数学建模全国优秀论文范文_数学建模论文格式模板
全国大学生数学建模国 家奖优秀论文

全国大学生数学建模国家奖优秀论文在当今高度数字化和信息化的时代,数学建模已经成为解决各种实际问题的重要工具。
全国大学生数学建模竞赛作为一项具有高度影响力的赛事,每年都吸引着众多优秀学子参与,而能够获得国家奖的优秀论文更是代表着学生在数学建模领域的卓越成就。
数学建模的本质是将实际问题转化为数学问题,并通过建立数学模型来求解,从而为实际问题提供有效的解决方案。
这些获奖论文通常具有一些显著的特点。
首先,它们能够准确地把握问题的关键。
在面对复杂的实际问题时,参赛学生需要迅速理清问题的核心,明确问题的约束条件和目标。
例如,在研究城市交通拥堵问题时,关键可能在于分析车流量、道路容量、信号灯设置等因素之间的关系,并确定如何优化交通流量以减少拥堵。
其次,优秀论文中的模型建立具有创新性和合理性。
学生们不会拘泥于传统的模型和方法,而是敢于尝试新的思路和技术。
他们可能会结合多种数学方法,如概率论、线性规划、微分方程等,构建一个综合性的模型,以更精确地描述问题。
再者,数据处理和分析能力也是至关重要的。
为了验证模型的有效性,需要收集大量的数据,并进行有效的清洗、整理和分析。
在这个过程中,学生们需要运用统计学知识,判断数据的可靠性和代表性,运用合适的方法对数据进行拟合和预测。
以一篇关于电商平台商品推荐系统的数学建模论文为例。
在这篇论文中,学生们深入研究了用户的购买历史、浏览行为、评价等数据,通过构建协同过滤模型和基于内容的推荐模型,为用户提供个性化的商品推荐。
他们不仅考虑了用户的兴趣偏好,还考虑了商品的热门程度、时效性等因素,使得推荐结果更加准确和实用。
在模型求解方面,他们采用了高效的算法和计算工具,如 Python 中的相关库和机器学习框架,快速得到模型的解。
并且,通过大量的实验和对比分析,验证了模型的性能和优越性。
此外,优秀的论文还注重结果的解释和应用。
模型求解得到的结果不是孤立的数字,而是需要结合实际情况进行合理的解释和分析。
数学建模获奖论文模板范文

数学建模获奖论文模板范文在我国倡导素质教育的今天,数学建模受到的关注与日俱增,数学建模已经被应用于数学的教学中了。
下面是店铺为大家推荐的数学建模论文,供大家参考。
数学建模论文范文篇一:《高职院校数学建模竞赛的思考与建议》一、我校学生数学建模现状1.高职生的数学基础相当薄弱,学习习惯不好,然而数学知识理论性强,计算繁琐,并要求学生有足够的耐心和较强的理性思维能力,这就会让学生在学习数学相关知识时感觉有一定的难度。
而另一方面,高职院校的课时量在尽量压缩,数学应用方面的内容只是蜻蜓点水,根本无法广泛而深入的涉及到位。
例如,我校很多专业只开一个学期64课时的数学课,还有些专业甚至不开数学课,要建立一些比较高等的数学模型,高职学生的数学知识显然不够。
2.高职院校目前的教学方法多表现为填鸭式的教学法,过分强调严格的定理和抽象的逻辑思维,特别是运算技巧的训练讲得过于精细,考试形式单一。
对于高职生来说,只要求他们会套用现成的公式及作一些简单的计算就行,但是目前的教学不能使学生发挥自己的主观能动性,也调动不了学生学习数学的兴趣。
3.目前我校只开设了一门数学方面的公共选修课《数学建模》,一共16次课,仅仅靠课堂上讲的内容让学生来参加数学建模竞赛远远不够,另外,学生又要同时兼顾其他专业课程,因此学习效果不好。
4.组织数学建模赛前培训的师资队伍理论薄弱,只靠一两个青年教师承担培训指导任务,缺乏参赛经验丰富的老教师。
5.我校学生参加数学建模的积极性不高,我校已经连续参加几年的数学建模竞赛,但最多的也就5个队,仍有多数学生称未听过有这项比赛,说明宣传不是很到位。
6.目前组队参赛的任务是交给基础部来完成,而基础部没有学生,这就会造成找队员困难的问题。
