几何和函数

几何和函数
几何和函数

星海教育2015年暑假 永川 校区

3L 个性化小班名师培优精讲

学 科 年 级 学生姓名

授课教师 上课时间 课 次 数学

高一

罗 老师

2015.

第 讲

【教学目标】

理解本章的知识结构,并通过本章的知识结构掌握本章的全部知识; 【教学重点】

理解本章的知识结构,掌握本章的全部定理和公理; 【教学难点】

理解本章的数学思想方法; 【教学内容】

第一章 集合与函数概念

(1)集合的概念

集合中的元素具有确定性、互异性和无序性. (2)常用数集及其记法

N 表示自然数集,N

*或N +表示正整数集,Z 表示整数集,Q 表示有理数集,R 表示实数集.

(3)集合与元素间的关系

对象a 与集合M 的关系是a M ∈,或者a M ?,两者必居其一. (4)集合的表示法

①自然语言法:用文字叙述的形式来描述集合.

②列举法:把集合中的元素一一列举出来,写在大括号内表示集合. ③描述法:{x |x 具有的性质},其中x 为集合的代表元素. ④图示法:用数轴或韦恩图来表示集合. (5)集合的分类

①含有有限个元素的集合叫做有限集.②含有无限个元素的集合叫做无限集.③不含有任何元素的集合叫做空集(?).

【1.1.2】集合间的基本关系

(6)子集、真子集、集合相等 名称

记号

意义

性质

示意图

综合复习(六)集合与函数概念

子集

B A ?

(或

)A B ?

A 中的任一元素都属于B

(1)A ?A (2)A ?

?

(3)若B A ?且B C ?,则A C ? (4)若B A ?且B A ?,则A B =

A(B)

或B A

真子集

A ≠

?B

(或B ≠

?A )

B A ?,且

B 中至

少有一元素不属于A

(1)A ≠

??(A 为非空子集)

(2)若A B ≠

?且B C ≠

?,则

A C ≠

?

B A

集合 相等

A B =

A 中的任一元素都属

于B ,B 中的任一元素都属于A

(1)A ?B (2)B ?A

A(B)

(7)已知集合

A 有(1)n n ≥个元素,则它有2n 个子集,它有21n -个真子集,它有21n -个非空子集,它有22

n -非空真子集. 【1.1.3】集合的基本运算

(8)交集、并集、补集 名称

记号

意义

性质

示意图

交集

A B

{|,x x A ∈且

}x B ∈

(1)

A A A =

(2)A ?=? (3)A B A ? A B B ? B

A

并集

A B

{|,x x A ∈或

}x B ∈

(1)A A A = (2)A A ?= (3)A B A ? A B B ?

B

A

补集

U A e

{|,}

x x U x A ∈?且

1()U A A =?

e 2()U A A U = e

【补充知识】含绝对值的不等式与一元二次不等式的解法

(1)含绝对值的不等式的解法

不等式

解集

||(0)x a a <> {|}x a x a -<< ||(0)x a a >>

|x x a <-或}x a >

||,||(0)ax b c ax b c c +<+>>

ax b

+看成一个整体,化成

||x a

<,

||(0)x a a >>型不等式来求解

(2)一元二次不等式的解法

()()()U U U A B A B = 痧?()()()

U U U A B A B = 痧?

判别式

24b ac ?=-

0?> 0?= 0?<

二次函数

2(0)

y ax bx c a =++>的图象

O

一元二次方程

20(0)

ax bx c a ++=>的根

21,242b b ac x a

-±-=

(其中1

2)x x <

122b x x a

==-

无实根

20(0)

ax bx c a ++>>的解集

1{|x x x <或2}x x >

{|x }2b x a

≠-

R

20(0)

ax bx c a ++<>的解集

12{|}x x x x <<

? ?

〖1.2〗函数及其表示 【1.2.1】函数的概念

(1)函数的概念

①设

A 、

B 是两个非空的数集,如果按照某种对应法则f

,对于集合

A 中任何一个数x ,在集合

B 中都有唯一

确定的数

()f x 和它对应,那么这样的对应(包括集合A ,B 以及A 到B 的对应法则f )叫做集合

A 到

B 的

一个函数,记作

:f A B →.

②函数的三要素:定义域、值域和对应法则.

③只有定义域相同,且对应法则也相同的两个函数才是同一函数. (2)区间的概念及表示法

①设,a b 是两个实数,且a

b <,满足a x b ≤≤的实数x 的集合叫做闭区间,记做[,]a b ;满足a x b <<的

实数x 的集合叫做开区间,记做(,)a b ;满足a x b ≤<,或a x b <≤的实数x 的集合叫做半开半闭区间,分别记做

[,)a b ,(,]

a b ;满足

,,,x a x a x b x b ≥>≤<的实数

x

的集合分别记做

[,),(,),(,],(,)a a b b +∞+∞-∞-∞.

注意:对于集合{|}x a x b <

<与区间(,)a b ,前者a 可以大于或等于b ,而后者必须

a b <.

(3)求函数的定义域时,一般遵循以下原则:

①()f x 是整式时,定义域是全体实数.

②()f x 是分式函数时,定义域是使分母不为零的一切实数.

()f x 是偶次根式时,定义域是使被开方式为非负值时的实数的集合.

④对数函数的真数大于零,当对数或指数函数的底数中含变量时,底数须大于零且不等于1. ⑤

tan y x =中,()2

x k k Z π

π≠+

∈.

⑥零(负)指数幂的底数不能为零. ⑦若

()f x 是由有限个基本初等函数的四则运算而合成的函数时,则其定义域一般是各基本初等函数的定义域的

交集.

⑧对于求复合函数定义域问题,一般步骤是:若已知()f x 的定义域为[,]a b ,其复合函数[()]f g x 的定义域应

由不等式()a g x b ≤

≤解出.

⑨对于含字母参数的函数,求其定义域,根据问题具体情况需对字母参数进行分类讨论. ⑩由实际问题确定的函数,其定义域除使函数有意义外,还要符合问题的实际意义. (4)求函数的值域或最值

求函数最值的常用方法和求函数值域的方法基本上是相同的.事实上,如果在函数的值域中存在一个最小(大)数,这个数就是函数的最小(大)值.因此求函数的最值与值域,其实质是相同的,只是提问的角度不同.求函数值域与最值的常用方法:

①观察法:对于比较简单的函数,我们可以通过观察直接得到值域或最值.

②配方法:将函数解析式化成含有自变量的平方式与常数的和,然后根据变量的取值范围确定函数的值域或最值. ③判别式法:若函数

()y f x =可以化成一个系数含有y 的关于x 的二次方程2()()()0a y x b y x c y ++=,

则在()0a y ≠时,由于,x y 为实数,故必须有2

()4()()0b y a y c y ?=-?≥,从而确定函数的值域或最值.

④不等式法:利用基本不等式确定函数的值域或最值.

⑤换元法:通过变量代换达到化繁为简、化难为易的目的,三角代换可将代数函数的最值问题转化为三角函数的最

值问题.

⑥反函数法:利用函数和它的反函数的定义域与值域的互逆关系确定函数的值域或最值. ⑦数形结合法:利用函数图象或几何方法确定函数的值域或最值. ⑧函数的单调性法.

【1.2.2】函数的表示法

(5)函数的表示方法

表示函数的方法,常用的有解析法、列表法、图象法三种.

