3x﹣60°=180°,解得x=60°,则这两个角的度数分别为60°,120°.13.解:如答图,过点E作EF∥AB,∵AB∥CD,∴AB∥CD∥EF.(1)∵∠A=20°,∠C=40°,∴∠1=∠A=20°,∠2=∠C=40°,∴∠AEC=∠1+∠2=60°;(2)∴∠1+∠A=180°,∠2+∠C=180°,∵∠A=x°,∠C=y°,∴∠1+∠2+x°+y°=360°,∴∠AEC=360°﹣x°﹣y°;(3)∠A=α,∠C=β,∴∠1+∠A=180°,∠2=∠C=β,∴∠1=180°﹣∠A=180°﹣α,∴∠AEC=∠1+∠2=180°﹣α+β.(第13题答图)14.解:(1)①∵∠A=60°,∠ACB=40°,∴∠ABC=80°,∵BM平分∠ABC,∴∠ABE=ABC=40°,∵CE∥AB,∴∠BEC=∠ABE=40°;②∵∠A=60°,∠ACB=40°,∴∠ABC=80°,∠ACD=180°﹣∠ACB=140°,∵BM平分∠ABC,CE平分∠ACD,∴∠CBE=ABC=40°,∠ECD=ACD=70°,∴∠BEC=∠ECD﹣∠CBE=30°;(2)①如答图1,当CE⊥BC时,∵∠CBE=40°,∴∠BEC=50°;②如答图2,当CE⊥AB于F时,∵∠ABE=40°,∴∠BEC=90°+40°=130°,③如图3,当CE⊥AC时,∵∠CBE=40°,∠ACB=40°,∴∠BEC=180°﹣40°﹣40°﹣90°=10°.(第14题答图)15.证明:∵∠1+∠4=180°(邻补角定义)∠1+∠2=180°(已知)∴∠2=∠4(同角的补角相等)∴EF∥AB(内错角相等,两直线平行)∴∠3=∠ADE(两直线平行,内错角相等)又∵∠B=∠3(已知),∴∠ADE=∠B(等量代换),∴DE∥BC(同位角相等,两直线平行)∴∠AED=∠C(两直线平行,同位角相等).4.4 平行线的判定一.选择题(共7小题)1.如图所示,下列条件能判断a∥b的有()(第1题图)A.∠1+∠2=180°B.∠2=∠4 C.∠2+∠3=180°D.∠1=∠3 2.如图,下面推理中,正确的是()(第2题图)A.∵∠A=∠D,∴AB∥CD B.∵∠A=∠B,∴AD∥BCC.∵∠A+∠D=180°,∴AB∥CD D.∵∠B+∠C=180°,∴AD∥BC3.如图,已知∠1=∠2,∠3=71°,则∠4的度数是()(第3题图)A.19°B.71°C.109°D.119°4.如图,结合图形作出了如下判断或推理:(第4题图)①如图甲,CD⊥AB,D为垂足,那么点C到AB的距离等于C、D两点间的距离;②如图乙,如果AB∥CD,那么∠B=∠D;③如图丙,如果∠ACD=∠CAB,那么AD∥BC;④如图丁,如果∠1=∠2,∠D=120°,那么∠BCD=60°.其中正确的个数是()个.A.1 B.2 C.3 D.45.如图,直线a,b被直线c所截,∠1=62°,∠3=80°,现逆时针转动直线a至a′位置,使a′∥b,则∠2的度数是()(第5题图)A.8°B.10°C.18°D.28°6.若将一副三角板按如图所示的方式放置,则下列结论不正确的是()(第6题图)A.∠1=∠3 B.如果∠2=30°,则有AC∥DEC.如果∠2=30°,则有BC∥AD D.如果∠2=30°,必有∠4=∠C7.小明、小亮、小刚、小颖一起研究一道数学题.如图,已知EF⊥AB,CD⊥AB,小明说:“如果还知道∠CDG=∠BFE,则能得到∠AGD=∠ACB.”小亮说:“把小明的已知和结论倒过来,即由∠AGD=∠ACB,可得到∠CDG=∠BFE.”小刚说:“∠AGD一定大于∠BFE.”小颖说:“如果连接GF,则GF一定平行于AB.”他们四人中,有()个人的说法是正确的.(第7题图)A.1 B.2 C.3 D.4二.填空题(共4小题)8.如图所示,用两个相同的三角形按照如图方式作平行线,能解释其中道理的定理是.(第8题图)9.如图,根据图形填空(1)∵∠A=(已知)∴AC∥DE()(2)∵∠2=(已知)∴DF∥AB()(3)∵∠2+∠6=180°(已知)∴∥()(4)∵AB∥DF(已知)∴∠A+∠=180°().(第9题图)10.如图,已知GF⊥AB,∠1=∠2,∠B=∠AGH,则下列结论:①GH∥BC;②∠D=∠F;③HE平分∠AHG;④HE⊥AB,其中正确的是(只填序号)(第10题图)11.一副三角板按如图所示叠放在一起,其中点B、D重合,若固定三角形AOB,改变△ACD的位置(其中A点位置始终不变),使三角形ACD的一边与三角形AOB的某一边平行时,写出∠BAD的所有可能的值.(第11题图)三.解答题(共5小题)12.完成下面的证明:已知:如图.BE平分∠ABD,DE平分∠BDC,且∠1+∠2=90°.求证:AB∥CD.证明:∵DE平分∠BDC(已知),∴∠BDC=2∠1().∵BE平分∠ABD(已知),∴∠ABD=(角的平分线的性质).∴∠BDC+∠ABD=2∠1+2∠2=2(∠1+∠2)().∵∠1+∠2=90°(已知),∴∠ABD+∠BDC=().∴AB∥CD().(第12题图)13.如图①是大众汽车的图标,图②是该图标轴抽象的几何图形,且AE∥BF,∠A=∠B,试猜想AC与BD的位置关系,并说明理由.(第13题图)14.如图1为北斗七星的位置图,如图2将北斗七星分别标为A,B,C,D,E,F,G,将A,B,C,D,E,F顺次首尾连结,若AF恰好经过点G,且AF∥DE,∠B=∠C+10°,∠D=∠E=105°.(第14题图)(1)求∠F的度数.(2)计算∠B﹣∠CGF的度数是.(直接写出结果)(3)连结AD,∠ADE与∠CGF满足怎样数量关系时,BC∥AD,并说明理由.15.如图1,将一条两边沿互相平行的纸带折叠(AM∥BN,AD∥BC),AB为折痕,AD交BN于点E.(1)试说明∠MAD=∠NBC的理由;(2)设∠MAD的度数为x,试用含x的代数式表示∠ABE的度数;(3)如若按图2形式折叠.试问(2)中的关系式是否仍然成立?请说明理由.若∠ABE的度数是∠MAD的两倍,求此时∠MEC的度数.(第15题图)16.如图1,已知两条直线AB,CD被直线EF所截,分别交于点E,点F,EM平分∠AEF交CD于点M,且∠FEM=∠FME.(1)判断直线AB与直线CD是否平行,并说明理由;(2)如图2,点G是射线MD上一动点(不与点M,F重合),EH平分∠FEG交CD于点H,过点H作HN⊥EM于点N,设∠EHN=α,∠EGF=β.①当点G在点F的右侧时,若β=50°,求α的度数;②当点G在运动过程中,α和β之间有怎样的数量关系?请写出你的猜想,并加以证明.(第16题图)参考答案一.1.B 2.C 3.C 4.B 5.C 6.C 7.B二.8.内错角相等,两直线平行9.(1)∠4;同位角相等,两直线平行;(2)∠4;内错角相等,两直线平行;(3)AB,DF,同旁内角互补,两直线平行;(4)7;两直线平行,同旁内角互补10.①④11.15°,30°,45°,75°,105°,135°,150°,165°.三.12.证明:∵DE平分∠BDC(已知),∴∠BDC=2∠1(角平分线的性质).∵BE平分∠ABD(已知),∴∠ABD=2∠2(角的平分线的性质).∴∠BDC+∠ABD=2∠1+2∠2=2(∠1+∠2)(等量代换).∵∠1+∠2=90°(已知),∴∠ABD+∠BDC=180°(等量代换).∴AB∥CD(同旁内角互补两直线平行).13.解:AC∥BD,理由:∵AE∥BF,∴∠B=∠DOE.∵∠A=∠B,∴∠DOE=∠A,∴AC∥BD.14.解:(1)∵AF∥DE,∴∠F+∠E=180°,∴∠F=180°﹣105°=75°;(2)如答图,延长DC交AF于点K.(第14题答图)可得:∠B﹣∠CGF=∠C+10°﹣∠CGF=∠GKC+10°=∠D+10°=115°. (3)当∠ADE+∠CGF=180°时,BC∥AD,∵AF∥DE,∴∠GAD+∠ADE=180°,∠ADE+∠CGF=180°,∴∠GAD=∠CGF,∴BC∥AD.15.解:(1)∵AM∥BN,AD∥BC,∴∠MAD=∠NED,∠NED=∠NBC,∴∠MAD=∠NBC;(2)如答图1,∵AM∥BN,∴∠ABE=∠BAF,MAD=∠BEA=x,由折叠可得,∠FAB=∠BAE,∴∠ABE=∠BAE,即△ABE是等腰三角形,又∵∠BEA=x,∴∠ABE=;(3)第(2)问中的关系式成立,理由:如答图2,∵AM∥BN,∴∠ABF=∠BAE,MAD=∠BEA=x,由折叠可得,∠FBA=∠ABE,∴∠ABE=∠BAE,即△ABE是等腰三角形,又∵∠BEA=x,∴∠ABE=;∵∠ABE的度数是∠MAD的两倍,∴∠ABE=2x,又∵∠ABE=,∴2x=,解得x=36°,∴∠MAD=36°,∵AD∥BC,∴∠MEC=∠MAD=36°.(第15题答图)16.解:(1)∵EM平分∠AEF∴∠AEF=∠FME,又∵∠FEM=∠FME,∴∠AEF=∠FEM,∴AB∥CD;(2)①如答图2,∵AB∥CD,β=50°∴∠AEG=130°,又∵EH平分∠FEG,EM平分∠AEF∴∠HEF=∠FEG,∠MEF=∠AEF,∴∠MEH=∠AEG=65°,又∵HN⊥ME,∴Rt△EHN中,∠EHN=90°﹣65°=25°,即α=25°;②分两种情况讨论:如答图2,当点G在点F的右侧时,α=.证明:∵AB∥CD,∴∠AEG=180°﹣β,又∵EH平分∠FEG,EM平分∠AEF∴∠HEF=∠FEG,∠MEF=∠AEF,∴∠MEH=∠AEG=(180°﹣β),又∵HN⊥ME,∴Rt△EHN中,∠EHN=90°﹣∠MEH=90°﹣(180°﹣β)=,即α=;如答图3,当点G在点F的左侧时,α=90°﹣.证明:∵AB∥CD,∴∠AEG=∠EGF=β,又∵EH平分∠FEG,EM平分∠AEF∴∠HEF=∠FEG,∠MEF=∠AEF,∴∠MEH=∠MEF﹣∠HEF=(∠AEF﹣∠FEG)=∠AEG=β,又∵HN⊥ME,∴Rt△EHN中,∠EHN=90°﹣∠MEH,即α=90°﹣.(第16题答图)4.5 垂线一.选择题(共5小题)1.如图,在三角形ABC中,∠C=90°,AC=5,点P是BC边上的动点,则AP的长不可能是()(第1题图)A.4.5 B.5 C.6 D.72.如图,直线AB,CD相交于点O,PE⊥AB于点E,PF⊥CD于点F,且∠AOC=50°,则∠EPF=()(第2题图)A.50°B.60°C.40°D.30°3.已知直角三角形ABC中,∠ACB=90°,AC=4,BC=3,AB=5,点D从点A到点B沿AB运动,CD=x,则x的取值范围是()(第3题图)A.B.C.D.4.如图,∠C=90°,AC=3cm,BC=4cm,点P是BC边上一动点,则线段AP的长不可能是()(第4题图)A.2.5cm B.3cm C.4cm D.5cm5.下列生活实例中,数学原理解释错误的一项是()A.从一条河向一个村庄引一条最短的水渠,其中数学原理是:在同一平面内,过一点有且只有一条直线垂直于已知直线B.两个村庄之间修一条最短的公路,其中的数学原理是:两点之间线段最短C.把一个木条固定到墙上需要两颗钉子,其中的数学原理是:两点确定一条直线D.从一个货站向一条高速路修一条最短的公路,其中的数学原理是:连结直线外一点与直线上各点的所有线段中,垂线段最短二.填空题(共7小题)6.在同一平面内,三条不同的直线a、b、c,若a⊥c,b⊥c,则.7.在△ABC中∠B=90°,BC=5,AB=12,AC=13,则点B到斜边AC的距离是.8.