二、参加数学建模比赛的意义1.有利于培养学生综合解决问题的能力因为数学建模最后提交的成果是交一篇完整的论文,对于大多数学生来说,都是第一次,它可以提高学生如何把数学知识用到实际生活中的能力,提高学生合理利用网络查阅资料的能力,提高学生的创新意识和团队协作能力等。
数学建模大赛论文范文

数学建模大赛论文范文标题:气候变化与全球粮食安全关联性的数学建模研究摘要:气候变化对全球粮食安全造成了极大的影响,然而,气候变化与全球粮食安全的关联性尚未得到全面的研究和评估。
本研究基于数学建模的方法,探讨了气候变化与全球粮食安全之间的关联性,并提出了相应的策略和措施,以应对气候变化对全球粮食安全的威胁。
1.引言粮食安全是国家乃至全球经济和社会稳定的重要基础。
然而,气候变化给全球粮食生产和供应带来了巨大的挑战。
为了准确评估气候变化对全球粮食安全的影响,本文利用数学建模方法进行研究。
2.数据收集与整理本研究首先收集了过去几十年来的气象数据和全球粮食产量数据,包括气温、降雨量、CO2浓度和粮食作物产量等。
然后,根据这些数据进行整理和统计分析,探索气候变化与全球粮食安全之间的关联性。
3.模型建立基于收集到的数据,我们建立了一个数学模型,通过对气候变化对全球粮食作物的生育期和生长条件的影响进行数值模拟。
模型考虑了温度、降水、CO2浓度等因素对不同作物的生理和生态效应,以及这些因素之间的相互作用。
4.模型验证为了验证建立的模型的准确性和可靠性,本研究以过去几十年的数据为基础,进行了模型的验证。
通过与实际观测数据进行对比,验证了模型的合理性和适用性。
5.结果与讨论通过模拟和分析,我们发现气候变化对全球粮食作物的产量产生了显著影响。
温度升高、降雨分布不均和CO2浓度增加等因素导致了粮食产量的减少和不稳定性增加。
此外,不同地区的气候变化对粮食作物的影响程度也存在差异。
6.策略与措施针对气候变化对全球粮食安全的威胁,本研究提出了一些相应的策略和措施。
首先,应加强全球气象监测和预测能力,提前做出应对措施。
其次,通过技术创新和改良,提高农作物的耐逆性和抗病虫害能力。
此外,鼓励农民采用可持续农业方式,减少对化肥和农药的依赖。
7.结论本研究基于数学建模的方法,全面探讨了气候变化对全球粮食安全的影响,并提出了相应的策略和措施。
全国大学生数学建模竞赛论文格式

数学建模论文格式题目摘要:1. 模型的数学归类(在数学上属于什么类型)2. 建模的思想(思路)3 . 算法思想(求解思路)4. 建模特点(模型优点,建模思想或方法,算法特点,结果检验,灵敏度分析,模型检验…….)5. 主要结果(数值结果,结论)(回答题目所问的全部“问题”)表述:准确、简明、条理清晰、合乎语法、一、问题重述。
一般只需将题目复制过来即可。
二、模型假设基本假设的合理性很重要。
关键性假设不能缺;假设要切合题意(1)根据题目中条件作出假设(2)根据题目中要求作出假设三、模型的建立1.基本模型:1) 首先要有数学模型:数学公式、方案等2) 基本模型,要求完整,正确,简明2.模型要实用,有效,以解决问题有效为原则。
数学建模面临的、要解决的是实际问题,不追求数学上:高(级)、深(刻)、难(度大)能用初等方法解决的、就不用高级方法,能用简单方法解决的,就不用复杂方法,能用被更多人看懂、理解的方法,就不用只能少数人看懂、理解的方法。
3.鼓励创新,但要切实,不要离题搞标新立异数模创新可出现在▲建模中,模型本身,简化的好方法、好策略等,▲模型求解中▲结果表示、分析、检验,模型检验▲推广部分四、模型求解1.需要建立数学命题时:命题叙述要符合数学命题的表述规范,尽可能论证严密。
2.需要说明计算方法或算法的原理、思想、依据、步骤。
若采用现有软件,说明采用此软件的理由,软件名称3.计算过程,中间结果可要可不要的,不要列出。
4.设法算出合理的数值结果。
五、结果分析、检验(1)最终数值结果的正确性或合理性是第一位的;(2)对数值结果或模拟结果进行必要的检验。