解析法:就是用数学表达式表示两个变量之间的对应关系.列表法:就是列出表格来表示两个变量之间的对应关

系.图象法:就是用图象表示两个变量之间的对应关系. (6)映射的概念

①设

A 、

B 是两个集合,如果按照某种对应法则f

,对于集合A 中任何一个元素,在集合B 中都有唯一的元素

y

x

o

和它对应,那么这样的对应(包括集合

A ,

B 以及A 到B 的对应法则f

)叫做集合

A 到

B 的映射,记作

:f A B →.

②给定一个集合

A 到集合

B 的映射,且,a A b B ∈∈.如果元素a 和元素b 对应,那么我们把元素b 叫做元素

a 的象,元素a 叫做元素

b 的原象.

〖1.3〗函数的基本性质

【1.3.1】单调性与最大(小)值

(1)函数的单调性

①定义及判定方法

函数的 性 质

定义

图象

判定方法 函数的 单调性

如果对于属于定义域I 内某个区间上的任意两个自变量的值x 1、x 2,当x .1.< x ..2.时,都有f(x ...1.)

,那么就说f(x)在这个区间上是增函数...

. x 1x 2

y=f(X)

x

y f(x )1

f(x )2

o

(1)利用定义

(2)利用已知函数的

单调性

(3)利用函数图象(在某个区间图

象上升为增) (4)利用复合函数 如果对于属于定义域I 内某个区间上的任意两个自变量的值x 1、x 2,当x .1.< x ..2.时,都有f(x ...1.)>f(x .....2.).

,那么就说f(x)在这个区间上是减函数...

. y=f(X)

y

x

o

x x 2

f(x )

f(x )

2

1

1

(1)利用定义

(2)利用已知函数的单调性

(3)利用函数图象(在某个区间图

象下降为减) (4)利用复合函数

②在公共定义域内,两个增函数的和是增函数,两个减函数的和是减函数,增函数减去一个减函数为增函数,减函数减去一个增函数为减函数. ③对于复合函数[()]y f g x =,令()u g x =,若()y f u =为增,()u g x =为增,则[()]y f g x =为增;

()y f u =为减,()u g x =为减,则[()]y f g x =为增;若()y f u =为增,()u g x =为减,则

[()]y f g x =为减;若()y f u =为减,

()

u g x =为增,则

[()]y f g x =为减.

(2)打“√”函数

()(0)a

f x x a x

=+

>的图象与性质 ()f x 分别在(,]a -∞-、[,)a +∞上为增函数,

分别在[,0)a -、

(0,]a 上为减函数.

(3)最大(小)值定义 ①一般地,设函数

()y f x =的定义域为I ,如果存在实数M 满足:(1)对于任意的x I ∈,都有()f x M

≤;

(2)存在0x I ∈,使得

0()f x M =.那么,我们称M 是函数()f x 的最大值,记作max ()f x M =.

②一般地,设函数

()y f x =的定义域为I ,如果存在实数m 满足:(1)对于任意的x I ∈,都有

()f x m ≥;

(2)存在0x I ∈,使得0()f x m =.那么,我们称m 是函数()f x 的最小值,记作max ()f x m =.

【1.3.2】奇偶性

(4)函数的奇偶性

①定义及判定方法

函数的 性 质

定义

图象

判定方法 函数的 奇偶性

如果对于函数f(x)定义域内

任意一个x ,都有f(..-.x)=...-.f(x)....,那么函数f(x)叫做奇函..数.

(1)利用定义(要先判断定义域是否关于原点对称)

(2)利用图象(图象关于原点对称)

如果对于函数f(x)定义域内任意一个x ,都有f(..-.x)=...f(x)....,那么函数f(x)叫做偶函数...

(1)利用定义(要先判断定义域是否关于原点对称)

(2)利用图象(图象关于y 轴对称) ②若函数

()f x 为奇函数,且在0x =处有定义,则(0)0f =.

③奇函数在

y 轴两侧相对称的区间增减性相同,偶函数在y 轴两侧相对称的区间增减性相反.

④在公共定义域内,两个偶函数(或奇函数)的和(或差)仍是偶函数(或奇函数),两个偶函数(或奇函数)的积(或商)是偶函数,一个偶函数与一个奇函数的积(或商)是奇函数.

〖补充知识〗函数的图象

(1)作图

利用描点法作图:

①确定函数的定义域; ②化解函数解析式; ③讨论函数的性质(奇偶性、单调性); ④画出函数的图象. 利用基本函数图象的变换作图:

要准确记忆一次函数、二次函数、反比例函数、指数函数、对数函数、幂函数、三角函数等各种基本初等函数的图象. ①平移变换

0,0,|()()h h h h y f x y f x h ><=???????→=+左移个单位右移|个单位0,0,|()()k k k k y f x y f x k ><=???????→=+上移个单位

下移|个单位

②伸缩变换

01,1,()()y f x y f x ωωω<<>=????→=伸

01,1,()()A A y f x y Af x <<>=????→=缩

③对称变换

()()x y f x y f x =???→=-轴

()()y y f x y f x =???→=-轴

()()y f x y f x =???→=--原点 1()()y x y f x y f x -==????→=直线 ()(||)y y y y f x y f x =???????????????→=去掉轴左边图象

保留轴右边图象,并作其关于轴对称图象

()|()|x x y f x y f x =?????????→=保留轴上方图象

将轴下方图象翻折上去

(2)识图

对于给定函数的图象,要能从图象的左右、上下分别范围、变化趋势、对称性等方面研究函数的定义域、值域、单调性、奇偶性,注意图象与函数解析式中参数的关系. (3)用图

函数图象形象地显示了函数的性质,为研究数量关系问题提供了“形”的直观性,它是探求解题途径,获得问题结

果的重要工具.要重视数形结合解题的思想方法.

一、选择题

1、不能形成集合的是( )

A 、正三角形的全体

B 、高一年级所有学生

C 、高一年级所有胖学生

D 、所有无理数

2、在①1?{0,1,2};②{1}∈{0,1,2};③{0,1,2}?{0,1,2};

④φ

{0}上述四个关系中,错误的个数是: ( )

A 、1个

B 、2个

C 、3个

D 、4个

3、设全集U=Z ,A={x|x<5,x ∈Z},B={x|x ≤2,x ∈Z},则A C U 与B C U 的关系是( )

A.B C A C U U ?

B.B C A C U U =

C.B C A C U U ?

D.)

(A C C U U )(B C C U U

4、已知全集U =R ,集合{}|23A x x =-≤≤,{}|14B x x x =<->或,那么集合)(B C A U 等于

A .{}|24x x -≤<

B .{}|34x x x ≤≥或

C .{}|21x x -≤<-

D .{}|13x x -≤≤

5、已知}5,53,2{2+-=a a M ,}3,106,1{2+-=a a N ,且}3,2{=?N M ,则a 的值是( )

A .1或2

B .2或4

C .2

D .1

6、 图中阴影部分表示的集合是 ( ) A. B C A U B. B A C U

C. )(B A C U

D. )(B A C U

7、如下图可作为函数)(x f =的图像的是( )

(A )

(B )

(C )

(D )

8.设??