在数学课上,老师提出如下问题:如图1,需要在A,B两地和公路l之间修地下管道,请你设计一种最节省材料的修建方案.小军同学的作法如下:①连接AB:②过点A作AC⊥直线l于点C;则折线段B﹣A﹣C为所求,老师说:小军同学的方案是正确的.请回答:该方案最节省材料的依据是.(第8题图)9.如图,直线AB,CD相交于点O,OE⊥AB,垂足为O,如果∠COE=40°,则∠AOD等于度.(第9题图)10.如图,直线AB.CD相交于点E,EF⊥AB于点E,若∠AED=145°,则∠CEF=°.(第10题图)11.如图,已知直线AB与CD相交于点O,OM⊥CD,若∠BOM=25°,则∠AOC的度数为°.(第11题图)12.如图,三条直线AB、CD、EF相交于O,且CD⊥EF,∠AOE=68°.若OG平分∠BOF,则∠DOG=度.(第12题图)三.解答题(共5小题)13.如图1,已知A、O、B三点在同一直线上,射线OD、OE分别平分∠AOC、∠BOC.(1)求∠DOE的度数;(2)如图2,在∠AOD内引一条射线OF⊥OC,其他不变,设∠DOF=a o(o o<a<90o).a.求∠AOF的度数(用含a的代数式表示);b.若∠BOD是∠AOF的2倍,求∠DOF的度数.(第13题图)14.如图,直线AB、CD相交于点O,OE⊥CD,∠AOC=50°.求∠BOE的度数.(第14题图)15.如图直线AB,CD相交于点O,EO⊥AB垂足为O,(1)与∠1互为补角的角是;(2)若∠AOC:∠2=3:2,求∠1的度数.(第15题图)16.如图,直线AB、CD相交于点O,OM⊥AB.(1)若∠1=∠2,求∠NOD的度数;(2)若∠1=∠BOC,求∠AOC和∠MOD的度数.(第16题图)17.如图,直线AB、CD相交于点O,OE⊥OD,OE平分∠AOF.(1)∠BOD与∠DOF相等吗?请说明理由.(2)若∠DOF=∠BOE,求∠AOD的度数.(第17题图)参考答案一.1.A 2.A 3.C 4.A 5.A二.6.a∥b 7.8.两点之间,线段最短,垂线段最短9.130 10.55 11.115 12.56三.13.解:(1)∵点A,O,B在同一条直线上,∴∠AOC+∠BOC=180°,∵射线OD和射线OE分别平分∠AOC和∠BOC,∴∠COD=∠AOC,∠COE=∠BOC∴∠COD+∠COE=(∠AOC+∠BOC)=90°,∴∠DOE=90°;(2)a.∵OC⊥OF,∴∠COF=90°,∵∠DOF=αo,∴∠COD=90°﹣α°,∵∠AOD=∠COD,∴∠AOF=∠AOD﹣∠DOF=90°﹣α°﹣α°=(90﹣2α)°,b.∵∠BOD是∠AOF的2倍,∴180°﹣(90﹣α)°=2(90﹣2α)°,α=18°,即∠DOF=18°.14.解:∵∠BOD=∠AOC=50°,∵OE⊥CD,∴∠DOE=90°,∴∠BOE=90°﹣50°=40°,15.解:(1)与∠1互为补角的角是∠EOD;(2)∵∠AOC:∠2=3:2,∴设∠AOC=3x,则∠2=2x,故3x+2x=180°,解得x=36°,则∠2=72°,∵EO⊥AB垂足为O,∴∠AOE=90°,∴∠1的度数为18°.16.解:(1)∵OM⊥AB,∴∠AOM=∠1+∠AOC=90°,∵∠1=∠2,∴∠NOC=∠2+∠AOC=90°,∴∠NOD=180°﹣∠NOC=180°﹣90°=90°;(2)∵OM⊥AB,∴∠AOM=∠BOM=90°,∵∠1=∠BOC,∴∠BOC=∠1+90°=3∠1,解得∠1=45°,∠AOC=90°﹣∠1=90°﹣45°=45°,∠MOD=180°﹣∠1=180°﹣45°=135°.17.解:(1)∠BOD=∠DOF,∵OE⊥OD,∴∠DOE=90°,∴∠EOF+∠DOF=90°,∠AOE+∠BOD=90°,∵OE平分∠AOF,∴∠AOE=∠EOF,∴∠BOD=∠DOF;(2)∵∠DOF=∠BOE,∴设∠DOF=x°,则∠BOE=4x°,∠BOD=x°,∴∠DOE=∠BOE﹣∠BOD=3x°,∵∠DOE=90°,∴3x=90,即x=30,∴∠BOD=30°,∴∠AOD=180°﹣∠BOD=150°.。
整式的乘法(B卷 能力提升练)-【单元测试】 七年级数学下册分层训练AB卷(湘教版)(解析版)
班级姓名学号分数第2章整式的乘法(B 卷·能力提升练)(时间:120分钟,满分:150分)一、单选题(共40分)1.(本题4分)计算20232022202322515的结果是()A .25B .52C .25D .52【答案】C【分析】根据积的乘方,同底数幂的乘法进行计算即可求解.【详解】解:2023202220232251520222022225552202225252525;故选:C .【点睛】本题考查了积的乘方,同底数幂的乘法,掌握积的乘方,同底数幂的乘法是解题的关键.m 的值为()A .6B .2C .6或2D .6或2【答案】C【分析】利用完全平方公式进行求解即可.【详解】∵代数式2(2)4x m x 是完全平方式,∴2(2)4x m x2(2)x 244x x 比较系数得24m ,解方程得6m 或2m 故选:C【点睛】本题考查了完全平方公式的应用,熟记完全平方公式的形式是解题的关键.3.(本题4分)已知43n ,85m ,则232n m ()A .1B .2C .8D .15【答案】D【分析】利用幂的乘方的法则及同底数幂的乘法的法则对所求的式子进行整理,再代入相应的值运算即可.【详解】解:当43n ,85m 时,23232322222483515nmn m n m n m .故选:D .【点睛】本题主要考查幂的乘方,同底数幂的乘法,解答的关键是对相应的运算法则的掌握.4.(本题4分)下列运用平方差公式计算错误的是().A . 22a b a b a bB . 22224x y y x x y C . 22a b a b a bD . 22m n m n m n【答案】D【分析】根据平方差公式 22a b a b a b 进行求解即可.【详解】解:A 、 22a b a b a b ,计算正确,不符合题意;B 、 22224x y y x x y ,计算正确,不符合题意;C 、 22a b a b a b a b a b ,计算正确,不符合题意;D 、 22m n m n m n n m n m ,计算错误,符合题意;故选D .【点睛】本题主要考查了平方差公式,熟知平方差公式是解题的关键.5.(本题4分)已知 22312x x x mx n ,则m n 的值是()A .10 B .10C .2D .2【答案】B【分析】根据多项式乘以多项式展开得出m ,n 的值,然后代入求解即可.【详解】解: 222312462x x x x x mx n∵4m ,6n ,4610m n ,故选:B .【点睛】本题主要考查多项式的乘法及求代数式的值,熟练掌握多项式乘法法则是解题关键.6.(本题4分)已知8ab ,5a b ,则22a b 的值是()A .66B .51C .44D .41【答案】D【分析】先将22a b 变形,再整体代入数值求解.【详解】解: 2222252841a b a b ab ,故选:D.【点睛】本题考查了完全平方差公式的变形应用,解题关键是牢记完全平方差公式.7.(本题4分)若 21262x kx x x ,则k 的值为().A .8B .8C .4D .4【答案】D【分析】根据多项式乘以多项式运算法则可得2(6)(2)412x x x x ,据此解答即可.【详解】解:∵ 221262412x kx x x x x ,∴4k ,故选:D .【点睛】本题考查了多项式乘以多项式,熟练掌握多项式乘以多项式运算法则是解本题的关键.8.(本题4分)已知2353612x mx x x 的计算结果中不含3x 的项,则m 的值为()A .3B .3C .12D .0【答案】B【分析】先计算2353612x mx x x 的结果,不含3x 的项,则合并后含3x 的项的系数为0.【详解】2353612x mx x x 22334510362612x x x mx mx x x 43212266135x m x m x x ∵已知2353612x mx x x 的计算结果中不含3x 的项,∴260m ∴3m 故选:B .【点睛】本题考查多项式中不含某一项的系数特点,解题的关键是能够掌握做题方法,不含某一项,则多项式合并后,该项的系数为0.9.(本题4分)在边长为a 的正方形中挖去一个边长为b 的小正方形(a b )(如图甲),把余下的部分拼成一个矩形(如图乙),根据两个图形中阴影部分的面积相等,可以验证()A . 22a b a b a b B . 2222a b a ab bC . 2222a b a ab bD . 2222a b a b a ab b【答案】A【分析】根据两个图形中阴影部分的面积相等,分别列式表示.【详解】解:根据两个图形中阴影部分的面积相等得: 22a b a b a b ,故选:A .【点睛】本题主要考查如何根据两个图形中阴影部分的面积相等,分别列式表示即可求出结果.10.(本题4分)(2022春·陕西西安·七年级高新一中校考期中)24816323131313131311 的个位数字为()A .5B .1C .2D .4【答案】B【分析】将 2481632313131313131 变形为24816321313131313131312,利用平方差公式求解.【详解】解: 24816323131313131311248163213131313131313112224816321313131313131124481632131313131311288163213131313112161632131313112323213131126413112,∵133 ,239 ,3327 ,4381 ,53243 ……可知个位数变化规律为:3,9,7,1,4次一个循环,∴643的个位数为1,∴6431 的个位数为0,∴ 641312的个位数可能是0或5,∴6413112的个位数可能是1或6,观察选项可知,只有B 选项为1,故选B .【点睛】本题考查平方差公式的应用,能够运用平方差公式对原式进行变形是解题的关键.二、填空题(共32分)11.(本题4分)计算: 43522a a a ___________.【答案】815a 【分析】先计算乘方,再计算乘法,然后合并同类项,即可求解.【详解】解:45232a a a 85316a a a 8816a a 815a .故答案为:815a 【点睛】本题主要考查了幂的混合运算,熟练掌握幂的混合运算法则是解题的管.12.(本题4分)(2022春·江苏南京·七年级校联考期中)比较大小:304________403(填“>”“<”或“=”).【答案】<【分析】根据幂的乘方,底数大于1时,根据指数越大幂越大,可得答案.【详解】解:101030310404104464,3381,∵64<81,∴101064<81,即30404<3,故答案为:<.【点睛】本题考查了幂的乘方与积的乘方,利用幂的乘方化成同指数的幂是解题关键.13.(本题4分)已知:2330x y ,计算:2322x y 的值为______.【答案】8【分析】直接利用同底数幂的乘法法则计算得出答案.【详解】解:∵2330x y ,∴233x y ,∴2323322228x y x y ,故答案为:8.【点睛】此题主要考查了同底数幂的乘法法则,正确掌握运算法则是解题关键.14.(本题4分)已知12a a,则441a a ______.