钢铁件激光表面淬火(标准状态:现行)

钢铁件激光表面淬火(标准状态:现行)
钢铁件激光表面淬火(标准状态:现行)

激光加工技术的原理及应用

激光加工技术 摘要 激光加工技术是利用激光束与物质相互作用的特性对材料(包括金属与非金属)进行切割、焊接、表面处理、打孔及微加工等的一种加工新技术,涉及到光、机、电、材料及检测等多门学科。由于激光加工热影响区域小,光束方向性好,几乎可以加工任何材料。常用来进行选择性加工,精密加工。由于激光加工的特殊特点,其发展前景广阔,目前已广泛应用于激光焊接、激光切割、表面改性、激光打标、切削加工,快速成形,激光钻孔和基板划片,半导体处理等。 关键词:原理、应用﹑新技术、精密加工、 引言 激光是本世纪的重大发明之一,具有巨大的技术潜力。专家们认为,现在是电子技术的全胜时期,其主角是计算机,下一代将是光技术时代,其主角是激光。激光因具有单色性、相干性和平行性三大特点,特别适用于材料加工。激光加工是激光应用最有发展前途的领域,国外已开发出20多种激光加工技术。激光的空间控制性和时间控制性很好,对加工对象的材质、形状、尺寸和加工环境的自由度都很大,特别适用于自动化加工。激光加工系统与计算机数控技术相结合可构成高效自动化加工设备,已成为企业实行适时生产的关键技术,为优质、高效和低成本的加工生产开辟了广阔的前景。 激光加工是指利用激光束投射到材料表面产生的热效应来完成加工过程,包括激光焊接、激光切割、表面改性、激光打标、激光钻孔和微加工等。用激光束对材料进行各种加工,如打孔、切割、划片、焊接、热处理等。激光能适应任何材料的加工制造,尤其在一些有特殊精度和要求、特别场合和特种材料的加工制造方面起着无可替代的作用。

正文 1﹑激光加工技术的原理及其特点 1.1激光加工的起源 早期的激光加工由于功率较小,大多用于打小孔和微型焊接。到20世纪70年代,随着大功率二氧化碳激光器、高重复频率钇铝石榴石激光器的出现,以及对激光加工机理和工艺的深入研究,激光加工技术有了很大进展,使用范围随之扩大。数千瓦的激光加工机已用于各种材料的高速切割、深熔焊接和材料热处理等方面。各种专用的激光加工设备竞相出现,并与光电跟踪、计算机数字控制、工业机器人等技术相结合,大大提高了激光加工机的自动化水平和使用功能。 1.2激光加工的原理 激光加工是以激光为热源对工件进行热加工。 激光加工是将激光束照射到工件的表面,以激光的高能量来切除、熔化材料以及改变物体表面性能。由于激光加工是无接触式加工,工具不会与工件的表面直接磨察产生阻力,所以激光加工的速度极快、加工对象受热影响的范围较小而且不会产生噪音。由于激光束的能量和光束的移动速度均可调节,因此激光加工可应用到不同层面和范围上。 从激光器输出的高强度激光经过透镜聚焦到工件上,其焦点处的功率密度高达107~1012瓦/厘米2,温度高达1万摄氏度以上,任何材料都会瞬时熔化、气化。激光加工就是利用这种光能的热效应对材料进行焊接、打孔和切割等加工的。通常用于加工的激光器主要是固体激光器(图1)和气体激光器(图2)。使用二氧化碳气体激光器切割时,一般在光束出口处装有喷嘴,用于喷吹氧、氮等辅助气体,以提高切割速度和切口质量。由于激光加工是无接触式加工,工具不会与工件的表面直接磨察产生阻力,所以激光加工的速度极快、加工对象受热影响的范围较小而且不会产生噪音。由于激光束的能量和光束的移动速度均可调节,因此激光加工可应用到不同层面和范围上。

表面淬火工艺

淬火.退火.正火工艺 ◆表面淬火 ? 钢的表面淬火 有些零件在工件时在受扭转和弯曲等交变负荷、冲击负荷的作用下,它的表面层承受着比心部更高的应力。在受摩擦的场合,表面层还不断地被磨损,因此对一些零件表面层提出高强度、高硬度、高耐磨性和高疲劳极限等要求,只有表面强化才能满足上述要求。由于表面淬火具有变形小、生产率高等优点,因此在生产中应用极为广泛。 根据供热方式不同,表面淬火主要有感应加热表面淬火、火焰加热表面淬火、电接触加热表面淬火等。 ? 感应加热表面淬火 感应加热就是利用电磁感应在工件内产生涡流而将工件进行加热。感应加热表面淬火与普通淬火比具有如下优点: 1.热源在工件表层,加热速度快,热效率高 2.工件因不是整体加热,变形小 3.工件加热时间短,表面氧化脱碳量少 4.工件表面硬度高,缺口敏感性小,冲击韧性、疲劳强度以及耐磨性等均有很大提高。有利于发挥材料地潜力,节约材料消耗,提高零件使用寿命 5.设备紧凑,使用方便,劳动条件好 6.便于机械化和自动化 7.不仅用在表面淬火还可用在穿透加热与化学热处理等。 ? 感应加热的基本原理 将工件放在感应器中,当感应器中通过交变电流时,在感应器周围产生与电流频率相同的交变磁场,在工件中相应地产生了感应电动势,在工件表面形成感应电流,即涡流。这种涡流在工件的电阻的作用下,电能转化为热能,使工件表面温度达到淬火加热温度,可实现表面淬火。 ? 感应表面淬火后的性能 1.表面硬度:经高、中频感应加热表面淬火的工件,其表面硬度往往比普通淬火高2~3 个单位(HRC)。 2.耐磨性:高频淬火后的工件耐磨性比普通淬火要高。这主要是由于淬硬层马氏体晶粒细小,碳化物弥散度高,以及硬度比较高,表面的高的压应力等综合的结果。 3.疲劳强度:高、中频表面淬火使疲劳强度大为提高,缺口敏感性下降。对同样材料的工件,硬化层深度在一定范围内,随硬化层深度增加而疲劳强度增加,但硬化层深度过深时表层是压应力,因而硬化层深度增打疲劳强度反而下降,并使工件脆性增加。一般硬化层深δ=(10~20)%D。较为合适,其中D。为工件的有效直径。 ◆退火工艺 退火是将金属和合金加热到适当温度,保持一定时间,然后缓慢冷却的热处理工艺。退火后组织亚共析钢是铁素体加片状珠光体;共析钢或过共析钢则是粒状珠光体。总之退火组织是接近平衡状态的组织。 ? 退火的目的 ①降低钢的硬度,提高塑性,以利于切削加工及冷变形加工。 ②细化晶粒,消除因铸、锻、焊引起的组织缺陷,均匀钢的组织和成分,改善钢的性能或为以后的热处理作组织准备。 ③消除钢中的内应力,以防止变形和开裂。 1