?<+≥-=)

10(),6()

10(,2)(x x f x x x f 则)5(f 的值为( )

A .9

B .10

C .11

D .12

9、已知g (x )=1-2x , f [g (x )]=)0(12

2

≠-x x x ,则f (21)等于

( ) A .1

B .3

C .15

D .30 10.已知函数(1)1f x x +=+,则函数()f x 的解析式为

( )

A.2()f x x =

B.2()1(1)f x x x =+≥

C.2()22(1)f x x x x =-+≥

D.2()2(1)f x x x x =-≥ 二、填空题

11、若集合{}x A ,3,1=,{}

2,1x B =,且{}x B A ,3,1= ,则=x 12、x x x f 2)12(2

-=+,则)5(f = _________。 13. 函数]3,0[,322

∈--=x x x y 的值域是_____________

14、已知集合}1,1{-=A ,}1|{==mx x B ,且A B A =?,则m 的值为 。 三. 解答题

15、已知集合P={2,x ,y},},2,2{2

y x Q =,且P=Q ,求x 、y 的值。 x

y O

x

y O

x

y

O

x

y

O

A

B U

16、求下列函数的定义域:

(1)2134y x x =++-; (2)1

21

y x =+-。

17.设全集U =R ,集合{}{}{}

13,04,A x x B x x C x x a =-≤≤=<<=<。

(1)求,A B A B ;(2)求(C U A )∩(C U B) (3)若B C ?,求实数a 的取值范围。

18. 集合{}

22|190A x x ax a =-+-=,{}

2

|560B x x x =-+=,

{}2|280C x x x =+-=,满足,A B φ≠ ,,A C φ= 求实数a 的值

19..已知二次函数()f x 满足2(1)(1)24;f x f x x x ++-=-试求()f x 的解析式.

20、已知函数 (1)求

(2)若f(a)=3,求a 的值;(3)求f(x)的定义域与值域.

????????????-)47f(f f ???????

≥<<--≤+=

2x 2

x 2x 12x 1x 2

x f(x )2

初中八年级数学函数几何计算题

D C B A 函数几何计算题 1、如图7,平面直角坐标系中,已知一个一次函数的图像经过点A (0,4)、B (2,0). (1)求这个一次函数的解析式; (2)把直线AB 向左平移,若平移后的直线与x 轴交于点C 且AC =BC .求点C 2. 如图9,已知矩形ABCD ,把矩形ABCD 沿直线BD 翻折,点C 落在点E 处,联结AE . (1)若AB=3,BC=6,试求四边形ABDE 的面积; (2 )记AD 与BE 的交点为P ,若AB=a ,BC =b , 试求PD 的长(用a 、b 表示). 3. 上周六,小明一家共7人从南桥出发去参观世博会。小明提议: 让爸爸载着爷爷、奶奶、外公、外婆去,自己和妈妈坐世博 41路车去,最后在地铁8号线航天博物馆站附近汇合。图中 l 1,l 2分别表示世博41路车与小轿车在行驶中的路程(千米) 与时间(分钟)的关系,试观察图像并回答下列问题: (1)世博41路车在途中行驶的平均速度为_______千米/分钟; 此次行驶的路程是____ ___千米.(2分) (2)写出小轿车在行驶过程中s 与t 的函数关系式: ________________,定义域为___________.(3分) (3)小明和妈妈乘坐的世博41路车出发 分钟后被爸爸的小轿车追上了.(3分) 4、(本题7分)如图,在梯形ABCD 中,AB ∥CD . (1)如果∠A =?50,∠B =?80,求证:AB CD BC =+. (2)如果AB CD BC =+,设∠A =?x ,∠B =?y ,那么y 关于x 的函数关系式是_______. 5. 如图,一次函数b x y +=3 1 的图像与x 轴相交于点A (6,0)、与y 轴相交于点B , (图1) (图2) C D (第3题图) (分钟)

二次函数新定义问题(一)(讲义及答案)

新定义问题(一)(讲义) 知识点睛 新定义问题是在已学知识基础上,以未接触过的新定义为载体,现学现用,侧重考查理解、分析、应用等能力的问题。 此类问题的一般思路: ①结合图形,理解新定义关键词; ②借助题目正反举例,理解新定义实质,尝试“化生为熟”; ③结合背景信息,借助新定义求解.

精讲精练 1.如图,边长为8的正方形OABC的两边在坐标轴上,以C为 顶点的抛物线经过点A,P是抛物线上点A,C间的一个动点(含端点),过点P作PF⊥BC于点F.点D,E的坐标分别为(0,6),(-4,0),连接PD,PE,DE. (1)请直接写出抛物线的解析式. (2)小明探究点P的位置发现:当点P与点A或点C重合时,PD与PF的差为定值.进而猜想:对于任意一点P,PD与PF的差为定值.请你判断该猜想是否正确,并说明理由.(3)小明进一步探究得出结论:若将使△PDE的面积为整数的点P记作“好点”,则存在多个“好点”,且使△PDE的周长最小的点P也是一个“好点”.请直接写出所有“好点”的个数,并求出△PDE的周长最小时“好点”的坐标.

2.已知抛物线2y ax bx c =++,若a ,b ,c 满足b =a +c ,则称抛 物线2y ax bx c =++为“恒定”抛物线. (1)求证:“恒定”抛物线2y ax bx c =++必过x 轴上的一个定点A ; (2)已知“恒定”抛物线233y x =-的顶点为P ,与x 轴的另一个交点为B ,是否存在以Q 为顶点,与x 轴另一个交点为C 的“恒定”抛物线,使得以PA ,CQ 为边的四边形是平行四边形?若存在,求出抛物线解析式;若不存在,请说明理由.

浅说函数与几何综合题的解题策略及复习

浅说函数与几何综合题的解题策略及复习 函数与几何是初中数学中的重点内容,是中考命题重点考查的内容之一;函数中的几何问题,能使代数知识图形化,而几何中的函数问题,能使图形性质代数化;由于函数与几何结合的综合题的形式灵活、立意新颖,能更好地考查学生的思维水平和数学思想方法,因而成为近几年各地中考的一类热门试题;这一特点在孝感市近三年的中考数学试卷中表现得尤为突出;如2001年的中考压轴题是以直角三角形为背景,揉合一次函数、相似形、直线与圆的位置关系等知识构成;2002年的中考压轴题是以矩形为背景,揉合轴对称、二次函数、几何证明等知识构成;2003年的压轴题是以二次函数为背景,揉合直角三角形的知识构成;因此,将函数知识与几何知识有机结合编制出综合题作为压轴题是我市中考命题的一大特点,也是今后中考命题的一大趋势; 函数知识与几何知识有机结合的综合题,根据构成命题的主要要素可分为以下两类:一类是几何元素间的函数关系问题(这类问题不妨称简称为“几函”问题),这类问题的特点是:根据已知几何图形间的位置和数量关系(如平行、全等、相似,特别是成比例)建立自变量与函数所表示的几何元素间的等量关系,求出函数关系式,运用函数的性质解决几何图形中的问题;另一类是函数图像中的几何图形的问题(如三角形、四边形,特别是圆)(这类问题不妨简称为“函几”问题),这类问题的特点是:根据已知函数图像中的几何图形的位置特征,运用数形结合方法解决有关函数、几何问题;本文特从2003年各地的中考试题中略选几例,谈一谈解决这类问题的策略和复习方法,以期达到抛砖引玉的目的。 一、函数与几何综合题例析 (一)“几函”问题: 1、线段与线段之间的函数关系: 由于这类试题的主要要素是几何图形,因此,在解决此类问题时首先要观察几何图形的特征,然后依据相关图形的性质(如直角三角形的性质、特殊四边形的性质、平行线分