结果不正确、不合理、或误差大时,分析原因,对算法、计算方法、或模型进行修正、改进;(3)题目中要求回答的问题,数值结果,结论,须一一列出;(4)列数据问题:考虑是否需要列出多组数据,或额外数据对数据进行比较、分析,为各种方案的提出提供依据;(5)结果表示:要集中,一目了然,直观,便于比较分析▲数值结果表示:精心设计表格;可能的话,用图形图表形式▲求解方案,用图示更好(6)必要时对问题解答,作定性或规律性的讨论。
数学建模论文_范文

数学建模论文_范文标题:基于数学建模的交通拥堵优化方案研究摘要:随着城市化的快速发展和汽车保有量的增加,交通拥堵问题成为了城市生活中的一种普遍现象。
为了有效解决交通拥堵问题,本论文综合运用了数学建模的方法,通过分析交通流量、路网结构和驾驶行为等因素,提出了一种基于信号灯优化的交通拥堵优化方案。
通过该方案的实施,我们可以有效降低交通拥堵状况,提高交通效率。
第一部分:引言交通拥堵问题给城市居民的出行带来了很大的不便,而且还对环境产生了很大的负面影响。
因此,解决交通拥堵问题一直是城市规划师和交通管理者关注的焦点。
本论文旨在通过数学建模的方法,提出一种可行的交通拥堵优化方案。
第二部分:问题分析在交通优化问题中,我们需要考虑的因素很多,包括交通流量、路网结构、驾驶行为等。
在本论文中,我们将主要关注以下几个因素:交通流量的分布特点、路网拓扑结构的复杂性以及驾驶行为对交通拥堵的影响。
第三部分:数学模型的建立在本论文中,我们将采用离散事件系统建模的方法。
首先,我们将城市划分为若干个交通区域,每个区域内部的交通流量将通过数学模型进行描述。
然后,我们将通过网络图的方法建立路网拓扑结构,并分析路网的关键节点和关键路径。
最后,我们将考虑驾驶行为对交通拥堵的影响,通过引入交通流模型来描述驾驶者的行为。
第四部分:模拟结果与优化方案通过对数学模型的求解和仿真,我们得到了模拟结果。
通过对模拟结果的分析,我们可以得出对交通拥堵问题的一些有效解决方案,如增加信号灯数量、优化信号灯的时序和采取智能交通系统等。
通过这些措施,我们可以有效减少交通拥堵情况,提高交通效率。
第五部分:结论在本论文中,我们综合运用了数学建模的方法,通过分析交通流量、路网结构和驾驶行为等因素,提出了一种基于信号灯优化的交通拥堵优化方案。
通过该方案的实施,我们可以有效降低交通拥堵状况,提高交通效率。
未来,我们还可以进一步完善数学模型,考虑更多的因素,以达到更好的交通拥堵优化效果。
数学建模优秀论文(精选范文10篇) 2021

根据实际问题来建立数学模型,对数学模型来进行求解,然后根据结果去解决实际问题,这就是数学建模,本篇文章主要是向大家介绍几篇数学建模优秀论文得范文,希望对有这方面参考得学者有所帮助。
数学建模优秀论文精选范文10篇之第一篇:培养低年段学生数学建模意识得微课教学---------------------------------------------------------------------------------------------------------------------感谢使用本套资料,希望本套资料能带给您一些思维上的灵感和帮助,个人建议您可根据实际情况对内容做适当修改和调整,以符合您自己的风格,不太建议完全照抄照搬哦。
---------------------------------------------------------------------------------------------------------------------摘要:本文阐述了录制微课对培养学生建模意识得必要性和可行性,认为在小学数学教学中,鼓励低年段学生录制微课有积极意义,主张提高小学生建模语言表达能力,通过任务驱动和学生自主录制微课,逐步深入学习建模内容,培养并增强学生得建模意识。