《钢的热处理》习题与思考题参考答案

《钢的热处理》习题与思考题参考答案 (一)填空题 1.板条状马氏体具有高的强度、硬度及一定的塑性与韧性。 2.淬火钢低温回火后的组织是 M回(+碳化物+Ar),其目的是使钢具有高的强度和硬度;中温回火后的组织是 T回,一般用于高σ e 的结构件;高温回火后的组织是S回,用于要求足够高的强度、硬度及高的塑性、韧性的零件。 3.马氏体按其组织形态主要分为板条状马氏体和片状马氏体两种。 4.珠光体按层片间距的大小又可分为珠光体、索氏体和托氏体。 5.钢的淬透性越高,则临界冷却却速度越低;其C曲线的位置越右移。 6.钢球化退火的主要目的是降低硬度,改善切削性能和为淬火做组织准备;它主要适用于过共析(高碳钢)钢。 7.淬火钢进行回火的目的是消除内应力,稳定尺寸;改善塑性与韧性;使强度、硬度与塑性和韧性合理配合。 8.T8钢低温回火温度一般不超过 250℃,回火组织为 M回+碳化物+Ar ,其硬度大致不低于 58HRC 。(二)判断题 1.随奥氏体中碳含量的增高,马氏体转变后,其中片状马氏体减小,板条状马氏增多。(×) 2.马氏体是碳在a-Fe中所形成的过饱和间隙固溶体。当发生奥氏体向马氏体的转变时,体积发生收缩。(×) 3.高合金钢既具有良好的淬透性,又具有良好的淬硬性。(×) 4.低碳钢为了改善切削加工性,常用正火代替退火工艺。(√) 5.淬火、低温回火后能保证钢件有高的弹性极限和屈服强度、并有很好韧性,它常应用于处理各类弹簧。(×) 6.经加工硬化了的金属材料,为了基本恢复材料的原有性能,常进行再结晶退火处理。(√) (三)选择题 1.钢经调质处理后所获得的组织的是 B 。 A.淬火马氏体 B.回火索氏体 C.回火屈氏体 D.索氏体 2.若钢中加入合金元素能使C曲线右移,则将使淬透性 A 。 A.提高 B.降低 C.不改变 D.对小试样提高,对大试样则降代 3.为消除碳素工具钢中的网状渗碳体而进行正火,其加热温度是 A 。 A.Accm+(30~50)℃ B.Accm-(30~50)℃ C.Ac1+(30~50)℃ D.Ac1-(30~50)℃ 4.钢丝在冷拉过程中必须经 B 退火。 A.扩散退火 B.去应力退火 C.再结晶退火 D.重结晶退火 5.工件焊接后应进行 B 。A.重结晶退火 B.去应力退火 C.再结晶退火 D.扩散退火 6.某钢的淬透性为J,其含义是 C 。 A.15钢的硬度为40HRC B.40钢的硬度为15HRC C.该钢离试样末端15mm处硬度为40HRC D.该钢离试样末端40mm处硬度为15HRC (四)指出下列钢件的热处理工艺,说明获得的组织和大致的硬度: ① 45钢的小轴(要求综合机械性能好); 答:调质处理(淬火+高温回火);回火索氏体;25~35HRC。 ② 60钢簧; 答:淬火+中温回火;回火托氏体;35~45HRC。 ③ T12钢锉刀。答:淬火+低温回火;回火马氏体+渗碳体+残余奥氏体;58~62HRC。

第十一章 钢的表面淬火

第一节 感应加热表面淬火 (1) 第二节 火焰加热表面淬火 (2) 第三节 激光热处理 (3) 第十一章 钢的表面淬火 概念:表面淬火是采用快速加热的方法使工件表面奥氏体化,然后快冷获得表层淬火组织的一种热处理工艺。 关键:使零件表面迅速加热到淬火温度,当热量尚未充分传到工件内部时就急冷,使表面获得高硬度高耐磨性的马氏体组织,而心部仍是塑性韧性较好的调质或正火的原始组织。 预先热处理:工件表面淬火前要进行预先热处理(调质或正火),以保证心部的性能要求和为表面淬火作好组织准备。 出现原因:很多承受弯曲、扭转、摩擦和冲击的零件,其表面要比心部承受更高的应力。因此,要求零件表面应具有高的强度、硬度和耐磨性,而心部在保持一定强度、硬度的条件下,应具有足够的塑性和韧性。显然,采用表面淬火的热处理工艺,能使工件达到这种表硬心韧的性能要求。 种类:表面淬火是表面强化的方法之一,由于其具有工艺简单、生产率高、热处理缺陷少等优点,因而在工业生产中获得了广泛的应用。根据加热方法的不同,表面淬火可分为感应加热表面淬火、火焰加热表面淬火、电接触加热表面淬火、电解液加热表面淬火及激光加热表面淬火等。其中应用最广泛的是感应加热与火焰加热表面淬火方法。 与化学热处理区别:钢的表面淬火是仅对钢件表层进行热处理以改变其组织和性能的工艺,不改变表面的化学成分,而是依靠表面加热淬火达到表面强化的目的。 第一节 感应加热表面淬火 一、感应加热的基本原理 利用电磁感应,使工件表面产生很高的感应电流,将工件表层迅速加热。图11-1是感应加热表面淬火示意图。将工件放入(用铜管制成的)感应圈内,向感应圈中通以一定频率的交流电,其周围即产生交变磁场,则工件(导体)会感应产生同频率的感应电流。由于感应电流沿工件表面形成封闭回路,故通常称为涡流。这是感应加热的主要热源。涡流在工件中的分布是不均匀的,由表面到心部呈指数规律衰减。因此,涡流主要集中在工件表层,内部电流密度几乎为零,这种现象称为集肤效应。由于工件本身的阻抗使电能转变成热能而迅速加热表层,几秒钟内就可上升到800℃以上,而心部仍接近室温,当表层温度升高至淬火温度时,立即喷液冷却使工件表面淬火。 二、种类 感应电流透入工件表层的深度主要取决于电流频率,电流频率越高,电流透入深度越浅,则工件表层被加热的厚度越薄,即淬透深度越浅。感应电流透入工件表层的深度δ(mm)与电流频率f(Hz)之间有如下关系: )20( f 2020℃冷态=δ )(800 f 500 800℃热态= δ δ800远大于δ20,这是因为钢被加热到磁性转变点以上温度时,失去磁性,磁导率急剧下降,导致电流透入深度急剧增加。 根据所用电流频率的不同,感应加热表面淬火可分为三类: 1、高频感应加热表面淬火 最常用电流频率为200~300kHz ,可获淬硬层深度为0.5~2.0mm ,主要适用于中、小模数齿轮及中、小尺寸轴类零

