数学建模统计模型修订稿
数学建模万能模板8模型的进一步讨论和改进

七、模型改进方向改进方向一:对于问题二的求解,我们提出了另外一个求解方法。
在问题二中,若全力造房,即每月建房33套,总建房数为33⨯6=198(套),比预计新建房18749236=-多建11套。
我们设在i 月份中的建房数目比33少i X 套,则有1161=∑=i i X结合前面模型建立部分的约束条件,同样可以求出最优月建造计划。
改进方向二:我们的模型是线性规划模型,本题涉及到六个月的建造计划,我们在假设的时候,将一个月作为一个建造周期。
我们可以从另外一个角度考虑,这实际上也是一个多阶段规划问题。
多阶段规划属于离散动态优化问题,动态规划模型是解决这类问题的有效方法。
我们要解决的建造计划问题就是这类问题,可以将它转化为典型的动态优化模型—最短路问题。
最短路问题 为了更好的解决这类问题,我们将6个月的建房计划问题化为最短路问题,最短路线问题有这样的特点,如果最短线路在第K 站通过点,则这一线路在由出发到达终点的那一部分线路,对于从点到达终点的所有可能选择的不同线路来说,必定也是距离最短的。
最短线路问题的这一特性启示我们:以一个月为一个建造周期,从最后一个周期向前逐步推进,求出各月到最后的最短路线,最终求得从1月到6月的最短路线。
八、模型的进一步讨论和改进8.1 回归模型对教材满意度权重的确定在本文中,我们考虑调查问卷中:教材内容新颖,保持学术前沿水平(Q2l1);教材的作者是相应领域的权威,所以课程理论基础扎实(Q2l2);教材印刷及排版质量(Q2l3);教材价格(Q2l4)四项指标在材材满意度中的权重,为了问题的简化,我们人为取Q211的权重系数为0.1,Q212的权重系数为0.2,Q213的权重系数0.2,Q214的权重系数为0.5。
这样的权重没有牢固的理论背影及依据,因此,基于教材满意度的调查数据,建立一个有效的教材满意度回归模型,实现教材满意度影响因素Q211,Q212,Q213,Q214的合理匹配,对于挖掘教材强势点,提高新教材出版的针对性具有十分重要的意义。
数学建模中的概率统计模型1

残差及其置信区间可以用rcoplot(r,rint)画图。
3、将变量t、x、y的数据保存在文件data中。 save data t x y 4、进行统计分析时,调用数据文件data中的数 据。 load data 方法2 1、输入矩阵:
data=[78,79,80,81,82,83,84,85,86,87; 23.8,27.6,31.6,32.4,33.7,34.9,43.2,52.8,63.8,73.4; 41.4,51.8,61.7,67.9,68.7,77.5,95.9,137.4,155.0,175.0]
线性模型 (Y , X , I n ) 考虑的主要问题是: (1) 用试验值(样本值)对未知参数 和 2 作点估计和假设检验,从而建立 y 与
x1 , x 2 ,..., x k 之间的数量关系;
(2)在 x1 x01 , x2 x02 ,..., xk x0 k , 处对 y 的值作预测与控制,即对 y 作区间估计.
1 ( x0 x ) 2 ˆ 1 d n t (n 2) n Lxx 2
Q ˆ n2
2
设y在某个区间(y1, y2)取值时, 应如何控制x 的取值范围, 这样的问题称为控制问题。
可线性化的一元非线性回归 需要配曲线,配曲线的一般方法是: • 先对两个变量x和y 作n次试验观察得画出 散点图。 • 根据散点图确定须配曲线的类型。 • 由n对试验数据确定每一类曲线的未知参数 a和b采用的方法是通过变量代换把非线性 回归化成线性回归,即采用非线性回归线 性化的方法。
数学建模+建立统计模型进行预测课件-2024-2025学年高二下学期数学人教A版(2019)

年个人消费支出总额x/万元
1
1.5
2
2.5
3
恩格尔系数y
0.9
0.7
0.5
0.3
0.1
若y与x之间有线性相关关系,某人年个人消费支出总额为2.6万元,据此估
计其恩格尔系数为
.
5
5
=1
i=1
参考数据: ∑ xiyi=4, ∑ 2 =22.5.