关键词:低年段数学; 微课; 建模意识;当今社会,信息技术高速发展使教学资源高度丰富。
广大教师纷纷探讨如何利用信息技术更好地为教学服务,有效地改进教与学得方式,提高学生学习兴趣。
一、录制微课对培养学生建模意识得必要性和可行性“三年级现象”备受关注,很多人认为小学三年级是道坎,有得学生一、二年级数学成绩很好,到了三年级就断崖式下降。
如果真得出现这种现象,那么学生一、二年级数学成绩好只是表象。
一、二年级是学生初步感知数学得重要时期。
低年段数学知识是基础,对于低年段数学教学包括建模教学必须引起广大教育工作者得重视,让学生从小接受正确得教学模式,真正掌握学习数学得思想方法,避免出现短暂成绩好得现象。
数学建模竞赛论文模板
地震预报方法的评价模型摘要内容:简要论述本文所要解决的问题及意义,解决问题的思路与方法、主要结果(数值结果或结论),建模的创新之处与特色等。
关键词:3-5个。
1、解决什么问题?有什么意义?(要简明)2、对每一问题,用什么方法?(要具体,并写出主要模型)3、得到什么结果?(要具体,列表)4、有什么特色与创新?(要简明)注1:全国竞赛组委会已加大对摘要在评奖中的比重。
注2:摘要通常不超过一页,且单独编页.注3:摘要要能吸引评委的眼球,能表达全文的概貌、要点、特色,要回答题目要求的全部问题。
关键词:3-5个一、问题重述问题重述部分是要保持全文的完整性,要求用自己的语言将赛题重述一遍,可以简单地有删有增地重述,注意:拟解决的问题不得省略.●甲组参赛队从A、B题中任选一题,乙组参赛队从C、D题中任选一题。
●论文(答卷)用白色A4纸,上下左右各留出2.5厘米的页边距。
●论文第一页为承诺书,具体内容和格式见本规范第二页。
●论文第二页为编号专用页,用于赛区和全国评阅前后对论文进行编号,具体内容和格式见本规范第三页。
●论文题目和摘要写在论文第三页上,从第四页开始是论文正文。
●论文从第四页开始编写页码,页码必须位于每页页脚中部,用阿拉伯数字从“1”开始连续编号。
●论文不能有页眉,论文中不能有任何可能显示答题人身份的标志。
●论文题目用3号黑体字、一级标题用4号黑体字,并居中。
论文中其他汉字一律采用小4号黑色宋体字,行距用单倍行距。
●提请大家注意:摘要应该是一份简明扼要的详细摘要(包括关键词),在整篇论文评阅中占有重要权重,请认真书写(注意篇幅不能超过一页,且无需译成英文)。
全国评阅时将首先根据摘要和论文整体结构及概貌对论文优劣进行初步筛选。
●引用别人的成果或其他公开的资料(包括网上查到的资料) 必须按照规定的参考文献的表述方式在正文引用处和参考文献中均明确列出。
正文引用处用方括号标示参考文献的编号,如[1][3]等;引用书籍还必须指出页码。
数学建模全论文写作模板免费版
数学建模全论文写作模板免费版一、引言(1)背景介绍:简要介绍数学建模的背景和意义。
(2)问题陈述:阐述要解决的问题以及其重要性。
(3)文献综述:回顾相关领域的研究成果和方法。
(4)本文的目的和贡献:明确本文的研究目的和研究结果的贡献。
二、问题分析(1)问题拆解:将整体问题分解为若干子问题。
(2)模型假设:对问题进行适度简化并给出所做的假设。
(3)模型建立:建立数学模型,包括变量定义、符号表示和方程等。
三、模型求解(1)模型求解方法选择:选择适合求解该模型的方法。
(2)算法和程序设计:详细描述算法步骤和程序设计过程。
(3)参数估计和敏感性分析:对模型进行参数估计和敏感性分析。
(4)模型求解结果:给出模型得到的数值结果,并进行分析和讨论。
四、模型验证(1)数据处理和准备:对实际数据进行处理和准备。
(2)模型适用性验证:对模型的适用性进行验证,包括模型的精度和鲁棒性等。
(3)与实际情况比较:将模型结果与实际情况进行对比,并进行分析和讨论。
五、模型推广(1)模型推广应用:探讨模型在其他领域的推广应用。
