卫星地球静止轨道高度说明

合集下载

第2章 卫星轨道

第2章 卫星轨道
6
为了描述轨道特性, 为了描述轨道特性,使用如下参量 偏心率e:椭圆焦点离开椭圆中心的比例, 偏心率 :椭圆焦点离开椭圆中心的比例,即 椭圆焦距和长轴长度的比值。 椭圆焦距和长轴长度的比值。它决定了椭圆 轨道的扁平程度。 轨道的扁平程度。
c a2 − b2 e= = = 1 − (b / a ) 2 a a
4
假设地球是质量均匀分布的圆球体, 假设地球是质量均匀分布的圆球体,忽略太 月球和其它行星的引力作用, 阳、月球和其它行星的引力作用,卫星运动 服从开普勒三大定律 开普勒三大定律。 服从开普勒三大定律。 开普勒第一定律(椭圆定律) 开普勒第一定律(椭圆定律):卫星以地心为 一个焦点做椭圆运动。 一个焦点做椭圆运动。 卫星
28
29
卫星通信示意图
30
三颗静止卫星就可基本覆盖全球, 三颗静止卫星就可基本覆盖全球,其应用较 为广泛,但地球上空的静止轨道只有一条, 为广泛,但地球上空的静止轨道只有一条, 轨道资源较为紧张。因此, 轨道资源较为紧张。因此,国际电信联盟 (ITU)鼓励采用对地倾斜同步轨道 鼓励采用对地倾斜同步轨道(IGSO)。 鼓励采用对地倾斜同步轨道 。 例如, 例如,我国北斗二代卫星导航系统同时采用 颗相隔60º的地球静止轨道卫星 了5颗相隔 的地球静止轨道卫星 和3颗倾 颗相隔 颗倾 及分布在3个 斜地球同步轨道卫星 ( IGSO星 )及分布在 个 星 及分布在 轨道面内24颗倾角为 ° 轨道面内 颗倾角为 55°的中高度圆轨道卫 星(MEO卫星 。 卫星)。 卫星
半长轴 半短轴 远地点 近地点
14
解: rmin = hA + R = 439 + 6378 = 6817 km
rmax = hB + R = 2384 + 6378 = 8762km

高考物理学霸复习讲义万有引力-第六部分 特殊卫星及天体分析

高考物理学霸复习讲义万有引力-第六部分  特殊卫星及天体分析

一、极地卫星和近地卫星1.极地卫星运行时每圈都经过南北两极,由于地球自转,极地卫星可以实现全球覆盖。

2.近地卫星是在地球表面附近环绕地球做匀速圆周运动的卫星,其运行的轨道半径可近似认为等于地球的半径,其运行的线速度约为7.9 km/s 。

二、同步卫星同步卫星是指相对地球“静止不动”的卫星。

同步卫星的六个“一定”: 1.地球赤道上的物体,静止在地面上与地球相对静止,随地球的自转绕地轴做匀速圆周运动。

地球赤道上的物体受到的地球的万有引力,其中的一个分力提供物体随地球自转做圆周运动的向心力,产生向心加速度a ,另一个分力为重力,有G2MmR -mg =ma (其中R 为地球半径)。

2.近地卫星的轨道高度约等于地球的半径,其所受万有引力完全提供卫星做圆周运动的向心力,即G2MmR =ma 。

3.同步卫星与赤道上的物体具有与地球自转相同的运转周期和运转角速度,始终与地球保持相对静止状态,共同绕地轴做匀速圆周运动。

4.区别:(1)同步卫星与地球赤道上的物体的周期都等于地球自转的周期,而不等于近地卫星的周期。

(2近地卫星与地球赤道上的物体的运动半径都等于地球的半径,而不等于同步卫星运动的半径。

(3)三者的线速度各不相同。

四、求解此类试题的关键1.在求解“同步卫星”与“赤道上的物体”的向心加速度的比例关系时应依据二者角速度相同的特点,运用公式a =ω2r 而不能运用公式a =2GMr。

2.在求解“同步卫星”与“赤道上的物体”的线速度的比例关系时,仍要依据二者角速度相同的特点,运用公式v =ωr 而不能运用公式v =GMr。

3.在求解“同步卫星”运行速度与第一宇宙速度的比例关系时,因都是由万有引力提供的向心力,故要运用公式v =GMr,而不能运用公式v =ωr 或v =gr 。

【典例1】有a 、b 、c 、d 四颗地球卫星,a 在地球赤道上未发射,b 在地面附近近地轨道上正常运动,c 是地球同步卫星,d 是高空探测卫星,各卫星排列位置如图,则有A .a 的向心加速度等于重力加速度gB .c 在4 h 内转过的圆心角是π/6C .b 在相同时间内转过的弧长最长D .d 的运动周期有可能是20 h 【答案】C【解析】对于卫星a ,根据万有引力定律、牛顿第二定律可得2-GMm N ma r =向,而2GMmmg r =,故a 的向心加速度小于重力加速度g ,A 项错;由c 是地球同步卫星可知卫星c 在4 h 内转过的圆心角是π3,B 项错;由22GMm v m r r =得,GMv r=,故轨道半径越大,线速度越小,故卫星b 的线速度大于卫星c 的线速度,卫星c 的线速度大于卫星d 的线速度,而卫星a 与同步卫星c 的周期相同,故卫星c 的线速度大于卫星a 的线速度,C 项对;由22π()Mm G m r r T =得,32πr T GM=,轨道半径r 越大,周期越长,故卫星d 的周期大于同步卫星c 的周期,D 项错。

2020高考备考物理重难点《天体运动与人造航天器》(附答案解析版)

2020高考备考物理重难点《天体运动与人造航天器》(附答案解析版)

