高考物理一轮复习第6章动量第1节动量动量定理教师用书

高考物理一轮复习第6章动量第1节动量动量定理教师用书
高考物理一轮复习第6章动量第1节动量动量定理教师用书

第1节

动量 动量定理

1.考纲变化:本章内容是模块3-5中的部分内容,考纲要求由原来的“选考内容”调至“必考内容”.

2.考情总结:作为“选考内容”时,对动量定理、动量守恒的考查,以中等题为主,题型多为计算题,考查的内容主要通过碰撞综合应用动量守恒定律和能量守恒定律.

3.命题预测:调至“必考内容”后,预计题型不变,命题热点仍然集中在动量与能量、动量与牛顿运动定律的综合应用方面,也可能与电场、磁场、电磁感应综合命题,难度可能是中等难度以上或较难.

说明:动量定理、动量守恒定律只限于一维情况.

第1节 动量 动量定理

知识点1 冲量和动量

冲量I

动量p

定义 力和力的作用时间的乘积

物体的质量和速度的乘积

公式 I =Ft

p =mv

单位 N·s

kg·m/s

矢量性 矢量,方向与恒力的方向相同

矢量,方向与速度的方向相同

特点

过程量

状态量

1.内容:物体所受合外力的冲量等于它的动量的变化. 2.公式:Ft =Δp =mv 2-mv 1. 3.理解:

(1)动量定理反映了冲量的作用效果是使物体动量变化. (2)动量定理可由牛顿第二定律和运动学公式推出,由F =ma 和a =v t -v 0t 得:F =mv t -mv 0

t

=Δp

t

这是牛顿第二定律的另一种表达形式,它说明作用力等于物体动量的变化率.

1.正误判断

(1)冲量和功都是标量.(×)

(2)冲量为零时,力不一定为零.(√)

(3)某个恒力的功为零时,这个力的冲量不为零.(√)

(4)动量定理描述的是某一状态的物理规律.(×)

(5)动量和冲量都是状态量.(×)

2.[冲量、动量的理解]从同一高度以相同的速率抛出质量相同的三个小球,a球竖直上抛,b球竖直下抛,c球水平抛出,不计空气阻力,则( )

A.三球落地时的动量相同

B.三球落地时的动量大小相同

C.从抛出到落地过程中,三球受到的冲量相同

D.从抛出到落地过程中,三球受到的冲量大小相同

B[根据机械能守恒定律可知,三球落地时,速度大小相等,但c球速度方向与a、b 球的速度方向不同.从抛出到落地过程中,三球均仅受重力作用,但三球在空中运动的时间不同.故本题选B.]

3.[冲量的计算](多选)质量为m的物块以初速度v0从光滑斜面底端向上滑行,到达最高位置后再沿斜面下滑到底端,则物块在此运动过程中( )

A.上滑过程与下滑过程中物块所受重力的冲量相等

B.整个过程中物块所受弹力的冲量为零

C.整个过程中物块的合外力冲量为零

D.整个过程中物块的合外力冲量大小为2mv0

AD[物体沿光滑斜面先上冲再滑下,两段时间相等,故重力的冲量相等,A对.因弹力和其作用时间均不为零,故弹力的冲量不为零,B错.由动量定理得I合=p′-p=mv0-(-mv0)=2mv0,故C错、D对.]

4.[动量定理的应用]质量为4 kg的物体以2 m/s的初速度做匀变速直线运动,经过2 s,动量大小变为14 kg·m/s.该物体 ( )

【导学号:92492255】A.所受合外力的大小可能大于11 N

B.所受合外力的大小可能小于3 N

C.所受的冲量可能小于6 N·s

D.所受的冲量可能大于18 N·s

D[若设物体初速度方向为正方向,则初动量p1=mv1=8 kg·m/s,末动量只告诉了大小,则有两种可能:

当p2=14 kg·m/s,则Ft=p2-p1=6 kg·m/s,F=3 N;当p2=-14 kg·m/s,则Ft =p2-p1=-22 kg·m/s,F=-11 N,负号表示方向,故A、B、C错误,D正确.]

冲量的理解和计算

1.冲量的方向就跟力的方向相同.如果力的方向在不断变化,如绳子拉物体做圆周运动时绳的拉力在时间t内的冲量,这时就不能说力的方向就是冲量的方向.对于方向不断变化的力的冲量,其方向可以通过动量变化的方向间接得出.

2.冲量是过程量,说到冲量必须明确是哪个力在哪段时间内的冲量.

3.冲量和功

(1)冲量反映力对时间积累的效应,功反映力对空间积累的效应.

(2)冲量是矢量,功是标量.

(3)冲量的正、负号表示冲量的方向,功的正、负号表示动力或阻力做功.

[题组通关]

1.甲、乙两个质量相等的物体,以相同的初速度在粗糙程度不同的水平面上运动,甲物体先停下来,乙物体后停下来,则( )

A.甲物体受到的冲量大

B.乙物体受到的冲量大

C.两物体受到的冲量相等

D.两物体受到的冲量无法比较

C[由题设可知两物体动量的变化量相等,据动量定理,两物体受到的冲量是相等的.两物体不同时停下,是因为受到的合力(即摩擦力)的大小不相等,即两接触面的动摩擦因数不相等.可知正确答案为C.]

2.在一光滑的水平面上,有一轻质弹簧,弹簧一端固定在竖直墙面上,另一端紧靠着一物体A,已知物体A的质量m A=4 kg,如图6-1-1所示.现用一水平力F作用在物体A上,并向左压缩弹簧,F做功50 J后(弹簧仍处在弹性限度内),突然撤去外力F,物体从静止开始运动.则当撤去F后,弹簧弹力对A物体的冲量为( )

图6-1-1

A .20 N·s

B .50 N·s

C .25 N·s

D .40 N·s

A [弹簧的弹力显然是变力,因此该力的冲量不能直接求解,可以考虑运用动量定理:

I =Δp ,即外力的冲量等于物体动量的变化.由于弹簧储存了50 J 的弹性势能,我们可以

利用机械能守恒求出物体离开弹簧时的速度,然后运用动量定理求冲量.所以有:E p =12

mv 2

I =mv .由以上两式可解得弹簧的弹力对A 物体的冲量为I =20 N·s.故选A.]

变力冲量的计算方法

1.如果一个物体受到的力是变力,但该力随时间是均匀变化的,我们可用求平均值的方法求解,此种情况下该力的平均值为F =1

2

(F t +F 0),则该变力的冲量为

I =12

(F t +F 0)t .

2.以时间为横轴,力为纵轴,画出变力随时间变化的关系图象,如图所示,该图线与时间轴围成的“面积”(图中阴影部分)在量值上表示了力的冲量的大小.

3.根据动量定理求变力冲量.根据动量定理I =Δp ,若I 无法直接求得,可求出Δp 间接求出I ,这是求变力冲量的重要方法.

动量定理的理解与应用

1(1)方程左边是物体受到的所有力的总冲量,而不是某一个力的冲量.其中的F 可以是恒力,也可以是变力,如果合外力是变力,则F 是合外力在t 时间内的平均值.

(2)动量定理说明的是合外力的冲量I 合和动量的变化量Δp 的关系,不仅I 合与Δp 大小相等而且Δp 的方向与I 合方向相同.

(3)动量定理的研究对象是单个物体或物体系统.系统的动量变化等于在作用过程中组成系统的各个物体所受外力冲量的矢量和.而物体之间的作用力(内力),由大小相等、方向相反和等时性可知不会改变系统的总动量.

(4)动力学问题中的应用.在不涉及加速度和位移的情况下,研究运动和力的关系时,用动量定理求解一般较为方便.不需要考虑运动过程的细节.

2.动量定理的应用 (1)用动量定理解释现象

①物体的动量变化一定,此时力的作用时间越短,力就越大;时间越长,力就越小.