(2)模型改进和扩展:对模型进行改进和扩展,并给出相应的理论分析和实验结果。
六、结论(1)研究总结:总结本文的研究内容和方法。
(2)结果分析:对本文的研究结果进行总结和分析。
(3)研究展望:对未来进一步研究的方向和问题提出展望。
以上是一个标准的数学建模全论文写作模板,你可以根据自己的具体需求和实际情况进行适当修改和调整。
在写作过程中,需要注意逻辑严谨、分析深入、以及对结果的准确评估和合理解释。
同时,注意语言表达清晰、文字流畅,以确保读者能够理解你的研究内容和结论。
希望这个模板对你的论文写作有所帮助!。
数学建模竞赛获奖论文范文
数学建模竞赛获奖论文范文数学的运用越来越广泛了,利用建立数学模型解决实际问题的数学建模活动也应运而生了。
下面是店铺为大家推荐的数学建模论文,供大家参考。
数学建模论文范文篇一:《高中开设数学建模课程的意义与定位》1、高中开设数学建模课程的背景在高中设置的课程中,数学是一门必修课程,也是高考比重最大的一门课程,其最终目标是将数学知识融入现实问题中去,从而解决问题,这也是教育教学的最终目的。
要达到教育教学的最终目的,必须改革高中的数学课程教学,建设高中数学建模课程。
高中数学建模课程可以根据简单的现实问题设置,针对实际生活中的一些简单问题进行适当的假设,建立高中数学知识能解决该问题的数学模型,进而解决该实际问题。
因此,可以说高中数学建模课程是利用所学高中数学知识解决实际问题的课程,是将高中数学知识应用的一门课程,是培养出高技能人才的基础课程。
国家教育部制定的高中数学课程标准,重点强调:"要重视高中学生从自己的生活经验和所学知识中去理解数学、学习数学和应用数学,通过自己的感知和实际操作,掌握基本的高中数学知识和数学逻辑思维能力,让高中生体会到数学的乐趣,对数学产生兴趣,让其感觉到数学就在身边。
"但是现实中高中数学的教学情况堪忧,基本上都是满堂灌的教学,学生不会应用,对数学毫无兴趣可言,主要体现在三个方面。
第一,虽然有很多学生以高分成绩进入高中学习,但是其数学应用的基础非常差,基本上是会生搬硬套,不会解决实际问题,更不会将数学知识联系到生活中来;也有少数学生数学基础差,没有养成好的数学学习习惯,导致产生厌恶数学的情绪,数学基础知识都没学好,更不用说是用数学解决实际问题。
这少数学生就是上课睡觉混日子,根本不去学习,这与高中数学课程的开设目标截然不符。
第二,高中数学课程的教学内容与实际问题严重脱节,高中的数学教材中涉及的数学知识基本上都是计算内容,而不是用来处理和解决生活问题的,更是缺少数学与其他学科(比如化学、物理、生物、地理等)的相互渗透,即便高中数学课程中有一些数学应用的例子,也属于选学内容,教师根本不去讲、不涉及,这样导致高中数学课的教学达不到其教学目的,发挥不出功能。
全国大学生数学建模竞赛A题优秀论文模板
承诺书我们仔细阅读了中国大学生数学建模竞赛的竞赛规则.我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。
我们知道,抄袭别人的成果是违反竞赛规则的, 如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。
我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。
如有违反竞赛规则的行为,我们将受到严肃处理。
我们参赛选择的题号是(从A/B/C/D中选择一项填写):我们的参赛报名号为(如果赛区设置报名号的话):所属学校(请填写完整的全名):参赛队员(打印并签名) :1.2.3.指导教师或指导教师组负责人(打印并签名):日期:年月日赛区评阅编号(由赛区组委会评阅前进行编号):编号专用页赛区评阅编号(由赛区组委会评阅前进行编号):全国统一编号(由赛区组委会送交全国前编号):全国评阅编号(由全国组委会评阅前进行编号):出版社的资源配置摘要资源配置是出版社每一年都需要做的重要决策,它直接关系到该出版社当年的经济利益和长远的发展战略。