重难点05 天体运动与人造航天器【知识梳理】考点一 天体质量和密度的计算1.解决天体(卫星)运动问题的基本思路(1)天体运动的向心力来源于天体之间的万有引力,即ma r mv r T m r m rMm G ====2222)2(πω(2)在中心天体表面或附近运动时,万有引力近似等于重力,即2R MmG mg =(g 表示天体表面的重力加速度).(2)利用此关系可求行星表面重力加速度、轨道处重力加速度: 在行星表面重力加速度:2R Mm Gmg =,所以2R MG g = 在离地面高为h 的轨道处重力加速度:2)(h R Mm G g m +=',得2)(h R MG g +=' 2.天体质量和密度的计算(1)利用天体表面的重力加速度g 和天体半径R .由于2R Mm G mg =,故天体质量GgR M 2=天体密度:GRgV M πρ43==(2)通过观察卫星绕天体做匀速圆周运动的周期T 和轨道半径r .①由万有引力等于向心力,即r T m rMm G 22)2(π=,得出中心天体质量2324GT r M π=;②若已知天体半径R ,则天体的平均密度3233RGT r V M πρ== ③若天体的卫星在天体表面附近环绕天体运动,可认为其轨道半径r 等于天体半径R ,则天体密度23GTV M πρ==.可见,只要测出卫星环绕天体表面运动的周期T ,就可估算出中心天体的密度. 【重点归纳】 1.黄金代换公式(1)在研究卫星的问题中,若已知中心天体表面的重力加速度g 时,常运用GM =gR 2作为桥梁,可以把“地上”和“天上”联系起来.由于这种代换的作用很大,此式通常称为黄金代换公式. 2. 估算天体问题应注意三点(1)天体质量估算中常有隐含条件,如地球的自转周期为24 h ,公转周期为365天等. (2)注意黄金代换式GM =gR 2的应用. (3)注意密度公式23GTπρ=的理解和应用. 考点二 卫星运行参量的比较与运算 1.卫星的动力学规律由万有引力提供向心力,ma r mv r T m r m rMm G ====2222)2(πω2.卫星的各物理量随轨道半径变化的规律r GM v =;3r GM =ω;GMr T 32π=;2r GM a = (1)卫星的a 、v 、ω、T 是相互联系的,如果一个量发生变化,其它量也随之发生变化;这些量与卫星的质量无关,它们由轨道半径和中心天体的质量共同决定.(2)卫星的能量与轨道半径的关系:同一颗卫星,轨道半径越大,动能越小,势能越大,机械能越大.3.极地卫星和近地卫星(1)极地卫星运行时每圈都经过南北两极,由于地球自转,极地卫星可以实现全球覆盖. (2)近地卫星是在地球表面附近环绕地球做匀速圆周运动的卫星,其运行的轨道半径可近似认为等于地球的半径,其运行线速度约为7.9 km/s. (3)两种卫星的轨道平面一定通过地球的球心. 【重点归纳】1.利用万有引力定律解决卫星运动的一般思路 (1)一个模型天体(包括卫星)的运动可简化为质点的匀速圆周运动模型. (2)两组公式卫星运动的向心力来源于万有引力:ma r mv r T m r m rMm G ====2222)2(πω在中心天体表面或附近运动时,万有引力近似等于重力,即:2R MmGmg = (g 为星体表面处的重2.卫星的线速度、角速度、周期与轨道半径的关系⎪⎪⎩⎪⎪⎨⎧⇒⇒⎪⎪⎪⎪⎭⎪⎪⎪⎪⎬⎫====减小增大减小减小增大时当半径a T v r r GM a GM r T r GM r GM v ωπω2332 考点三 宇宙速度 卫星变轨问题的分析1.第一宇宙速度v 1=7.9 km/s ,既是发射卫星的最小发射速度,也是卫星绕地球运行的最大环绕速度.2.第一宇宙速度的两种求法:(1)r mv r Mm G 212=,所以r GMv =1 (2)rmv mg 21=,所以gR v =1.3.第二、第三宇宙速度也都是指发射速度.4.当卫星由于某种原因速度突然改变时(开启或关闭发动机或空气阻力作用),万有引力不再等于向心力,卫星将变轨运行:(1)当卫星的速度突然增加时,r mv rMm G 22<,即万有引力不足以提供向心力,卫星将做离心运动,脱离原来的圆轨道,轨道半径变大,当卫星进入新的轨道稳定运行时由rGMv =可知其运行速度比原轨道时减小.(2)当卫星的速度突然减小时,r mv rMm G 22>,即万有引力大于所需要的向心力,卫星将做近心运动,脱离原来的圆轨道,轨道半径变小,当卫星进入新的轨道稳定运行时由rGMv =可知其运行速度比原轨道时增大.卫星的发射和回收就是利用这一原理.1.处理卫星变轨问题的思路和方法(1)要增大卫星的轨道半径,必须加速;(2)当轨道半径增大时,卫星的机械能随之增大.2.卫星变轨问题的判断:(1)卫星的速度变大时,做离心运动,重新稳定时,轨道半径变大.(2)卫星的速度变小时,做近心运动,重新稳定时,轨道半径变小.(3)圆轨道与椭圆轨道相切时,切点处外面的轨道上的速度大,向心加速度相同.3.特别提醒:“三个不同”(1)两种周期——自转周期和公转周期的不同(2)两种速度——环绕速度与发射速度的不同,最大环绕速度等于最小发射速度(3)两个半径——天体半径R和卫星轨道半径r的不同【限时检测】(建议用时:30分钟)1.(2019·新课标全国Ⅰ卷)在星球M上将一轻弹簧竖直固定在水平桌面上,把物体P轻放在弹簧上端,P由静止向下运动,物体的加速度a与弹簧的压缩量x间的关系如图中实线所示。

lx-lx-第5讲 轨道动力学

lx-lx-第5讲 轨道动力学

2、星下点轨迹
倾角为60度,周期为90分钟的星下点轨迹
2、星下点轨迹
(6)回归轨道
卫星连续两次过升交点称为卫星运行一圈
如果卫星每运行一定圈数后,星下点轨迹便重叠起来,
则这类轨道称为“循环轨道”或“回归轨道”
2、星下点轨迹
1+1+ 3+23+ 12+-
2+
3--
3--
1+
2-
3+
1-
2+
此时卫星轨道运动问题即为二体问题,二体运动方程:
d2r G( M m ) u r 3 r 2 3 dt r r
1、二体运动
(2)二体运动方程的解
能量常数:
v2 u 2 r
角动量常数(动量矩常数): h r v 拉普拉斯常矢量: L v h u r 三个常数的关系: 轨道方程:
引力位函数 位 ( 势 ) 函 数 : 若 矢 量 场 R ( X,Y,Z ) 是 某 一 标 量 函 数 φ (x,y,z)的梯度,即 R grad
( , , ) x y z i j k x y z
2、星下点轨迹
(3)无旋地球上的星下点轨迹 不考虑摄动的情况下,无旋地球上航天器的星下点轨迹是 一个大圆,航天器一次次重复相同的地面轨迹 赤经赤纬坐标系中航天器地面轨迹的方程是:
arcsin(sini sin u ) arctg(cositgu ) u w f
其中, 是赤纬, 是赤经 无旋地球上的星下点轨迹只和轨道要素i和u有关
2、星下点轨迹
(4)旋转地球上的星下点轨迹
不考虑摄动的情况下,旋转地球上的星下点轨迹和无旋地球

太阳同步卫星(极轨卫星)和地球同步卫星区别

太阳同步卫星(极轨卫星)和地球同步卫星区别

太阳同步卫星(极轨卫星)和地球同步卫星区别(转)极轨卫星所在的瞬时轨道平⾯与太阳始终保持固定的取向,可以使得卫星所经过地点的地⽅时基本相同,卫星遥感探测资料具有长期可⽐性。

由于这种卫星轨道的倾⾓接近90°,卫星近乎通过极地,所以称它为“近极地太阳同步轨道卫星”,简称极轨卫星。

极轨卫星⾼度⼀般在700-1500公⾥范围内,由于⾼度低,所以观测效果好;由于与太阳保持同步,所以每次观测可以得到近乎相同的光照条件,有利于所观测资料的对⽐分析。