2016中学考试数学:_几何与函数问题专题复习

2016中考数学专题讲座 几何与函数问题 【知识纵横】 客观世界中事物总是相互关联、相互制约的。几何与函数问题就是从量和形的侧面去描述客观世界的运动变化、相互联系和相互制约性。函数与几何的综合题,对考查学生的双基和探索能力有一定的代表性,通过几何图形的两个变量之间的关系建立函数关系式,进一步研究几何的性质,沟通函数与几何的有机联系,可以培养学生的数形结合的思想方法。 【典型例题】 【例1】已知24AB AD ==,,90DAB ∠=,AD BC ∥(如图).E 是射线BC 上的动点(点E 与点B 不重合),M 是线段DE 的中点. (1)设BE x =,ABM △的面积为y ,求y 关于x 的函数解析式,并写出函数的定义域; (2)如果以线段AB 为直径的圆与以线段DE 为直径的圆外切,求线段 BE 的长; (3)联结BD ,交线段AM 于点N ,如果以A N D ,,为顶点的三角形与BME △相似,求线段BE 的长. 【思路点拨】(1)取AB 中点H ,联结MH ;(2)先求出 DE; (3)分二种情况讨论。 【例2】()已知:如图(1),在Rt ACB △中,90C ∠=,4cm AC =, 3cm BC =,点P 由B 出发沿BA 方向向点A 匀速运动,速度为1cm/s ;点Q 由A 出发沿AC 方向向点C 匀速运动,速度为2cm/s ;连接PQ .若设运动的时间为(s)t (02t <<),解答下列问题: (1)当t 为何值时,PQ BC ∥? (2)设AQP △的面积为y (2 cm ),求y 与t 之间的函数关系式; (3)是否存在某一时刻t ,使线段PQ 恰好把Rt ACB △的周长和面积同时平分?若存在,求出此时t 的值;若不存在,说明理由; (4)如图(2),连接PC ,并把PQC △沿QC 翻折,得到四边形PQP C ', B A D M E C B A D C 备用图

函数中的新定义问题

函数中的新定义问题 一、填空题 1、定义区间[x1,x2](x1?x2)的长度为x2?x1,已知函数 f(x)?|log1x|的定义域为[a,b],值域为[0,2],则区间[a,b]的长度的最大值与最小值的差 2 为 . 2、(2015余杭区模拟)已知函数f(x)的定义域为R,若存在常数m>0,对任意x∈R,有|f(x)|≤m|x|,则称函数f(x)为F﹣函数.给出下列函数:①f(x)=x;②f(x)= x2;③f(x)=2;④f(x)=sin2x.其中是F﹣函数的序号为. 3、(2009厦门十中)定义:若存在常数k,使得对定义域D内的任意两个x1,x2?x1?x2?,均有f?x1??f?x2?kx1?x2成立,则称函数f?x?在定义域D上满足利普希茨条件。若函数f?x?? 4、(2012格致三模)已知全集为U,P??U,定义集合P的特征函数为x?x?1?满足利普希茨条件,则常数k的最小值为_____。 ??1,x?P,fP?x???,对于A??U, B??U,给出下列四个结论: 0,x?eP.?U? ①对任意x?U,有feUA?x??fA?x??1; ②对任意x?U,若A??B,则fA?x??fB?x?; ③对任意x?U,有fAIB?x??fA?x??fB?x?; ④对任意x?U,有fA?B?x??fA?x??fB?x?。 其中,正确结论的序号是__________。 5、定义运算:a*b=,对于函数f(x)和g(x),函数|f(x)﹣g(x)|在闭区间[a,b]上的最大值称为f(x)与g(x)在闭区间[a,b]上的“绝对差”,记为(f(x),g(x)),则(sinx*cosx,1)= .

一次函数与几何综合(一)(讲义及答案).

一次函数与几何综合(一)(讲义) ? 课前预习 1. 若一次函数经过点 A (2,-1)和点 B (4,3),则该一次函数的表达式为 . 2. 若直线 l 平行于直线 y =-2x -1,且过点(1,4),则直线 l 的表 达式为 . 3. 如图,一次函数的图象经过点 A ,且与正比例函数 y =-x 的图象交于点 B ,则该一次函数的表达式为 . 第 3 题图 第 4 题图 4. 如图,点 A 在直线 l 1:y =3x 上,且点 A 在第一象限,过点 A 作 y 轴的平行线交直线 l 2:y =x 于点 B . (1) 设点 A 的横坐标为 t ,则点 A 的坐标为 ,点 B 的坐标为 ,线段 AB 的长为 ;(用含 t 的式子表示) (2) 若 AB =4,则点 A 的坐标是 . ? 知识点睛 1. 一次函数与几何综合的处理思路: 从已知的表达式、坐标或几何图形入手,分析特征,通过坐标与横平竖直线段长、函数表达式相互转化解决问题. 2. 函数与几何综合问题中常见转化方式: (1) 借助表达式设出点坐标,将点坐标转化为横平竖直线段 长,结合几何特征利用线段长列方程; (2) 研究几何特征,考虑线段间关系,通过设线段长进而表 达点坐标,将点坐标代入函数表达式列方程. 表达线段长: 横平线段长,横坐标相减,右减左; 竖直线段长,纵坐标相减,上减下.

1

? 精讲精练 1. 如图,直线 y = - 3 x + 3 与 x 轴、y 轴交于 A ,B 两点,点 C 4 是 y 轴负半轴上一点,若 BA =BC ,则直线 AC 的表达式为 . 第 1 题图 第 2 题图 2. 如图,在平面直角坐标系中,一次函数 y =kx +b 的图象经过点A (-2,6),且与 x 轴相交于点 B ,与正比例函数 y =3x 的图象交于点 C ,点 C 的横坐标为 1,则△OBC 的面积为 . 3. 如图,直线l :y = 3 x + 6 与 y 轴相交于点 N ,直线l :y = kx -3 1 4 2 与直线l 1 相交于点 P ,与 y 轴相交于点 M ,若△PMN 的面积为 18,则直线l 2的表达式为 . 4. 如图,一次函数 y = 1 x + 2 的图象与 y 轴交于点 A ,与正比例 3 函数 y =kx 的图象交于第二象限内的点 B ,若 AB =OB ,则 k 的值为 .

与函数有关的新定义题型

与函数有关的新定义题型 1.(2016长沙25题10分)若抛物线L :y =ax 2+bx +c(a ,b ,c 是常数,abc ≠0)与直线l 都经过y 轴上的一点P ,且抛物线L 的顶点Q 在直线l 上,则称此直线l 与该抛物线L 具有“一带一路”关系.此时直线l 叫做抛物线L 的“带线”,抛物线L 叫做直线l 的“路线”. (1)若直线y =mx +1与抛物线y =x 2-2x +n 具有“一带一路”关系,求m ,n 的值; (2)若某“路线”L 的顶点在反比例函数y =6 x 的图象上,它的“带线”l 的解析式为y =2x -4, 求此“路线”L 的解析式; (3)当常数k 满足1 2≤k ≤2时,求抛物线L :y =ax 2+(3k 2-2k +1)x +k 的“带线”l 与x 轴, y 轴所围成的三角形面积的取值范围.

2.(2015长沙25题10分)在直角坐标系中,我们不妨将横坐标、纵坐标均为整数的点......称之为“中国结”. (1)求函数y =3x +2的图象上所有“中国结”的坐标; (2)若函数y =k x (k ≠0,k 为常数)的图象上有且只有两个“中国结”,试求出常数k 的值与 相应“中国结”的坐标; (3)若二次函数y =(k 2-3k +2)x 2+(2k 2-4k +1)x +k 2-k (k 为常数)的图象与x 轴相交得到两个不同的“中国结”,试问该函数的图象与x 轴所围成的平面图形中(含边界),一共包含有多少个“中国结”?