【答案】34【分析】先对已知式子两边平方求出2216a a,再通过两边平方即可求出结果.【详解】解:对12a a两边平方得:22124aa ,∴2216a a,对2216a a两边平方得:441236aa,∴44134a a,故答案为:34.【点睛】本题考查了完全平方公式,关键是能够灵活运用完全平方公式进行求解.15.(本题4分)已知: 212x y , 24x y ,则223x xy y 的值为_____.【答案】14【分析】利用完全平方公式将已知等式展开,然后将其相加即可求得22x y 的值,将其相减得到代xy 的值,继而代入223x xy y ,即可得解【详解】解:∵ 212x y , 24x y ,①②2222212 24 x xy y x xy y①②,②+①得:228x y ,①-②得:2xy ,22223()383214x xy y x y xy ,故答案为:14【点睛】本题考查代数式求值,完全平方公式,熟练掌握完全平方公式和整体思想的运用是解题的关键.16.(本题4分)(2022春·江西抚州·七年级统考期中)如果x 2+4y 2﹣2x ﹣4y +2=0,则(2x ﹣3y )2﹣(3y +2x )2=_____.【答案】12【分析】已知等式左边利用完全平方公式变形后,利用非负数的性质求出x 与y 的值,即可确定出xy 的值.然后将其代入整理后的所求代数式进行求值即可.【详解】解:∵x 2+4y 2﹣2x ﹣4y +2=0,∴(x ﹣1)2+4(y ﹣12)2=0,∴x ﹣1=0,y ﹣12=0,即x =1,y =12,∴xy =12则(2x ﹣3y )2﹣(3y +2x )2=(2x ﹣3y +3y +2x )(2x ﹣3y ﹣3y ﹣2x )=4x •(﹣6y )=﹣24xy =﹣24×12=﹣12.故答案是:﹣12.【点睛】此题考查了配方法的应用,熟练掌握完全平方公式是解本题的关键.17.(本题4分)用如图所示的,,C 类卡片若干张,拼成一个长为32a b ,宽为a b 的长方形,则A ,B ,C 类卡片一共需要___________张.【答案】10【分析】根据长方形的面积公式 2232352S a b a b a ab b 即可得出结果.【详解】解:由题可知:A ,B ,C 类卡片的面积分别为2a ,ab ,2b ,∵长方形的长为32a b ,宽为a b ,长方形的面积: 2232352S a b a b a ab b , A ,B ,C 类卡片一共需要35210 张,故答案为:10.【点睛】本题主要考查了多项式乘多项式的运算,找出对应卡片面积的系数,分别对应,即可找出所需卡片数量.18.(本题4分)(2022春·贵州铜仁·七年级统考期中)如图,是用棋子摆成的图案,摆第1个图案需要7枚棋子,摆第2个图案需要19枚棋子,摆第3个图案需要37枚棋子,按照这样的方式摆下去,摆第n 个图案需要_______________枚棋子.【答案】2331n n【分析】本题可依次解出n =1,2,3,…,图案需要的棋子枚数.再根据规律以此类推,可得出第n 个图案需要的棋子枚数.【详解】解:1n ∵时,总数是617 ;2n 时,总数为 612119 ;3n 时,总数为 6123137 枚;…;n n 时,有 2(1)6(123)1613312n nn n n枚.故答案为: 2331n n .【点睛】本题考查图形的变化,是一道找规律的题目,这类题型在中考中经常出现.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.三、解答题(共78分)19.(本题8分)计算:(1)(-x)·x 2(-x)6;(2)(-2x 2)3+x 2·x 4-(-3x 3)2.【答案】(1)-x 9;(2)-16x 6.【分析】(1)根据同底数幂的乘法法则计算即可求解;(2)先算积的乘方、同底数幂的乘法,再合并同类项即可求解.【详解】(1)(﹣x )•x 2•(﹣x )6=﹣x 1+2+6=﹣x 9;(2)(﹣2x 2)3+x 2•x 4﹣(﹣3x 3)2=﹣8x 6+x 6﹣9x 6=﹣16x 6.【点睛】本题考查了整式的混合运算,同底数幂的乘法,积的乘方,熟记公式是解题的关键.20.(本题8分)(2023秋·广东·校联考期末)先化简,再求值:22335x y x y x y x x y ,其中2x ,1y .【答案】22,4y xy 【分析】先根据整式的运算法则进行化简,然后将x 和y 的值代入原式即可求出答案.【详解】 22335x y x y x y x x y 2222244(9)55x xy y x y x xy2222244955x xy y x y x xy22y xy ,将2x ,1y 代入得:2222(1)(2)(1)4y xy .【点睛】本题考查了整式的化简求值,熟记完全平方公式和平方差公式是解题的关键.21.(本题8分)已知7x y ,6xy ,求:(1)x y 的值;(2)2222x y x y xy 的值.【答案】(1)5(2)67或7【分析】(1)根据22()()4x y x y xy ,然后代入计算可得答案;(2)根据222()249x y x y xy ,可得22x y 的值,然后分类讨论x y 的值可得答案.【详解】(1)解:22()()4x y x y xy ∵,7x y ,6xy ,22()74625x y ,5x y .(2)222()249x y x y xy ∵,22491237x y ,222237()x y x y xy xy x y .当5x y 时,原式376567 ;当5x y 时,原式376(5)7 .故2222x y x y xy 的值为67或7.【点睛】此题考查的是完全平方公式及因式分解,能够利用完全平方公式进行变形是解决此题关键.22.(本题10分)(2022秋·黑龙江哈尔滨·校考期中)东方小区要修建观赏区,在长为 52a b 米,宽为 4a b 米的长方形地面进行改造,在其中间要修建一个边长为 a b 米的正方形花坛,其余地面进行绿草坪(阴影部分).(1)用含有a ,b 的式子表示草坪的总面积(结果化为最简);(2)若4a ,2b ,求草坪的面积是多少?【答案】(1)224169a ab b (2)156平方米.【分析】(1)绿化面积=矩形面积﹣正方形面积,利用多项式乘多项式法则,及完全平方公式化简,去括号合并得到最简结果;(2)将a 与b 的值代入计算即可求出值.【详解】(1)依题意得:2(52)(4)()a b a b a b =2222520282a ab ab b a ab b =224169a ab b 平方米.答:草坪的总面积是224169a ab b 平方米;(2)当4a ,2b 时,原式=2244164292 =156(平方米).答:草坪的面积是156平方米.【点睛】此题考查了多项式乘多项式,以及整式的混合运算﹣化简求值,弄清题意列出相应的式子是解本题的关键.23.(本题10分)(2022秋·山西吕梁·统考期末)若我们规定三角“”表示为:abc ;方框“”表示为:()m n x y .例如:411193(233 )=.请根据这个规定解答下列问题:(1)计算:=;(2)代数式为完全平方式,则k =______;(3)解方程:267x .【答案】(1)32(2)3(3)4x 【分析】(1)按照规定的两种运算进行运算即可;(2)按照规定的两种运算及完全平方公式的特点即可求得k 的值;(3)按照规定的两种运算可是关于x 的方程,解方程即可.【详解】(1)解:原式412(3)1(1)36432;故答案为:32;(2)解:原式22(3)2x y kxy222(3)(3)3k x y x y ,由题意得:13k,3k ,故答案为:3 ;(3)解:由规定的运算可得:22(32)(32)(2)(32)367x x x x x 整理得:416x ,解得:4x .【点睛】本题是新定义问题,考查了有理数的计算,完全平方公式,整式的乘法及解一元一次方程等知识,关键是弄懂三角符号与方框符号规定的运算.24.(本题10分)小明和小红学习了用图形面积研究整式乘法的方法后,分别进行了如下数学探究:把一根铁丝截成两段,探究1:小明截成了两根长度不同的铁丝,并用两根不同长度的铁丝分别围成两个正方形,已知两正方形的边长和为20cm ,它们的面积的差为40cm 2,则这两个正方形的边长差为________;探究2:小红截成了两根长度相同的铁丝,并用两根同样长的铁丝分别围成一个长方形与一个正方形,若长方形的长为x cm ,宽为y cm.(1)用含x ,y 的代数式表示正方形的边长为________;(2)设长方形的长大于宽,比较正方形与长方形面积哪个大,并说明理由.【答案】探究1:2cm;探究2:(1)2x y ,(2)正方形的面积大于长方形的面积,理由见解析【详解】试题分析:探究一:根据平方差公式进行解答;探究二:(1)根据正方形周长与边长的关系,即可解答;(2)作差进行比较,即可解答.试题解析:探究1:设两个正方形的边长分别为a ,b ,则a+b=20,a 2-b 2=40,(a+b )(a-b )=40,20(a-b )=40,a-b=2(cm ),故答案为2cm ;探究2:(1)224x y =2x y ,故答案为2x y cm ;(2)正方形的面积较大,理由如下:正方形的面积为(2x y )2cm 2,长方形的面积为xy cm 2,(2x y )2-xy = 24x y ,∵x >y ,∴ 24x y >0,∴(2x y )2>xy ,∴正方形的面积大于长方形的面积.【点睛】本题考查了平方差公式和完全平方公式,解决本题的关键是熟记公式.25.(本题12分)(2023秋·山西长治·统考期末)阅读与思考阅读下列材料,完成后面的任务:赵爽“弦圈”与完全平方公式三国时期吴国的数学家赵爽创建了一幅“弦图”,利用面积法给出了勾股定理的证明.实际上,该“弦图”与完全平方公式有着密切的关系,如图2,这是由8个全等的直角边长分别为a ,b ,斜边长为c 的三角形拼成的“弦图”.由图可知,1个大正方形ABCD 的面积=8个直角三角形的面积+1个小正方形PQMN 的面积.任务:(1)在图2中,正方形ABCD 的面积可表示为__________,正方形PQMN 的面积可表示为__________.(用含a ,b 的式子表示)(2)根据8ABCD PQMN S S S 正方形正方形直角三角形,可得2()a b ,ab ,2()a b 之间的关系为__________.(3)根据(2)中的等量关系,解决问题:已知5a b ,4ab ,求2()a b 的值.【答案】(1) 2a b ; 2a b (2)22()4()a b ab a b (3)9【分析】(1)利用正方形的面积公式即可求解.(2)直接利用相等关系用代数式进行表示即可.(3)将代数式的值代入上一小题的等式中求解即可.【详解】(1)∵大正方形边长为 a b ,小正方形边长为 a b ,∴大正方形面积为 2a b ,小正方形面积为 2a b ;故答案为: 2a b ; 2a b .(2)根据8ABCD PQMN S S S 正方形正方形直角三角形,可得221()82()a b ab a b ,故答案为:22()4()a b ab a b .(3)∵5a b ,4ab ,∴ 22544a b ,∴ 29a b ,∴2()a b 的值为9.【点睛】本题考查了赵爽“弦圈”与完全平方公式,解题关键是牢记并能灵活利用完全平方和与完全平方差公式进行变换.26.