(完整版)钢的表面热处理

2013年“教学质量月优秀教案评选”参评教案

教学过程教学内容附记 一、组织教学 (2分钟)1、点名,稳定学生情绪。 2、分成四个学习小组。 二、复习提问 (7分钟)常用的回火方法有哪几种?并分别指出其获得的组织、性能及适用范围。 参考答案: 1、低温回火(150℃~250℃):回火马氏体,具有较高的硬度、耐磨性和 一定韧性,主要用于刀具、冷作模具、轴承零件及其它要求硬而耐磨的 零件等。 2、中温回火(350℃~500℃):回火屈氏体,具有高的弹性极限、屈服强 度和适当的韧性,主要用于弹性零件及热作模具等。 3、高温回火(500℃~650℃):回火索氏体,具有良好的综合力学性能, 强度、硬度、塑性和韧性具有良好的配合,广泛应用于连杆、曲轴、齿 轮等承受交变载荷或冲击载荷的重要零件等。 巩固旧知 识,承接新 知识,加强 知识的连贯 性。 三、任务提出 (6分钟) 右图为活塞销的实物图。 活塞销通常在冲击载荷、交变 载荷和强烈摩擦条件下工作,活塞 销选用20钢制造。试根据其化学 成分和使用性能要求,选择正确的 热处理方法。 鼓励学生结 合生活实 际,积极思 考,踊跃回 答。 四、任务分析 (5分钟) 活塞销在工作时,同时受到冲击载荷、交变载荷和表面摩擦作用, 因此要求工件心部具有足够的塑性、韧性和一定的强度,表面具有高硬 度和高耐磨性,即所谓的“外硬内韧”。前面所学的常规热处理方法无法 满足上述性能,需要采用一种新的热处理方法——表面热处理。 提问:常规 的热处理方 法有哪些?

教学过程教学内容附记 五、相关知识(40分钟) 表面热处理是一种对工件表面进行硬化的热处理方法,根据硬化机 制不同,表面热处理可分为表面淬火和化学热处理两大类。 (一)表面淬火 1、定义:对工件表层进行淬火的工艺。 2、适用范围:中碳钢和中碳合金钢。 3、分类: (1)火焰加热表面淬火 特点:用氧—乙炔火焰对零件表 面进行加热,随之快速冷却的工艺。 加热温度及淬硬层不易控 制,质量不稳定。 应用:适用于单件或小批量生产。 (2)感应加热表面淬火 特点:利用感应电流通过工件所 产生的热效应,使工件表 面局部加热,然后快速冷却的工艺。 加热速度快,淬硬层深度易于控制,淬火质量高。 应用:适用于大批量生产。 (二)化学热处理 1、定义:将工件置于一定温度的活性介质中保温,使一种或几种元 素渗入它的表层,以改变其化学成分、组织和性能的热处理工艺。 化学热处理不仅改变了钢的组织,而且其表层的化学成分也发生 了改变,因而更能有效地改善零件表层的组织。 2、化学热处理的过程: 化学热处理是通过以下三个基本过程来完成: (1)分解介质在一定温度下发生化学分解,产生活性原子。 (2)吸收活性原子被工件表面吸收。 (3)扩散渗入工件表层的活性原子,由表层向中心扩散。 提问:为什 么低碳钢不 能进行表面 淬火? 提示学生注 意:热处理 工艺中,只 有化学热处 理不仅改变 了组织,还 改变了化学 成分。

激光表面淬火的应用领域

激光表面淬火的应用领域 激光表面淬火技术原理 激光淬火,也称激光热处理、激光硬化,即利用聚焦后的激光束快速加热金属材料表面,使其发生相变,形成马氏体淬硬层的一种高新技术,分为激光相变硬化、激光熔凝硬化和激光冲击硬化三种工艺方法。 技术特点 1.激光淬火马氏体晶粒更细、位错密度更高,硬度更高,耐磨性更好。 2.变形极小,甚至无变形,适合于高精度零件处理,部分场合可作为材科和零件的最后处理工序。 3.无需回火,淬火表面得到压应力,不易产生裂纹。 4.如工柔牲好,适用面广,可方便地处理大尺寸工件和沟、槽、深孔、内孔、盲孔等局部区域。 5可根据需要调整硬化层深浅。 6.硬度梯度非常小,硬度基本不随激光硬化层深变化而变化。 7.适合的材料广泛,包括各种中高碳钢、工具钢、模具钢以及铸铁材料等。 8.加工过程自动化控制,工期短,质量稳定。 9.低碳环保,无需冷却介质,无废气废水排放。 技术参数 适合材质:各类中高碳钢、铸铁 淬火硬度:一般可比感应淬火高1-5HRC 淬火深度:0.1-1.2mm 应用领域 激光淬火技术解决了许多常规热处理工艺无法解决的难题,已大量应用于冶金、汽车、模具、五金、轻工、机械制造等行业。适合各类型零件的热处理: 1.难以进入热处理炉的大型工件。 2.仅需对沟、槽、孔、边、刃口等局部表面进行热处理的工件。 3.常规热处理工艺难以处理到的部位。 4.对热处理变形量要求高的精密零件。 5.铸铁工件表面的热处理。 6.常规热处理工艺易产生裂纹的零件。 7.常规热处理工艺达不到硬度要求的零件。 模具钢激光淬火技术及应用 模具钢激光淬火技术,是利用聚焦后的激光束快速加热钢铁材料表面,使其发生相变,形成马氏体淬硬层的过程。模具钢激光淬火的功率密度高,冷却速度快,不需要水或油等冷却介质,是清洁、快速的淬火工艺。与感应淬火、火焰淬火、渗碳淬火工艺相比,激光淬火淬硬层均匀,硬度高(一般比感应淬火高1-3HRC),工件变形小,加热层深度和加热轨迹