但这种极轨卫星每天对同⼀地区只能观测2次,⽆法连续观测在⼏⼩时内⽣消的“不测风云”。

静⽌卫星是指轨道平⾯与⾚道平⾯重合、卫星的轨道周期正好等于地球⾃转周期(23⼩时56分04秒),且卫星公转⽅向与地球⾃转⽅向相同,这样的卫星称地球同步轨道卫星。

若在地⾯看,这种轨道上的卫星好像静⽌在天空某⼀地⽅不动,故⼜称它为地球静⽌卫星,简称静⽌卫星。

静⽌卫星通常在地球⾚道上空35800公⾥的轨道上运⾏,它的观测效果不及极轨卫星,但它可以对某⼀地区进⾏连续观测。

因此,要同时发展极轨卫星和静⽌卫星,把它们配合起来进⾏⽓象观测,从⽽实现互补。

由于实际卫星轨道很难控制,轨道会发⽣⼀定的漂移,极轨卫星在某⼀地点出现的时间和⽅位会有变化,静⽌卫星会在南北⼀定范围内⾛“8”字等,这些都需要由测控部门进⾏监视和调控。

-----------------------------------------------------------------------------------------------------------------------------------Terra Aqua就是-----------------------------------------------------------------------------------------------------------------------------------还有⼀种轨道的⽓象卫星为中纬度暴⾬探测卫星,其轨道与⾚道平⾯成45°⾓。