(本题12分)(2023春·七年级)配方法是数学中重要的一种思想方法.它是指将一个式子的某一部分通过恒等变形化为完全平方式或几个完全平方式的和的方法.这种方法常被用到代数式的变形中,并结合非负数的意义来解决一些问题.我们定义:一个整数能表示成22(a b a 、b 是整数)的形式,则称这个数为“完美数”.例如,5是“完美数”.理由:因为22521 ,所以5是“完美数”.【解决问题】(1)已知29是“完美数”,请将它写成22+a b (a 、b 是整数)的形式;(2)若265x x 可配方成2x m n ()(m 、n 为常数),则mn =;【探究问题】(3)已知222450x y x y ,则x y ;(4)已知224412(S x y x y k x x 、y 是整数,k 是常数),要使S 为“完美数”,试求出符合条件的一个k 值,并说明理由.【拓展结论】(5)已知实数x 、y 满足25502x x y ,求2x y 的最值.【答案】(1)2229=25 ;(2)﹣12;(3)﹣1;(4)S 是一个“完美数”,理由见解析;(5)﹣112.【分析】(1)把29分为两个整数的平方即可;(2)原式利用完全平方公式配方后,确定出m 与n 的值,即可求出mn 的值;(3)已知等式利用完全平方公式配方后,根据非负数的性质求出x 与y 的值,即可求出+x y 的值;(4)根据S 为“完美数”,利用完全平方公式配方,确定出k 的值即可;(5)由已知等式表示出y ,代入2x y 中,配方后再利用非负数的性质求出最大值即可.【详解】(1)根据题意得:2229=25 ;故答案为:2229=25 ;(2)根据题意得:2265(3)4x x x ,3m ,n 4,则12mn ;故答案为:12 ;(3)已知等式变形得:22(21)(44)0x x y y ,即22(1)(2)0x y ,2(1)0x ∵,2(2)0y ,10x ,20y ,解得:=1x ,=2y ,则121x y ;故答案为:1 ;(4)当13k 时,S 为“完美数”,理由如下:22441213S x y x y 22(44)(4129)x x y y 22(2)(23)x y ,x ∵,y 是整数,2x ,23y 也是整数,S 是一个“完美数”;(5)25502x x y ∵,2552y x x ,即222510y x x ,222510x y x x x 22610x x 2992(3)1042x x 23112()22x ,当3=2x 时,2x y 最大,最大值为112 .【点睛】此题考查了配方法的应用,熟练掌握完全平方公式是解本题的关键.。
湘教版数学七年级下册第4章 相交线与平行线 达标测试卷(含答案)
第4章相交线与平行线达标测试卷一、选择题(共6题,每题3分,共18分)1. 下列图形中,能将其中一个三角形平移得到另一个三角形的是()A B C D2. 如图,对于图中标记的各角,下列条件能够推理得到a∥b的是()A.∠1=∠2B.∠2=∠4C.∠3=∠4D.∠1+∠4=180°(第2题)(第3题)(第4题)3. 如图,AD是∠EAC的平分线,AD∥BC,∠B=30°,则∠C的度数为()A.30°B.60°C.80°D.120°4. 在体育课上某同学立定跳远的情况如图所示,l表示起跳线,在测量该同学的实际立定跳远成绩时,应测量的线段及理由是()A.BP,经过一点有且只有一条直线垂直于已知直线B.CP,垂线段最短C.DP,两点之间,线段最短D.BD,两平行线间的公垂线段相等5. 如图,已知正方形ABCD的面积为4,则三角形EBC的面积为()A.4 B.3 C.2 D.1(第5题)(第6题)(第7题)(第8题)6. 如图,AB∥EF,CD⊥EF,∠BAC=50°,则∠ACD=()A.120°B.130°C.140°D.150°二、填空题(共6题,每题4分,共24分)7. 如图,直线AB和直线CD相交于点O,∠AOC=50°,OE平分∠BOD,那么∠BOE=______°.8. 如图,a∥b,点P在直线a上,点A在直线b上,P A⊥b,P A=2 cm,则点A到直线a的距离为________cm.9. 如图,AB∥CD,EF分别交AB,CD于G,H两点,若∠1=50°,则∠EGB=________.(第9题) (第10题)10. 如图,在甲、乙两地之间修一条笔直的公路,从甲地测得公路的走向是北偏东48°.甲、乙两地同时开工,若干天后,公路准确接通,则乙地所修公路的走向是南偏西________.11. 如图,若直线EF⊥MN于F,且∠1=140°,则当∠2=________时,AB∥CD.(第11题) (第12题)12. 如图,直线AB,CD交于点O,∠BOC=70°,现作射线OE⊥CD,则∠AOE的大小为__________.三、解答题(共6题,共58分)13. (8分)如图,要把水渠中的水引到C点,在渠岸AB的什么地方开沟,才能使沟最短?画出图形,并说明理由.14. (8分)如图,直线AB、CD相交于点O, OD垂直于OE,∠BOE=18°.求∠AOC的度数.15. (8分)如图,已知AD∥BC,AC=15 cm,BC=12 cm,BE⊥AC于点E,BE=10 cm,求AD与BC之间的距离.16. (10分)如图,已知∠ABC=180°-∠A,BD⊥CD于点D,EF⊥CD于点F.(1)试说明:AD∥BC.(2)若∠1=36°,求∠2的度数.317. (10分)如图,将周长为18 cm的三角形ABC沿BC方向平移得到三角形DEF.如果四边形ABFD的周长是21 cm,求平移的距离.18. (14分)问题情境:如图①,AB∥CD,∠P AB=130°,∠PCD=120°,求∠APC的度数.小明的解题思路:如图②,过P作PE∥AB,通过平行线的性质,可得∠APC =50°+60°=110°.问题迁移:(1)如图③,AD∥BC,点P在射线OM上运动,当点P在A,B两点之间运动时,∠ADP=∠α,∠BCP=∠β.∠CPD,∠α,∠β之间有何数量关系?请说明理由;(2)在(1)的条件下,如果点P在A,B两点外侧运动(点P与A,B,O三点不重合),请你直接写出∠CPD,∠α,∠β之间的数量关系.答案一、1.A 2.D 3.A 4.B 5.C 6.C二、7.258.2【点拨】因为a∥b,P A⊥b,P A=2 cm,所以AP⊥a,所以点A到直线a 的距离=P A=2 cm.9.50°10.48°【点拨】如图,因为AC∥BD,∠1=48°,所以∠2=∠1=48°,根据方向角的概念可知,乙地所修公路的走向是南偏西48°.11.50°【点拨】如图,因为AB∥CD,所以∠3=∠4(两直线平行,同位角相等).又因为∠1+∠3=180°,∠1=140°,所以∠3=∠4=40°.因为EF⊥MN,所以∠2+∠4=90°,所以∠2=50°.12.20°或160°【点拨】因为OE⊥DC,所以∠DOE=90°.因为∠AOD=∠BOC,∠BOC=70°,所以∠AOD=70°.①当OE在DC的左侧时,∠AOE=∠DOE-∠AOD=90°-70°=20°;②当OE在DC的右侧时,∠AOE=∠DOE+∠AOD=90°+70°=160°.综上,∠AOE=20°或160°.5三、13.解:图略.过C作CD⊥AB,垂足为D,在D处开沟,则沟最短.因为直线外一点与直线上各点连线的所有线段中,垂线段最短.14.解:因为OD⊥OE,所以∠BOD+∠EOB=90°.因为∠BOE=18°,所以∠BOD=90°-18°=72°,所以∠AOC=∠BOD=72°.15.解:过点A作BC的垂线,交BC于点P,三角形ABC的面积为12×AC×BE=12×15×10=75(cm2),又因为三角形ABC的面积为12×BC×AP=75(cm2),所以AP=12.5 cm,因此AD与BC之间的距离为12.5 cm.16.解:(1)因为∠ABC=180°-∠A,所以∠ABC+∠A=180°,所以AD∥BC.(2)因为AD∥BC,∠1=36°,所以∠3=∠1=36°.因为BD⊥CD,EF⊥CD,所以∠BDC=∠EFC=90°.所以BD∥EF.所以∠2=∠3=36°.17.解:因为三角形DEF是由三角形ABC沿BC方向平移得到的,所以AD=CF,AC=DF.所以四边形ABFD的周长为AD+AB+BF+DF=AD+AB+BC+AC+CF=2AD+(AB+BC+AC)=21 cm.因为AB+BC+AC=18 cm,所以2AD=3 cm,解得AD=1.5 cm.答:平移的距离为1.5 cm.18.解:(1)∠CPD=∠α+∠β.理由如下:如图①,过P作PE∥AD交CD于E,因为AD∥BC,所以AD∥PE∥BC.所以∠α=∠DPE,∠β=∠CPE.所以∠CPD=∠DPE+∠CPE=∠α+∠β.(2)当点P在线段BA的延长线上时,如图②.∠CPD=∠β-∠α.当点P在线段AB的延长线上时,如图③. ∠CPD=∠α-∠β.7。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
湘教版七年级数学下册单元测试题全套(含答案)第1章检测卷(满分:120分 时间:90分钟)一、选择题(每小题3分,共30分)1.在方程组⎩⎨⎧2x -y =1,y =3z +1,⎩⎨⎧x =2,3y -x =1,⎩⎨⎧x +y =0,3x -y =5,⎩⎪⎨⎪⎧1x +1y =1,x +y =1中,是二元一次方程组的有( ) A .1个 B .2个 C .3个 D .4个2.用“加减法”将方程组⎩⎨⎧5x -3y =-5,5x +4y =-1中的未知数x 消去后得到的方程是( )A .y =4B .7y =4C .-7y =4D .-7y =14 3.以⎩⎨⎧x =-1,y =1为解的二元一次方程组是( )A.⎩⎨⎧x +y =0,x -y =1B.⎩⎨⎧x +y =0,x -y =-1C.⎩⎨⎧x +y =0,x -y =2 D.⎩⎨⎧x +y =0,x -y =-24.二元一次方程组⎩⎨⎧x +2y =10,y =2x 的解是( )A.⎩⎨⎧x =4,y =3B.⎩⎨⎧x =3,y =6 C.⎩⎨⎧x =2,y =4 D.⎩⎨⎧x =4,y =25.如果12a 3x b y 与-a 2y b x +1是同类项,则( )A.⎩⎨⎧x =-2,y =3 B.⎩⎨⎧x =2,y =-3C.⎩⎨⎧x =-2,y =-3D.⎩⎨⎧x =2,y =36.方程组⎩⎨⎧2x +y =64,x +2y =8中x +y 的值为( )A .24B .-24C .72D .487.买甲、乙两种纯净水共用250元,两种桶装水的价格如图,已知乙种水的桶数是甲种水的桶数的75%,设买甲种水x 桶,乙种水y 桶,则所列方程中正确的是( )A.⎩⎨⎧8x +6y =250,y =75%·xB.⎩⎨⎧8x +6y =250,x =75%·y C.⎩⎨⎧6x +8y =250,y =75%·x D.⎩⎨⎧6x +8y =250,x =75%·y(第7题图)8.若方程组⎩⎨⎧x +y =3,2x +y =□的解为⎩⎨⎧x =1,y =□,则前后两个□的数分别是( )A .4,2B .1,3C .2,3D .5,29.为了丰富学生课外小组活动,培养学生动手操作能力,王老师让学生把5m 长的彩绳截成2m 或1m 长的彩绳,用来做手工编织,在不造成浪费的前提下,你有几种不同的截法( )A .1B .2C .3D .410.如图,用一根长40cm 的铁丝围成一个长方形,若长方形的宽比长少2cm ,则这个长方形的面积为( )A .90cm 2B .96cm 2C .99cm 2D .100cm 2(第10题图)二、填空题(每小题3分,共24分)11.