^
参考公式:对于一组数据(x1,y1),(x2,y2),(x3,y3),…,(xn,yn),其经验回归直线 =
现年宣传费x(单位:万元)和年销售量y(单位:t)具有线性相关关系,并对数据作了
初步处理,得到下面的一些统计量的值.
x/万元
y/t
2
2.5
4
4
5
4.5
3
3
6
6
(1)根据表中数据建立年销售量y关于年宣传费x的经验回归方程;
(2)已知这种产品的年利润z与x,y的关系为z=y-0.05x2-1.85,根据(1)中的结果回答
5
=
则样本点的中心坐标为
19.65+m
,
5
19.65+m
4,
5
,
19.65+
代入y=1.03x+1.13,得 5 =1.03×4+1.13,
^
解得 m=6.6.故选 B.
答案:B
2.(多选题)下列说法正确的是(
)
附:χ2独立性检验中常用的小概率值和相应的临界值
α
xα
0.1
2.706
0.05
3.841
直线附近,并且在逐步上升,
所以可用线性回归模型拟合y与x的关系.
数学建模统计模型教学教案

数学建模统计模型教学教案一、教学内容本节课的教学内容选自人教版高中数学选修23第二章第四节“回归分析”和第三章第三节“独立性检验”。
具体内容包括:1. 回归直线方程的求法及应用;2. 相关系数的概念及其应用;3. 独立性检验的方法及其应用。
二、教学目标1. 理解回归直线方程、相关系数的概念,学会求回归直线方程和计算相关系数;2. 掌握独立性检验的方法,并能运用独立性检验解决实际问题;3. 培养学生的数据分析能力、数学建模能力和解决实际问题的能力。
三、教学难点与重点1. 教学难点:回归直线方程的求法、相关系数的计算、独立性检验的方法及应用;2. 教学重点:回归直线方程的求法、相关系数的计算、独立性检验的方法。
四、教具与学具准备1. 教具:多媒体教学设备、黑板、粉笔;2. 学具:教材、笔记本、计算器。
五、教学过程1. 实践情景引入:以“调查某班级学生的身高和体重关系”为例,引导学生思考如何利用数学模型描述身高和体重之间的关系;2. 讲解回归直线方程的求法:通过示例,讲解最小二乘法求回归直线方程的步骤,让学生掌握求回归直线方程的方法;3. 讲解相关系数的概念及计算方法:解释相关系数的概念,演示如何利用计算器计算相关系数,让学生理解相关系数的作用;4. 应用练习:让学生运用回归直线方程和相关系数解决实际问题,如预测某学生的体重;5. 讲解独立性检验的方法:通过示例,讲解独立性检验的步骤,让学生掌握独立性检验的方法;6. 应用练习:让学生运用独立性检验解决实际问题,如判断“性别与购买意愿是否独立”;六、板书设计1. 回归直线方程的求法;2. 相关系数的概念及其计算方法;3. 独立性检验的方法。
七、作业设计1. 求下列数据的回归直线方程:身高(x):165, 170, 172, 175, 180体重(y):60, 62, 64, 66, 682. 计算下列数据的相关系数:身高(x):165, 170, 172, 175, 180体重(y):60, 62, 64, 66, 683. 某班级有男生20人,女生15人,男生中有12人购买了某商品,女生中有8人购买了该商品。
统计模型在数学建模的应用

对因变量的影响是否显著.
• 模型改进, 如增添二次项、交互项等. • 对因变量进行预测.
2 软件开发人员的薪金
建立模型研究薪金与资历、管理责任、教育程度的关系 . 分析人事策略的合理性,作为新聘用人员薪金的参考. 46名软件开发人员的档案资料
编 号 01 02 03 04 薪金 13876 11608 18701 11283 资 历 1 1 1 1 管 理 1 0 1 0 教 育 1 3 3 2 编 号 42 43 44 45 46 薪金 27837 18838 17483 19207 19346 资 历 16 16 16 17 20 管 理 1 0 0 0 0 教 育 2 2 1 2 1
销售 周期 1 2
29 30
3.80 3.70
3.85 4.25
5.80 6.80
0.05 0.55
7.93 9.26
基本模型
y ~公司牙膏销售量 x1~其他厂家与本公司价格差 x2~公司广告费用
y 10
9.5 9 8.5 8 7.5 7 -0.2 0 0.2 0.4 0.6
e 与资历x1的关系
2000 1000
2000 1000 0 -1000
0
-1000
-2000
0
5
10
15
20
-2000
1
2
3
4
5
6
残差大概分成3个水平, 6种管理—教育组合混在 一起,未正确反映.
残差全为正,或全为负,管 理—教育组合处理不当. 应在模型中增加管理x2与 教育x3, x4的交互项 .