2022年高考立体几何汇编

2022年高考立体几何汇编

2022年高考立体几何汇编一.选择题(共10小题)1.(2021•天津)两个圆锥的底面是一个球的同一截面,顶点均在球面上,若球的体积为,两个圆锥的高之比为1:3,则这两个圆锥的体积之和为()A.3πB.4πC.9πD.12π2.(2021•新高考Ⅱ)北斗三号全球卫星导航系统是我国航天事业的重要成果.在卫星导航系统中,地球静止同步轨道卫星的轨道位于地球赤道所在平面,轨迹高度为36000km(轨道高度是指卫星到地球表面的距离).将地球看作是一个球心为O,半径r为6400km的球,其上点A的纬度是指OA与赤道平面所成角的度数.地球表面上能直接观测到的一颗地球静止同步轨道卫星点的纬度最大值为α,该卫星信号覆盖地球表面的表面积S=2πr2(1﹣cosα)(单位:km2),则S占地球表面积的百分比约为()A.26%B.34%C.42%D.50% 3.(2021•新高考Ⅱ)正四棱台的上、下底面的边长分别为2,4,侧棱长为2,则其体积为()A.20+12B.28C.D.4.(2021•北京)某四面体的三视图如图所示,该四面体的表面积为()A.B.4C.3+D.2 5.(2021•浙江)某几何体的三视图如图所示(单位:cm),则该几何体的体积(单位:cm3)是()A.B.3C.D.3 6.(2021•浙江)如图,已知正方体ABCD﹣A1B1C1D1,M,N分别是A1D,D1B的中点,则()A.直线A1D与直线D1B垂直,直线MN∥平面ABCDB.直线A1D与直线D1B平行,直线MN⊥平面BDD1B1C.直线A1D与直线D1B相交,直线MN∥平面ABCDD.直线A1D与直线D1B异面,直线MN⊥平面BDD1B17.(2021•新高考Ⅰ)已知圆锥的底面半径为,其侧面展开图为一个半圆,则该圆锥的母线长为()A.2B.2C.4D.4 8.(2021•甲卷)已知A,B,C是半径为1的球O的球面上的三个点,且AC⊥BC,AC=BC=1,则三棱锥O﹣ABC的体积为()A.B.C.D.9.(2021•甲卷)在一个正方体中,过顶点A的三条棱的中点分别为E,F,G.该正方体截去三棱锥A﹣EFG后,所得多面体的三视图中,正视图如图所示,则相应的侧视图是()A.B.C.D.10.(2021•乙卷)在正方体ABCD﹣A1B1C1D1中,P为B1D1的中点,则直线PB与AD1所成的角为()A.B.C.D.二.多选题(共2小题)11.(2021•新高考Ⅱ)如图,下列正方体中,O为底面的中点,P为所在棱的中点,M,N 为正方体的顶点,则满足MN⊥OP的是()A.B.C.D.12.(2021•新高考Ⅰ)在正三棱柱ABC﹣A1B1C1中,AB=AA1=1,点P满足=λ+μ,其中λ∈[0,1],μ∈[0,1],则()A.当λ=1时,△AB1P的周长为定值B.当μ=1时,三棱锥P﹣A1BC的体积为定值C.当λ=时,有且仅有一个点P,使得A1P⊥BPD.当μ=时,有且仅有一个点P,使得A1B⊥平面AB1P三.填空题(共4小题)13.(2021•上海)已知圆柱的底面圆半径为1,高为2,AB为上底面圆的一条直径,C是下底面圆周上的一个动点,则ABC的面积的取值范围为.14.(2021•甲卷)已知一个圆锥的底面半径为6,其体积为30π,则该圆锥的侧面积为.15.(2021•乙卷)以图①为正视图,在图②③④⑤中选两个分别作为侧视图和俯视图,组成某个三棱锥的三视图,则所选侧视图和俯视图的编号依次为(写出符合要求的一组答案即可).16.(2021•上海)已知圆柱的底面半径为1,高为2,则圆柱的侧面积为.四.解答题(共11小题)17.(2021•天津)如图,在棱长为2的正方体ABCD﹣A1B1C1D1中,E,F分别为棱BC,CD的中点.(1)求证:D1F∥平面A1EC1;(2)求直线AC1与平面A1EC1所成角的正弦值;(3)求二面角A﹣A1C1﹣E的正弦值.18.(2021•新高考Ⅱ)在四棱锥Q﹣ABCD中,底面ABCD是正方形,若AD=2,QD=QA =,QC=3.(Ⅰ)求证:平面QAD⊥平面ABCD;(Ⅱ)求二面角B﹣QD﹣A的平面角的余弦值.19.(2021•上海)如图,在长方体ABCD﹣A1B1C1D1中,已知AB=BC=2,AA1=3.(1)若P是棱A1D1上的动点,求三棱锥C﹣P AD的体积;(2)求直线AB1与平面ACC1A1的夹角大小.20.(2021•北京)已知正方体ABCD﹣A1B1C1D1,点E为A1D1中点,直线B1C1交平面CDE 于点F.(1)求证:点F为B1C1中点;(2)若点M为棱A1B1上一点,且二面角M﹣CF﹣E的余弦值为,求.21.(2021•甲卷)已知直三棱柱ABC﹣A1B1C1中,侧面AA1B1B为正方形,AB=BC=2,E,F分别为AC和CC1的中点,BF⊥A1B1.(1)求三棱锥F﹣EBC的体积;(2)已知D为棱A1B1上的点,证明:BF⊥DE.22.(2021•乙卷)如图,四棱锥P﹣ABCD的底面是矩形,PD⊥底面ABCD,PD=DC=1,M为BC中点,且PB⊥AM.(1)求BC;(2)求二面角A﹣PM﹣B的正弦值.23.(2021•浙江)如图,在四棱锥P﹣ABCD中,底面ABCD是平行四边形,∠ABC=120°,AB=1,BC=4,P A=,M,N分别为BC,PC的中点,PD⊥DC,PM⊥MD.(Ⅰ)证明:AB⊥PM;(Ⅱ)求直线AN与平面PDM所成角的正弦值.24.(2021•甲卷)已知直三棱柱ABC﹣A1B1C1中,侧面AA1B1B为正方形,AB=BC=2,E,F分别为AC和CC1的中点,D为棱A1B1上的点,BF⊥A1B1.(1)证明:BF⊥DE;(2)当B1D为何值时,面BB1C1C与面DFE所成的二面角的正弦值最小?25.(2021•乙卷)如图,四棱锥P﹣ABCD的底面是矩形,PD⊥底面ABCD,M为BC的中点,且PB⊥AM.(1)证明:平面P AM⊥平面PBD;(2)若PD=DC=1,求四棱锥P﹣ABCD的体积.26.(2021•新高考Ⅰ)如图,在三棱锥A﹣BCD中,平面ABD⊥平面BCD,AB=AD,O 为BD的中点.(1)证明:OA⊥CD;(2)若△OCD是边长为1的等边三角形,点E在棱AD上,DE=2EA,且二面角E﹣BC﹣D的大小为45°,求三棱锥A﹣BCD的体积.27.(2021•上海)四棱锥P﹣ABCD,底面为正方形ABCD,边长为4,E为AB中点,PE⊥平面ABCD.(1)若△P AB为等边三角形,求四棱锥P﹣ABCD的体积;(2)若CD的中点为F,PF与平面ABCD所成角为45°,求PC与AD所成角的大小.2021年高考立体几何汇编参考答案与试题解析一.选择题(共10小题)1.(2021•天津)两个圆锥的底面是一个球的同一截面,顶点均在球面上,若球的体积为,两个圆锥的高之比为1:3,则这两个圆锥的体积之和为()A.3πB.4πC.9πD.12π【分析】由题意画出图形,由球的体积求出球的半径,再由直角三角形中的射影定理求得截面圆的半径,代入圆锥体积公式得答案.【解答】解:如图,设球O的半径为R,由题意,,可得R=2,则球O的直径为4,∵两个圆锥的高之比为1:3,∴AO1=1,BO1=3,由直角三角形中的射影定理可得:r2=1×3,即r=.∴这两个圆锥的体积之和为V=.故选:B.【点评】本题考查球内接圆锥体积的求法,考查空间想象能力与思维能力,考查运算求解能力,是中档题.2.(2021•新高考Ⅱ)北斗三号全球卫星导航系统是我国航天事业的重要成果.在卫星导航系统中,地球静止同步轨道卫星的轨道位于地球赤道所在平面,轨迹高度为36000km(轨道高度是指卫星到地球表面的距离).将地球看作是一个球心为O,半径r为6400km的球,其上点A的纬度是指OA与赤道平面所成角的度数.地球表面上能直接观测到的一颗地球静止同步轨道卫星点的纬度最大值为α,该卫星信号覆盖地球表面的表面积S=2πr2(1﹣cosα)(单位:km2),则S占地球表面积的百分比约为()A.26%B.34%C.42%D.50%【分析】由题意,地球静止同步卫星轨道的左右两端的竖直截面图,求解cosα,根据卫星信号覆盖的地球表面面积可得S占地球表面积的百分比.