由于市场信息(主要是需求和竞争力)的不完全,企业自身的数据收集和积累也不足,资源配置会很复杂。
本文针对出版社向9个分社分配书号问题,提出了以量化分析为基础的书号配制方案,并向出版社提供了有益的发展建议。
首先对数据进行了两个方面的处理分析,分别为教材满意度和市场信息分析。
其中市场信息分析包括2006年单位书号的销售量的预测和对产品强势度的预测。
我们从数据中提取并计算出了A出版社所属的72门课程的单位书号的销售数量和往年的产品市场强势度。
由于年代很少,我们引入了对原始数据的长度要求不大的灰色预测模型GM(1,1),对满意度、强势度、单位书号的销售量,预测出了较合理地数据。
根据问题分析我们建立了以经济效益最大化、满意度最大、强势产品支持力度最大为目标函数的多目标规划模型,在求解过程中,用层次分析法对三个目标赋予权重,并对其一致性进行检验,然后用Lingo软件得到最优解。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学建模全国优秀论文范文随着科学技术特别是信息技术的高速发展,数学建模的应用价值越来越得到众人的重视,数学建模全国优秀论文1:《浅谈数学建模教育的作用与开展策略》数学建模本身是一个创造性的思维过程,它是对数学知识的综合应用,具有较强的创新性,以下是一篇关于数学建模教育开展策略探究的论文范文,欢迎阅读参考。
大学数学具有高度抽象性和概括性等特点,知识本身难度大再加上学时少、内容多等教学现状常常造成学生的学习积极性不高、知识掌握不够透彻、遇到实际问题时束手无策,而数学建模思想能激发学生的学习兴趣,培养学生应用数学的意识,提高其解决实际问题的能力。
数学建模活动为学生构建了一个由数学知识通向实际问题的桥梁,是学生的数学知识和应用能力共同提高的最佳结合方式。
因此在大学数学教育中应加强数学建模教育和活动,让学生积极主动学习建模思想,认真体验和感知建模过程,以此启迪创新意识和创新思维,提高其素质和创新能力,实现向素质教育的转化和深入。
一、数学建模的含义及特点数学建模即抓住问题的本质,抽取影响研究对象的主因素,将其转化为数学问题,利用数学思维、数学逻辑进行分析,借助于数学方法及相关工具进行计算,最后将所得的答案回归实际问题,即模型的检验,这就是数学建模的全过程。
一般来说",数学建模"包含五个阶段。
1.准备阶段主要分析问题背景,已知条件,建模目的等问题。
2.假设阶段做出科学合理的假设,既能简化问题,又能抓住问题的本质。
3.建立阶段从众多影响研究对象的因素中适当地取舍,抽取主因素予以考虑,建立能刻画实际问题本质的数学模型。
4.求解阶段对已建立的数学模型,运用数学方法、数学软件及相关的工具进行求解。
5.验证阶段用实际数据检验模型,如果偏差较大,就要分析假设中某些因素的合理性,修改模型,直至吻合或接近现实。
如果建立的模型经得起实践的检验,那么此模型就是符合实际规律的,能解决实际问题或有效预测未来的,这样的建模就是成功的,得到的模型必被推广应用。
二、加强数学建模教育的作用和意义(一) 加强数学建模教育有助于激发学生学习数学的兴趣,提高数学修养和素质数学建模教育强调如何把实际问题转化为数学问题,进而利用数学及其有关的工具解决这些问题,因此在大学数学的教学活动中融入数学建模思想,鼓励学生参与数学建模实践活动,不但可以使学生学以致用,做到理论联系实际,而且还会使他们感受到数学的生机与活力,激发求知的兴趣和探索的欲望,变被动学习为主动参与其效率就会大为改善。
数学修养和素质自然而然得以培养并提高。
(二)加强数学建模教育有助于提高学生的分析解决问题能力、综合应用能力数学建模问题来源于社会生活的众多领域,在建模过程中,学生首先需要阅读相关的文献资料,然后应用数学思维、数学逻辑及相关知识对实际问题进行深入剖析研究并经过一系列复杂计算,得出反映实际问题的最佳数学模型及模型最优解。