②作用力一定,此时力的作用时间越长,动量变化越大;力的作用时间越短,动量变化越小.

(2)应用I=Δp求变力的冲量.

(3)应用Δp=F·Δt求恒力作用下的曲线运动中物体动量的变化量.

3.用动量定理解题的基本思路

[多维探究]

●考向1 用动量定理解释生活现象

1.玻璃杯从同一高度落下,掉在水泥地面上比掉在草地上容易碎,这是由于玻璃杯与水泥地撞击过程中( )

【导学号:92492256】A.玻璃杯的动量较大

B.玻璃杯受到的冲量较大

C.玻璃杯的动量变化较大

D.玻璃杯的动量变化较快

D[玻璃杯从相同高度落下,落地时的速度大小是相同的,落地后速度变为零,所以无论落在水泥地面上还是草地上,玻璃杯动量的变化量Δp是相同的,又由动量定理I=Δp,知受到的冲量也是相同的,所以A、B、C都错.由动量定理Ft=Δp得F=Δp/t,落到水泥地面上,作用时间短,动量变化快,受力大,容易碎,D对.]

●考向2 动量定理的综合应用

2.(多选)一个质量为0.3 kg的弹性小球,在光滑水平面上以6 m/s的速度垂直撞到墙上,碰撞后小球沿相反方向运动,反弹后的速度大小与碰撞前相同.则碰撞前后小球动量变化量的大小Δp和碰撞过程中墙对小球做功的大小W为( )

A.Δp=0 B.Δp=3.6 kg·m/s

C.W=0 D.W=10.8 J

BC[设初动量方向为正,则p1=mv=1.8 kg·m/s,碰后动量p2=-mv=-1.8 kg·m/s,故Δp=p2-p1=-3.6 kg·m/s,B项正确;由动能定理得墙对小球做的功W=ΔE k=0,C

项正确.]

3.摆长为L ,摆球质量为m 的单摆,以摆角θ(θ<5°)摆动,摆球从最大的位移处摆到平衡位置的过程中,下列说法中正确的是( )

A .重力的冲量为πm

gl

2

B .重力做的功为mgl cos θ

C .合外力的冲量大小为m 2gl 1-cos θ

D .合外力的冲量为零

C [摆球从最大位移摆到平衡位置的过程中 机械能守恒:mgl (1-cos θ)=12mv 2

即v =2gl 1-cos θ 由动量定理得

F 合t =Δp =mv -0=m 2gl 1-cos θ,C 对,D 错.

重力做功W G =mgl (1-cos θ),B 错. 重力冲量I G =mg ·1

4·2π

l g =1

2

πm gl ,A 错,故选C.] [反思总结]

应用动量定理的三点提醒

1.动量定理的研究对象是一个质点(或可视为一个物体的系统).

2.动量定理的表达式是矢量式,在一维情况下,各个矢量必须选同一个正方向. 3.对过程较复杂的运动,可分段也可全过程用动量定理.

利用动量定理解决多过程问题

A m

B .一颗质量为m 的子弹以水平速度v 0先后穿过木块A 、B .木块A 、B 对子弹的阻力恒为F f .子弹穿过木块A 的时间为t 1,穿过木块B 的时间为t 2.求:

图6-1-2

(1)子弹刚穿过木块A 后,木块A 的速度v A 和子弹的速度v 1分别为多大? (2)子弹穿过木块B 后,木块B 的速度v B 和子弹的速度v 2又分别为多大? 【解析】 (1)从子弹刚进入A 到刚穿出A 的过程中: 对A 、B :由于A 、B 的运动情况完全相同,可以看做一个整体

F f t 1=(m A +m B )v A ,所以v A =F f t 1

m A +m B

对子弹:-F f t 1=mv 1-mv 0,所以v 1=v 0-

F f t 1

m

. (2)子弹刚进入B 到刚穿出B 的过程中: 对物体B :F f t 2=m B v B -m B v A 所以v B =F f (

t 1

m A +m B

+t 2m B

)

对子弹:-F f t 2=mv 2-mv 1,所以v 2=v 0-F f t 1+t 2

m

. 【答案】 (1)F f t 1m A +m B v 0-F f t 1m (2)F f ? ??

??t 1m A +m B +t 2m B v 0

-F f t 1+t 2m

[母题迁移]

●迁移1 结合图象分析多过程问题

1.一个质量为3 kg 的物体所受的合外力随时间变化的情况如图图6-1-3所示,那么该物体在6 s 内速度的改变量是( )

图6-1-3

A .7 m/s

B .6.7 m/s

C .6 m/s

D .5 m/s

D [F -t 图线与时间轴围成的面积在量值上代表了合外力的冲量,故合外力冲量为

I =?

??

??3×4+12×2×4-12

×1×2N·s=15 N·s. 根据动量定理有I =m Δv ,Δv =I m =15

3

m/s =5 m/s. 故本题选D.]

●迁移2 结合动量守恒分析多过程问题

2.如图6-1-4所示,固定在轻质弹簧两端,质量分别为M 1=0.5 kg ,M 2=1.49 kg 的两个物体,置于光滑水平面上,M 1靠在光滑竖直墙上.现有一颗质量为M =0.01 kg 的子弹,

以600 m/s的水平速度射入M2中,最后M1和M2都将向右运动.试求:竖直墙对M1的冲量.

【导学号:92492257】

图6-1-4

【解析】设子弹M和木块M2碰后的共同速度大小为v′,对M2和M由动量守恒:

Mv=(M+M2)v′①

当M2和M以共同速度v′(方向向左)压缩弹簧后又回到碰撞的初位置时,根据机械能守恒,M2和M的共同速度大小仍为v′(方向向右),此时对M1的作用力为零.取M1、弹簧以及M2和M这一系统为研究对象,对M2与M碰后到又回到初位置的整个过程,弹簧弹力对M1和M2的合冲量为0,设墙对M1的冲量大小为I,对系统由动量定理有:

I=(M2+M)v′-[-(M2+M)v′]②

由①②式得I=2Mv=2×0.01×600 N·s=12 N·s,方向向右

即墙对M1冲量大小为12 N·s,方向向右.

【答案】12 N·s,方向向右

高考物理复习之动量 动量定理

2007年高考物理复习之动量动量定理 复习要点 1、掌握动量、冲量概念 2、了解动量与冲量间关系,掌握动量定理及其应用 3、掌握动量守恒定律及其应用 4、熟悉反冲运动,碰撞过程 二、难点剖析 1、动量概念及其理解 (1)定义:物体的质量及其运动速度的乘积称为该物体的动量P=mv (2)特征:①动量是状态量,它与某一时刻相关;②动量是矢量,其方向质量物体运动速度的方向。 (3)意义:速度从运动学角度量化了机械运动的状态动量则从动力学角度量化了机械运动的状态。 2、冲量概念及其理解 (1)定义:某个力与其作用时间的乘积称为该力的冲量I=F△t (2)特征:①冲量是过程量,它与某一段时间相关;②冲量是矢量,对于恒力的冲量来说,其方向就是该力的方向。 (3)意义:冲量是力对时间的累积效应。对于质量确定的物体来说,合外力决定看其速度将变多快; 合外力的冲量将决定着其速度将变多少。对于质量不确定的物体来说,合外力决定看其动量将变多快;合外力的冲量将决定看基动量将变多少。 3、关于冲量的计算 (1)恒力的冲量计算 恒力的冲量可直接根据定义式来计算,即用恒 力F乘以其作用时间△t而得。 (2)方向恒定的变力的冲量计算。 如力F的方向恒定,而大小随时间变化的情况 如图—1所示,则该力在时间 △t=t2-t1内的冲量大小在数值上就等于图11—1中阴影 部分的“面积”。图—1 (3)一般变力的冲量计算 在中学物理中,一般变力的冲量通常是借助于动量定理来计算的。 (4)合力的冲量计算 几个力的合力的冲量计算,既可以先算出各个分力的冲量后再求矢量和,又可以先算各个分力的合力再算合力的冲量。 4、动量定理 (1)表述:物体所受合外力的冲量等于其动量的变化 I=△P F△t=mv-mv。 (2)导出:动量定理实际上是在牛顿第二定律的基础上导出的,由牛顿第二定律 F=mv 两端同乘合外力F的作用时间,即可得 F△t=ma△t=m(v-v0)=mv-mv0 (3)物理:①动量定理建立的过程量(I=F△t)与状态量变化(△P=mv-mv0)间的关系,这就提供了一种“通过比较状态以达到了解过程之目的”的方法;②动量定理是矢量式,这使得在运用动量应用于一维运动过程中,首先规定参考正方向以明确各矢量的方向关系是十分重要的。