已知方程-2x +y +5=0,用含x 的代数式表示y ,则y =________. 12.若x2a -3+yb +2=3是二元一次方程,则a -b =________.13.方程组⎩⎨⎧x +2y =2,2x +y =4的解是________.14.已知(x +y +3)2+|2x -y -1|=0,则x y的值是________.15.已知⎩⎨⎧x =2,y =1是二元一次方程组⎩⎨⎧mx +ny =2,nx -my =1的解,则m +3n 的值为________.16.已知方程组⎩⎨⎧x +2y =k ,2x +y =1的解满足x +y =3,则k 的值为________.17.关于x ,y 的二元一次方程组⎩⎨⎧x +y =1-m ,x -3y =5+3m中,m 与方程组的解中的x 或y 相等,则m 的值为____________.18.李师傅加工1个甲种零件和1个乙种零件的时间分别是固定的.现知道李师傅加工3个甲种零件和5个乙种零件共需55分钟;加工4个甲种零件和9个乙种零件共需85分钟.则李师傅加工2个甲种零件和4个乙种零件共需________分钟. 三、解答题(共66分) 19.(16分)解方程组:(1)⎩⎨⎧4x +y =5①,3x -2y =1②;(2)⎩⎨⎧2x =3-y ①,3x +2y =2②;(3)⎩⎨⎧2x +3y =8①,3x -2y =-1②;(4)⎩⎪⎨⎪⎧2x -y =5①,x -1=12(2y -1)②.20.(8分)已知方程组⎩⎨⎧ax +by =5,bx +ay =2的解为⎩⎨⎧x =4,y =3,试求a ,b 的值.21.(10分)已知方程组⎩⎨⎧ax +5y =4,5x +y =7与方程组⎩⎨⎧3x -y =1,5x +by =1的解相同,求a ,b 的值.22.(10分)某运动员在一场篮球比赛中的技术统计如下表所示:注:表中出手投篮次数和投中次数均不包括罚球.根据以上信息,求本场比赛中该运动员投中2分球和3分球各几个.23.(10分)代数式ax+by,当x=5,y=2时,它的值是1;当x=1,y=3时,它的值是-5.试求当x=7,y=-5时,代数式ax+by的值.24.(12分)某中学为了提高绿化品位,美化环境,准备将一块周长为114m 的长方形草地,设计成长和宽分别相等的9块长方形(如图所示),种上各种花卉,经市场预测,绿化每平方米造价100元. (1)求出每个小长方形的长和宽;(2)请计算出完成这块草地的绿化工程预计投入资金多少元.(第24题图)参考答案与解析一、1.B 2.B 3.D 4.C 5.D 6.A 7.A 8.A9.C 解析:截下来的符合条件的彩绳长度之和刚好等于总长5m 时,不造成浪费,设截成2m 长的彩绳x 根,1m 长的y 根,由题意得2x +y =5.∵x ,y 都是非负整数,∴符合条件的解为⎩⎨⎧x =0,y =5,⎩⎨⎧x =1,y =3,⎩⎨⎧x =2,y =1.则共有3种不同截法.故选C.10.C 解析:设长方形的长为x cm ,宽为y cm ,根据题意得⎩⎨⎧x -y =2,2(x +y )=40,解得⎩⎨⎧x =11,y =9.∴这个长方形的面积为xy =11×9=99(cm 2).故选C. 二、11.2x -5 12.3 13.⎩⎨⎧x =2,y =0 14.27118.40 解析:设李师傅加工1个甲种零件需x 分钟,加工1个乙种零件需y 分钟,根据题意得⎩⎨⎧3x +5y =55①,4x +9y =85②,①+②,得7x +14y =140,∴x +2y =20,∴2x +4y =40. 三、19.解:(1)①×2+②,得11x =11,解得x =1.把x =1代入①,得4+y =5,解得y =1.则方程组的解为⎩⎨⎧x =1,y =1.(4分) (2)将①变形,得y =3-2x ③,将③代入②中,得3x +2(3-2x )=2,解得x =4.把x =4代入③,得y =-5.则方程组的解为⎩⎨⎧x =4,y =-5.(8分)(3)①×2+②×3,得13x =13,解得x =1.将x =1代入①,得2+3y =8,解得y =2.则方程组的解为⎩⎨⎧x =1,y =2.(12分)(4)原方程组可化为⎩⎪⎨⎪⎧2x -y =5①,x -y =12③,①-③得x =92.把x =92代入①,得9-y =5,解得y =4,则方程组的解为⎩⎪⎨⎪⎧x =92,y =4.(16分) 20.解:把⎩⎨⎧x =4,y =3代入方程组⎩⎨⎧ax +by =5,bx +ay =2,得⎩⎨⎧4a +3b =5,4b +3a =2,(4分)解得⎩⎨⎧a =2,b =-1.(8分)21.解:由题意联立方程组,得⎩⎨⎧5x +y =7①,3x -y =1②,(2分)①+②,得8x =8,解得x =1.(4分)把x =1代入②,得y =2.(6分)把x =1,y =2代入原方程组,得⎩⎨⎧a +10=4,5+2b =1,(8分)解得⎩⎨⎧a =-6,b =-2.(10分)22.解:设本场比赛中该运动员投中2分球x 个,3分球y 个,(1分)依题意得⎩⎨⎧10+2x +3y =60,x +y =22,(5分)解得⎩⎨⎧x =16,y =6.(8分)答:本场比赛中该运动员投中2分球16个,3分球6个.(10分)23.解:由题意得⎩⎨⎧5a +2b =1,a +3b =-5,(3分)解得⎩⎨⎧a =1,b =-2.(6分)∴ax +by =x -2y ,(7分)∴当x =7,y =-5时,x -2y =17.(10分)24.解:(1)设小长方形的宽为x m ,长为y m ,由题意得⎩⎨⎧2(y +2x +5x )=114,5x =2y ,(3分)解得⎩⎨⎧x =6,y =15.(6分)答:每个小长方形的宽为6m ,长为15m.(7分) (2)15×6×9×100=81000(元).(10分)答:完成这块草地的绿化工程预计投入资金81000元.(12分)第2章检测卷(满分:120分 时间:90分钟)一、选择题(每小题3分,共30分) 1.计算(2a 2)3的结果是( )A .2a6 B .6a 6C .8a 6D .8a 52.计算(2x -1)(1-2x )结果正确的是( )A .4x 2-1 B .1-4x 2C .-4x 2+4x -1 D .4x 2-4x +13.小萌在利用完全平方公式计算一个二项整式的平方时,得到正确结果4x 2+20xy +■,不小心把最后一项染黑了,你认为这一项是( )A .5y 2B .10y 2C .100y 2D .25y 24.下列各式计算正确的是( )A .(x 2)3=x 6B .(2x )2=2x 2C .(x -y )2=x 2-y 2D .x 2·x 3=x 65.下列运算不能用平方差公式的是( )A .(4a 2-1)(1+4a 2) B .(x -y )(-x -y ) C .(2x -3y )(2x +3y ) D .(3a -2b )(2b -3a )6.若(y +3)(y -2)=y 2+my +n ,则m ,n 的值分别为( )C .m =1,n =6D .m =5,n =-67.若x 2+4x -4=0,则3(x -2)2-6(x +1)(x -1)的值为( )A .-6B .6C .18D .308.三个连续偶数,中间一个数是k ,它们的积为( ) A .8k 2-8k B .k 3-4k C .8k 3-2k D .4k 3-4k 9.若a +b =3,ab =1,则2a 2+2b 2的值为( )A .7B .10C .12D .1410.如图,在边长为2a 的正方形中央剪去一边长为(a +2)的小正方形(a >2),将剩余部分剪开密铺成一个平行四边形,则该平行四边形的面积为( )(第10题图)A .a 2+4 B.2a 2+4a C .3a 2-4a -4 D.4a 2-a -2 二、填空题(每小题3分,共24分) 11.若2m ·23=26,则m =________.12.光的速度约为3×105km/s ,太阳光照到地球上要5×102s ,那么太阳与地球的距离为__________km(用科学记数法表示).13.若a 2-b 2=1,a -b =12,则a +b 的值为________.14.如果(y +a )2=y 2-8y +b ,则a ,b 的值分别为________.15.已知对于整式A =(x -3)(x -1),B =(x +1)(x -5),如果其中x 取值相同时,则整式A ________B (填“>”“<”或“=”).16.若ab =1,则(a n -b n )2-(a n +b n )2=________. 17.已知a +b =8,a 2b 2=4,则a 2+b 22-ab =________.18.观察下列各式的计算结果与相乘的两个多项式之间的关系:(x +1)(x 2-x +1)=x 3+1;(x +2)(x 2-2x +4)=x 3+8; (x +3)(x 2-3x +9)=x 3+27.请根据以上规律填空:(x +y )(x 2-xy +y 2)=________. 三、解答题(共66分) 19.(16分)计算:(1)x 4·x 6-(x 5)2;(2)(-xy )2·x 4y +(-2x 2y )3;(3)(1-3a )2-2(1-3a );(4)(a +2b )(a -2b )-12b (a -8b ).20.(8分)已知甲数是a ,乙数比甲数的3倍少1,丙数比乙数多2,试求甲、乙、丙三数的积.21.(8分)已知多项式x2-mx-n与x-2的乘积中不含x2项和x项,求m,n的值.22.(12分)先化简,再求值:(1)(a+b)(a-b)-(a-2b)2,其中a=2,b=-1;(2)(x+2y)(x-2y)-(2x-y)2+(3x-y)(2x-5y),其中x=-1,y=-2.23.(10分)王老师家买了一套新房,其结构如图所示(单位:米).他打算将卧室铺上木地板,其余部分铺上地砖.(1)木地板和地砖分别需要多少平方米?(2)如果地砖的价格为每平方米x元,木地板的价格为每平方米3x元,那么王老师需要花多少钱?(第23题图)24.(12分)小明和小红学习了用图形面积研究整式乘法的方法后,分别进行了如下数学探究:把一根铁丝截成两段,探究1:小明截成了两根长度不同的铁丝,并用两根不同长度的铁丝分别围成两个正方形,已知两正方形的边长和为20cm ,它们的面积的差为40cm 2,则这两个正方形的边长差为________;探究2:小红截成了两根长度相同的铁丝,并用两根同样长的铁丝分别围成一个长方形与一个正方形,若长方形的长为x cm ,宽为y cm.(1)用含x ,y 的代数式表示正方形的边长为________;(2)设长方形的长大于宽,比较正方形与长方形面积哪个大,并说明理由.参考答案一、1.C 2.C 3.D 4.A 5.D 6.B 7.B 8.B 9.D 10.C 二、11.3 12.1.5×10813.2 14.-4,16 15.> 16.-4 17.28或36 解析:∵a +b =8,a 2b 2=4,∴ab =2或ab =-2,a 2+b 22-ab =(a +b )2-4ab 2.当ab =2时,a 2+b 22-ab =82-4×22=28;当ab =-2时,a 2+b 22-ab =82-4×(-2)2=36.18.x 3+y 3三、19.解:(1)原式=x 10-x 10=0.