因此通过数学建模活动学生的视野将会得以拓宽,应用意识、解决复杂问题的能力也会得到增强和提高。
(三)加强数学建模教育有助于培养学生的创造性思维和创新能力所谓创造力是指"对已积累的知识和经验进行科学地加工和创造,产生新概念、新知识、新思想的能力,大体上由感知力、记忆力、思考力、想象力四种能力所构成"[1].现今教育界认为,创造力的培养是人才培养的关键,数学建模活动的各个环节无不充满了创造性思维的挑战。
很多不同的实际问题,其数学模型可以是相同或相似的,这就要求学生在建模时触类旁通,挖掘不同事物间的本质,寻找其内在联系。
而对一个具体的建模问题,能否把握其本质转化为数学问题,是完成建模过程的关键所在。
同时建模题材有较大的灵活性,没有统一的标准答案,因此数学建模过程是培养学生创造性思维,提高创新能力的过程[2].(四)加强数学建模教育有助于提高学生科技论文的撰写能力数学建模的结果是以论文形式呈现的,如何将建模思想、建立的模型、最优解及其关键环节的处理在论文中清晰地表述出来,对本科生来说是一个挑战。
经历数学建模全过程的磨练,特别是数模论文的撰写,学生的文字语言、数学表述能力及论文的撰写能力无疑会得到前所未有的提高。
(五)加强数学建模教育有助于增强学生的团结合作精神并提高协调组织能力建模问题通常较复杂,涉及的知识面也很广,因此数学建模实践活动一般效仿正规竞赛的规则,三人为一队在三天内以论文形式完成建模题目。
要较好地完成任务,离不开良好的组织与管理、分工与协作[3].三、开展数学建模教育及活动的具体途径和有效方法(一)开展数学建模课堂教学即在课堂教学中,教师以具体的案例作为主要的教学内容,通过具体问题的建模,介绍建模的过程和思想方法及建模中要注意的问题。
案例教学法的关键在于把握两个重要环节:案例的选取和课堂教学的组织。
教学案例一定要精心选取,才能达到预期的教学效果。
其选取一般要遵循以下几点。
1. 代表性:案例的选取要具有科学性,能拓宽学生的知识面,突出数学建模活动重在培养兴趣提高能力等特点。
2. 原始性:来自媒体的信息,企事业单位的报告,现实生活和各学科中的问题等等,都是数学建模问题原始资料的重要来源。
3. 创新性:案例应注意选取在建模的某些环节上具有挑战性,能激发学生的创造性思维,培养学生的创新精神和提高创造能力。
案例教学的课堂组织,一部分是教师讲授,从实际问题出发,讲清问题的背景、建模的要求和已掌握的信息,介绍如何通过合理的假设和简化建立优化的数学模型。
还要强调如何用求解结果去解释实际现象即检验模型。
另一部分是课堂讨论,让学生自由发言各抒己见并提出新的模型,简介关键环节的处理。
最后教师做出点评,提供一些改进的方向,让学生自己课外独立探索和钻研,这样既突出了教学重点,又给学生留下了进一步思考的空间,既避免了教师的"满堂灌",也活跃了课堂气氛,提高了学生的课堂学习兴趣和积极性,使传授知识变为学习知识、应用知识,真正地达到提高素质和培养能力的教学目的[4].(二)开展数模竞赛的专题培训指导工作建立数学建模竞赛指导团队,分专题实行教师负责制。
每位教师根据自己的专长,负责讲授某一方面的数学建模知识与技巧,并选取相应地建模案例进行剖析。
如离散模型、连续模型、优化模型、微分方程模型、概率模型、统计回归模型及数学软件的使用等。
学生根据自己的薄弱点,选择适合的专题培训班进行学习,以弥补自己的不足。
这种针对性的数模教学,会极大地提高教学效率。
(三)建立数学建模网络课程以现代网络技术为依托,建立数学建模课程网站,内容包括:课程介绍,课程大纲,教师教案,电子课件,教学实验,教学录像,网上答疑等;还可以增加一些有关栏目,如历年国内外数模竞赛介绍,校内竞赛,专家点评,获奖心得交流;同时提供数模学习资源下载如讲义,背景材料,历年国内外竞赛题,优秀论文等。