热处理工艺规程(工艺参数)

热处理工艺规程(工艺参数) 编制: 审核: 批准: 生效日期: 受控标识处:

分发号: 目录 1.主题内容与适用范围 (1) 2.常用钢淬火、回火温度 (1) 要求综合性能的钢种 (1) 要求淬硬的钢种 (4) 要求渗碳的钢种 (6) 几点说明 (6) 3.常用钢正火、回火及退火温度 (7) 要求综合性能的钢种 (7) 其它钢种 (8) 几点说明 (8) 4.常用钢去应力温度 (10) 5.各种热处理工序加热、冷却范围 (12) 淬火………………………………………………………………………………………………1 2 正火及退火 (14) 回火、时效及去应力 (15) 工艺规范的几点说明 (16) 6.化学热处理工艺规范 (17) 氮化 (17) 渗碳 (20) 7.锻模热处理工艺规范 (22) 锻模及胎模 (22) 切边模 (24) 锻模热处理注意事项 (25) 8.有色金属热处理工艺规范 (26) 铝合金的热处理 (26) 铜及铜合金 (26)

9.几种钢锻后防白点工艺规范 (27) 第Ⅰ组钢 (27) 第Ⅱ组钢 (28) 1.主题内容与适用范围 本标准为“热处理工艺规程”(工艺参数),它主要以企业标准《金属材料技术条件》B/HJ-93年版所涉及的金属材料和技术要求为依据(不包括高温合金),并收集了我公司生产常用的工具、模具及工艺装备用的金属材料。 本标准适用于汽轮机、燃气轮机产品零件的热处理生产。 2.常用钢淬火、回火温度 要求综合性能的钢种:

注:①采用日本材料时,淬火温度为960~980℃,回火温度允许比表中温度高10~30℃。 ②有效截面小于20mm者可采用空冷。 要求淬硬的钢种(新HRC>30)

激光加工技术的应用研究

激光加工技术的应用研究 摘要:激光加工技术作为一门科学技术,广泛应用于许多工程领域。作为科学发展中出现的一种全新产物,该技术为国防军事、工业机械和农业商业等领域带来了诸多便利。科学技术的不断进步推动着施工质量在提高,激光技术也在不断改进。激光加工技术在工程机械制造中的应用是本文研究的重点,目的是与行业相关人员讨论如何更有效地提高机械产品的制造精度和质量。 关键词:激光加工;机械制造;应用 引言 日益提升的国民经济水平下,信息现代及激光技术也得到了进一步发展。激光技术凭借自身的多项优点,在军事、医学等相关领域之中得到了普遍认可。可以说,激光技术在各个行业之中都属于一项顶尖的技术,是各领域应用激光而产生的一系列技术,备受各国相关人员的重视。 1激光技术工作原理 激光具有单色波长、平行光束的性能特征。科学实验中,采用电管依托光或电流的能量撞击个别原子里含有易激发物质或晶体,原子所带电子在经历了撞击之后处于高能量状态,而高能量电子逐渐朝着平和低能量转化并完成之后,原子会有更大能量产生,进而有光子发出;该状态下,释放出来的光子会继续撞击原子,而原子在撞击下会有光子继续产生,重复撞击、释放这一循环过程,且是以同一运行方向进行的,会集中形成一束具有极强能量的该方向的光,即为激光原理。聚集之后形成的激光具有强大的能量,各类材质即可穿透。如红宝石激光输出脉冲尽管不具备能让冷水沸腾的能量,然而却能将5mm钢板穿透。而激光虽然具有一般的光能,但却具备极高的功率密度和强大的穿透力,是一般光束根本无法达成的,也正是因为激光的该优势,因此在各个行业领域之中得到了广泛地应用。 2激光加工概述 激光的全称是受激辐射光放大,如何从技术上实现数反转是激光产生的必要条件,当高能粒子与特定频率的光子发生入射时,高能级的粒子会有一定的概率跃至低能级。除此之外,粒子会辐射出与外光子频率、相位、偏振和传播方向相同的光子,上述过程就是受激辐射。受激辐射就意味着原始光信号会被放大,受激光辐射过程中衍生出的光被称为激光。激光的显著特点主要有:亮度极高、指向性强、色度比较单一、相干度较高等。随着工业技术近年来的技术改革逐步深入,激光切割、激光焊接、激光熔覆、激光材料制造等激光加工技术在制造业中扮演着越来越重要的角色。 2.1激光切割 激光切割是借助高能量密度的激光束对器件进行强光照射,目的是使照射温度迅速上升。物料气化后,蒸汽会在短时间内被迅速排出或熔化,而辅助气体会为液体的顺利排出提供一定的帮助,进而形成相应的狭缝。激光切割通常会被用于加工钢、铝合金、钛合金等常见金属材料,玻璃、陶瓷、塑料等非金属材料也是激光切割的切割对象。值得一提的是,激光切割是一种非接触加工工艺,切割过程中工件并不会出现机械变形,激光束不会对不受激光照射的工件产生影响,其热冲击面积小,工件的热变形校激光切割快速灵活,节省投资和生产成本。在汽车工业中,三维激光切割逐步取代冲切模和切边模成为生产车身板件的主要切割技术,相较于传统技术节省了大量的切割时间。在工程机械行业,日本以激光