【解答】解:由题意,作出地球静止同步卫星轨道的左右两端的竖直截面图,则OB=36000+6400=424000,那么cosα=;卫星信号覆盖的地球表面面积S=2πr2(1﹣cosα),那么,S占地球表面积的百分比为42%.故选:C.【点评】本题考查了对题目的阅读能力和理解能力,属于基础题.3.(2021•新高考Ⅱ)正四棱台的上、下底面的边长分别为2,4,侧棱长为2,则其体积为()A.20+12B.28C.D.【分析】过A作AE⊥A1B1,得A1E==1,AE==.连接AC,A1C1,过A作AG⊥A1C1,求出A1G=,从而AG==,由此能求出正四棱台的体积.【解答】解:如图ABCD﹣A1B1C1D1为正四棱台,AB=2,A1B1=4,AA1=2.在等腰梯形A1B1BA中,过A作AE⊥A1B1,可得A1E==1,AE===.连接AC,A1C1,AC=,A1C1==4,过A作AG⊥A1C1,A1G==,AG===,∴正四棱台的体积为:V===.故选:D.【点评】本题考查四棱台的体积的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力、推理论证能力,是中档题.4.(2021•北京)某四面体的三视图如图所示,该四面体的表面积为()A.B.4C.3+D.2【分析】由三视图还原原几何体,其中P A⊥底面ABC,AB⊥AC,P A=AB=AC=2,再由三角形面积公式求解.【解答】解:由三视图还原原几何体如图,P A⊥底面ABC,AB⊥AC,P A=AB=AC=1,则△PBC是边长为的等边三角形,则该四面体的表面积为S=.故选:A.【点评】本题考查由三视图求面积、体积,关键是由三视图还原原几何体,是中档题.5.(2021•浙江)某几何体的三视图如图所示(单位:cm),则该几何体的体积(单位:cm3)是()A.B.3C.D.3【分析】由三视图还原原几何体,可知该几何体为直四棱柱,底面四边形ABCD为等腰梯形,由已知三视图求得对应的量,再由棱柱体积公式求解.【解答】解:由三视图还原原几何体如图,该几何体为直四棱柱,底面四边形ABCD为等腰梯形,其中AB∥CD,由三视图可知,延长AD与BC后相交于一点,且AD⊥BC,且AB=,CD=,AA1=1,等腰梯形的高为=,则该几何体的体积V==.故选:A.【点评】本题考查由三视图求面积、体积,关键是由三视图还原原几何体,是中档题.6.(2021•浙江)如图,已知正方体ABCD﹣A1B1C1D1,M,N分别是A1D,D1B的中点,则()A.直线A1D与直线D1B垂直,直线MN∥平面ABCDB.直线A1D与直线D1B平行,直线MN⊥平面BDD1B1C.直线A1D与直线D1B相交,直线MN∥平面ABCDD.直线A1D与直线D1B异面,直线MN⊥平面BDD1B1【分析】通过证明直线A1D⊥平面ABD1,MN是△ABD1的中位线,可判断A;根据异面直线的判断可知A1D与直线D1B是异面直线,可判断B;根据异面直线的判断可知直线A1D与直线D1B是异面直线,可判断C;由MN∥AB,可知MN不与平面BDD1B1垂直,可判断D.【解答】解:连接AD1,如图:由正方体可知A1D⊥AD1,A1D⊥AB,∴A1D⊥平面ABD1,∴A1D⊥D1B,由题意知MN为△D1AB的中位线,∴MN∥AB,又∵AB⊂平面ABCD,MN⊄平面ABCD,∴MN∥平面ABCD.∴A对;由正方体可知A1D与平面BDD1相交于点D,D1B⊂平面BDD1,D∉D1B,∴直线A1D与直线D1B是异面直线,∴B、C错;∵MN∥AB,AB不与平面BDD1B1垂直,∴MN不与平面BDD1B1垂直,∴D错.故选:A.【点评】本题考查了线面平行的判定定理和线面垂直的判定定理与性质,考查了逻辑推理核心素养,属于中档题.7.(2021•新高考Ⅰ)已知圆锥的底面半径为,其侧面展开图为一个半圆,则该圆锥的母线长为()A.2B.2C.4D.4【分析】设母线长为l,利用圆锥底面周长即为侧面展开图半圆的弧长,圆锥的母线长即为侧面展开图半圆的半径,列出方程,求解即可.【解答】解:由题意,设母线长为l,因为圆锥底面周长即为侧面展开图半圆的弧长,圆锥的母线长即为侧面展开图半圆的半径,则有,解得,所以该圆锥的母线长为.故选:B.【点评】本题考查了旋转体的理解和应用,解题的关键是掌握圆锥底面周长即为侧面展开图半圆的弧长,圆锥的母线长即为侧面展开图半圆的半径,考查了逻辑推理能力与运算能力和空间思维能力,属于基础题.8.(2021•甲卷)已知A,B,C是半径为1的球O的球面上的三个点,且AC⊥BC,AC=BC=1,则三棱锥O﹣ABC的体积为()A.B.C.D.【分析】先确定△ABC所在的截面圆的圆心O1为斜边AB的中点,然后在Rt△ABC和Rt△AOO1中,利用勾股定理求出OO1,再利用锥体的体积公式求解即可.【解答】解:因为AC⊥BC,AC=BC=1,所以底面ABC为等腰直角三角形,所以△ABC所在的截面圆的圆心O1为斜边AB的中点,所以OO1⊥平面ABC,在Rt△ABC中,AB=,则,在Rt△AOO1中,,故三棱锥O﹣ABC的体积为.故选:A.【点评】本题考查了锥体外接球和锥体体积公式,解题的关键是确定△ABC所在圆的圆心的位置,考查了逻辑推理能力、化简运算能力、空间想象能力,属于中档题.9.(2021•甲卷)在一个正方体中,过顶点A的三条棱的中点分别为E,F,G.该正方体截去三棱锥A﹣EFG后,所得多面体的三视图中,正视图如图所示,则相应的侧视图是()A.B.C.D.【分析】作出正方体,截去三棱锥A﹣EFG,根据正视图,摆放好正方体,即可求解侧视图.【解答】解:由题意,作出正方体,截去三棱锥A﹣EFG,根据正视图,可得A﹣EFG在正方体左侧面,如图,根据三视图的投影,可得相应的侧视图是D图形,故选:D.【点评】本题考查简单空间图形的三视图,属基础题.10.(2021•乙卷)在正方体ABCD﹣A1B1C1D1中,P为B1D1的中点,则直线PB与AD1所成的角为()A.B.C.D.【分析】由AD1∥BC1,得∠PBC1是直线PB与AD1所成的角(或所成角的补角),由此利用余弦定理,求出直线PB与AD1所成的角.【解答】解∵AD1∥BC1,∴∠PBC1是直线PB与AD1所成的角(或所成角的补角),设正方体ABCD﹣A1B1C1D1的棱长为2,则PB1=PC1==,BC1==2,BP==,∴cos∠PBC1===,∴∠PBC1=,∴直线PB与AD1所成的角为.故选:D.【点评】本题考查异面直线所成角和余弦定理,考查运算求解能力,是基础题.二.多选题(共2小题)11.(2021•新高考Ⅱ)如图,下列正方体中,O为底面的中点,P为所在棱的中点,M,N 为正方体的顶点,则满足MN⊥OP的是()A.B.C.D.【分析】对于A,设正方体棱长为2,设MN与OP所成角为θ,求出tanθ=,从而不满足MN⊥OP;对于B,C,D,作出平面直角坐标系,设正方体棱长为2,利用向量法进行判断.【解答】解:对于A,设正方体棱长为2,设MN与OP所成角为θ,则tanθ==,∴不满足MN⊥OP,故A错误;对于B,如图,作出平面直角坐标系,设正方体棱长为2,则N(2,0,0),M(0,0,2),P(2,0,1),O(1,1,0),=(2,0,﹣2),=(1,﹣1,1),=0,∴满足MN⊥OP,故B正确;对于C,如图,作出平面直角坐标系,设正方体棱长为2,则M(2,2,2),N(0,2,0),O(1,1,0),P(0,0,1),=(﹣2,0,﹣2),=(﹣1,﹣1,1),=0,∴满足MN⊥OP,故C正确;对于D,如图,作出平面直角坐标系,设正方体棱长为2,则M(0,2,2),N(0,0,0),P(2,1,2),O(1,1,0),=(0,﹣2,﹣2),=(1,0,2),=﹣4,∴不满足MN⊥OP,故D错误.故选:BC.【点评】本题考查命题真假的判断,考查空间中线线、线面、面面间的位置关系基础知识,考查数学运算、逻辑思维等核心素养,是中档题.12.