电磁感应动量定理的应用

电磁感应中动量定理的运用 动量定律I =?P 。 设想在某一回路中,一部分导体仅在安培力作用下运动时,安培力F 为变力,但其冲量可用它对时间的平均值进行计算,即I =F t ?, 而F =B I L (I 为电流对时间的平均值) 故有:B I L t ?=mv 2-mv 1 . 而I t=q ,故有q=BL mv 12mv - 理论上电量的求法:q=I ?t 。 这种方法的依据是电流的定义式I=q/t 该式的研究对象是通电导体的某一截面,若在t 时间内流过该截面的电量为q ,则流过该切面的电流为I =q/t ,显然,这个电流应为对时间的平均值,因此该式应写为I = q/t ,变形后可以得q =I t ,这个关系式具有一般性,亦即无论流经导体的电流是恒定的还是变化的,只要电流用这段时间内的平均值代入,该式都适用,而平均电流的求解,在电磁感应问题中最为常见的思路为:对某一回路来说,据法拉第电磁感应定律,得E=t ??φ,显然该感应电动势也为对其时间的平均值,再由I =R E (R 为回路中的总电阻)可以得到I = t R ??φ。 综上可得q =R φ?。若B 不变,则q =R φ?=R s B ? 电量q 与安培力的冲量之间有什么联系?可用下面的框图来说明。 从以上框图可见,这些物理量之间的关系可能会出现以下三种题型: 第一:方法Ⅰ中相关物理量的关系。 第二:方法Ⅱ中相关物理量的关系。 第三:就是以电量作为桥梁,直接把上面框图中左右两边的物理量联系起来,如把导体

棒的位移和速度联系起来,但由于这类问题导体棒的运动一般都不是匀变速直线运动,无法使用匀变速直线运动的运动学公式进行求解,所以这种方法就显得十分巧妙。这种题型难度最大。 2在解题中强化应用意识,提高驾驭能力 由于这些物理量之间的关系比较复杂,只能从理论上把握上述关系还不够,还必须通过典型问题来培养学生的应用能力,达到熟练驾驭的目的。请看以下几例:(1)如图1所示,半径为r的两半圆形光滑金属导轨并列竖直放置,在轨道左侧上方MN间接有阻值为R0的电阻,整个轨道处在竖直向下的磁感应 强度为B的匀强磁场中,两轨道间距为L,一电阻也为R0质量 为m的金属棒ab从MN处由静止释放经时间t到达轨道最低点 cd时的速度为v,不计摩擦。求: (1)棒从ab到cd过程中通过棒的电量。 (2)棒在cd处的加速度。 分析与解 有的同学据题目的已知条件,不假思索的就选用动量定理,对该过程列式如下: mgt-B I Lt=mv -0显然该式有两处错误:其一是在分析棒的受力时,漏掉了轨道对 棒的弹力N,从而在使用动量定理时漏掉了弹力的冲量I N;其二是即便考虑了I N,这种解法也是错误的,因为动量定理的表达式是一个矢量式,三个力的冲量不在同一直线上,而且IN的方向还不断变化,故 我们无法使用I=Ft来求冲量,亦即无法使用前面所提到的方法二。 为此,本题的正确解法是应用前面提到的方法一,具体解答如下: 对应于该闭合回路应用以下公式: (2)如图2所示,在光滑的水平面上,有一垂直向下的 匀强磁场分布在宽度为L的区域内,现有一个边长为 a(a﹤L)的正方形闭合线圈以初速度v0垂直磁场边 界滑过磁场后,速度为v(v﹤v0),那么线圈 A.完全进入磁场中时的速度大于(v0+v)/2 B.完全进入磁场中时的速度等于(v0+v)/2 C.完全进入磁场中时的速度小于(v0+v)/2 D.以上情况均有可能 分析与解 这是一道物理过程很直观的问题,可分为三个阶段:进入和离开磁场过程中均为加速度不断减少的减速运动,完全进入磁场后即作匀速直线运动,那么这三个过程的速度之间的关系如何呢?乍看好象无从下手,但对照上面的理论分析,可知它属于第三类问题。首先,由于进入磁场和离开磁场两段过程中,穿过线圈回路的磁通量变化量Δφ相同,故有q0=q=Δφ/R;其次,对线框应用动量定理,设线框完全进入磁场后的速度为v′,则有:

高考物理高考物理动量定理解题技巧分析及练习题(含答案)

高考物理高考物理动量定理解题技巧分析及练习题(含答案) 一、高考物理精讲专题动量定理 1.质量为m 的小球,从沙坑上方自由下落,经过时间t 1到达沙坑表面,又经过时间t 2停 在沙坑里.求: ⑴沙对小球的平均阻力F ; ⑵小球在沙坑里下落过程所受的总冲量I . 【答案】(1)122 () mg t t t + (2)1mgt 【解析】 试题分析:设刚开始下落的位置为A ,刚好接触沙的位置为B ,在沙中到达的最低点为C.⑴在下落的全过程对小球用动量定理:重力作用时间为t 1+t 2,而阻力作用时间仅为t 2,以竖直向下为正方向,有: mg(t 1+t 2)-Ft 2=0, 解得: 方向竖直向上 ⑵仍然在下落的全过程对小球用动量定理:在t 1时间内只有重力的冲量,在t 2时间内只有总冲量(已包括重力冲量在内),以竖直向下为正方向,有: mgt 1-I=0,∴I=mgt 1方向竖直向上 考点:冲量定理 点评:本题考查了利用冲量定理计算物体所受力的方法. 2.图甲为光滑金属导轨制成的斜面,导轨的间距为1m l =,左侧斜面的倾角37θ=?,右侧斜面的中间用阻值为2R =Ω的电阻连接。在左侧斜面区域存在垂直斜面向下的匀强磁场,磁感应强度大小为10.5T B =,右侧斜面轨道及其右侧区域中存在竖直向上的匀强磁场,磁感应强度为20.5T B =。在斜面的顶端e 、f 两点分别用等长的轻质柔软细导线连接导体棒ab ,另一导体棒cd 置于左侧斜面轨道上,与导轨垂直且接触良好,ab 棒和cd 棒的质量均为0.2kg m =,ab 棒的电阻为12r =Ω,cd 棒的电阻为24r =Ω。已知t =0时刻起,cd 棒在沿斜面向下的拉力作用下开始向下运动(cd 棒始终在左侧斜面上运动),而ab 棒在水平拉力F 作用下始终处于静止状态,F 随时间变化的关系如图乙所示,ab 棒静止时细导线与竖直方向的夹角37θ=?。其中导轨的电阻不计,图中的虚线为绝缘材料制成的固定支架。