(4分) (2)原式=x 6y 3-8x 6y 3=-7x 6y 3.(8分) (3)原式=1-6a +9a 2-2+6a =9a 2-1.(12分)(4)原式=a 2-4b 2-12ab +4b 2=a 2-12ab .(16分)20.解:由题意知乙数为3a -1,丙数为3a +1.(2分)因此甲、乙、丙三数的积为a ·(3a -1)·(3a +1)=a ·[(3a -1)·(3a +1)]=a ·(9a 2-1)=9a 3-a .(8分)21.解:(x -2)(x 2-mx -n )=x 3-mx 2-nx -2x 2+2mx +2n =x 3-(m +2)x 2+(2m -n )x +2n ,(4分)∵不含x 2项和x 项,∴-(m +2)=0,2m -n =0,(6分)解得m =-2,n =-4.(8分)22.解:(1)原式=a 2-b 2-a 2+4ab -4b 2=4ab -5b 2.(4分)当a =2,b =-1时,原式=4×2×(-1)-5×1=-13.(6分)(2)原式=x 2-4y 2-4x 2+4xy -y 2+6x 2-17xy +5y 2=3x 2-13xy .(10分)当x =-1,y =-2时,原式=3×(-1)2-13×(-1)×(-2)=3-26=-23.(12分)23.解:(1)卧室的面积是2b (4a -2a )=4ab (平方米),(2分)厨房、卫生间、客厅的面积和是b ·(4a -2a -a )+a ·(4b -2b )+2a ·4b =ab +2ab +8ab =11ab (平方米),(4分)即木地板需要4ab 平方米,地砖需要11ab 平方米.(5分)(2)11ab ·x +4ab ·3x =11abx +12abx =23abx (元),即王老师需要花23abx 元.(10分) 24.解:探究1:2cm.(4分) 探究2: (1)x +y2cm(7分)(2)正方形的面积较大,(8分)理由如下:正方形的面积为⎝ ⎛⎭⎪⎫x +y 22cm 2,长方形的面积为xy cm 2.⎝ ⎛⎭⎪⎫x +y 22-xy=(x -y )24.∵x >y ,∴(x -y )24>0,∴⎝ ⎛⎭⎪⎫x +y 22>xy ,∴正方形的面积大于长方形的面积.(12分)第3章检测卷(时间:90分钟 满分:120分)一、选择题(每小题3分,共30分)1.下列等式从左到右的变形属于因式分解的是( ) A .a (x -y )=ax -ay B .x 2+2x +1=x (x +2)+1 C .(x +1)(x +3)=x 2+4x +3D.x3-x=x(x+1)(x-1)2.多项式-6xy2+9xy2z-12x2y2的公因式是() A.-3xy B.3xyzC.3y2z D.-3xy23.下列各式中,不能用平方差公式因式分解的是() A.-a2-4b2 B.-1+25a2C.116-9a2 D.-a4+14.把代数式xy2-9x分解因式,结果正确的是()A.x(y2-9) B.x(y+3)2C.x(y+3)(y-3) D.x(y+9)(y-9)5.若(x+y)3-xy(x+y)=(x+y)·M,则M是()A.x2+y2 B.x2-xy+y2C.x2-3xy+y2 D.x2+xy+y26.计算2100+(-2)101的结果是()A.2100 B.-2100C.2 D.-27.下列因式分解中,正确的是()A.x2y2-z2=x2(y+z)(y-z)B.-x2y+4xy-5y=-y(x2+4x+5)C.(x+2)2-9=(x+5)(x-1)D.9-12a+4a2=-(3-2a)28.如图是边长为a,b的长方形,它的周长为14,面积为10,则a2b+ab2-ab的值为()(第8题图)A.70B.60C.130D.1409.设n为整数,则代数式(2n+1)2-25一定能被下列数整除的是()A .4B .5C .n +2D .1210.已知a ,b ,c 是三角形ABC 的三条边,且三角形两边之和大于第三边,则代数式(a -c )2-b 2的值是( ) A .正数 B .0 C .负数 D .无法确定 二、填空题(每小题3分,共24分)11.分解因式2a (b +c )-3(b +c )的结果是______________. 12.多项式3a 2b 2-6a 3b 3-12a 2b 2c 的公因式是________. 13.已知a ,b 互为相反数,则a 2-b 24的值为________.14.把下面四个图形拼成一个大长方形,并据此写出一个多项式的因式分解:________________.(第14题图)15.分解因式:(m +1)(m -9)+8m =________________. 16.若x +y =10,xy =1,则x 3y +xy 3的值是________.17.若二次三项式x 2+mx +9是一个完全平方式,则代数式m 2-2m +1的值为________.18.先阅读,再分解因式:x 4+4=(x 4+4x 2+4)-4x 2=(x 2+2)2-(2x )2=(x 2-2x +2)(x 2+2x +2),按照这种方法分解因式:x 4+64=______________. 三、解答题(共66分) 19.(16分)分解因式:(1)(2a +b )2-(a +2b )2;(2)-3x 2+2x -13;(3)3m 4-48;(4)x 2(x -y )+4(y -x ).20.(10分)(1)已知x =13,y =12,求代数式(3x +2y )2-(3x -6y )2的值;(2)已知a -b =-1,ab =3,求a 3b +ab 3-2a 2b 2的值.21.(8分)给出三个多项式:12x 2+2x -1,12x 2+4x +1,12x 2-2x ,请选择你最喜欢的两个多项式进行加法运算,并把结果因式分解.22.(10分)利用因式分解计算:(1)8352-1652;(2)2032-203×206+1032.23.(10分)如图,在半径为R的圆形钢板上,钻四个半径为r的小圆孔,若R=8.9cm,r=0.55cm,请你应用所学知识用最简单的方法计算剩余部分面积(结果保留π).(第23题图)24.(12分)先阅读下列材料,再解答下列问题:材料:因式分解:(x+y)2+2(x+y)+1.解:将“x+y”看成整体,令x+y=A,则原式=A2+2A+1=(A+1)2.再将“A”还原,得原式=(x+y+1)2.上述解题用到的是“整体思想”,“整体思想”是数学解题中常用的一种思想方法,请你解答下列问题:(1)因式分解:1+2(x-y)+(x-y)2=____________;(2)因式分解:(a+b)(a+b-4)+4;(3)试说明:若n为正整数,则式子(n+1)(n+2)(n2+3n)+1的值一定是某一个整数的平方.参考答案一、1.D 2.D 3.A 4.C 5.D 6.B 7.C 8.B 9.A 10.C 二、11.(b +c )(2a -3) 12.3a 2b 213.0 14.x 2+3x +2=(x +2)(x +1) 15.(m +3)(m -3) 16.98 17.25或49 18.(x 2-4x +8)(x 2+4x +8) 三、19.解:(1)原式=(2a +b +a +2b )(2a +b -a -2b )=3(a +b )(a -b ).(4分)(2)原式=-3⎝ ⎛⎭⎪⎫x 2-23x +19=-3⎝ ⎛⎭⎪⎫x -132.(8分)(3)原式=3(m 4-42)=3(m 2+4)(m 2-4)=3(m 2+4)(m +2)(m -2).(12分) (4)原式=(x -y )(x 2-4)=(x -y )(x +2)(x -2).(16分)20.解:(1)原式=(3x +2y +3x -6y )(3x +2y -3x +6y )=(6x -4y )·8y =16y (3x -2y ).(2分)当x =13,y=12时,原式=16×12×⎝ ⎛⎭⎪⎫3×13-2×12=0.(5分)(2)原式=ab (a 2+b 2-2ab )=ab (a -b )2.(7分)当ab =3,a -b =-1时,原式=3×(-1)2=3.(10分) 21.解:12x 2+2x -1+12x 2+4x +1=x 2+6x =x (x +6)(答案不唯一).(8分)22.解:(1)原式=(835+165)×(835-165)=1000×670=670000.(5分) (2)原式=2032-2×203×103+1032=(203-103)2=1002=10000.(10分)23.解:S剩余=πR2-4πr2=π(R+2r)(R-2r).(5分)当R=8.9cm,r=0.55cm时,S剩余=π×10×7.8=78π(cm2).(9分)答:剩余部分的面积为78πcm2.(10分)24.解:(1)(x-y+1)2(2分)(2)令A=a+b,则原式=A(A-4)+4=A2-4A+4=(A-2)2,故(a+b)(a+b-4)+4=(a+b-2)2.(6分)(3)(n+1)(n+2)(n2+3n)+1=(n2+3n)[(n+1)(n+2)]+1=(n2+3n)(n2+3n+2)+1=(n2+3n)2+2(n2+3n)+1=(n2+3n+1)2.∵n为正整数,∴n2+3n+1也为正整数,∴式子(n+1)(n+2)(n2+3n)+1的值一定是某一个整数的平方.(12分)第4章检测卷(满分:120分时间:90分钟)一、选择题(每小题3分,共30分)1.如图,直线a,b被直线c所截,∠1和∠2的位置关系是()A.同位角 B.内错角C.同旁内角 D.对顶角(第1题图)2.下列图形中,不能通过其中一个四边形平移得到的是()3.如图,直线a,b被直线c所截,下列说法正确的是()A.当∠1=∠2时,一定有a∥bB.当a∥b时,一定有∠1=∠2C.当a∥b时,一定有∠1+∠2=90°D.当∠1+∠2=180°时,一定有a∥b(第3题图)4.O为直线l外一点,A,B,C三点在直线l上,OA=4cm,OB=5cm,OC=1.5cm.则点O到直线l的距离()A.大于1.5cm B.等于1.5cmC.小于1.5cm D.不大于1.5cm5.某商品的商标可以抽象为如图所示的三条线段,其中AB∥CD,∠EAB=45°,则∠FDC的度数是D A.30° B.35°C.40° D.45°(第5题图)6.如图,AB∥CD,DA⊥AC,垂足为A.若∠ADC=35°,则∠1的度数为()A.65° B.55° C.45° D.35°(第6题图)(第7题图)7.如图,下列说法正确的个数有()①过点A有且只有一条直线AC垂直于直线l;②线段AC的长是点A到直线l的距离;③线段AB,AC,AD中,线段AC最短,根据是两点之间线段最短;④线段AB,AC,AD中,线段AC最短,根据是垂线段最短.A.1个 B.2个C.3个 D.4个8.如图,已知a∥b,直角三角板的直角顶点在直线b上,若∠1=60°,则下列结论错误的是()A.∠2=60° B.∠3=60°C.∠4=120° D.∠5=40°(第8题图)(第9题图)9.如图,在甲、乙两城市之间要修建一条笔直的城际铁路,从甲地测得公路的走向是北偏东42°,现在甲、乙两城市同时开工,为使若干天后铁路能准确在途中接通,则乙城市所修铁路的走向应是() A.南偏西42° B.北偏西42°C.南偏西48° D.北偏西48°10.如图,AB∥EF,则∠A,∠C,∠D,∠E满足的数量关系是BA.∠A+∠C+∠D+∠E=360°B.∠A+∠D=∠C+∠EC.∠A-∠C+∠D+∠E=180°D.