1 牙膏的销售量
问 题
建立牙膏销售量与价格、广告投入之间的模型; 预测在不同价格和广告费用下的牙膏销售量. 收集了30个销售周期本公司牙膏销售量、价格、 广告费用,及同期其他厂家同类牙膏的平均售价 .
数学建模 2统计模型

数学建模论文题目:一个医药公司的新药研究部门为了掌握一种新止痛剂的疗效,设计了一个药物试验,给患有同种疾病的病人使用这种新止痛剂的以下4个剂量中的某一个:2 g,5 g,7 g和10 g,并记录每个病人病痛明显减轻的时间(以分钟计). 为了解新药的疗效与病人性别和血压有什么关系,试验过程中研究人员把病人按性别及血压的低、中、高三档平均分配来进行测试. 通过比较每个病人血压的历史数据,从低到高分成3组,分别记作0.25,0.50和0.75. 实验结束后,公司的记录结果见下表(性别以0表示女,1表示男).请你为该公司建立一个数学模型,根据病人用药的剂量、性别和血压组别,预测出服药后病痛明显减轻的时间.病人序号病痛减轻时间/min用药剂量/g性别血压组别1 352 0 0.252 43 2 0 0.503 55 2 0 0.754 47 2 1 0.255 43 2 1 0.506 57 2 1 0.757 26 5 0 0.258 27 5 0 0.509 28 5 0 0.7510 29 5 1 0.2511 22 5 1 0.5012 29 5 1 0.7513 19 7 0 0.2514 11 7 0 0.5015 14 7 0 0.7516 23 7 1 0.2517 20 7 1 0.5018 22 7 1 0.7519 13 10 0 0.2520 8 10 0 0.5021 3 10 0 0.7522 27 10 1 0.2523 26 10 1 0.5024 5 10 1 0.75一、摘要在农某医药公司为了掌握一种新止痛药的疗效,设计了一个药物实验,通过观测病人性别、血压和用药剂量与病痛时间的关系,预测服药后病痛明显减轻的时间。
我们运用数学统计工具m i n i t a b软件,对用药剂量,性别和血压组别与病痛减轻时间之间的数据进行深层次地处理并加以讨论概率值P (是否<0.05)和拟合度R -S q 的值是否更大(越大,说明模型越好)。
数学建模统计模型教学教案

数学建模统计模型教学教案一、教学内容本节课选自高中数学教材《数学建模与统计》第十章,具体内容为第一节的统计模型。
详细内容包括描述统计和推断统计的基础知识,重点探讨如何构建线性回归模型,以及如何运用该模型进行数据的预测和分析。
二、教学目标1. 理解并掌握描述统计和推断统计的基本概念和方法;2. 学会构建线性回归模型,并运用模型对实际问题进行预测和分析;3. 培养学生的数据分析能力和解决实际问题的能力。
三、教学难点与重点教学难点:线性回归模型的构建和应用。
教学重点:描述统计和推断统计的基本概念,以及线性回归模型的构建和应用。
四、教具与学具准备1. 教具:多媒体教学设备、黑板、粉笔;2. 学具:教材、练习本、计算器。
五、教学过程1. 引入:通过展示一组实际数据,引出描述统计和推断统计的概念,激发学生的兴趣。
2. 知识讲解:a. 简要介绍描述统计和推断统计的基本概念;b. 详细讲解线性回归模型的构建方法和应用。
3. 例题讲解:a. 演示如何构建线性回归模型;b. 结合实际案例,展示如何运用线性回归模型进行预测和分析。
4. 随堂练习:a. 让学生独立完成一组实际数据的描述统计分析;b. 引导学生构建线性回归模型,并对数据进行预测和分析。
六、板书设计1. 描述统计和推断统计的概念;2. 线性回归模型的构建方法;3. 线性回归模型的应用案例;4. 随堂练习的解答。
七、作业设计1. 作业题目:a. 对一组实际数据进行描述统计分析;b. 根据给定的数据,构建线性回归模型,并进行预测和分析。
2. 答案:见附件。
八、课后反思及拓展延伸1. 反思:本节课学生对描述统计和推断统计的概念掌握情况,以及对线性回归模型构建和应用的理解程度。
2. 拓展延伸:a. 探讨其他统计模型(如非线性回归、时间序列分析等)在实际问题中的应用;b. 引导学生参加数学建模竞赛,提高解决实际问题的能力。