第1节 动量定理 动量守恒定律

第六章碰撞与动量守恒 第1节动量定理动量守恒定律 基础必备 1.(多选)对动量、冲量和动量守恒定律的认识,以下说法正确的是( BC ) A.伽利略提出,质量与速度的乘积定义为动量 B.最先提出动量概念的是法国科学家笛卡尔 C.动量是一个状态量,表示物体的运动状态;冲量是一个过程量,表示力对时间的积累效应 D.动量守恒定律和牛顿第二定律一样,只适用于宏观和低速的情况,不适用于高速和微观情况 解析:最先提出动量概念的是法国科学家笛卡儿,故A错误,B正确;动量是一个状态量,表示物体的运动状态;冲量是一个过程量,表示力对时间的积累效应,C正确;动量守恒定律是自然界普遍适用的规律,D 错误. 2.(2019·中央民大附中月考)用豆粒模拟气体分子,可以模拟气体压强产生的原理.如图所示,从距秤盘80 cm高度把1 000 粒的豆粒连续均匀地倒在秤盘上,持续作用时间为1 s,豆粒弹起时竖直方向的速度变为碰前的一半.若每个豆粒只与秤盘碰撞一次,且碰撞时间极短(在豆粒与秤盘碰撞极短时间内,碰撞力远大于豆粒受到的重力),已知1 000粒的豆粒的总质量为100 g,g取10 m/s2,则在碰撞过程中秤

盘受到的压力大小约为( B ) A.0.2 N B.0.6 N C.1.0 N D.1.6 N 解析:豆粒从80 cm高处落下时速度为v,v2=2gh, 则v== m/s=4 m/s. 设向上为正方向,且豆粒重力忽略不计,根据动量定理有 Ft=mv 2-mv1,则F== N=0.6 N.选项B正确,A,C,D错误. 3.(2019·内蒙古集宁一中期中)(多选)两个物体A,B的质量分别为m1,m2,并排静止在水平地面上,用同向水平拉力F1,F2分别作用于物体A和B上,分别作用一段时间后撤去,两物体各自滑行一段距离后停止下来,物体A,B运动的速度—时间图象分别如图中图线a,b所示,已知拉力F1,F2分别撤去后,物体做减速运动过程的速度—时间图线彼此平行(相关数据已在图中标出),g取10 m/s2,由图中信息可以得出( AB ) A.若F1=F2,则m1小于m2

高中物理动量定理解题技巧讲解及练习题(含答案)及解析

高中物理动量定理解题技巧讲解及练习题(含答案)及解析 一、高考物理精讲专题动量定理 1.2022年将在我国举办第二十四届冬奥会,跳台滑雪是其中最具观赏性的项目之一.某滑道示意图如下,长直助滑道AB 与弯曲滑道BC 平滑衔接,滑道BC 高h =10 m ,C 是半径R =20 m 圆弧的最低点,质量m =60 kg 的运动员从A 处由静止开始匀加速下滑,加速度a =4.5 m/s 2,到达B 点时速度v B =30 m/s .取重力加速度g =10 m/s 2. (1)求长直助滑道AB 的长度L ; (2)求运动员在AB 段所受合外力的冲量的I 大小; (3)若不计BC 段的阻力,画出运动员经过C 点时的受力图,并求其所受支持力F N 的大小. 【答案】(1)100m (2)1800N s ?(3)3 900 N 【解析】 (1)已知AB 段的初末速度,则利用运动学公式可以求解斜面的长度,即 2202v v aL -= 可解得:2201002v v L m a -== (2)根据动量定理可知合外力的冲量等于动量的该变量所以 01800B I mv N s =-=? (3)小球在最低点的受力如图所示 由牛顿第二定律可得:2C v N mg m R -= 从B 运动到C 由动能定理可知: 221122 C B mgh mv mv =-

解得;3900N N = 故本题答案是:(1)100L m = (2)1800I N s =? (3)3900N N = 点睛:本题考查了动能定理和圆周运动,会利用动能定理求解最低点的速度,并利用牛顿第二定律求解最低点受到的支持力大小. 2.如图所示,足够长的木板A 和物块C 置于同一光滑水平轨道上,物块B 置于A 的左端,A 、B 、C 的质量分别为m 、2m 和3m ,已知A 、B 一起以v 0的速度向右运动,滑块C 向左运动,A 、C 碰后连成一体,最终A 、B 、C 都静止,求: (i )C 与A 碰撞前的速度大小 (ii )A 、C 碰撞过程中C 对A 到冲量的大小. 【答案】(1)C 与A 碰撞前的速度大小是v 0; (2)A 、C 碰撞过程中C 对A 的冲量的大小是 32 mv 0. 【解析】 【分析】 【详解】 试题分析:①设C 与A 碰前速度大小为1v ,以A 碰前速度方向为正方向,对A 、B 、C 从碰前至最终都静止程由动量守恒定律得:01(2)3? 0m m v mv -+= 解得:10 v v =. ②设C 与A 碰后共同速度大小为2v ,对A 、C 在碰撞过程由动量守恒定律得: 012 3(3)mv mv m m v =+- 在A 、C 碰撞过程中对A 由动量定理得:20CA I mv mv =- 解得:032 CA I mv =- 即A 、C 碰过程中C 对A 的冲量大小为032 mv . 方向为负. 考点:动量守恒定律 【名师点睛】 本题考查了求木板、木块速度问题,分析清楚运动过程、正确选择研究对象与运动过程是解题的前提与关键,应用动量守恒定律即可正确解题;解题时要注意正方向的选择. 3.如图所示,一光滑水平轨道上静止一质量为M =3kg 的小球B .一质量为m =1kg 的小

高二物理动量定理的应用

动量定理的应用(2)·典型例题解析 【例1】 500g 的足球从1.8m 的高处自由下落碰地后能弹回到1.25m 高,不计空气阻力,这一过程经历的时间为1.2s ,g 取10m/s 2,求足球对地面的作用力. 解析:对足球与地面相互作用的过程应用动量定理,取竖直向下为 正,有-Δ=′-其中Δ=--=-×-×=--=,′=-=-××=(mg N)t mv mv t 1.2 1.21.20.60.50.1(s)v 2gh 210 1.2522221810 21251012h g h g .. -,==××=,解得足球受到向上的 弹力='+=+×=+=5(m /s)v 2gh 210 1.86(m /s)N mg 0.51055560(N)1v v v t ().(). -+?056501 由牛顿第三定律得足球对地面的作用力大小为60N ,方向向下. 点拨:本例也可以对足球从开始下落至弹跳到最高点的整个过程应用动量定理:mgt 总-N Δt =0-0,这样处理更为简便. 从解题过程可看出,当Δt 很短时,N 与mg 相比较显得很大,这时可略去重力. 【例2】如图51-1所示,在光滑的水平面上有两块前后并排且靠在一起的木块A 和B ,它们的质量分别为m 1和m 2,今有一颗子弹水平射向A 木块,已知子弹依次穿过A 、B 所用的时间分别是Δt 1和Δt 2,设子弹所受木块的阻力恒为f ,试求子弹穿过两木块后,两木块的速度各为多少? 解析:取向右为正,子弹穿过A 的过程,以A 和B 作为一个整体, 由动量定理得=+,=,此后,物体就以向右匀速运动,接着子弹要穿透物体. f t (m m )v v A v B 112A A A ??f t m m 1 12+ 子弹穿过B 的过程,对B 应用动量定理得f Δt 2=m 2v B -m 2v A , 解得子弹穿出后的运动速度=+.B B v B f t m m f t m ??11222 + 点拨:子弹穿过A 的过程中,如果只将A 作为研究对象,A 所受的冲量

1 第1节 动量 动量定理

知识内容考试 要求 真题统计 2017.4 2017.11 2018.4 2018.11 2019.4 2016.10 2020.1 1.动量和动量定理c 22 15 14 14、15、 22 21 2.动量守恒定律 c 3.碰撞 d 4.反冲运动火 箭 b 实验:探究碰撞 中的不变量 21 【基础梳理】