∠E-∠C+∠D-∠A=90°(第10题图)(第11题图)二、填空题(每小题3分,共24分)11.如图,若剪刀中的∠AOB=30°时,则∠COD=________.12.如图,直线AB,CD被直线AE所截,AB∥CD,∠A=110°,则∠1=________度.(第12题图)(第13题图)13.如图,把河水引入试验田P灌溉,沿过P作河岸l的垂线开沟引水的理由是:____________.14.如图,直线AB∥CD,CA平分∠BCD,若∠1=50°,则∠2=________.(第14题图)(第15题图)15.如图,直线AB,CD被BC所截,若AB∥CD,∠1=45°,∠2=35°,则∠3=____度.16.如图,若∠1=40°,∠2=40°,∠3=116°30′,则∠4=63°30′.(第16题图)17.对于同一平面内的三条直线a,b,c,给出下列五个结论:①a∥b;②b∥c;③a⊥b;④a∥c;⑤a ⊥c.请以其中两个作为已知条件,一个作为结论,组成一个正确的语句________________ __(用数学语言作答).18.如图,a∥b,c⊥a,∠1=130°,则∠2等于________.(第18题图)三、解答题(共66分)19.(8分)如图,有一条小船,若把小船平移,使点A平移到点B,请你在图中画出平移后的小船.(第19题图)20.(10分)推理填空:如图,已知∠B=∠CGF,∠DGF=∠F,试说明∠B+∠F=180°.(第20题图)解:∵∠B=__ __(已知),∴AB∥CD( ).∵∠DGF=____________(已知),∴CD∥EF( ).∴AB∥EF(___________________).∴∠B+______=180°(____ ).21.(10分)如图,直线AB,CD,EF交于点O,OG平分∠BOF,且CD⊥EF,∠AOE=60°,求∠DOG的度数.(第21题图)22.(12分)如图,AD∥BC,∠1=60°,∠B=∠C,DF为∠ADC的平分线.(1)求∠ADC的度数;(2)试说明DF∥AB.(第22题图)23.(12分)如图,BD⊥AC,ED∥BC,∠1=∠2,AC=9cm,且点D为AF的中点,点F为DC的中点.(1)试说明BD∥GF;(2)求BD与GF之间的距离.(第23题图)24.(14分)已知BC∥OA,∠B=∠A=100°,试回答下列问题:(第24题图)(1)如图①所示,试说明OB∥AC;(2)如图②,若点E,F在BC上,且满足∠FOC=∠AOC,并且OE平分∠BOF.则∠EOC的度数等于________(在横线上填上答案即可);(3)在(2)的条件下,若平行移动AC,如图③,那么∠OCB∶∠OFB的值是否随之发生变化?若变化,试说明理由;若不变,求出这个比值;(4)在(3)的条件下,在平行移动AC的过程中,若使∠OEB=∠OCA,此时∠OCA的度数等于________(在横线上填上答案即可).参考答案一、1.B 2.D 3.D 4.D 5.D 6.B 7.C 8.D 9.A10.C 解析:如图,过点C 作CG ∥AB ,过点D 作DH ∥EF ,则∠A =∠ACG ,∠EDH =180°-∠E .∵AB ∥EF ,∴CG ∥DH ,∴∠CDH =∠DCG ,∴∠ACD =∠ACG +∠DCG =∠A +∠CDH =∠A +∠CDE -(180°-∠E ),∴∠A -∠ACD +∠CDE +∠E =180°.故选C.(第10题答图)二、11.30° 12.70 13.垂线段最短 14.65° 15.80 16.63°30′ 17.若a ∥b ,b ∥c ,则a ∥c (答案不唯一) 18.40° 三、19.解:平移后的小船如答图.(8分)(第19题答图)20.解:∠CGF 同位角相等,两直线平行(2分) ∠F 内错角相等,两直线平行(6分) 平行于同一直线的两直线平行(8分) ∠F 两直线平行,同旁内角互补(10分)21.解:∵∠AOE =60°,∴∠BOF =∠AOE =60°(2分).∵OG 平分∠BOF ,∴∠BOG =12∠BOF =30°.(4分)∵CD ⊥EF ,∴∠COE =90°,∴∠AOC =90°-60°=30°,∴∠BOD =30°,(8分)∴∠DOG =∠BOD +∠BOG =60°.(10分)22.解:(1)∵AD ∥BC ,∴∠B =∠1=60°,∠C +∠ADC =180°.(3分)∵∠B =∠C ,∴∠C =60°,∴∠ADC =180°-60°=120°.(6分)(2)∵DF 平分∠ADC ,∴∠ADF =12∠ADC =12×120°=60°.(8分)又∵∠1=60°,∴∠1=∠ADF ,∴AB ∥DF .(12分)23.解:(1)∵ED ∥BC ,∴∠1=∠DBC .(2分)∵∠1=∠2,∴∠DBC =∠2,(4分)∴BD ∥GF .(6分) (2)∵AC =9cm ,D 为AF 的中点,F 为DC 的中点,∴AD =DF =FC =9÷3=3(cm).(9分)∵DF ⊥BD ,BD ∥GF ,∴BD 与GF 之间的距离为3cm.(12分)24.解:(1)∵BC ∥OA ,∴∠B +∠O =180°.∵∠A =∠B ,∴∠A +∠O =180°,∴OB ∥AC .(3分)(2)40°(6分) 解析:∵∠A =∠B =100°,由(1)得∠BOA =180°-∠B =80°.∵∠FOC =∠AOC ,OE 平分∠BOF ,∴∠EOF =12∠BOF ,∠FOC =12∠FOA ,∴∠EOC =∠EOF +∠FOC =12(∠BOF +∠FOA )=12∠BOA =40°.(3)∠OCB ∶∠OFB 的值不发生变化.(8分)理由如下:∵BC ∥OA ,∴∠OFB =∠FOA ,∠OCB =∠AOC .又∵∠FOC =∠AOC ,∴∠FOC =∠OCB ,∴∠OFB =∠FOA =∠FOC +∠AOC =2∠OCB ,(10分)∴∠OCB ∶∠OFB =1∶2.(11分)(4)60°(14分) 解析:由(1)知OB ∥AC ,∴∠OCA =∠BOC ,由(2)可设∠BOE =∠EOF =α,∠FOC =∠AOC =β,∴∠OCA =∠BOC =2α+β.∵BC ∥OA ,∴∠OEB =∠EOA =α+2β.∵∠OEB =∠OCA ,∴2α+β=α+2β,∴α=β.∵∠AOB =80°,∴α=β=20°,∴∠OCA =2α+β=40°+20°=60°.第5章检测卷(时间:90分钟 满分:120分)一、选择题(每小题3分,共30分)1.在一些汉字的美术字中,有的是轴对称图形.下面四个美术字中可以看作轴对称图形的是( )2.将图形按顺时针方向旋转90°得到的图形是( )3.如图是一个风筝的图案,它是轴对称图形,量得∠B =30°,则∠E 的度数为( )A .30°B .35°C .40°D .45°(第3题图) (第4题图)4.如图,直线a 与直线b 交于点A ,与直线c 交于点B ,∠1=120°,∠2=45°,若使直线b 与直线c 平行,则可将直线b 绕点A 逆时针旋转( )A.15° B.30°C.45° D.60°5.下列四个图形中,若以其中一部分作为基本图形,无论用旋转还是平移都不能得到的图形是()6.如图,直线MN是四边形AMBN的对称轴,点P是直线MN上的点,下列判断错误的是() A.AM=BM B.AP=BNC.∠MAP=∠MBP D.∠ANM=∠BNM(第6题图)(第7题图)7.如图,将直角三角形AOB绕点O逆时针旋转得到直角三角形COD,若∠AOB=90°,∠BOC=130°,则∠AOD的度数为()A.40° B.50° C.60° D.30°8.将一张长方形的纸对折,然后用笔尖在上面扎出“B”,再把它铺平,你可见到的是下列图形中的()9.如图,在三角形ABC中,BC=4,其面积为12,AD⊥BC.将三角形ABC绕点A旋转到三角形AB′C′的位置,使得AC⊥B′C′于点D′,则AD′的长度为()A.6 B.8 C.10 D.12(第9题图)(第10题图)10.如图,8×8方格纸上的两条对称轴EF,MN相交于中心点O,对三角形ABC分别作下列变换:①以点O为中心逆时针方向旋转180°;②先以A为中心顺时针方向旋转90°,再向右平移4格、向上平移4格;③先以直线MN为对称轴作轴对称图形,再向上平移4格,再以点A的对应点为中心顺时针方向旋转90°.其中,能将三角形ABC变换成三角形PQR的是()A.①② B.①③ C.②③ D.①②③二、填空题(每小题3分,共24分)11.汉字中、天、日、田等都可看作是轴对称图形,请你再写出一个这样的汉字:____.12.如图,下列图片中,是由图片(1)平移得到的,是由图片(1)旋转得到的,是由图片(1)轴对称得到的.(第12题图)13.如图,AD是三角形ABC的对称轴,AC=8 cm,DC=4 cm,则三角形ABC的周长为 cm.(第13题图)(第14题图)14.如图所示的图案是由三个叶片组成,绕点O旋转120°后可以与自身重合.若每个叶片的面积为4cm2,∠AOB为120°,则图中阴影部分的面积之和为 cm2.15.在三角形ABC中,∠A=90°,将三角形ABC绕A点沿顺时针方向旋转85°,得到三角形AEF,点B,点C分别对应点E,点F,则下列结论:①∠BAE=85°;②AC=AF;③EF=BC;④∠EAF=85°.其中正确的是(填序号).16.将长方形ABCD沿AE折叠,得到如图所示的图形,已知∠CED′=60°,则∠AED的大小是 .(第16题图)(第17题图)17.如图,将三角形ABC绕着点C按顺时针方向旋转20°,B点落在B′位置,A点落在A′位置,若AC⊥A′B′,则∠BAC的度数是70°.18.如图,在正方形方格中,阴影部分是涂黑7个小正方形所形成的图案,再将方格内空白的一个小正方形涂黑,使得到的新图案成为一个轴对称图形的涂法有种.(第18题图)三、解答题(共66分)19.(10分)我们在学完“平移、轴对称、旋转”三种图形的变换后,可以进行进一步研究,请根据示例图形,完成下表.图形的变换示例图形与对应线段有关的结论与对应点有关的结论平移(1)________________________;AA′=BB′AA′∥BB′轴对称(2)____________;对应线段AB和A′B′所在的直线如果相交,交点在______________;(3)____________________________;旋转AB=A′B′;对应线段AB和A′B′所在的直线相交所成的角与旋转角相等或互补.(4)__________________________.20.(10分)如图,在边长为1个单位长度的小正方形组成的12×12网格中,给出了四边形ABCD的两条边AB与BC,且四边形ABCD是一个轴对称图形,其对称轴为直线AC.(1)试在图中标出点D,并画出该四边形的另两条边;(2)将四边形ABCD向下平移5个单位,画出平移后得到的四边形A′B′C′D′.(第20题图)21.(10分)如图,在三角形ABC中,∠ACB=90°,沿CD折叠三角形CBD,使点B恰好落在AC边上的点E 处.若∠A=22°,求∠BDC的度数(提示:三角形的内角和等于180°).(第21题图)22.(12分)在三角形ABC中,∠ACB=90°,∠B=30°,将三角形ABC绕顶点C顺时针旋转,旋转角为θ(0°<θ<180°),得到三角形A′B′C.如图,当AB∥CB′时,设A′B′与CB相交于点D.试求∠A′DC的度数(提示:三角形的内角和等于180°).(第22题图)23.