3.(2014长沙25题10分)在平面直角坐标系中,我们不妨把横坐标与纵坐标相等的点称为“梦之点”.例如点(-1,-1),(0,0),(2,2),…都是“梦之点”,显然,这样的“梦之点”有无数个. (1)若点P (2,m )是反比例函数y =n x (n 为常数,n ≠0)的图象上的“梦之点”,求这个反比 例函数的解析式; (2)函数y =3kx +s -1(k ,s 是常数)的图象上存在“梦之点”吗?若存在,请求出“梦之点”的坐标;若不存在,请说明理由; (3)若二次函数y =ax 2+bx +1(a ,b 是常数,a >0)的图象上存在两个不同的“梦之点”A (x 1,x 1),B (x 2,x 2),且满足-2

二次函数和几何综合压轴题题型归纳

学生: 科目: 数 学 教师: 刘美玲 一、二次函数和特殊多边形形状 二、二次函数和特殊多边形面积 三、函数动点引起的最值问题 四、常考点汇总 1、两点间的距离公式:()()22B A B A x x y y AB -+-= 2、中点坐标:线段AB 的中点C 的坐标为:??? ??++22 B A B A y y x x , 直线11b x k y +=(01≠k )与22b x k y +=(02≠k )的位置关系: (1)两直线平行?21k k =且21b b ≠ (2)两直线相交?21k k ≠ (3)两直线重合?21k k =且21b b = (4)两直线垂直?121-=k k 3、一元二次方程有整数根问题,解题步骤如下: ① 用?和参数的其他要求确定参数的取值范围; ② 解方程,求出方程的根;(两种形式:分式、二次根式) ③ 分析求解:若是分式,分母是分子的因数;若是二次根式,被开方式是完全平方式。 例:关于x 的一元二次方程()0122 2 =-m x m x ++有两个整数根,5<m 且m 为整数,求m 的值。 4、二次函数与x 轴的交点为整数点问题。(方法同上) 例:若抛物线()3132 +++=x m mx y 与x 轴交于两个不同的整数点,且m 为正整数,试确定 此抛物线的解析式。 课 题 函数的综合压轴题型归类 教学目标 1、 要学会利用特殊图形的性质去分析二次函数与特殊图形的关系 2、 掌握特殊图形面积的各种求法 重点、难点 1、 利用图形的性质找点 2、 分解图形求面积 教学内容

5、方程总有固定根问题,可以通过解方程的方法求出该固定根。举例如下: 已知关于x 的方程2 3(1)230mx m x m --+-=(m 为实数),求证:无论m 为何值,方程总有一个固定的根。 解:当0=m 时,1=x ; 当0≠m 时,()032 ≥-=?m ,()m m x 213?±-= ,m x 3 21-=、12=x ; 综上所述:无论m 为何值,方程总有一个固定的根是1。 6、函数过固定点问题,举例如下: 已知抛物线22 -+-=m mx x y (m 是常数),求证:不论m 为何值,该抛物线总经过一个固定的点,并求出固定点的坐标。 解:把原解析式变形为关于m 的方程()x m x y -=+-122 ; ∴ ???=-=+-0 1 02 2x x y ,解得:???=-=1 1 x y ; ∴ 抛物线总经过一个固定的点(1,-1)。 (题目要求等价于:关于m 的方程()x m x y -=+-122 不论m 为何值,方程恒成立) 小结.. :关于x 的方程b ax =有无数解????==0 b a 7、路径最值问题(待定的点所在的直线就是对称轴) (1)如图,直线1l 、2l ,点A 在2l 上,分别在1l 、2l 上确定两点M 、N ,使得MN AM +之和最小。 (2)如图,直线1l 、2l 相交,两个固定点A 、B ,分别在1l 、2l 上确定两点M 、N ,使得 AN MN BM ++之和最小。

几何图形中函数解析式的求法(学法指导)

几何图形中函数解析式的求法 函数是初中数学的重要容,也是初中数学和高中数学有相关联系的细节,在历年的中考试题中都占有重要的份量,而求函数的解析式则成为中考的热点。求函数的解析式的方法是多种多样的,但是学生往往把思维固定在用“待定系数法”去求函数的解析式。而使用待定系数法去求函数的解析式的大前提是必须根据题目的条件,选用恰当函数(如正、反比例函数,一次、二次函数)的表达式。如果题目中能根据直接条件或间接条件给出函数的类型,当然是选用待定系数法求函数的解析式。 但我们发现,在几何图形中求函数解析式却成为初中数学考试的常见题、压轴题。同时我们也发现,在几何图形中求函数解析式往往是无法确定所求函数的类型,因此用待定系数法进行解题是行不通的。我们知道,函数的解析式也是等式,要建立函数解析式,关键是运用已知条件在几何图形中找出等量关系,列出以变量有关的等式。下面以几个例子来探求在几何图形中建立函数解析式的常见类型和解题途径。 一、 用图形的面积公式确立等量关系 例1、如图1,正方形ABCD 的边长为2,有一点P 在BC 上运动,设PB=x ,梯形APCD 的面积为y (1)求y 与x 的函数关系式; (2)如果S △ABP =S 体型APCD 请确定P 的位置。 分析:本题所给的变量y 是梯形的面积,因此可根据梯形面积公式 B C A D P 图1

A D C B E F G N 图2 S=2 1(上底+下底)×高 ,分别找出上底、下底、高问题可获解决。因为上底CP=x -2,下底AD=2,高CD=2,于是由梯形面积公式建立两个变量之间的等量关系,2)22(21?+-=x y ,整理得:22 2 +-=x y 。(2)略 例2、如图2,在直角梯形ABCD 中,AD ∥BC ,∠BCD=90°,AD=a ,BC=2a ,CD=2,四边形EFCG 是矩形,点E 、G 分别在腰AB 、CD 上,点F 在BC 上。设 EF=x ,矩形EFCG 的面积为y 。(2002年中考题) (1)求y 与x 的函数关系式; (2)当矩形EFCG 的面积等于梯形ABCD 的面积的一半时,求x 的值; (3)当∠ABC=30°时,矩形EFCG 是否能成正方形,若能求其边长,若不能试说明理由。 分析:本题所给的变量y 值是矩形的面积,因此根据矩形面积公式S=长×宽,若能算出长FC 与宽EF ,或者用变量x 、y 表示FC 和EF ,则问题可获解决。其中宽EF=x ,问题归结为求出长FC ,从而两个变量x 、 y 之间的关系通过矩形面积公式建立了。 解:(1)过点A 作AN ⊥BC 于N ,因为在矩形EFCG 中,EF ⊥BC , ∴EF ∥AN ∴ AN EF BN BF =

二次函数新定义问题

专题训练(四)与二次函数相关的新定义问题 ?类型之一应用型:阅读——理解——建模——应用 图4-ZT-1 1.2017·巴中如图4-ZT-1,我们把一个半圆与抛物线的一部分合成的封闭图形称为“蛋圆”,点A,B,C,D分别是“蛋圆”与坐标轴的交点,AB为半圆的直径,且抛物线的函数表达式为y=x2-2x-3,则半圆圆心M点的坐标为________. 2.一个函数的图象关于y轴成轴对称图形时,我们称该函数为“偶函数”.如果二次函数y=x2+bx-4是“偶函数”,该函数的图象与x轴交于点A和点B,顶点为P,那么△ABP 的面积是________. 3.2017·余杭区一模如果两个二次函数的图象关于y轴对称,我们就称这两个二次函数互为“关于y轴对称二次函数”,如图4-ZT-2所示,二次函数y1=x2+2x+2与y2=x2-2x+2是“关于y轴对称二次函数”. (1)直接写出两条图中“关于y轴对称二次函数”图象所具有的特点. (2)二次函数y=2(x+2)2+1的“关于y轴对称二次函数”表达式为____________;二次函数y=a(x-h)2+k的“关于y轴对称二次函数”表达式为____________. (3)平面直角坐标系中,记“关于y轴对称二次函数”的图象与y轴的交点为A,它们的两个顶点分别为B,C,且BC=6,顺次连结点A,B,O,C得到一个面积为24的菱形,求“关于y轴对称二次函数”的表达式. 图4-ZT-2