提示:速度m v相同作用时间Ft相同动量 冲量p′-p 【自我诊断】 判一判 (1)动量越大的物体,其速度越大.() (2)物体的动量越大,其惯性也越大.() (3)物体所受合力不变,则动量也不变.() (4)物体沿水平面运动时,重力不做功,其冲量为零.() (5)物体所受合外力的冲量方向与物体末动量的方向相同.() (6)物体所受合外力的冲量方向与物体动量变化的方向相同.() 提示:(1)×(2)×(3)×(4)×(5)×(6)√

做一做 (1)篮球运动员通常伸出双手迎接传来的篮球.接球时,两手随球迅速收缩至胸前,这样做可以() A.减小球对手的冲量 B.减小球对手的冲击力 C.减小球的动量变化量 D.减小球的动能变化量 (2)一质量为2 kg的物块在合外力F的作用下从静止开始沿直线运动.F随时间t变化的图线如图所示,则() A.t=1 s时物块的速率为1 m/s B.t=2 s时物块的动量大小为4 kg·m/s C.t=3 s时物块的动量大小为5 kg·m/s D.t=4 s时物块的速度为零

提示:(1)B(2)AB 对冲量、动量的理解与计算 【知识提炼】 1.动量、动能、动量变化量的比较

联系 (1)对于给定的物体,若动能发生变化,则动量一定也发生变化;若动量发生变化,则动能不一定发生变化 (2)都是相对量,都与参考系的选取有关,通常选取地面为参考系 (1)恒力的冲量计算 恒力的冲量可直接根据定义式来计算,即用恒力F乘以其作用时间Δt而 得. (2)方向恒定的变力的冲量计算 若力F的方向恒定,而大小随时间变化的情况如图所示,则该力在时间Δt =t2-t1内的冲量大小在数值上就等于图中阴影部分的“面积”. (3)一般变力的冲量计算 在中学物理中,一般变力的冲量通常是借助于动量定理来计算的. (4)合力的冲量计算 几个力的合力的冲量计算,既可以先算出各个分力的冲量后再求矢量和,又可以先算各个分力的合力再算合力的冲量. 【典题例析】 如图所示,PQS是 固定于竖直平面内的光滑的1 4圆弧轨道,圆心O在S的正上方.在O和P两点各有一质量 为m的小物体a和b,从同一时刻开始,a自由下落,b沿圆弧下滑.以下说法正确的是() A.a比b先到达S,它们在S点的动量不相同 B.a与b同时到达S,它们在S点的动量不相同 C.a比b先到达S,它们在S点的动量相同

高考物理动量定理真题汇编(含答案)

高考物理动量定理真题汇编(含答案) 一、高考物理精讲专题动量定理 1.图甲为光滑金属导轨制成的斜面,导轨的间距为1m l =,左侧斜面的倾角37θ=?,右侧斜面的中间用阻值为2R =Ω的电阻连接。在左侧斜面区域存在垂直斜面向下的匀强磁场,磁感应强度大小为10.5T B =,右侧斜面轨道及其右侧区域中存在竖直向上的匀强磁场,磁感应强度为20.5T B =。在斜面的顶端e 、f 两点分别用等长的轻质柔软细导线连接导体棒ab ,另一导体棒cd 置于左侧斜面轨道上,与导轨垂直且接触良好,ab 棒和cd 棒的质量均为0.2kg m =,ab 棒的电阻为12r =Ω,cd 棒的电阻为24r =Ω。已知t =0时刻起,cd 棒在沿斜面向下的拉力作用下开始向下运动(cd 棒始终在左侧斜面上运动),而ab 棒在水平拉力F 作用下始终处于静止状态,F 随时间变化的关系如图乙所示,ab 棒静止时细导线与竖直方向的夹角37θ=?。其中导轨的电阻不计,图中的虚线为绝缘材料制成的固定支架。 (1)请通过计算分析cd 棒的运动情况; (2)若t =0时刻起,求2s 内cd 受到拉力的冲量; (3)3 s 内电阻R 上产生的焦耳热为2. 88 J ,则此过程中拉力对cd 棒做的功为多少? 【答案】(1)cd 棒在导轨上做匀加速度直线运动;(2)1.6N s g ;(3)43.2J 【解析】 【详解】 (1)设绳中总拉力为T ,对导体棒ab 分析,由平衡方程得: sin θF T BIl =+ cos θT mg = 解得: tan θ 1.50.5F mg BIl I =+=+ 由图乙可知: 1.50.2F t =+ 则有: 0.4I t = cd 棒上的电流为:

(完整版)动量、动量定理

[目标定位] 1.理解动量的概念,知道动量和动量变化量均为矢量,会计算一维情况下的动量变化量.2.知道冲量的概念,知道冲量是矢量.3.理解动量定理的确切含义,掌握其表达式.4.会用动量定理解释碰撞、缓冲等生活中的现象. 一、动量 1.定义 运动物体的质量和速度的乘积叫动量;公式p=m v;单位:千克·米/秒,符号:kg·m/s. 2.矢量性 方向与速度的方向相同.运算遵循平行四边形定则. 3.动量的变化量 (1)定义:物体在某段时间内末动量与初动量的矢量差(也是矢量),Δp=p′-p(矢量式). (2)动量始终保持在一条直线上时的运算:选定一个正方向,动量、动量的变化量都用带有正、负号的数值表示,从而将矢量运算简化为代数运算(此时的正、负号仅代表方向,不代表大小).

深度思考 质量相同的两个物体动能相同,它们的动量也一定相同吗? 答案不一定.动量是矢量,有方向,而动能是标量,无方向.质量相同的两个物体动能相同,速度大小一定相同,但速度方向不一定相同.

例 1关于动量的概念,下列说法中正确的是()

A.动量大的物体,惯性一定大 B.动量大的物体,运动一定快 C.动量相同的物体,运动方向一定相同 D.动量相同的物体,动能也一定相同 解析物体的动量由质量及速度共同决定,动量大的物体质量不一定大,惯性也不一定大,A错;动量大的物体速度不一定大,B错;动量相同指的是动量的大小和方向都相同,而动量的方向就是物体运动的方向,故动量相同的物体运动方向一定相同,C对;有动量和动能的关系p=2mE k知,只有质量相同的物体动量相同时,动能才相同,故D错. 答案 C 动量与动能的区别与联系: (1)区别:动量是矢量,动能是标量,质量相同的两物体,动量相同时动能一定相同,但动能相同时,动量不一定相同. (2)联系:动量和动能都是描述物体运动状态的物理量,大小关系为E k=p2 2m或p=2mE k.

动量定理及应用

[高考命题解读] 分析 年份 高考(全国卷)四年命题情况对照分析 1.考查方式 从前几年命题规律来 看,应用碰撞或反冲运 动模型,以计算题的形 式考查动量和能量观 点的综合应用. 2.命题趋势 由于动量守恒定律作 为必考内容,因此综合 应用动量和能量观点 解决碰撞模型问题将 仍是今后命题的热点, 既可以将动量与力学 知识结合,也可将动量 和电学知识结合,作为 理综试卷压轴计算题 进行命题. 题号命题点 2014年 Ⅰ卷35题 第(2)问计算题,考查了两物体的瞬时碰撞, 应用动量和能量观点解决问题 Ⅱ卷35题 第(2)问计算题,考查了对碰撞问题的理解, 应用动量和动量守恒定律解决问题 2015年 Ⅰ卷35题 第(2)问计算题,考查了三物体的瞬时碰撞, 应用动量和能量观点解决问题 Ⅱ卷35题同2014年Ⅰ卷35题 2016年 Ⅰ卷35题第(2)问计算题,考查了动量定理的应用 Ⅱ卷35题 第(2)问计算题,考查了应用动量守恒定律 和能量观点解决三物体碰撞问题 Ⅲ卷35题同2014年Ⅰ卷35题 2017年 Ⅰ卷14题考查动量守恒定律的应用 Ⅱ卷15题考查动量守恒定律的应用 Ⅲ卷20题考查动量定理的应用 第1讲动量定理及应用 一、动量、动量变化、冲量 1.动量 (1)定义:物体的质量与速度的乘积.