(2021•新高考Ⅰ)在正三棱柱ABC﹣A1B1C1中,AB=AA1=1,点P满足=λ+μ,其中λ∈[0,1],μ∈[0,1],则()A.当λ=1时,△AB1P的周长为定值B.当μ=1时,三棱锥P﹣A1BC的体积为定值C.当λ=时,有且仅有一个点P,使得A1P⊥BPD.当μ=时,有且仅有一个点P,使得A1B⊥平面AB1P【分析】判断当λ=1时,点P在线段CC1上,分别计算点P为两个特殊点时的周长,即可判断选项A;当μ=1时,点P在线段B1C1上,利用线面平行的性质以及锥体的体积公式,即可判断选项B;当λ=时,取线段BC,B1C1的中点分别为M,M1,连结M1M,则点P在线段M1M上,分别取点P在M1,M处,得到均满足A1P⊥BP,即可判断选项C;当μ=时,取CC1的中点D1,BB1的中点D,则点P在线的DD1上,证明当点P在点D1处时,A1B⊥平面AB1D1,利用过定点A与定直线A1B垂直的平面有且只有一个,即可判断选项D.【解答】解:对于A,当λ=1时,=+μ,即,所以,故点P在线段CC1上,此时△AB1P的周长为AB1+B1P+AP,当点P为CC1的中点时,△AB1P的周长为,当点P在点C1处时,△AB1P的周长为,故周长不为定值,故选项A错误;对于B,当μ=1时,,即,所以,故点P在线段B1C1上,因为B1C1∥平面A1BC,所以直线B1C1上的点到平面A1BC的距离相等,又△A1BC的面积为定值,所以三棱锥P﹣A1BC的体积为定值,故选项B正确;对于C,当λ=时,取线段BC,B1C1的中点分别为M,M1,连结M1M,因为,即,所以,则点P在线段M1M上,当点P在M1处时,A1M1⊥B1C1,A1M1⊥B1B,又B1C1∩B1B=B1,所以A1M1⊥平面BB1C1C,又BM1⊂平面BB1C1C,所以A1M1⊥BM1,即A1P⊥BP,同理,当点P在M处,A1P⊥BP,故选项C错误;对于D,当μ=时,取CC1的中点D1,BB1的中点D,因为,即,所以,则点P在线的DD1上,当点P在点D1处时,取AC的中点E,连结A1E,BE,因为BE⊥平面ACC1A1,又AD1⊂平面ACC1A1,所以AD1⊥BE,在正方形ACC1A1中,AD1⊥A1E,又BE∩A1E=E,BE,A1E⊂平面A1BE,故AD1⊥平面A1BE,又A1B⊂平面A1BE,所以A1B⊥AD1,在正方体形ABB1A1中,A1B⊥AB1,又AD1∩AB1=A,AD1,AB1⊂平面AB1D1,所以A1B⊥平面AB1D1,因为过定点A与定直线A1B垂直的平面有且只有一个,故有且仅有一个点P,使得A1B⊥平面AB1P,故选项D正确.故选:BD.【点评】本题考查了动点轨迹,线面平行与线面垂直的判定,锥体的体积问题等,综合性强,考查了逻辑推理能力与空间想象能力,属于难题.三.填空题(共4小题)13.(2021•上海)已知圆柱的底面圆半径为1,高为2,AB为上底面圆的一条直径,C是下底面圆周上的一个动点,则ABC的面积的取值范围为.【分析】上顶面圆心记为O,下底面圆心记为O',连结OC,过点C作CM⊥AB,垂足为点M,由于AB为定值,则S△ABC的大小随着CM的长短变化而变化,分别求解CM的最大值和最小值,即可得到答案.【解答】解:如图1,上底面圆心记为O,下底面圆心记为O',连结OC,过点C作CM⊥AB,垂足为点M,则,根据题意,AB为定值2,所以S△ABC的大小随着CM的长短变化而变化,如图2所示,当点M与点O重合时,CM=OC=,此时S△ABC取得最大值为;如图3所示,当点M与点B重合,CM取最小值2,此时S△ABC取得最小值为.综上所述,S△ABC的取值范围为.故答案为:.【点评】本题考查了空间中的最值问题,将三角形面积的最值问题转化为求解线段CM 的最值问题进行求解是解题的关键,考查了空间想象能力与逻辑推理能力,属于中档题.14.(2021•甲卷)已知一个圆锥的底面半径为6,其体积为30π,则该圆锥的侧面积为39π.【分析】由题意,设圆锥的高为h,根据圆锥的底面半径为6,其体积为30π求出h,再求得母线的长度,然后确定圆锥的侧面积即可.【解答】解:由圆锥的底面半径为6,其体积为30π,设圆锥的高为h,则,解得,所以圆锥的母线长,所以圆锥的侧面积.故答案为:39π.【点评】本题考查了圆锥的侧面积公式和圆锥的体积公式,考查了方程思想,属于基础题.15.(2021•乙卷)以图①为正视图,在图②③④⑤中选两个分别作为侧视图和俯视图,组成某个三棱锥的三视图,则所选侧视图和俯视图的编号依次为②⑤或③④(写出符合要求的一组答案即可).【分析】通过观察已知条件正视图,确定该正视图的长和高,结合长、高、以及侧视图视图中的实线、虚线来确定俯视图图形.【解答】解:观察正视图,推出正视图的长为2和高1,②③图形的高也为1,即可能为该三棱锥的侧视图,④⑤图形的长为2,即可能为该三棱锥的俯视图,当②为侧视图时,结合侧视图中的直线,可以确定该三棱锥的俯视图为⑤,当③为侧视图时,结合侧视图虚线,虚线所在的位置有立体图形的轮廓线,可以确定该三棱锥的俯视图为④.故答案为:②⑤或③④.【点评】该题考查了三棱锥的三视图,需要学生掌握三视图中各个图形边长的等量关系,以及对于三视图中特殊线条能够还原到原立体图形中,需要较强空间想象,属于中等题.16.(2021•上海)已知圆柱的底面半径为1,高为2,则圆柱的侧面积为4π.【分析】根据圆柱的侧面积公式计算即可.【解答】解:圆柱的底面半径为r=1,高为h=2,所以圆柱的侧面积为S侧=2πrh=2π×1×2=4π.故答案为:4π.【点评】本题考查了圆柱的侧面积公式应用问题,是基础题.四.解答题(共11小题)17.(2021•天津)如图,在棱长为2的正方体ABCD﹣A1B1C1D1中,E,F分别为棱BC,CD的中点.(1)求证:D1F∥平面A1EC1;(2)求直线AC1与平面A1EC1所成角的正弦值;(3)求二面角A﹣A1C1﹣E的正弦值.【分析】(1)建立合适的空间直角坐标系,求出所需点的坐标和向量的坐标,利用待定系数法求出平面A1EC1的法向量,利用直线的方向向量与平面的法向量垂直,即可证明;(2)利用(1)中的结论,由向量的夹角公式求解,即可得到答案;(3)利用待定系数法求出平面AA1C1的法向量,然后利用向量的夹角公式求解即可.【解答】(1)证明:以点A为坐标原点,建立空间直角坐标系如图所示,则A1(0,0,2),E(2,1,0),C1(2,2,2),故,设平面A1EC1的法向量为,则,即,令z=1,则x=2,y=﹣2,故,又F(1,2,0),D1(0,2,2),所以,则,又D1F⊄平面A1EC,故D1F∥平面A1EC1;(2)解:由(1)可知,,则==,故直线AC1与平面A1EC1所成角的正弦值为;(3)解:由(1)可知,,设平面AA1C1的法向量为,则,即,令a=1,则b=﹣1,故,所以==,故二面角A﹣A1C1﹣E的正弦值为=.【点评】本题考查了空间向量在立体几何中的应用,在求解有关空间角问题的时候,一般会建立合适的空间直角坐标系,将空间角问题转化为空间向量问题进行研究,属于中档题.18.(2021•新高考Ⅱ)在四棱锥Q﹣ABCD中,底面ABCD是正方形,若AD=2,QD=QA =,QC=3.(Ⅰ)求证:平面QAD⊥平面ABCD;(Ⅱ)求二面角B﹣QD﹣A的平面角的余弦值.【分析】(Ⅰ)由CD2+QD2=QC2证明CD⊥QD,再由CD⊥AD,证明CD⊥平面QAD,即可证明平面QAD⊥平面ABCD.(Ⅱ)取AD的中点O,在平面ABCD内作Ox⊥AD,以OD为y轴,OQ为z轴,建立空间直角坐标系,求出平面ADQ的一个法向量,平面BDQ的一个法向量,再求cos<,>即可.【解答】(Ⅰ)证明:△QCD中,CD=AD=2,QD=,QC=3,所以CD2+QD2=QC2,所以CD⊥QD;又CD⊥AD,AD∩QD=D,AD⊂平面QAD,QD⊂平面QAD,所以CD⊥平面QAD;又CD⊂平面ABCD,所以平面QAD⊥平面ABCD.