?类型之二探究型:阅读——理解——尝试——探究 4.若抛物线y=ax2+bx+c过定点M(1,1),则称此抛物线为定点抛物线. (1)张老师在投影屏幕上出示了一个题目:请你写出一条定点抛物线的函数表达式.小敏写出了一个答案:y=2x2+3x-4,请你写出一个不同于小敏的答案; (2)张老师又在投影屏幕上出示了一个思考题:已知定点抛物线y=-x2+2bx+c+1,求该抛物线顶点纵坐标的值最小时的函数表达式.请你解答. 5.2017·衢州定义:如图4-ZT-3①,抛物线y=ax2+bx+c(a≠0)与x轴交于A,B 两点,点P在该抛物线上(点P与A,B两点不重合),若△ABP的三边满足AP2+BP2=AB2,则称点P为抛物线y=ax2+bx+c(a≠0)的勾股点. (1)直接写出抛物线y=-x2+1的勾股点的坐标; (2)如图②,已知抛物线C:y=ax2+bx(a≠0)与x轴交于A,B两点,点P(1,3)是抛物线C的勾股点,求抛物线C的函数表达式; (3)在(2)的条件下,点Q在抛物线C上,求满足条件S△ABQ=S△ABP的点Q(异于点P)的坐标.

一次函数的与几何图形综合的题目(含答案)

一次函数与几何图形综合专题讲座 思想方法小结 : (1)函数方法. 函数方法就是用运动、变化的观点来分析题中的数量关系,抽象、升华为函数的模型,进而解决有关问题的方法.函数的实质是研究两个变量之间的对应关系,灵活运用函数方法可以解决许多数学问题. (2)数形结合法. 数形结合法是指将数与形结合,分析、研究、解决问题的一种思想方法,数形结合法在解决与函数有关的问题时,能起到事半功倍的作用. 知识规律小结 : (1)常数k ,b 对直线y =kx +b (k ≠0)位置的影响. ①当b >0时,直线与y 轴的正半轴相交; 当b =0时,直线经过原点; 当b ﹤0时,直线与y 轴的负半轴相交. ②当k ,b 异号时,即-k b >0时,直线与x 轴正半轴相交; 当b =0时,即- k b =0时,直线经过原点; 当k ,b 同号时,即-k b ﹤0时,直线与x 轴负半轴相交. ③当k >O ,b >O 时,图象经过第一、二、三象限; 当k >0,b =0时,图象经过第一、三象限; 当b >O ,b <O 时,图象经过第一、三、四象限; 当k ﹤O ,b >0时,图象经过第一、二、四象限; 当k ﹤O ,b =0时,图象经过第二、四象限;

当b <O ,b <O 时,图象经过第二、三、四象限. (2)直线y =kx +b (k ≠0)与直线y =kx (k ≠0)的位置关系. 直线y =kx +b (k ≠0)平行于直线y =kx (k ≠0) 当b >0时,把直线y =kx 向上平移b 个单位,可得直线y =kx +b ; 当b ﹤O 时,把直线y =kx 向下平移|b |个单位,可得直线y =kx +b . (3)直线b 1=k 1x +b 1与直线y 2=k 2x +b 2(k 1≠0 ,k 2≠0)的位置关系. ①k 1≠k 2?y 1与y 2相交; ②?? ?=≠2 12 1b b k k ?y 1与y 2相交于y 轴上同一点(0,b 1)或(0,b 2) ; ③???≠=21 21,b b k k ?y 1与y 2平行; ④?? ?==2 121, b b k k ?y 1与y 2重合. 例题精讲: 1、直线y =-2x +2与x 轴、y 轴交于A 、B 两点,C 在y 轴的负半轴上,且OC =OB (1) 求AC (2) 在OA 的延长线上任取一点P ,作PQ ⊥BP ,交直线AC 于Q ,试探究BP 与PQ 的数量关系, 并证明你的结论。 (3) 在(2)的前提下,作PM ⊥AC 于M ,BP 交AC 于N ,下面两个结论:①(MQ +AC )/PM x y

几何图形中的函数问题

D C B A 几何图形中的函数问题 1如图,在梯形ABCD 中,AB ∥CD . (1)如果∠A =?50,∠B =?80,求证:AB CD BC =+. (2)如果AB CD BC =+,设∠A =?x ,∠B =?y ,那么y 关于x 的函数关系式是_______. 2.如图,P 是矩形ABCD 的边CD 上的一个动点,且P 不与C 、D 重合,BQ ⊥AP 于点Q ,已知AD=6cm,AB=8cm ,设AP=x(cm),BQ=y(cm). (1)求y 与x 之间的函数解析式并求自变量x 的取值范围; (2)是否存在点P ,使BQ=2AP 。若存在,求出AP 的长;若不存在,说明理由。 3.如图,矩形EFGH 内接与△ABC ,AD ⊥BC 与点D ,交EH 于点M ,BC=10cm , AD=8cm , 设EF=x cm ,EH=y cm ,矩形EFGH 的面积为S cm2, ①分别求出y 与x ,及S 与x 的函数关系式,写出x 的取值范围; ②若矩形EFGH 为正方形,求正方形的边长; ③ x 取何值时,矩形EFGH 的面积最大。 A B D A B C D E F M H G

5.如图,在△ABC 中,AB=AC=1,点D,E 在直线BC 上运动.设BD=x, CE=y (l )如果∠BAC=30°,∠DAE=l05°,试确定y 与x 之间的函数关系式; (2)如果∠BAC=α,∠DAE=β,当α, β满足怎样的关系时,(l )中y 与x 之间的函数关系式还成立?试说明理由. 6.已知:在矩形ABCD 中,AB =10,BC =12,四边形EFGH 的三个顶点E 、F 、H 分别在 矩形ABCD 边AB 、BC 、DA 上,AE =2. (1)如图①,当四边形EFGH 为正方形时,求△GFC 的面积;(5分) (2)如图②,当四边形EFGH 为菱形,且BF = a 时,求△GFC 的面积(用含a 的代数式表示); D C A B E F D C A B E F H G

反比例函数与几何图形的综合

代几结合专题:反比例函数与几何图形的综合(选做) ——代几结合,掌握中考风向标 ◆类型一 与三角形的综合 1.(2016·云南中考)位于第一象限的点E 在反比例函数y =k x 的图象上,点F 在x 轴的 正半轴上,O 是坐标原点.若EO =EF ,△EOF 的面积等于2,则k 的值为( ) A .4 B .2 C .1 D .-2 2.(2016·菏泽中考)如图,△OAC 和△BAD 都是等腰直角三角形,∠ACO =∠ADB =90°,反比例函数y =6 x 在第一象限的图象经过点B ,则△OAC 与△BAD 的面积之差S △OAC -S △BAD 为( ) A .36 B .12 C .6 D .3 3.如图,点A 在双曲线y =5x 上,点B 在双曲线y =8 x 上,且AB ∥x 轴,则△OAB 的 面积等于________. 第3题图 第4题图 4.(2016·包头中考)如图,在平面直角坐标系中,点A 在第二象限内,点B 在x 轴上,∠AOB =30°,AB =BO ,反比例函数y =k x (x <0)的图象经过点A ,若S △AOB =3,则k 的值为________. 5.(2016·宁波中考)如图,点A 为函数y =9 x (x >0)图象上一点,连接OA ,交函数y =1 x (x >0)的图象于点B ,点C 是x 轴上一点,且AO =AC ,则△ABC 的面积为________.