(12分)某公司为了节约开支,购买了质量相同的两种颜色的残缺地砖,准备用来装修地面,现已加工成如图①所示的等腰直角三角形,王聪同学设计了如图②所示的四种图案.(第23题图)(1)你喜欢哪种图案?并简述该图案的形成过程;(2)请你利用所学过的知识再设计三幅与上述不同的图案.24.(12分)四边形ABCD是正方形,三角形ADF旋转一定角度后得到三角形ABE,如图所示,如果AF=4,AB=7.(1)指出旋转中心和旋转角度;(2)求DE的长度;(3)BE与DF的位置关系如何?请说明理由(提示:三角形的内角和等于180°).(第24题图)参考答案与解析一、1.D 2.D 3.A 4.A 5.C 6.B 7.B 8.C 9.A 10.C二、11.平(答案不唯一) 12.(5)(2)和(3)(4) 13.24 14.4 15.①②③16.60°17.70° 18.3三、19.解:(1)AB =A ′B ′,AB ∥A ′B ′(2分) (2)AB =A ′B ′ 对称轴l 上(6分)(3)AA ′∥BB ′,l 垂直平分AA ′,BB ′(8分) (4)OA =OA ′,OB =OB ′,∠AOA ′=∠BOB ′(10分) 20.解:(1)如答图.(5分)(2)如答图的四边形A ′B ′C ′D ′即为所要画的四边形.(10分)(第20题答图)21.解:∵∠ACB =90°,∠A =22°,∴∠B =68°.(3分)由折叠的性质知,∠BCD =∠ECD =12∠ACB =45°.(6分)在三角形BCD 中,∠B =68°,∠BCD =45°,∴∠BDC =180°-∠B -∠BCD =180°-68°-45°=67°.(10分)22.解:∵三角形A ′B ′C 是由三角形ABC 经过旋转得到的,∴∠A ′CB ′=∠ACB =90°,∠B ′=∠B =30°.又∵AB ∥CB ′,∴∠BCB ′=∠B =30°.(6分)∴∠A ′CD =∠A ′CB ′-∠BCB ′=90°-30°=60°,(8分)∠A ′=180°-∠A ′CB ′-∠B ′=60°.(10分)∴∠A ′DC =180°-∠A ′-∠A ′CD =180°-60°-60°=60°.(12分)23.解:(1)我喜欢图案(4).图案(4)的形成过程是:以同行或同列的两个小正方形组成的长方形为“基本图案”,绕大正方形的中心旋转180°.(答案不唯一)(6分)(2)如图所示.(12分)(第23题答图)24.解:(1)旋转中心为点A ,旋转角度为90°.(4分)(2)由题意,可得AE =AF =4,AD =AB =7,∴DE =AD -AE =7-4=3.(8分)(3)BE ⊥DF .(9分)理由如下:延长BE 交DF 于点G ,由旋转的性质得∠ADF =∠ABE ,∠FAD =∠DAB =90°,∴∠F +∠ADF =90°,∴∠ABE +∠F =90°,∴∠BGF =90°.即BE 与DF 互相垂直.(12分)第6章检测卷(满分:120分时间:90分钟)一、选择题(每小题4分,共32分)1.某学校足球兴趣小组的五名同学在一次射门训练中,射进球门的次数分别为:6,7,7,8,9.这组数据的众数为()A.6 B.7C.8 D.92.课外作业时间是中小学教育质量综合评价指标的考查要点之一,腾飞学习小组五名同学每天的课外作业时间分别是(单位:分钟):60,80,75,45,120.这组数据的中位数是()A.45 B.75C.80 D.603.某公司欲招聘一名公关人员,对甲、乙、丙、丁四位候选人进行了面试和笔试,他们的成绩如下表:候选人甲乙丙丁测试成绩(百分制)面试86929083笔试90838392如果公司认为,作为公关人员面试的成绩应该比笔试的成绩更重要,并分别赋予它们0.6和0.4的权.根据四人各自的平均成绩,公司将录取()A.甲 B.乙C.丙 D.丁4.已知一组数据-1,x,1,2,0的平均数是1,则这组数据的中位数是()A.1 B.0C.-1 D.25.某市6月2日至8日的每日最高温度如图所示,则这组数据的众数和中位数分别是()(第5题图)A.30℃,29℃B.30℃,30℃C.29℃,30℃D.29℃,29.5℃6.11名同学参加数学竞赛初赛,他们的得分互不相同,按从高分录到低分的原则,取前6名同学参加复赛,现在小明同学已经知道自己的分数,如果他想知道自己能否进入复赛,那么还需知道所有参赛学生成绩的()A.平均数 B.中位数C.众数 D.方差7.某次知识竞赛中,10名学生的成绩统计如下:分数(分)60708090100人数(人)1152 1则下列说法正确的是()A.学生成绩的方差是4B.学生成绩的众数是5C.学生成绩的中位数是80分D.学生成绩的平均分是80分8.某射击队要从甲、乙、丙、丁四人中选拔一名选手参赛,在选拔赛中,每人射击10次,然后从他们的成绩平均数(环)及方差两个因素进行分析,甲、乙、丙的成绩分析如表所示,丁的成绩如图所示.甲乙丙平均数7.97.98.0方差 3.290.49 1.8(第6题图)根据以上图表信息,参赛选手应选()A.甲 B.乙 C.丙 D.丁二、填空题(每小题4分,共24分)9.一组数据:5,7,6,5,6,5,8,这组数据的平均数是________.10.某校九年级(1)班40名同学中,14岁的有1人,15岁的有21人,16岁的有16人,17岁的有2人,则这个班同学年龄的中位数是________岁.11.九年级一班同学体育测试后,老师将全班同学成绩绘制成如图所示的条形统计图.每个等级成绩的人数的众数是________.(第11题图)(第12题图)12.甲、乙、丙三人进行飞镖比赛,已知他们每人五次投得的成绩如图,那么三人中成绩最稳定的是小李.13.有5个从小到大排列的正整数,其中位数是3,唯一的众数是7,则这5个数的平均数是________.14.已知一组数据0,1,2,2,x,3的平均数为2,则这组数据的方差是________.三、解答题(共64分)15.(8分)某蔬菜市场某天批发1000千克青菜,上午按每千克0.8元的价格批发了500千克,中午按每千克0.6元的价格批发了200千克,下午以每千克0.4元的价格将余下的青菜批发完,求这批青菜的平均批发价格.(500×0.8+200×0.6+0.4×300)÷1000=0.64(元/千克).16.(10分)在“心系灾区”自愿捐款活动中,某班50名同学的捐款情况如下表:捐款(元)5101520253050100人数67911853 1(1)问这个班级捐款总数是多少元?(2)求这50名同学捐款的平均数、中位数.(3)从表中你还能得到什么信息(只写一条即可)?17.(10分)甲、乙两位同学参加数学综合素质测试,各项成绩如下(单位:分):(1)分别计算甲、乙成绩的中位数;(2)如果数与代数、空间与图形、统计与概率、综合与实践的成绩按3∶3∶2∶2计算,那么甲、乙的数学综合素质成绩分别为多少分?18.(12分)小明和小红5次数学单元测试成绩如下(单位:分):小明:89、67、89、92、96;小红:86、62、89、92、92.他们都认为自己的成绩比另一位同学好.(1)分别计算小明和小红5次数学单元测试成绩的平均数、中位数和众数,并分析他们各自认为自己的成绩比另一位同学好的理由;(2)你认为谁的成绩更好些?说一说你的理由.19.(12分)已知一组数据x 1,x 2,…,x 6的平均数为1,方差为53.(1)求x 21+x 22+…+x 26的值;(2)若在这组数据中加入另一个数据x 7,重新计算,平均数无变化,求这7个数据的方差(结果用分数表示).20.(12分)在一次中学生田径运动会上,根据参加男子跳高初赛的运动员的成绩(单位:m),绘制出如下统计图①和②,请根据相关信息,解答下列问题:(第20题图)(1)图①中a 的值为________;(2)求统计的这组初赛数据的平均数、众数和中位数;(3)根据这组初赛成绩,由高到低确定9人能进行复赛,请直接写出初赛成绩为1.65m 的运动员能否进入初赛.参考答案一、1.B 2.B 3.B 4.A 5.A 6.B 7.C 8.D 9.6二、10.15 11.6 12.乙 13.414.53 解析:∵16(0+1+2+2+x +3)=2,∴x =4.s 2=16[(0-2)2+(1-2)2+(2-2)2+(2-2)2+(4-2)2+(3-2)2]=53. 三、15.解:(0.8×500+0.6×200+0.4×300)÷1000=0.64(元/千克)(6分).答:这批青菜的平均批发价格为0.64元/千克.(8分)16.解:(1)捐款总数为5×6+10×7+15×9+20×11+25×8+30×5+50×3+100=1055(元).(3分)(2)50名同学捐款的平均数为1055÷50=21.1(元),(6分)中位数为(20+20)÷2=20.(8分)(3)答案不唯一,如“捐20元的人数最多”等.(10分)17.解:(1)甲成绩的中位数为(90+90)÷2=90;(2分)乙成绩的中位数为(92+94)÷2=93.(4分)(2)3+3+2+2=10,甲的数学综合素质成绩为90×310+93×310+89×210+90×210=27+27.9+17.8+18=90.7(分),(7分)乙的数学综合素质成绩为94×310+92×310+94×210+86×210=28.2+27.6+18.8+17.2=91.8(分).(9分)答:甲的数学综合素质成绩为90.7分,乙的数学综合素质成绩为91.8分.(10分)18.解:(1)小明成绩的平均数是15(89+67+89+92+96)=86.6,(2分)按从小到大的顺序排列得到第3个数为89.∴中位数是89.(3分)出现次数最多的是89.∴众数是89.(4分)同理,小红成绩的平均数是84.2,中位数是89,众数是92.(7分)因此小明的理由是他成绩的平均数比小红高,而小红的理由是她成绩的众数比小明高.(9分)(2)小明的成绩好一点.∵小明成绩的平均数高于小红成绩的平均数,而且小明每次的成绩都比小红的高.(12分)19.解:(1)∵数据x 1,x 2,…,x 6的平均数为1,∴x 1+x 2+…+x 6=1×6=6.(1分)又∵方差为53,∴s 2=16[(x 1-1)2+(x 2-1)2+…+(x 6-1)2]=16[x 21+x 22+…+x 26-2(x 1+x 2+…+x 6)+6]=16(x 21+x 22+…+x 26-2×6+6)=16(x 21+x 22+…+x 26)-1=53,∴x 21+x 22+…+x 26=16.(6分) (2)∵数据x 1,x 2,…,x 7的平均数为1,∴x 1+x 2+…+x 7=1×7=7.∵x 1+x 2+…+x 6=6,∴x 7=1.(8分)∵16[(x 1-1)2+(x 2-1)2+…+(x 6-1)2]=53,∴(x 1-1)2+(x 2-1)2+…+(x 6-1)2=10,(10分)∴s 2=17[(x 1-1)2+(x 2-1)2+…+(x 7-1)2]=17[10+(1-1)2]=107.(12分) 20.解:(1)25(3分)(2)x =1.50×2+1.55×4+1.60×5+1.65×6+1.70×32+4+5+6+3=1.61.∴这组数据的平均数是1.61.(5分)∵在这组数据中,1.65出现了6次,出现的次数最多,∴这组数据的众数为1.65.(7分)∵将这组数据按从小到大的顺序排列,其中处于中间的两个数都是1.60,1.60+1.602=1.60.∴这组数据的中位数为1.60.(9分) (3)能.(12分)。