(Ⅱ)解:取AD的中点O,在平面ABCD内作Ox⊥AD,以OD为y轴,OQ为z轴,建立空间直角坐标系O﹣xyz,如图所示:则O(0,0,0),B(2,﹣1,0),D(0,1,0),Q(0,0,2),因为Ox⊥平面ADQ,所以平面ADQ的一个法向量为=(1,0,0),设平面BDQ的一个法向量为=(x,y,z),由=(﹣2,2,0),=(0,﹣1,2),得,即,令z=1,得y=2,x=2,所以=(2,2,1);所以cos<,>===,所以二面角B﹣QD﹣A的平面角的余弦值为.【点评】本题考查了空间中的垂直关系应用问题,也考查了利用空间向量求二面角的余弦值应用问题,也可以直接利用二面角的定义求二面角的余弦值,是中档题.19.(2021•上海)如图,在长方体ABCD﹣A1B1C1D1中,已知AB=BC=2,AA1=3.(1)若P是棱A1D1上的动点,求三棱锥C﹣P AD的体积;(2)求直线AB1与平面ACC1A1的夹角大小.【分析】(1)直接由三棱锥的体积公式求解即可;(2)易知直线AB1与平面ACC1A1所成的角为∠OAB1,求出其正弦值,再由反三角表示即可.【解答】解:(1)如图,在长方体ABCD﹣A1B1C1D1中,=;(2)连接A1C1∩B1D1=O,∵AB=BC,∴四边形A1B1C1D1为正方形,则OB1⊥OA1,又AA1⊥OB1,OA1∩AA1=A1,∴OB1⊥平面ACC1A1,∴直线AB1与平面ACC1A1所成的角为∠OAB1,∴.∴直线AB1与平面ACC1A1所成的角为.【点评】本题考查三棱锥体积的求法,考查线面角的求解,考查推理能力及运算能力,属于中档题.20.(2021•北京)已知正方体ABCD﹣A1B1C1D1,点E为A1D1中点,直线B1C1交平面CDE 于点F.(1)求证:点F为B1C1中点;(2)若点M为棱A1B1上一点,且二面角M﹣CF﹣E的余弦值为,求.【分析】(1)连结DE,利用线面平行的判定定理证明CD∥平面A1B1C1D1,从而可证明CD∥EF,即可证明四边形A1B1FE为平行四边形,四边形EFC1D1为平行四边形,可得A1E=B1F,ED1=FC1,即可证明B1F=FC1,故点F为B1C1的中点;(2)建立合适的空间直角坐标系,设点M(m,0,0),且m<0,求出所需点的坐标和向量的坐标,然后利用待定系数法求出平面CMF与CDEF的法向量,由向量的夹角公式列出关于m的关系式,求解即可得到答案.【解答】(1)证明:连结DE,在正方体ABCD﹣A1B1C1D1中,CD∥C1D1,C1D1⊂平面A1B1C1D1,CD⊄平面A1B1C1D1,则CD∥平面A1B1C1D1,因为平面A1B1C1D1∩平面CDEF=EF,所以CD∥EF,则EF∥C1D1,故A1B1∥EF∥C1D1,又因为A1D1∥B1C1,所以四边形A1B1FE为平行四边形,四边形EFC1D1为平行四边形,所以A1E=B1F,ED1=FC1,而点E为A1D1的中点,所以A1E=ED1,故B1F=FC1,则点F为B1C1的中点;(2)解:以点B1为原点,建立空间直角坐标系,如图所示,设正方体边长为2,设点M(m,0,0),且m<0,则C(0,2,﹣2),E(﹣2,1,0),F(0,1,0),故,设平面CMF的法向量为,则,即,所以,b=2,故,设平面CDEF的法向量为,则,即,所以x=0,y=2,故,因为二面角M﹣CF﹣E的余弦值为,则==,解得m=±1,又m<0,所以m=﹣1,故=.【点评】本题考查了立体几何的综合应用,涉及了线面平行的性质定理的应用,二面角的应用,在求解有关空间角问题的时候,一般会建立合适的空间直角坐标系,将空间角问题转化为空间向量问题进行研究,属于中档题.21.(2021•甲卷)已知直三棱柱ABC﹣A1B1C1中,侧面AA1B1B为正方形,AB=BC=2,E,F分别为AC和CC1的中点,BF⊥A1B1.(1)求三棱锥F﹣EBC的体积;(2)已知D为棱A1B1上的点,证明:BF⊥DE.【分析】(1)先证明AB⊥平面BCC1B1,即可得到AB⊥BC,再根据直角三角形的性质可知,最后根据三棱锥的体积公式计算即可;(2)取BC中点G,连接EG,B1G,先证明EG∥AB∥B1D,从而得到E、G、B1、D四点共面,再由(1)及线面垂直的性质定理可得BF⊥EG,通过角的正切值判断出∠CBF=∠BB1G,再通过角的代换可得,BF⊥B1G,再根据线面垂直的判定定理可得BF ⊥平面EGB1D,进而得证.【解答】解:(1)在直三棱柱ABC﹣A1B1C1中,BB1⊥A1B1,又BF⊥A1B1,BB1∩BF=B,BB1,BF⊂平面BCC1B1,∴A1B1⊥平面BCC1B1,∵AB∥A1B1,∴AB⊥平面BCC1B1,∴AB⊥BC,又AB=BC,故,∴,而侧面AA1B1B为正方形,∴,∴,即三棱锥F﹣EBC的体积为;(2)证明:如图,取BC中点G,连接EG,B1G,设B1G∩BF=H,∵点E是AC的中点,点G时BC的中点,∴EG∥AB,∴EG∥AB∥B1D,∴E、G、B1、D四点共面,由(1)可得AB⊥平面BCC1B1,∴EG⊥平面BCC1B1,∴BF⊥EG,∵,且这两个角都是锐角,∴∠CBF=∠BB1G,∴∠BHB1=∠BGB1+∠CBF=∠BGB1+∠BB1G=90°,∴BF⊥B1G,又EG∩B1G=G,EG,B1G⊂平面EGB1D,∴BF⊥平面EGB1D,又DE⊂平面EGB1D,∴BF⊥DE.【点评】本题主要考查三棱锥体积的求法以及线线,线面间的垂直关系,考查运算求解能力及逻辑推理能力,属于中档题.22.(2021•乙卷)如图,四棱锥P﹣ABCD的底面是矩形,PD⊥底面ABCD,PD=DC=1,M为BC中点,且PB⊥AM.(1)求BC;(2)求二面角A﹣PM﹣B的正弦值.【分析】(1)连结BD,利用线面垂直的性质定理证明AM⊥PD,从而可以证明AM⊥平面PBD,得到AM⊥BD,证明Rt△DAB∽Rt△ABM,即可得到BC的长度;(2)建立合适的空间直角坐标系,求出所需点的坐标和向量的坐标,然后利用待定系数法求出平面的法向量,由向量的夹角公式以及同角三角函数关系求解即可.【解答】解:(1)连结BD,因为PD⊥底面ABCD,且AM⊂平面ABCD,则AM⊥PD,又AM⊥PB,PB∩PD=P,PB,PD⊂平面PBD,所以AM⊥平面PBD,又BD⊂平面PBD,则AM⊥BD,所以∠ABD+∠ADB=90°,又∠ABD+∠MAB=90°,则有∠ADB=∠MAB,所以Rt△DAB∽Rt△ABM,则,所以,解得BC=;(2)因为DA,DC,DP两两垂直,故以点D位坐标原点建立空间直角坐标系如图所示,则,P(0,0,1),所以,,设平面AMP的法向量为,则有,即,令,则y=1,z=2,故,设平面BMP的法向量为,则有,即,令q=1,则r=1,故,所以=,设二面角A﹣PM﹣B的平面角为α,则sinα==,所以二面角A﹣PM﹣B的正弦值为.【点评】本题考查了空间中线段长度求解以及二面角的求解,在求解有关空间角问题的时候,一般会建立合适的空间直角坐标系,将空间角问题转化为空间向量问题进行研究,属于中档题.23.(2021•浙江)如图,在四棱锥P﹣ABCD中,底面ABCD是平行四边形,∠ABC=120°,AB=1,BC=4,P A=,M,N分别为BC,PC的中点,PD⊥DC,PM⊥MD.(Ⅰ)证明:AB⊥PM;(Ⅱ)求直线AN与平面PDM所成角的正弦值.【分析】(Ⅰ)由已知求解三角形可得CD⊥DM,结合PD⊥DC,可得CD⊥平面PDM,进一步得到AB⊥PM;(Ⅱ)由(Ⅰ)证明PM⊥平面ABCD,由已知求解三角形可得AM,PM,取AD中点E,连接ME,以M为坐标原点,分别以MD、ME、MP为x、y、z轴建立空间直角坐标系,求出的坐标及平面PDM的一个法向量,由两法向量所成角的余弦值可得直线AN与平面PDM所成角的正弦值.【解答】(Ⅰ)证明:在平行四边形ABCD中,由已知可得,CD=AB=1,CM=BC=2,∠DCM=60°,∴由余弦定理可得,DM2=CD2+CM2﹣2CD×CM×cos60°=,则CD2+DM2=1+3=4=CM2,即CD⊥DM,又PD⊥DC,PD∩DM=D,∴CD⊥平面PDM,而PM⊂平面PDM,∴CD⊥PM,∵CD∥AB,∴AB⊥PM;(Ⅱ)解:由(Ⅰ)知,CD⊥平面PDM,又CD⊂平面ABCD,∴平面ABCD⊥平面PDM,。