(2)表达式:p=m v. (3)方向:动量的方向与速度的方向相同. 2.动量的变化 (1)因为动量是矢量,动量的变化量Δp也是矢量,其方向与速度的改变量Δv的方向相同. (2)动量的变化量Δp的大小,一般用末动量p′减去初动量p进行计算,也称为动量的增量.即Δp=p′-p. 3.冲量 (1)定义:力与力的作用时间的乘积叫做力的冲量. (2)公式:I=Ft. (3)单位:N·s. (4)方向:冲量是矢量,其方向与力的方向相同. 自测1下列说法正确的是() A.速度大的物体,它的动量一定也大 B.动量大的物体,它的速度一定也大 C.只要物体的运动速度大小不变,物体的动量就保持不变 D.物体的动量变化越大,则该物体的速度变化一定越大 答案 D 二、动量定理 1.内容:物体在一个运动过程始末的动量变化量等于它在这个过程中所受合力的冲量. 2.公式:m v′-m v=F(t′-t)或p′-p=I. 3.动量定理的理解 (1)动量定理反映了力的冲量与动量变化量之间的因果关系,即外力的冲量是原因,物体的动量变化量是结果. (2)动量定理中的冲量是合力的冲量,而不是某一个力的冲量,它可以是合力的冲量,可以是各力冲量的矢量和,也可以是外力在不同阶段冲量的矢量和. (3)动量定理表达式是矢量式,等号包含了大小相等、方向相同两方面的含义. 自测2(多选)质量为m的物体以初速度v 0开始做平抛运动,经过时间t,下降的高度为h,速度变为v,在这段时间内物体动量变化量的大小为() A.m(v-v0) B.mgt C.m v2-v02 D.m2gh 答案BCD

高考物理动量定理基础练习题

高考物理动量定理基础练习题 一、高考物理精讲专题动量定理 1.如图甲所示,物块A、B的质量分别是m A=4.0kg和m B=3.0kg。用轻弹簧拴接,放在光滑的水平地面上,物块B右侧与竖直墙壁相接触。另有一物块C从t=0时以一定速度向右运动,在t=4s时与物块A相碰,并立即与A粘在一起不再分开,C的v-t图象如图乙所示。求: (1)C的质量m C; (2)t=8s时弹簧具有的弹性势能E p1,4~12s内墙壁对物块B的冲量大小I; (3)B离开墙后的运动过程中弹簧具有的最大弹性势能E p2。 【答案】(1)2kg ;(2)27J,36N·S;(3)9J 【解析】 【详解】 (1)由题图乙知,C与A碰前速度为v1=9m/s,碰后速度大小为v2=3m/s,C与A碰撞过程动量守恒 m C v1=(m A+m C)v2 解得C的质量m C=2kg。 (2)t=8s时弹簧具有的弹性势能 E p1=1 2 (m A+m C)v22=27J 取水平向左为正方向,根据动量定理,4~12s内墙壁对物块B的冲量大小 I=(m A+m C)v3-(m A+m C)(-v2)=36N·S (3)由题图可知,12s时B离开墙壁,此时A、C的速度大小v3=3m/s,之后A、B、C及弹簧组成的系统动量和机械能守恒,且当A、C与B的速度相等时,弹簧弹性势能最大 (m A+m C)v3=(m A+m B+m C)v4 1 2(m A+m C)2 3 v= 1 2 (m A+m B+m C)2 4 v+E p2 解得B离开墙后的运动过程中弹簧具有的最大弹性势能E p2=9J。 2.如图所示,质量为m=245g的木块(可视为质点)放在质量为M=0.5kg的木板左端,足够长的木板静止在光滑水平面上,木块与木板间的动摩擦因数为μ= 0.4,质量为m0 = 5g的子弹以速度v0=300m/s沿水平方向射入木块并留在其中(时间极短),子弹射入后,g取10m/s2,求: (1)子弹进入木块后子弹和木块一起向右滑行的最大速度v1 (2)木板向右滑行的最大速度v2

动量和动量定理的应用

动量和动量定理的应用 知识点一——冲量(I ) 要点诠释: 1. 定义:力F 和作用时间的乘积,叫做力的冲量。 2. 公式: 3. 单位: 4. 方向:冲量是矢量,方向是由力F 的方向决定。 5. 注意: ①冲量是过程量,求冲量时一定要明确是哪一个力在哪一段时间内的冲量。 ②用公式求冲量,该力只能是恒力 1. 推导: 设一个质量为的物体,初速度为,在合力 F 的作用下,经过一段时间,速度变为 则物体的加速度 由牛顿第二定律 2. 动量定理:物体所受合外力的冲量等于物体的动量变化。 3. 公式:或 4. 注意事项: ②式中F 是指包含重力在内的合外力,可以是恒力也可以是变力。当合外力是变力时,F 应该是合外力在这段时间内的平均值; ③研究对象是单个物体或者系统; 规律方法指导 1. 动量定理和牛顿第二定律的比较 (1 )动量定理反映的是力在时间上的积累效应的规律,而牛顿第二定律反映的是力的瞬时效应的规律 (2 )由动量定理得到的,可以理解为牛顿第二定律的另一种表达形式,即:物体所受的合外力等于物体动量的变化率。 (3 )在解决碰撞、打击类问题时,由于力的变化规律较复杂,用动量定理处理这类问题更有其优越性。 4. 应用动量定理解题的步骤 ①选取研究对象;

②确定所研究的物理过程及其始末状态; ③分析研究对象在所研究的物理过程中的受力情况; ④规定正方向,根据动量定理列式; ⑤解方程,统一单位,求得结果。 经典例题透析 类型一——对基本概念的理解 1. 关于冲量,下列说法中正确的是() A. 冲量是物体动量变化的原因 B. 作用在静止的物体上力的冲量一定为零 C. 动量越大的物体受到的冲量越大 D. 冲量的方向就是物体受力的方向 思路点拨:此题考察的主要是对概念的理解 解析:力作用一段时间便有了冲量,而力作用一段时间后物体的运动状态发生了变化,物体的动量也发生了变化,因此说冲量使物体的动量发生了变化, A 对; 只要有力作用在物体上,经历一段时间,这个力便有了冲量,与物体处于什么状态无关,B 错误;物体所受冲量大小与动量大小无关, C 错误;冲量是一个过程量,只有在某一过程中力的方向不变时,冲量的方向才与力的方向相同,故 D 错误。 答案:A 【变式】关于冲量和动量,下列说法中错误的是() A. 冲量是反映力和作用时间积累效果的物理量 B. 冲量是描述运动状态的物理 量 C. 冲量是物体动量变化的原因 D. 冲量的方向与动量的方向一致 答案:BD 点拨:冲量是过程量;冲量的方向与动量变化的方向一致。故BD 错误。 类型二——用动量定理解释两类现象 2. 玻璃杯从同一高度自由落下,落到硬水泥地板上易碎,而落到松软的地毯上不 易碎。这是为什么? 解释:玻璃杯易碎与否取决于落地时与地面间相互作用力的大小。由动量定理可知,此作用力的大小又与地面作用时的动量变化和作用时间有关。 因为杯子是从同一高度落下,故动量变化相同。但杯子与地毯的作用时间远比杯子与水泥地面的作用时间长,所以地毯对杯子的作用力远比水泥地面对杯子的作用力小。所以玻璃杯从同一高度自由落下,落到硬水泥地板上易碎,而落到松软的地毯上不易碎。 3. 如图,把重物压在纸带上,用一水平力缓缓拉动纸带,重物跟着一起运动,若迅速拉动纸带,纸带将会从重物下面抽出,解释这些现象的正确说法是() A. 在缓慢拉动纸带时,重物和纸带间的摩擦力大