关于激光淬火

嘉兴市科技计划项目 激光表面淬火关键技术与装备研发 项目可行性报告 嘉兴学院机电工程学院 嘉兴市浙江数控焊机有限公司 2009年3月

一、立项的背景和意义 自20世纪60 年代激光问世以来,激光技术作为一门举世瞩目的高新技术,几乎在各行业都获得了重要的应用。近年来,激光表面处理技术不仅在研究和开发方面迅速发展,而且在工业应用方面也取得了长足的进步,成为表面工程一个十分活跃的新兴领域。激光表面处理既可以通过激光淬火、表面熔凝改变基体表层材料的微观结构,也可以通过激光熔覆、气相沉淀和合金化等处理方法同时改变基体表层的化学成份和微观结构。激光表面淬火比其它激光加工所需的功率密度小的多, 因此在利用激光技术进行材料加工中,激光表面淬火应用最多,它能显著提高金属表面的硬度及耐腐性。然而目前激光表面淬火技术的应用还不如传统热处理技术那样广泛和成熟,但由于其具有的独特优越性,正日益受到人们的重视。已经在机械制造、交通运输、石油、矿山、纺织、冶金、航空航天等许多领域得到应用和发展。 激光表面淬火是利用激光在要热处理的部分扫描,使被扫描区域快速升温,而未被扫描区域保持常温。激光表面淬火的原理和普通热处理是相同的,只不过激光作为热源加热金属的时间很短,处理区域也很小。激光对金属进行热处理时,金属表面温度和热穿透深度都和激光照射时间的平方成比例。所以适当地调节激光光斑尺寸、扫描速度和激光功率,就可以对金属表面温度和热穿透深度进行控制。采用激光表面淬火的工件的变形量极小(变形量为高频淬火的1/3~1/10),表面光洁度好,无氧化皮产生。因此,可以减少后道工序(矫正或磨制)的工作量,降低工件的制造成本。激光表面淬火后可获得极细的马氏体晶粒,硬度要比常规淬火后的硬度提高15%-20%,硬化层深度可达2mm,而工件心部仍保持原始组织。所以经激光表面淬火处理的工件表面层硬度高,耐磨性好,心部硬度低,韧性好,疲劳强度一般可提高30%~50%。由于金属散热快,激光束扫描后,扫描区域可自行迅速冷却淬火,无需淬火液,是一种清洁卫生的热处理方法而且便于用同一激光加工系统实现同时加工。因此可直接将激光表面淬火工序安排在生产线上,以实现自动化生产。又由于激光表面淬火处理是不接触加热, 所以工件表面不会发生表面沾污。此外, 因为采用特制的透镜聚焦, 激光的焦深很长, 所以工件在激光焦点上下各50~75mm范围内所吸 收的光能是基本相同的, 这对于处理表面凸凹不平的工件是非常有利的。 虽然,目前激光热处理在热处理行业的总产值中所占份额还不大,但是应用前景光明。许多研究成果和应用实例[1-3],都说明采用激光表面热处理技术可以解决某些其它热处理方法难以实现的技术目标。例如细长钢管内壁表面硬化,成型精密刃具刃部超高硬化,模具合缝线强化,缸体和缸套内壁表而硬化等等。采用激光表面热处理的经济效益显著优于传统热处理,例如汽车转向器壳体的激光相变硬化和锯齿激光相变硬化等。因此,激光表面热处理的研究、开发和应用都处于上升阶段。 激光加工技术一直是国家重点支持和推动应用的一项高新技术,特别是政府强调要振兴制造业,这就给激光加工技术应用带来发展机遇。在国家制定中长远期发展规划时,又

常用钢材参数

16Mn 16Mn 为钢材中的一种材质。过去钢材的一种叫法。现在的称法为:Q345。(见Q34 5) 16,所代表的为这种钢材中的碳的含量在0.16%左右。而Mn单独提出来,是因为五大元素(碳C,硅Si,锰Mn,磷P,硫S)中,锰的含量高,才单独提出来。大约在1.20-1.60%左右。 16Mn属低合金钢板系列,在此系列中,为最普通材质,或者牌号的钢板。 根据特殊的要求,可以对钢板进行一些特殊的处理:热处理和Z向性能。 热处理:控轧,正火等等。 Z向性能:Z15,Z25,Z35 主要特性:综合性能好,低温性能好,泠冲压性能,焊接性能和可切削性能好。 应用举例:矿山,运输,化工等各种机械。 16Mn锻件的化学成分: C :0.13~0.19 Si :0.20~0.60 Mn :1.20~1.60 Cr≤0.30 P≤0.030 S≤0.0 30 Ni≤0.30 Cu≤0.25 45号钢和16mn的杨式模量,泊松比,热膨胀系数 悬赏分:0 - 解决时间:2007-7-4 11:07 提问者:xingwenwu - 一级最佳答案 碳钢和锰钢的E为196~216GPa,一般按210GPa计;μ为0.25~0.33,一般按0.3计.α为12.3*10^6 45号钢 目录[隐藏] 简介 化学成分 处理方法 用途

简介 化学成分 处理方法 用途 [编辑本段] 简介 45号钢,是GB中的叫法,JIS中称为:S45C,ASTM中称为1045,080M46,DIN称为: C45 。 [编辑本段] 化学成分 含碳(C)量是0.42~0.50%,Si含量为0.17~0.37%,Mn含量0.50~0.80%,C r含量<=0.25%。 [编辑本段] 处理方法 热处理 推荐热处理温度:正火850,淬火840,回火600. 45号钢为优质碳素结构用钢,硬度不高易切削加工,模具中常用来做模板,梢子,导柱等,但须热处理。 1. 45号钢淬火后没有回火之前,硬度大于HRC55(最高可达HRC62)为合格。 实际应用的最高硬度为HRC55(高频淬火HRC58)。 2. 45号钢不要采用渗碳淬火的热处理工艺。 调质处理后零件具有良好的综合机械性能,广泛应用于各种重要的结构零件,特别是那些在交变负荷下工作的连杆、螺栓、齿轮及轴类等。但表面硬度较低,不耐磨。可用调质+表面淬火提高零件表面硬度。

激光加工技术及其应用(精)