重点和难点解析1. 线性回归模型的构建方法;2. 线性回归模型在实际问题中的应用;3. 课后作业的设计与答案。
《数学建模统计模型》PPT课件

0.11 123 139 98 115
1.10 207 200 160 /
16
分 ❖ 酶促反应的基本性质
析
底物浓度较小时,反应速度大致与浓度成正比;
底物浓度很大、渐进饱和时,反应速度趋于固定值
基本模型
y
Michael应的速度 待定系数 =(1 , 2)
y f (x, ) 1x
建立实际回归模型的过程
• 实际问题 • 设置指标变量
– 解释变量的重要性;不相关性;用相近的变量代替或几个指标 复合;个数适当——这个过程需反复试算
• 收集整理数据 – 时间序列数据:随机误差项的序列相关,如人们的消费习惯 – 横截面数据:随机误差项的异方差性,如居民收入与消费 – 样本容量的个数应比解释变量个数多 – 缺失值,异常值处理
• 30个销售周期数据: – 销售量、价格、广告费用、同类产品均价
销售周期 公司价 (元) 它厂价 (元) 广告(百万元)
1
3.85
3.80
5.50
2
3.75
4.00
6.75
…
…
…
…
29
3.80
3.85
5.80
30
3.70
4.25
6.80
价差(元) -0.05 0.25 … 0.05 0.55
销售量(百万支) 7.38 8.51 … 7.93 9.26
1 j k m
quadratic(完全二次): y 0 1 x1 m xm jk x j xk
1 j,k m
12
完全二次多项式模型
y 0 1x1 2 x2 3 x1x2 4 x12 5 x22
MATLAB中有命令rstool直接求解
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学建模统计模型 Document number【SA80SAB-SAA9SYT-SAATC-SA6UT-SA18】数学建模论文题目:一个医药公司的新药研究部门为了掌握一种新止痛剂的疗效,设计了一个药物试验,给患有同种疾病的病人使用这种新止痛剂的以下4个剂量中的某一个:2 g,5 g,7 g和10 g,并记录每个病人病痛明显减轻的时间(以分钟计). 为了解新药的疗效与病人性别和血压有什么关系,试验过程中研究人员把病人按性别及血压的低、中、高三档平均分配来进行测试. 通过比较每个病人血压的历史数据,从低到高分成3组,分别记作,和. 实验结束后,公司的记录结果见下表(性别以0表示女,1表示男).请你为该公司建立一个数学模型,根据病人用药的剂量、性别和血压组别,预测出服药后病痛明显减轻的时间.一、摘要在农某医药公司为了掌握一种新止痛药的疗效,设计了一个药物实验,通过观测病人性别、血压和用药剂量与病痛时间的关系,预测服药后病痛明显减轻的时间。
我们运用数学统计工具m i n i t a b软件,对用药剂量,性别和血压组别与病痛减轻时间之间的数据进行深层次地处理并加以讨论概率值P(是否<)和拟合度R-S q的值是否更大(越大,说明模型越好)。
首先,假设用药剂量、性别和血压组别与病痛减轻时间之间具有线性关系,我们建立了模型Ⅰ。
对模型Ⅰ用m i n i t a b软件进行回归分析,结果偏差较大,说明不是单纯的线性关系,然后对不同性别分开讨论,增加血压和用药剂量的交叉项,我们在模型Ⅰ的基础上建立了模型Ⅱ,用m i n i t a b软件进行回归分析后,用药剂量对病痛减轻时间不显着,于是我们有引进了用药剂量的平方项,改进模型Ⅱ建立了模型Ⅲ,用m i n i t a b软件进行回归分析后,结果合理。
最终确定了女性病人服药后病痛减轻时间与用药剂量、性别和血压组别的关系模型:Y=1x 3x1x3x21x对模型Ⅱ和模型Ⅲ关于男性病人用m i n i t a b软件进行回归分析,结果偏差依然较大,于是改进模型Ⅲ建立了模型Ⅳ,用m i n i t a b软件进行回归分析后,结果合理。
最终确定了男性病人服药后病痛减轻时间与用药剂量、性别和血压组别的关系模型:Y=1x1x 3x21x关键词止痛剂药剂量性别病痛减轻时间二、问题的提出一个医药公司的新药研究部门为了掌握一种新止痛剂的疗效,设计了一个药物实验,给患有同种病痛的病人使用这种新止痛剂的一下4个剂量中的某一个:2g,5g,7g和10g,并记录每个病人病痛明显减轻的时间(以分钟计)。