高中物理选修3-5第一章第一节动量定理测试题

高中物理选修3-5第一章第 一节动量定理测试题(总5页) -CAL-FENGHAI.-(YICAI)-Company One1 -CAL-本页仅作为文档封面,使用请直接删除

第1节动量定理 A卷 一、选择题 1、下列说法中正确的是() A.物体的动量改变,一定是速度大小改变 B.物体的动量改变,一定是速度方向改变 C.物体的运动状态改变,其动量一定改变 D.物体的速度方向改变,其动量一定改变 2、在下列各种运动中,任何相等的时间内物体动量的增量总是相同的有( ) A.匀加速直线运动 B.平抛运动 C.匀减速直线运动 D.匀速圆周运动 3、在物体运动过程中,下列说法不正确 ...的有( ) A.动量不变的运动,一定是匀速运动 B.动量大小不变的运动,可能是变速运动 C.如果在任何相等时间内物体所受的冲量相等(不为零),那么该物体一定做匀变速运动 D.若某一个力对物体做功为零,则这个力对该物体的冲量也一定为零 4、在距地面高为h,同时以相等初速V0分别平抛,竖直上抛,竖直下抛一质量相等的物体m,当它们从抛出到落地时,比较它们的动量的增量△P,有 ( ) A.平抛过程较大 B.竖直上抛过程较大 C.竖直下抛过程较大 D.三者一样大 5、对物体所受的合外力与其动量之间的关系,叙述正确的是( ) A.物体所受的合外力与物体的初动量成正比; B.物体所受的合外力与物体的末动量成正比; C.物体所受的合外力与物体动量变化量成正比; D.物体所受的合外力与物体动量对时间的变化率成正比 6、质量为m的物体以v的初速度竖直向上抛出,经时间t,达到最高点,速度变为0,以竖直向上为正方向,在这个过程中,物体的动量变化量和重力的冲量分别是( ) A. -mv和-mgt B. mv和mgt C. mv和-mgt 和mgt 7、质量为1kg的小球从高20m处自由下落到软垫上,反弹后上升的最大高度为5m,小球接触软垫的时间为1s,在接触时间内,小球受到的合力大小(空气阻力不计)为( ) 二、填空题 8、用8N的力推动一个物体,力的作用时间是5s,则力的冲量为______。若物体仍处于静止状态,此力在这段时间内冲量为________,合力的冲量为_______。 9、一个小孩将一个质量为的橡皮泥以20m/s的速度打在墙上,则这一过程中,橡皮泥的动量改变量为,动量改变量的方向与初速度的方向(填“相同”或“相反”)。如果将同样质量的一个皮球以相同的速度打在墙上后又以相同的速率弹回,则皮球的动量为。 三、计算论述题 10、如图所示,一足球运动员踢一个质量为 kg的足球。 (1)若开始时足球的速度是4 m/s,方向向右,踢球后,球的速度为10 m/s,方向仍向右(如图甲),求足球的初动量、末动量以及踢球过程中动量的改变量。

高考物理动量定理基础练习题及解析

高考物理动量定理基础练习题及解析 一、高考物理精讲专题动量定理 1.2022年将在我国举办第二十四届冬奥会,跳台滑雪是其中最具观赏性的项目之一.某滑道示意图如下,长直助滑道AB 与弯曲滑道BC 平滑衔接,滑道BC 高h =10 m ,C 是半径R =20 m 圆弧的最低点,质量m =60 kg 的运动员从A 处由静止开始匀加速下滑,加速度a =4.5 m/s 2,到达B 点时速度v B =30 m/s .取重力加速度g =10 m/s 2. (1)求长直助滑道AB 的长度L ; (2)求运动员在AB 段所受合外力的冲量的I 大小; (3)若不计BC 段的阻力,画出运动员经过C 点时的受力图,并求其所受支持力F N 的大小. 【答案】(1)100m (2)1800N s ?(3)3 900 N 【解析】 (1)已知AB 段的初末速度,则利用运动学公式可以求解斜面的长度,即 22 02v v aL -= 可解得:22 1002v v L m a -== (2)根据动量定理可知合外力的冲量等于动量的该变量所以 01800B I mv N s =-=? (3)小球在最低点的受力如图所示 由牛顿第二定律可得:2C v N mg m R -= 从B 运动到C 由动能定理可知: 221122 C B mgh mv mv = -

解得;3900N N = 故本题答案是:(1)100L m = (2)1800I N s =? (3)3900N N = 点睛:本题考查了动能定理和圆周运动,会利用动能定理求解最低点的速度,并利用牛顿第二定律求解最低点受到的支持力大小. 2.观赏“烟火”表演是某地每年“春节”庆祝活动的压轴大餐。某型“礼花”底座仅0.2s 的发射时间,就能将质量为m =5kg 的礼花弹竖直抛上180m 的高空。(忽略发射底座高度,不计空气阻力,g 取10m/s 2) (1)“礼花”发射时燃烧的火药对礼花弹的平均作用力是多少?(已知该平均作用力远大于礼花弹自身重力) (2)某次试射,当礼花弹到达最高点时爆炸成沿水平方向运动的两块(爆炸时炸药质量忽略不计),测得前后两块质量之比为1:4,且炸裂时有大小为E =9000J 的化学能全部转化为了动能,则两块落地点间的距离是多少? 【答案】(1)1550N ;(2)900m 【解析】 【分析】 【详解】 (1)设发射时燃烧的火药对礼花弹的平均作用力为F ,设礼花弹上升时间为t ,则: 212 h gt = 解得 6s t = 对礼花弹从发射到抛到最高点,由动量定理 00()0Ft mg t t -+= 其中 00.2s t = 解得 1550N F = (2)设在最高点爆炸后两块质量分别为m 1、m 2,对应的水平速度大小分别为v 1、v 2,则: 在最高点爆炸,由动量守恒定律得 1122m v m v = 由能量守恒定律得 2211221122 E m v m v = + 其中 121 4m m = 12m m m =+

知识讲解 动量 动量定理(基础)

物理总复习:动量 动量定理 编稿:刘学 【考纲要求】 1、理解动量的概念; 2、理解冲量的概念并会计算; 2、理解动量变化量的概念,会解决一维的问题; 3、理解动量定理,熟练应用动量定理解决问题。 【知识网络】 【考点梳理】 考点一、动量和冲量 1、动量 (1)定义:运动物体的质量与速度的乘积。 (2)表达式:p mv =。 单位:/kg m s ? (3)矢量性:动量是矢量,方向与速度方向相同,运算遵守平行四边形定则。 (4)动量的变化量:21p p p ?=-,p ?是矢量,方向与v ?一致。 (5)动量与动能的关系:22 21()222k mv p E mv m m === p =要点诠释:对“动量是矢量,方向与速度方向相同”的理解,如:做匀速圆周运动的物体速度的大小相等,动能相等(动能是标量),但动量不等,因为方向不同。对“p ?是矢量,方向与v ?一致”的理解,如:一个质量为m 的小钢球以速度v 竖直砸在钢板上,假设反弹速度也为v ,取向上为正方向,则速度的变化量为()2v v v v ?=--=,方向向上,动量的变化量为:2p mv ?=方向向上。 2、冲量