激光加工技术及其应用 概述: 激光加工(Laser Beam Machining,简称LBM是指利用能量密度非常高的激光束对工件进行加工的过程。激光几乎能加工所有材料,例如,塑料、陶瓷、玻璃、金属、半导体材料、复合材料及生物、医用材料等。 在1960年12月,出生于伊朗的美国科学家贾万率人终于成功地制造并运转了全世界第一台气体激光器——氦氖激光器。1962年,有三组科学家几乎同时发明了半导体激光器。1966年,科学家们又研制成了波长可在一段范围内连续调节的有机染料激光器。此外,还有输出能量大、功率高,而且不依赖电网的化学激光器等纷纷问世。 与传统加工技术相比,激光加工技术有以下特点 (1激光功率密度大,工件吸收激光后温度迅速升高而熔化或汽化,即使熔点高、硬度大和质脆的材料(如陶瓷、金刚石等也可用激光加工; (2、激光头与工件不接触,不存在加工工具磨损问题; (3、工件不受应力,不易污染; (4、可以对运动的工件或密封在玻璃壳内的材料加工; (5、激光束的发散角可小于1毫弧,光斑直径可小到微米量级,作用时间可以短到纳秒和皮秒,同时,大功率激光器的连续输出功率又可达千瓦至十千瓦量级,因而激光既适于精密微细加工,又适于大型材料加工; (6、激光束容易控制,易于与精密机械、精密测量技术和电子计算机相结合,实现加工的高度自动化和达到很高的加工精度; (7、在恶劣环境或其他人难以接近的地方,可用机器人进行激光加工。

2.基本原理 激光被广泛应用是因为它具有的单色波长、同调性和平行光束等3大特性。科学家在电管中以光或电流的能量来撞击某些晶体或原子易受激发的物质,使其原子的电子达到受激发的高能量状态。当这些电子要回复到平静的低能量状态时,原子就会射出光子,以放出多余的能量。这些被放出的光子又会撞击其它原子,激发更多的原子产生光子,引发一连串的连锁反应,并且都朝同一个方前进,进而形成集中的朝向某一方向的强烈光束。由此可见,激光几乎是一种单色光波,频率范围极窄,又可在一个狭小的方向内集中高能量,所以利用聚焦后的激光束可以穿透各种材料。以红宝石激光器为例,它输出脉冲的总能量不够煮熟一个鸡蛋,但却能在 3mm的钢板上钻出一个小孔。激光拥有上述特性,并不是因为它有与别不同的光能,而是它的功率密度十分高,这就是激光能够被广泛应用的主要原因。激光加工技术先进性激光的上述特性给激光加工带来一些其它加工方法所不具备的优势。由于激光加工是无接触加工,对工件无直接冲击,所以无机械变形。激光加工过程中无刀具磨损,无切削力作用于工件;激光束能量密度高,加工速度快,并且是局部加工,对非激光照射部位没有影响或影响极小,因此受其热影响的工件热变形小,后续加工量少。激光束易于导向、聚焦,能够便捷地实现方向变换,使其极易与数控系统配合,对复杂的工件进行加工。因此,它是一种极为灵活的加工方法,具备生产效率高、加工质量稳定可靠、经济效益和社会效益好等优点。激光加工作为先进制造技术已广泛应用于航空、汽车、机械制造等国民经济重要部门,在提高产品质量、劳动生产率、自动化、降低污染和减少材料消耗等方面起到重要的作用。激光切割激光切割一直是激光加工领域中最为活跃一项技术,它是利用激光束聚焦形成高功率密度的光斑,将材料快速加热至汽化温度,再用喷射气体吹化,以此分割材料。脉冲激光适用于金属材料,连续激光适用于非金属材料,通过与计算机控制的自动设备结合,使激光束具有无限的仿形切割能力,切割轨迹修改十分方便。激光切割技术的出现使人类可以切割一些硬度极高的物质,包括硬质合金,甚至金刚石。高科技已经让“削铁如泥”的传说变成了现实。激光切割技术是激光加工技术应用的重要方面之一,广泛应用于金属和非金属材料的加工中,可大大减少加工时间,降低加工成本,提高工件质

激光熔凝及激光熔凝淬火讲解

激光熔凝及激光熔凝淬火 激光熔凝原理激光熔凝也称激光熔化淬火。激光熔凝是用激光束将获得工件表面加热熔化到一定深度,然后自冷使熔层凝固,获得较为细化均质的组织和所需性能的表面改性技术。激光熔凝原理与激光非晶化基本上相一致。但激光熔凝处理时激光的能量密度和扫描速·度均远小于激光非晶化。激光熔凝与激光合金化不同,它在表面熔化时一般不添加任何合金元素,熔凝层与材料基体是天然的冶金结合;在激光熔凝过程中,可以排除杂质和气体, 激光熔凝原理 激光熔凝也称激光熔化淬火。激光熔凝是用激光束将获得工件表面加热熔化到一定深度,然后自冷使熔层凝固,获得较为细化均质的组织和所需性能的表面改性技术。 激光熔凝原理与激光非晶化基本上相一致。但激光熔凝处理时激光的能量密度和扫描速·度均远小于激光非晶化。 激光熔凝与激光合金化不同,它在表面熔化时一般不添加任何合金元素,熔凝层与材料基体是天然的冶金结合;在激光熔凝过程中,可以排除杂质和气体,同时急冷重结晶获得的组织有较高的硬度、耐磨性和抗蚀性;其表面熔层深度远大于激光非晶化。 激光熔凝是将金属材料表面在激光束照射下成为溶化状态,同时迅速凝固,产生新的表面层。根据材料表面组织变化情况,可分为合金化、重溶细化、上釉和表面复合化等。我公司的轧辊激光熔凝产品是用适当的参数的激光辐照材料表面,使其表面快速熔融、快速冷凝,获得较为细化均质的表面改性技术。它具有以下优点: 表面熔化时一般可添加超硬耐磨金属元素或化学元素,熔凝层与材料基体形成冶金结合。 在激光熔凝过程中,可以排除杂质和气体,同时急冷重结晶获得的杂质有较高的硬度、耐磨性和抗腐蚀性。 其熔层薄、热作用区小,对表面粗糙度和工件尺寸影响不大,有时可不再进行后续磨光而直接使用。 提高溶质原子在基体中固溶度极限,晶粒及第二相质点超细化,形成亚稳相可获得无扩散的单一晶体结构甚至非晶态,从而使生成的新型合金获得传统方法得不到的优良性能。 激光(相变)淬火和激光熔凝淬火