第5题图 第6题图 6.★如图,若双曲线y =k x (k >0)与边长为3的等边△AOB (O 为坐标原点)的边OA 、 AB 分别交于C 、D 两点,且OC =2BD ,则k 的值为________. 7.(2016·宁夏中考)如图,Rt △ABO 的顶点O 在坐标原点,点B 在x 轴上,∠ABO =90°,∠AOB =30°,OB =23,反比例函数y =k x (x >0)的图象经过OA 的中点C ,交 AB 于点D . (1)求反比例函数的关系式; (2)连接CD ,求四边形CDBO 的面积. 8.(2016·大庆中考)如图,P 1、P 2是反比例函数y =k x (k >0)在第一象限图象上的两点,点A 1的坐标为(4,0).若△P 1OA 1与△P 2A 1A 2均为等腰直角三角形,其中点P 1、P 2为直角顶点. (1)求反比例函数的解析式; (2)①求P 2的坐标;②根据图象直接写出在第一象限内当x 满足什么条件时,经过点P 1、 P 2的一次函数的函数值大于反比例函数y =k x 的函数值.

几何与函数

中考专题复习 几何与函数的综合应用 青川县凉水九年制学校 张自满 C A B O x y y x M C(1,a) B(b,2) A(3,0) O(0,0)

中考复习《几何与函数的综合应用》 青川县凉水九年制学校 张自满 一、【教学目标】 (一)知识与技能 1、理解函数的意义,能根据已知条件确定反函数的解析式,能画出函数的图象 2、能够利用数形结合思想将几何图形与函数问题有效结合。 (二)过程与方法 1、经历分析函数与其它数学知识的内在联系,逐步提高学生分析和综合应用能力 2、体会数形结合和转化的数学思想 (三)情感态度价值观 通过学习活动激发学生得求知欲,培养学生勇于探索的精神 二、【教学重难点】 1、重点:函数图象与性质 2、难点:函数图象、性质与几何图形的有效结合。 三、教学过程: (一)考点知识精讲。 1、反比例函数中反比例系数K 的几何意义 如下图,过反比例函数 图像上任一点P 作x 轴、y 轴 的垂线PM 、PN ,则所得的矩形PMON 的面积 。 k S k xy x k y ==∴=,, 。 2、(备用)线段中点坐标: 若A 、B 的坐标分别为( , ),( ,则线段AB 的中点C 的坐标为( ) 3、练一练:在双曲线 的图象中,根据k 的几何意义求图形的面积。 分析:根据题意得:

x a=2 b=0 【教师活动】:以提问的形式帮助学生梳理反比例函数有关 知识点,并用多媒体课件展示复习内容 【学生活动】:独立思考问题,个别学生回答问题 (二)【中考典型精析】 例1、已知,反比例函数y= kx (k >0)的图像经过矩形OABC 对角线的交点M ,分别与AB 、BC 相交于点D 、E . (1)△OCE 与△OAD 的面积相等吗?为什么? (2)若CE :EB=1:2,BD :BA 的值是 ; (3)若四边形ODBE 面积为6,反比例函数解析式为( ) A:2 B:3 C:4 D:5 考点:反比例函数系数k 的几何意义. 分析:本题可从反比例函数图象上的点E 、M 、D 入手,分别找出△OCE 、△OAD 、矩形OABC 的面积与|k|的关系,列出等式求出k 值. 解答:由由题意得:E 、M 、D 位于反比例函数图象上,则 , ,过点 M 作MG ⊥y 轴于点G ,作MN ⊥x 轴于点N ,则 矩形 , 又∵M 为矩形ABCO 对角线的交点, ∴ 矩形 矩形 , 由于函数图象在第一象限,k >0,则 , 解得:k=3.故选A 。 点评:本题考查反比例函数系数k 的几何意义,过双曲线上的任意一点分别向两条坐标轴作垂线,与坐标轴围成的矩形面积就等于|k|,本知识点是中考的重要考点,同学们应高度关注. 【教师活动】:出示问题,并分析问题,指导学生完成例题 【学生活动】:分组讨论并交流问题,个别学生回答问题 例2:(2018 南充模拟 10分)如右图,抛物线 经过点A(2,-3),与x 轴负半轴交于点B ,与y 轴交于点C ,且OC=3OB . (1)求抛物线的解析式; (2)点D 在y 轴上,且 ,求点D 的坐标; (3)点M 在抛物线上,点N 在抛物线的对称轴上,是否存在以点A 、B 、M 、N 为顶点的四边形是平行四边形?若存在, 求出所有符合条件的点M 的坐标;若不存在,请说明理由。 解析:(1)待定系数法即可得到结论;(2)连接AC ,作BF 交AC 的延长线于F ,根据已知条件得到AF ∥x 轴,得到 F(-1,-3),设D (0,m ),则OD=1m 即可得到结论;(3)设 M (a, ①以AB 为边,则AB ∥MN,AB=MN,如图2,过M 作ME ⊥对称轴于E,AF ⊥x 轴于F ,于是得到⊿ABF ≌⊿NME ,证得NE=AF=3,得到M (4,5 )或(-2,5);②以AB 为对角线,BN=AM,BN ∥AM,

中考数学专题突破十:新定义问题(含答案)

专题突破(十) 新定义问题 1. 在平面直角坐标系xOy 中,⊙C 的半径为r ,P 是与圆心C 不重合的点,点P 关于⊙O 的反称点的定义如下:若在射线..CP 上存在一点P ′,满足CP +CP ′=2r ,则称P ′为点P 关于⊙C 的反称点,如图Z10-1为点P 及其关于⊙C 的反称点P ′的示意图. (1)当⊙O 的半径为1时. ①分别判断点M (2,1),N (3 2,0),T (1,3)关于⊙O 的反称点是否存在,若存在,求其 坐标; ②点P 在直线y =-x +2上,若点P 关于⊙O 的反称点P ′存在,且点P ′不在x 轴上,求点P 的横坐标的取值范围. (2)当⊙C 的圆心在x 轴上,且半径为1,直线y =- 3 3 x +2 3与x 轴、y 轴分别交于点A ,B.若线段AB 上存在点P ,使得点P 关于⊙C 的反称点P ′在⊙C 的内部,求圆心C 的横坐标的取值范围. 图Z10-1 2. 对某一个函数给出如下定义:若存在实数M >0,对于任意的函数值y ,都满足-M ≤y ≤M ,则称这个函数是有界函数.在所有满足条件的M 中,其最小值称为这个函数的边界值.例如,图Z10-2中的函数是有界函数,其边界值是1. (1)分别判断函数y =1 x (x >0)和y =x +1(-4a )的边界值是2,且这个函数的最大值也是2,求b 的取值范围; (3)将函数y =x 2(-1≤x ≤m ,m ≥0)的图象向下平移m 个单位长度,得到的函数的边界值是t ,当m 在什么范围时,满足3 4 ≤t ≤1?