(1)定义:力与力的作用时间的乘积。 (2)表达式:I Ft = 单位: N s ? (3)冲量是矢量:它由力的方向决定 考点二、动量定理 (1)内容:物体所受的合外力的冲量等于它的动量的变化量。 (2)表达式:21Ft p p =- 或 Ft p =? (3)动量的变化率:根据牛顿第二定律 2121v v p p F ma m t t --===?? 即 p F t ?=?,这是动量的变化率,物体所受合外力等于动量的变化率。如平抛运动物体动量的变化率等于重力mg 。 要点诠释: (1)动量定理的研究对象可以是单个物体,也可以是物体系统。对物体系统,只需分析系统受的外力,不必考虑系统内力。系统内力的作用不改变整个系统的总动量。 (2)用牛顿第二定律和运动学公式能求解恒力作用下的匀变速直线运动的间题,凡不涉及加速度和位移的,用动量定理也能求解,且较为简便。 但是,动量定理不仅适用于恒定的力,也适用于随时间变化的力。对于变力,动量定理中的F 应当理解为变力在作用时间内的平均值。 (3)用动量定理解释的现象一般可分为两类:一类是物体的动量变化一定,此时力的作用时间越短,力就越大;时间越长,力就越小。另一类是作用力一定,此时力的作用时间越长,动量变化越大;力的作用时间越短,动量变化越小。分析问题时,要把哪个量一定哪个量变化搞清楚。 (4)应用I p =?求变力的冲量:如果物体受到变力作用,则不直接用I Ft =求变力的冲量,这时可以求出该力作用下的物体动量的变化p ?,等效代换变力的冲量I 。 (5)应用p Ft ?=求恒力作用下的曲线运动中物体动量的变化:曲线运动中物体速度方向时刻在改变,求动量变化21p p p ?=-需要应用矢量运算方法,比较复杂,如果作用力是恒力,可以求恒力的冲量,等效代换动量的变化。 【典型例题】 类型一、动量、动量变化量的计算 【高清课堂:动量 动量定理例1】 例1、质量为0.4kg 的小球沿光滑水平面以5m/s 的速度冲向墙壁,被墙以4m/s 的速度弹回,如图所示,求:这一过程中动量改变了多少?方向怎样? 举一反三 【变式】(2014 北京大兴模拟)篮球运动员通常伸出双手迎接传来的篮球.接球时,两手随球迅速收缩至胸前.这样做可以( ) A .减小球对手的冲量 B .减小球对手的冲击力 C .减小球的动量变化量 D .减小球的动能变化量 举一反三

动量定理及应用

[高考命题解读] 第1讲动量定理及应用 一、动量、动量变化、冲量 1.动量 (1)定义:物体的质量与速度的乘积. (2)表达式:p=mv. (3)方向:动量的方向与速度的方向相同. 2.动量的变化 (1)因为动量是矢量,动量的变化量Δp也是矢量,其方向与速度的改变量Δv的方向相同. (2)动量的变化量Δp的大小,一般用末动量p′减去初动量p进行计算,也称为动量的增量.即Δp=p′-p. 3.冲量 (1)定义:力与力的作用时间的乘积叫做力的冲量. (2)公式:I=Ft.

(3)单位:N·s. (4)方向:冲量是矢量,其方向与力的方向相同. 自测1 下列说法正确的是( ) A.速度大的物体,它的动量一定也大 B.动量大的物体,它的速度一定也大 C.只要物体的运动速度大小不变,物体的动量就保持不变 D.物体的动量变化越大,则该物体的速度变化一定越大 答案D 二、动量定理 1.内容:物体在一个运动过程始末的动量变化量等于它在这个过程中所受合力的冲量. 2.公式:mv′-mv=F(t′-t)或p′-p=I. 3.动量定理的理解 (1)动量定理反映了力的冲量与动量变化量之间的因果关系,即外力的冲量是原因,物体的动量变化量是结果. (2)动量定理中的冲量是合力的冲量,而不是某一个力的冲量,它可以是合力的冲量,可以是各力冲量的矢量和,也可以是外力在不同阶段冲量的矢量和. (3)动量定理表达式是矢量式,等号包含了大小相等、方向相同两方面的含义. 自测2 (多选)质量为m的物体以初速度v0开始做平抛运动,经过时间t,下降的高度为h,速度变为v,在这段时间内物体动量变化量的大小为( ) (v-v0) 答案BCD 命题点一对动量和冲量的理解 1.对动量的理解 (1)动量的两性 ①瞬时性:动量是描述物体运动状态的物理量,是针对某一时刻或位置而言的. ②相对性:动量的大小与参考系的选取有关,通常情况是指相对地面的动量. (2)动量与动能的比较

高考物理专题汇编动量定理(一)

高考物理专题汇编动量定理(一) 一、高考物理精讲专题动量定理 1.如图所示,静置于水平地面上的二辆手推车沿一直线排列,质量均为m ,人在极短的时间内给第一辆车一水平冲量使其运动,当车运动了距离L 时与第二辆车相碰,两车以共同速度继续运动了距离L 时停。车运动时受到的摩擦阻力恒为车所受重力的k 倍,重力加速度为g ,若车与车之间仅在碰撞时发生相互作用,碰撞吋间很短,忽咯空气阻力,求: (1)整个过程中摩擦阻力所做的总功; (2)人给第一辆车水平冲量的大小。 【答案】(1)-3kmgL ;(2)10m kgL 【解析】 【分析】 【详解】 (1)设运动过程中摩擦阻力做的总功为W ,则 W =-kmgL -2kmgL =-3kmgL 即整个过程中摩擦阻力所做的总功为-3kmgL 。 (2)设第一辆车的初速度为v 0,第一次碰前速度为v 1,碰后共同速度为v 2,则由动量守恒得 mv 1=2mv 2 22101122 kmgL mv mv -= - 2 21(2)0(2)2 k m gL m v -=- 由以上各式得 010v kgL = 所以人给第一辆车水平冲量的大小 010I mv m kgL == 2.质量为m 的小球,从沙坑上方自由下落,经过时间t 1到达沙坑表面,又经过时间t 2停

在沙坑里.求: ⑴沙对小球的平均阻力F ; ⑵小球在沙坑里下落过程所受的总冲量I . 【答案】(1) 122 () mg t t t (2)1mgt 【解析】 试题分析:设刚开始下落的位置为A ,刚好接触沙的位置为B ,在沙中到达的最低点为C.⑴在下落的全过程对小球用动量定理:重力作用时间为t 1+t 2,而阻力作用时间仅为t 2,以竖直向下为正方向,有: mg(t 1+t 2)-Ft 2=0, 解得: 方向竖直向上 ⑵仍然在下落的全过程对小球用动量定理:在t 1时间内只有重力的冲量,在t 2时间内只有总冲量(已包括重力冲量在内),以竖直向下为正方向,有: mgt 1-I=0,∴I=mgt 1方向竖直向上 考点:冲量定理 点评:本题考查了利用冲量定理计算物体所受力的方法. 3.如图甲所示,物块A 、B 的质量分别是m A =4.0kg 和m B =3.0kg .用轻弹簧拴接,放在光滑的水平地面上,物块B 右侧与竖直墙壁相接触.另有一物块C 从t =0时以一定速度向右运动,在t =4s 时与物块 A 相碰,并立即与A 粘在一起不分开,C 的v -t 图象如图乙所示.求: (1)C 的质量m C ; (2)t =8s 时弹簧具有的弹性势能E p 1 (3)4—12s 内墙壁对物块B 的冲量大小I 【答案】(1) 2kg (2) 27J (3) 36N s × 【解析】 【详解】 (1)由题图乙知,C 与A 碰前速度为v 1=9m/s ,碰后速度大小为v 2=3m/s ,C 与A 碰撞过程动量守恒 m C v 1=(m A +m C )v 2

相关文档
最新文档