浅谈激光加工技术的发展及应用

浅谈激光加工技术的发展及应用 浅谈激光加工技术的发展及应用 【摘要】因为激光的加工技术的优点是生产的效率极高、加工的质量极好、适用的范围很广等,所以越来愈多的人希望在很多的领域中使用激光加工技术。本文介绍其相关的理论,重点论述其发展和应用。 【关键词】激光加工技术相关理论发展应用 一、前言 近年来重大的发明之一是激光技术。随着社会经济的快速发展,把激光器当成基础的激光加工的技术得到了快速发展。目前其正在被广泛应用在生产、通讯、医疗、军事及科研等多种领域。并且在这些领域都取得了非常好的经济与社会的效益,是我国未来经济的发展的关键。 二、激光加工技术相关理论 笔者认为,了解与应用激光加工技术需要对其相关理论深入的研究。以下笔者从其原理和特点来介绍激光加工技术。 (一)原理 激光加工能够获得极高的能量密度与极高的温度是因为采用的光学系统能够让激光聚焦成为一个非常小的光斑,在这样的高温下,每种坚硬的材料都会被瞬间熔化与气化,然后熔化物被气化而产生的蒸汽压力推动,以很高的速度喷射出来,从而实现了对工件加工的特种加工方法。 (二)特点 激光加工的技术对于加工工具与特殊环境没有要求,不会造成工具的磨损,易于使用自动控制来进行连续加工,且加工效率极高;同时激光的强度极高,聚焦后差不多能够熔化和气化全部的材料,所以能够加工所有硬度的金属与非金属的材料;加上激光加工是属于非接触的加工,及加工速度非常的快,工件没有受力与受热而产生变形;其还能聚焦成为极小的光斑(微米级),能够调节输出的功率,所以

可进行精密且细微的加工。这些均是激光加工优点。但由于其设备的投资比较大,及操作和维护技术要求比较高;且在精微加工的时候,重复的精度与表面的粗糙度难以保证等。这些缺点尽管在一定的程度上缩小了其应用规模,也限制了其发展,但是由于进一步的研究,越来越成熟的技术,激光加工技术有着非常广阔的发展前景。 三、激光加工技术的发展及应用 近年来,由于激光加工技术的快速发展,其被应用于许多的领域。以下是笔者从激光器与激光加工技术领域来介绍激光加工技术的发展,同时介绍目前激光加工技术的具体应用。 (一)激光加工技术的发展 了解激光加工技术的发展,就要研究激光器以及其应用的领域的变化。只有这样才能从根本上了解其发展。 迅速发展的激光器。我国研制出的第一台激光器是在1961年。通过几十年的努力,我国的激光器技术快速的发展起来了,从固体的激光器到气体的激光器,再到如今光纤的激光器、半导体的激光器与飞秒的激光器。光纤的激光器与传统激光器来比较,其优势是功率输出大,光束的质量较好,转换的效率较高,良好的柔性传输等。其在使用激光加工技术加工材料中有着极大的吸引力。现在应用于使用激光来打标、切割以及焊接。而飞秒的激光器则能够使超精微的加工可以实现。其在高技术的领域如微电子、光子学等应用的前景极宽广。同时半导体的激光器正在被直接用在焊接、热处理等方面。总之激光器的迅速发展导致了激光加工技术的快速发展。 广泛的应用领域。激光加工是在机械加工、力加工、火焰加工与电加工之后新产生的一种的加工技术,是借助激光束和物质相互作用的特性,对材料进行切割、焊接、表面处理、打孔以及微加工的综合性技术。激光焊接广泛应用在汽车的零件、密封的器件等多种要求焊接无污染与无变形的器件。激光切割主要应用在汽车的行业、航天的工业等领域。而激光打孔则应用在汽车的制造、化工等产业。广泛的应用领域也使得激光加工技术快速发展。 (二)激光加工技术的应用 激光加工技术在我国的许多领域里占据着重要的位置,以下是笔

激光加工技术的现状及国内外发展趋势

激光加工技术的现状及国内外发展趋势——激光英才网 作为20世纪科学技术发展的主要标志和现代信息社会光电子技术的支柱之一,激光技术和激光产业的发展受到世界先进国家的高度重视。 激光加工是国外激光应用中最大的项目,也是对传统产业改造的重要手段,主要是kW 级到10kW级CO2激光器和百瓦到千瓦级Y AG激光器实现对各种材料的切割、焊接、打孔、刻划和热处理等。 激光加工应用领域中,CO2激光器以切割和焊接应用最广,分别占到70%和20%,表面处理则不到10%。而Y AG激光器的应用是以焊接、标记(50%)和切割(15%)为主。在美国和欧洲CO2激光器占到了70~80%。我国激光加工中以切割为主的占10%,其中98%以上的CO2激光器,功率在1.5kW~2kW范围内,而以热处理为主的约占15%,大多数是进行激光处理汽车发动机的汽缸套。这项技术的经济性和社会效益都很高,故有很大的市场前景。 在汽车工业中,激光加工技术充分发挥了其先进、快速、灵活地加工特点。如在汽车样机和小批量生产中大量使用三维激光切割机,不仅节省了样板及工装设备,还大大缩短了生产准备周期;激光束在高硬度材料和复杂而弯曲的表面打小孔,速度快而不产生破损;激光焊接在汽车工业中已成为标准工艺,日本Toyota已将激光用于车身面板的焊接,将不同厚度和不同表面涂敷的金属板焊接在一起,然后再进行冲压。虽然激光热处理在国外不如焊接和切割普遍,但在汽车工业中仍应用广泛,如缸套、曲轴、活塞环、换向器、齿轮等零部件的热处理。在工业发达国家,激光加工技术和计算机数控技术及柔性制造技术相结合,派生出激光快速成形技术。该项技术不仅可以快速制造模型,而且还可以直接由金属粉末熔融,制造出金属模具。 到了80年代,Y AG激光器在焊接、切割、打孔和标记等方面发挥了越来越大作用。通常认为Y AG激光器切割可以得到好的切割质量和高的切割精度,但在切割速度上受到限制。随着Y AG激光器输出功率和光束质量的提高而被突破。Y AG激光器已开始挤进kw级CO2激光器切割市场。Y AG激光器特别适合焊接不允许热变形和焊接污染的微型器件,如锂电池、心脏起搏器、密封继电器等。Y AG激光器打孔已发展成为最大的激光加工应用。 目前,国外激光打孔主要应用在航空航天、汽车制造、电子仪表、化工等行业。激光打