以此为学生提供良好的自主学习网络平台,实现课堂教学与网络教学的有机结合,达到有效地提高学生数学建模综合应用能力的目的。
[5,6](四)开展校内数学建模竞赛活动完全模拟全国大学生数模竞赛的形式规则:定时公布赛题,三人一组,只能队内讨论,按时提交论文,之后指导教师、参赛同学集中讨论,进一步完善。
笔者负责数学建模竞赛培训近 20 年,多年的实践证明,每进行一次这样的训练,学生在建模思路、建模水平、使用软件能力、论文书写方面就有大幅提高。
多次训练之后,学生的建模水平更是突飞猛进,效果甚佳。
如2008 年我指导的队荣获全国高教社杯大学生数学建模竞赛的最高奖---高教社杯奖,这是此赛设置的唯一一个名额,也是当年从全国(包括香港)院校的约 1 万多个本科参赛队中脱颖而出的。
又如 2014 年我校57 队参加全国大学生数学建模竞赛,43 队获奖,获奖比例达75%,创历年之最。
(五)鼓励学生积极参加全国大学生数学建模竞赛、国际数学建模竞赛全国大学生数学建模竞赛创办于1992 年,每年一届,目前已成为全国高校规模最大的基础性学科竞赛,国际大学生数学建模竞赛是世界上影响范围最大的高水平大学生学术赛事。
参加数学建模大赛可以激励学生学习数学的积极性,提高运用数学及相关工具分析问题解决问题的综合能力,开拓知识面,培养创造精神及合作意识。
四、结束语数学建模本身是一个创造性的思维过程,它是对数学知识的综合应用,具有较强的创新性,而高校数学教学改革的目的之一是要着力培养学生的创造性思维,提高学生的创新能力。
因此应将数学建模思想融入教学活动中,通过不断的数学建模教育和实践培养学生的创新能力和应用能力从而提高学生的基本素质以适应社会发展的要求。
参考文献:[1]辞海[M].上海辞书出版社,2002,1:237.[2]许梅生,章迪平,张少林。
数学建模的认识与实践[J].浙江科技学院学报,2003,15(1):40-42.[3]姜启源,谢金星,一项成功的高等教育改革实践[J].中国高教研究,2011,12:79-83.[4]饶从军,王成。
论高校数学建模教学[J].延边大学学报(自然科学学版),2006,32(3):227-230.[5]段璐灵。
数学建模课程教学改革初探[J].教育与职业,2013,5:140-142.[6]郝鹏鹏。
工程网络课程教学的实践与思考[J]科技视界,2014,29:76-77.数学建模全国优秀论文2:《试论小学数学教学中数学建模的运用》大部分数学知识是抽象的,概念比较枯燥,造成学生学习困难,而数学建模的运用,在很大程度上可以将抽象的数学知识转化成实体模型,让学生更容易理解和学习数学知识。
教师要做的就是了解并掌握数学建模的方法,并且把这种教学方法运用到数学教学中。
对教师来说,发现好的教学方法不是最重要的,而是如何把方法与教学结合起来。
通过对数学建模的长期研究和实践应用,笔者总结了数学建模的概念以及运用策略。
一、数学建模的概念想要更好地运用数学建模,首先要了解什么是数学建模。
可以说,数学建模就像一面镜子,可以使数学抽象的影像产生与之对应的具体化物象。
二、在小学数学教学中运用数学建模的策略1.根据事物之间的共性进行数学建模想要运用数学建模,首先要对建模对象有一定的感知。
教师要创造有利的条件,促使学生感知不同事物之间的共性,然后进行数学建模。
教师应做好建模前的指导工作,为学生的数学建模做好铺垫,而学生要学会尝试自己去发现事物的共性,争取将事物的共性完美地运用到数学建模中。
在建模过程中,教师要引导学生把新知识和旧知识结合起来的作用,将原来学习中发现的好方法运用到新知识的学习、新数学模型的构建中,降低新的数学建模的难度,提高学生数学建模的成功率。
如在教学《图形面积》时,教师可以利用不同的图形模板,让学生了解不同图形的面积构成,寻找不同图形面积的差异以及图形之间的共性。
这样直观地向学生展示图形的变化,可以加深学生对知识的理解,提高学生的学习效率。