第2章 卫星通信通信卫星和地球站设备

第2章 卫星通信通信卫星和地球站设备

重量(kg) >3500 >1000 500~1000 100~500 10~100 1~10 0.1~1 <0.1
6
SNAP-1 Nano-Satellite
清华大学的“纳星”一号
7
Picosat 皮卫星
8
2.2 卫星轨道
2.2.1 卫星运动的基本规律 卫星绕地球运行,它的运动轨迹叫卫星轨道。 卫星视使用目的和发射条件不同,可能有不 同高度和不同形状的轨道,但它们有一个共 同点,就是它们的轨道位置都在通过地球垂 心的一个平面内。卫星运动所在的平面叫轨 道面。卫星轨道可以是圆形或椭圆形。但不 论轨道形状如何,卫星的运动总是服从万有 引力定律的,由此导出卫星运动的三个定律。 9
rmax rmin hA hB a R 2 2
b a 2 c 2 a 1 e 2 rmax rmin
rmax rmin c ae 2 c rmax rmin hB hA e a rmax rmin hA hB 2 R
P rmin (1 e) a(1 e2 )
48
49
50
卫星天线系统示意图
51
2、通信转发器 又叫通信分系统或中继器,实质上是一部宽频带的 收、发信机。其作用为接收、处理并重发信号。 对转发器的基本要求是:以最小的附加噪声和失真, 并以足够的工作频带和输出功率来为各地球站有效 而可靠地转发无线电信号。 转发器通常分为: 透明转发器:收到地面发来的信号后,除进行 低噪声放大、变频、功率放大外,不作任何加 工处理,只是单纯地完成转发任务。 处理转发器:除进行信号转发外,还具有信号 处理功能。 52
20
2.2.2 卫星轨道的分类

(人教版)厦门市高中物理必修二第七章《万有引力与宇宙航行》检测(答案解析)

(人教版)厦门市高中物理必修二第七章《万有引力与宇宙航行》检测(答案解析)

一、选择题1.2020年11月24日4时30分,长征五号遥五运载火箭在中国海南文昌航天发射场成功发射,飞行约2200s后,顺利将探月工程“嫦娥五号”探测器送入预定轨道,开启中国首次地外天体采样返回之旅。

如图所示为“嫦娥五号”运行的示意图,“嫦娥五号”首先进入近地圆轨道I,在P点进入椭圆轨道Ⅱ,到达远地点Q后进入地月转移轨道,到达月球附近后,经过一系列变轨进入环月轨道。

近地圆轨道I的半径为r1,“嫦娥五号”在该轨道上的运行周期为T1;椭圆轨道Ⅱ的半长轴为a,“嫦娥五号”在该轨道上的运行周期为T2;环月轨道Ⅲ的半径为r3,“嫦娥五号”在该轨道上的运行周期为T3。

地球半径为R,地球表面重力加速度为g。

“嫦娥五号”在轨道I、Ⅱ上运行时月球引力的影响不计,忽略地球自转,忽略太阳引力的影响。

下列说法正确的是()A.3 333 1222 123r r aT T T==B.“嫦娥五号”在轨道I的运行速度等于1grC.“嫦娥五号”在轨道Ⅱ上运行时,在Q点的速度小于在P点的速度D.“嫦娥五号”在轨道I上P点的加速度小于在轨道Ⅱ上P点的加速度2.如图所示,A为地球表面赤道上的待发射卫星,B为轨道在赤道平面内的实验卫星,C 为在赤道上空的地球同步卫星,已知卫星C和卫星B的轨道半径之比为2:1,且两卫星的环绕方向相同,下列说法正确的是()A.卫星B、C运行速度之比为2:1B.卫星B的向心力大于卫星A的向心力C.同一物体在卫星B中对支持物的压力比在卫星C中大D.卫星B的周期为62h3.设两个行星A和B各有一个卫星a和b,且两卫星的圆轨道均很贴近行星表面。

若两行星的质量比M A:M B=p,两行星的半径比R A:R B=q,那么这两个卫星的运行周期之比T a:T b 应为()A.12q p⋅B.12qqp⎛⎫⋅ ⎪⎝⎭C.12ppq⎛⎫⋅ ⎪⎝⎭D.12()p q⋅4.假设地球可视为质量均匀分布的球体,已知地球表面的重力加速度在两极的大小为g0,在赤道的大小为g;地球自转的周期为T,引力常量为G,则地球的半径为()A.22()4g g Tπ-B.22()4g g Tπ+C.224g TπD.224gTπ5.2018年11月20日,国内首颗商业低轨卫星“嘉定一号”在酒泉卫星发射中心成功升空,随后卫星进入预定匀速圆周运动的轨道,它也是中国首个全球低轨通信卫星星座“翔云”的首发星,开启了中国天基物联探测新时代,下列说法正确的是()A.该卫星的发射速度小于7.9km/sB.据了解该卫星在距离地面约400km的近地轨道运行,则可以估算卫星所受的万有引力C.该卫星在预定轨道上的周期等于同步卫星的周期D.该卫星接到地面指令需要变轨至更高轨道,则卫星应向后喷气加速6.2019年12月16日,我国的西昌卫星发射中心又一次完美发射两颗北斗卫星,标志着“北斗三号”全球系统核心星座部署完成。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档