激光表面淬火在ANSYS中的数值模拟

基于ANSYS激光表面淬火的数值模拟 指导老师:曹坚(教授) 组员:王建来(组长)林谦凯冯辉沈海华 一、摘要 建立了轴的3-D模型进行激光淬火时的温度场数值模型,采用ANSYS模拟激光束扫描过程中轴面的温度分布。通过对使用不同激光功率和光斑直径的结果分析,定性地得出了激光表面淬火的工艺参数。 二、关键词 ANSYS,温度场,激光,淬火 三、SUMMARY Build a 3-D numerical temperature fields model for axle when it was laser hardened.Simutate the temperature distribution at the surface of axle during the laser-bean scanning by using ANSYS software.The results by using different laser power and spot diameter were analysed,which shows the technological parameter of laser quenching on the surface qualitativly. 四、KEYWORD ANSYS,temperature field,laser,quenching 五、前言 激光表面淬火是利用激光在要热处理的部分扫描,使被扫描区域快速升温,而未被扫描区域保持常温。激光表面淬火的原理和普通热处理是相同的,只不过激光作为热源加热金属的时间很短,处理区域也很小。激光对金属进行热处理时,金属表面温度和热穿透深度都和激光照射时间的平方成比例。所以适当地调节激光光斑尺寸、扫描速度和激光功率,就可以对金属表面温度和热穿透深度进行控制。 本文采用ANSYS软件对45#钢零件在激光扫描过程中的瞬时表面温度场进行模拟,并根据各模拟情况,推测出激光淬火比较适合的扫描速度、光斑尺寸和激光功率。 六、ANSYS数值模拟 ANSYS热分析主要用于计算一个系统或部件的温度分布及其他热物理参数,如热梯度、热流密度等。ANSYS热分析包括热传导、对流及辐射等多种热传递方式。 激光表面淬火属热瞬态分析,应建立SOLID70三维六面体单元进行有限元分析。 SOLID70——三维热实体,具有8个节点,每个节点有一个温度自由度。该单元可用于三维的稳态或瞬态热分析。 本次模拟实验采用GUI界面来操作。 (一)建立有限元模型 ①确定单元类型 GUI:MainMenu>Preprocessor>Element Type>Add/Edit/Delete 点击Add按钮,在接下来的窗口中选择Thermal solid右边选Brick 8no70(如图)。

激光加工

激光加工技术的应用与发展 摘要:激光加工是把具有足够能量的激光束聚焦后照射到所加工材料的适应部分,在极短的时间内,光能转换为热能,被照部位迅速升温。根据不同的光照参量,材料可以发生汽化、熔化、金相组织变化以及产生相当大的热应力,从而达到工件材料被去除、连接、改性或分离等加工。用激光束对材料进行各种加工,如打孔、切割、划片、焊接、热处理等。激光能适应任何材料的加工制造,尤其在一些的特殊精度和要求、特别场合和特种材料的加工制造方面起着无可替代的作用。 关键词:加工原理、反展前景、强化处理、细微加工、发展前景。 一激光加工的原理及其特点 1 激光加工的原理 激光加工是将激光照射到工件的表面,以激光的高能量来切除、融化材料以及改变物体表面性能。由于激光加工时无接触式加工,工具不会与工件的表面直接摩擦产生阻力,所以激光加工的速度极快、加工对象受热影响的范围较小而不会产生噪音。由于激光束的能量和光束的移动速度均可调节,因此激光加工可应用不同层面和范围上。 2激光的基本特性 首先,激光也是一种光,因此具有一般光的共性。此外,由于激光的发射时以受辐射为主,因而发光物质中基本上是有组织地、相互关联地产生光发射的,发出光波的频率、方向、偏振状态相同和位相关系严格。因此产生了激光的四大特性:亮度(强度)高、单色性好、相干性好和方向性强。 1)强度高激光的强度高,主要是由于激光在空间上和时间上可以实现光能的高度集中。 2)单色性好太阳光包含红、橙、黄、绿、青、蓝、紫等7种颜色,每一种颜色的光对应一定的波长与频率,而激光往往是只有一种频率的光,因此激光也是 单色光。激光器所发出的激光具有其他光源难以到达的、极高的单色性。这是 由于构成激光的谐振腔的反射镜对波长选择性极佳,并且利用原子固有的能级 跃迁的结果。 3)相干性好光源的相干性可以利用相干长度来衡量。相干时间是指光源先后发出的俩束光产生干涉现象的最大时间间隔。 4)方向性强光束的方向性是用光束的发散角表征的。 应当指出,上述激光的四个特性不是相互无关的,而是相互联系、相互渗透的。 二激光技术 用激光束对材料进行各种加工,如打孔、切割、划片、焊接、热处理等。激光加工有许多优点:1激光功率密度大,工件吸收激光后温度迅速升高而融化或汽化,即使熔点高、硬度大和质脆的材料(如陶瓷、金刚石等)也可用激光加工;2激光头与工件不接触,不存在加工工具磨损问题;3工件不受应力,不易污染;4可以对运动的工件或密封在玻璃壳的材料加工;5激光束的发散角不可小于1毫弧,光斑直径可小到微米量级,作用时间可以短到纳秒和皮秒,同时,大功率激光器的连续输出功率又可以达到千瓦至十千瓦量级,因而激光既适于精密微细加工,又适于大型材料加工;6激光束容易控制,易于与精密机械、精密测量技术和电子计算机相结合,实现加工的高度自动化和达到很高的加工精密;7在恶劣环

相关文档
最新文档