一次函数与几何图形综合题

一次函数与几何图形 1、 平面直角坐标系中,点A 的坐标为(4,0),点P 在直线y=-x-m 上,且AP=OP=4,则m 的值是多少? 2、如图,已知点A 的坐标为(1,0),点B 在直线y=-x 上运动,当线段AB 最短时,试求点B 的坐标。 3、如图,在直角坐标系中,矩形OABC 的顶点B 的坐标为(15,6),直线y=1/3x+b 恰好将矩形OABC 分为面积相等的两部分,试求b 的值。 4、如图,在平面直角坐标系中,直线y= 2x —6与x 轴、y 轴分别相交于点A 、B ,点C 在x 轴上,若△ABC 是等腰三角形,试求点C 的坐标。 5、在平面直角坐标系中,已知A (1,4)、B (3,1),P 是坐标轴上一点,(1)当P 的坐标为多少时,AP+BP 取最小值,最小值为多少? 当P 的坐标为多少时,AP-BP 取最大值,最大

值为多少? 6、如图,已知一次函数图像交正比例函数图像于第二象限的A点,交x轴于点B(-6,0),△AOB的面积为15,且AB=AO,求正比例函数和一次函数的解析式。 7、已知一次函数的图象经过点(2,20),它与两坐标轴所围成的三角形的面积等于1,求这个一次函数的表达式。 8、正方形ABCD的边长是4,将此正方形置于平面直角坐标系中,使AB在x轴负半轴上,A 点的坐标是(-1,0), (1)经过点C的直线y=-4x-16与x轴交于点E,求四边形AECD的面积; (2)若直线L经过点E且将正方形ABCD分成面积相等的两部分,求直线L的解析式。

9、在平面直角坐标系中,一次函数y=kx+b(b 小于0)的图像分别与x 轴、y 轴和直线x=4交于A 、B 、C ,直线x=4与x 轴交于点D ,四边形OBCD 的面积为10,若A 的横坐标为-1/2,求此一次函数的关系式 10、在平面直角坐标系中,一个一次函数的图像过点B(-3,4),与y 轴交于点A ,且OA=OB :求这个一次函数解析式 11、如图,A 、B 分别是x 轴上位于原点左右两侧的点,点P (2,m )在第一象限,直线PA 交y 轴于点C (0,2),直线PB 交y 轴于点D ,S AOP =6. 求:(1)△COP 的面积 (2)求点A 的坐标及m 的值; (3)若S BOP =S DOP ,求直线BD 的解析式 12、一次函数y=- 3 3x+1的图像与x 轴、y 轴分别交于点A 、B ,以AB 为边在第一象限内做等边△ABC

函数与几何图形

- 1 - 函数与几何图形 1. 如图4,正方形ABCD 的边长为10,四个全等的小正方形的对称中心分别在正方形ABCD 的顶点上,且它们的各边与正方形ABCD 各边平行或垂直.若小正方形的边长为x ,且0

浅说函数与几何综合题的解题策略及复习

浅说函数与几何综合题的解题策略及复习 Last revision on 21 December 2020

浅说函数与几何综合题的解题策略及复习 函数与几何是初中数学中的重点内容,是中考命题重点考查的内容之一;函数中的几何问题,能使代数知识图形化,而几何中的函数问题,能使图形性质代数化;由于函数与几何结合的综合题的形式灵活、立意新颖,能更好地考查学生的思维水平和数学思想方法,因而成为近几年各地中考的一类热门试题;这一特点在孝感市近三年的中考数学试卷中表现得尤为突出;如2001年的中考压轴题是以直角三角形为背景,揉合一次函数、相似形、直线与圆的位置关系等知识构成;2002年的中考压轴题是以矩形为背景,揉合轴对称、二次函数、几何证明等知识构成;2003年的压轴题是以二次函数为背景,揉合直角三角形的知识构成;因此,将函数知识与几何知识有机结合编制出综合题作为压轴题是我市中考命题的一大特点,也是今后中考命题的一大趋势; 函数知识与几何知识有机结合的综合题,根据构成命题的主要要素可分为以下两类:一类是几何元素间的函数关系问题(这类问题不妨称简称为“几函”问题),这类问题的特点是:根据已知几何图形间的位置和数量关系(如平行、全等、相似,特别是成比例)建立自变量与函数所表示的几何元素间的等量关系,求出函数关系式,运用函数的性质解决几何图形中的问题;另一类是函数图像中的几何图形的问题(如三角形、四边形,特别是圆)(这类问题不妨简称为“函几”问题),这类问题的特点是:根据已知函数图像中的几何图形的位置特征,运用数形结合方法解决有关函数、几何问题;本文特从2003年各地的中考试题中略选几例,谈一谈解决这类问题的策略和复习方法,以期达到抛砖引玉的目的。 一、函数与几何综合题例析 (一)“几函”问题: 1、线段与线段之间的函数关系: 由于这类试题的主要要素是几何图形,因此,在解决此类问题时首先要观察几何图形的特征,然后依据相关图形的性质(如直角三角形的性质、特殊四边形的性质、平行线分线段成比例定理及其推论、相似三角形的性质、圆的基本性质、圆中的比例线段等等)找出几何元素之间的联系,最后将它们的联系用数学式子表示出来,并整理成函数关系式,在此函数关系式的基础上再来解决其它的问题;解决此类问题时,要特别注意自变量的 取值范围。 例1 如图,AB是半圆的直径,O为圆心 AB=6,延长BA到F,使FA=AB,若P为线段 AF上的一个动点(不与A重合),过P点作半 圆的切线,切点为C,过B点作BE⊥PC交PC 的延长线于E,设AC=x,AC+BE=y,求y与x 的函数关系式及x的取值范围。(2003年山东省烟台市中考题)O

初中函数与几何难题

初二反比例函数、一次函数、平面几何难题一、选择题. 1.如图1,过y轴上任意一点P,作x轴的平行线,分别与反比例函数y=4 x 和y= 2 x 的 图象交于A点和B点,若C为x轴上任意一点,连接AC,BC,则△ABC的面积为() A. 3 B. 4 C. 5 D. 6 2.如图2,双曲线y=k x 经过点A(2,2)与点B(4,m),则△AOB的面积为() A.2 B.3 C.4 D.5 3.如图,直线y=-x+b(b>0)与双曲线y=k x (x>0)交于A、B两点,连接OA、OB, AM⊥y轴于M,BN⊥x轴于N;有以下结论: ①OA=OB ②△AOM≌△BON ③若∠AOB=45°,则S△AOB=k ④当AB=2时,ON-BN=1;其中结论正确的个数为() A.1 B.2 C.3 D.4 (1)(2)(3) .如图4,直线y=6-x交x轴、y轴于A、B两点,P是反比例函数y=4 x (x>0)图象上位 于直线下方的一点,过点P作x轴的垂线,垂足为点M,交AB于点E,过点P作y轴的垂线,垂足为点N,交AB于点F.则AF?BE=() A.8 B.6 C.4 D.2 5.如图5,已知动点P在反比例函数的图象上运动,PM⊥x轴于点M,PN⊥y轴于点N,线段PM、PN分别与直线AB:y=-x+1交于点E,F,则AF?BE的值为() A.4 B.2 C.1 D.1 2 6. 如图6.已知P是反比列函数y=8 x (x>0)图象上一点,点B的坐标为(1,0),A是 y轴正半轴上一点,且AP⊥BP,AP:BP=1:2,那么四边形AOBP的面积为()A. C10 D.7

(4)(5)(6) 二、填空题. 7. 如图,延长四边形ABCD的四边分别至E、F、G、H,使AB=nBE,BC=nCF,CD=nDG,DA=nAH(n>0),则四边形EFGH与四边形ABCD的面积之比为______________________ (用含n的代数式表示). 8.已知如图8,在矩形ABCD中,AE⊥BD,垂足为E,∠ADB=30°且BC=43,△ECD 的面积是___________ 9. 如图9,已知AD∥BC,AC与BD相交于点O.BE⊥AC,CF⊥BD,垂足分别为E、F,AC BD = 4 5. BE CF 的值为__________. (7)(8)(9)

相关文档
最新文档