为了了解新药的疗效与病人性别和血压有什么关系,实验过程中研究人员把病人按性别及血压的低、中、高三档平均分配来进行测试。
通过比较给个病人血压的历史数据,从低到高分成三组,分别记作,和.实验结束后,公司的记录结果附录1-1表(性别以0表示,1表示男)。
现在为公司建立一个模型,根据病人用药的剂量、性别和血组别,预测出服药后病痛明显减轻的时间。
三、问题的分析假定每个患该种病的程度相差不大,即病情基本相同,根据现实,用药量与病痛减轻时间会有一定的关系,一般,药用量越高,病痛减轻时间变得越快;而更一般,男性身体素质相对于女性来说比较强壮,病痛减轻的时间也会跟性别有关系,正常而言,身体素质越好,病痛减轻时间越快;另一个,一个人的血压组别的高地也会影响到他的病痛减轻时间的快慢。
对1-1表格中的数据进行相关分析如下:相关分析:用药剂量(g),血压组别,知用药剂量(g)和血压组别的P e a r s o n相关系数=P值=;由此,可以看出用药剂量与血压组别没有关系,如图1-1所示1-1图相关分析:用药剂量(g),性别,知用药剂量(g)和性别的P e a r s o n相关系数=P值=;由此可以看出用药剂量与性别相互独立。
如1-2图所示1-2图根据所给数据可分别作出病痛减轻时间与用药剂血压组别的散点图量,性别及如下:图图图四、模型假设与符号假设假设病痛减轻时间只与用药剂量、性别和血压组别有关,不受其他因素的影响,由以上散点图(图图)可以作出如下模型假设 模型Ⅰ:εββββ++++=3322110x x x Y符号说明1、Y 为病痛减轻时间量,单位(m i n );2、1x 表示用药剂量 单位(g );3、2x 表示性别 ;4、3x 表示血压组别;5、 S 表示标准差;6、 R -S q 表示线性拟合度。
五、模型的建立下面用m i n i t a b 软件对分别对残差对用药剂量、残差对性别和残差对血压组别进行绘图,到出对应的图、图和图,并对这些图进行分析,分别可以看出残差对用药剂量是正常的、残差对性别是正常的、残差对血压组别正常的。
图 图 图由~图分析,可以用药剂量和血压组别的乘积表示对病痛减轻时间的交互式影响,性别对病疼减轻时间有显着影响,因此可以对男性和女性分开讨论,得到如下模型:模型Ⅱ εββββ++++=31433110x x x x Y(1)对女性的进行分析如下:回归分析:病痛减轻时间(m i n)与用药剂量(g),血压组别,用药剂量及血压组别回归方程为病痛减轻时间(m i n)=+用药剂量(g)+血压组别-用药剂量及血压组别交叉项即Y=+1x+3x1x3x自变量系数系数标准误 T P常量用药剂量(g)血压组别用药剂量及血压组别S = R-Sq = % R-Sq(调整) = %方差分析来源自由度 SS MS F P回归 3残差误差 8合计 11来源自由度 Seq SS用药剂量(g) 1血压组别 1用药剂量及血压组别 1异常观测值用药剂病痛减轻时拟合值标准化观测值量(g)间(min)拟合值标准误残差残差8R表示此观测值含有大的标准化残差因为用药剂量p值为,所以对病痛减轻时间影响不显着,不妨引进用药剂量的平方项加以讨论,因此模型进一步改进为:模型Ⅲ回归分析:病痛减轻时间(m i n)与用药剂量(g),血压组别,用药剂量及血压组别,用药剂量的平方回归方程为:病痛减轻时间(min) = - 用药剂量(g) + 血压组别- 用药剂量及血压组别 + 用药剂量的平方即 Y=1x3x31x x21x自变量系数系数标准误 T P常量用药剂量(g)血压组别用药剂量及血压组别用药剂量的平方S = R-Sq = % R-Sq(调整) = %方差分析来源自由度 SS MS F P回归 4残差误差 7合计 11来源自由度 Seq SS用药剂量(g) 1血压组别 1用药剂量及血压组别 1用药剂量的平方 1由拟合值R-S q=%可以确定,该模型比较合理。
(2)、对男性用模型Ⅱ进行分析,分析结果如下:回归分析:病痛减轻时间(m i n)与用药剂量(g),血压组别,用药剂量及血压组别回归方程为:病痛减轻时间(min) = + 用药剂量(g) + 血压组别- 用药剂量及血压组别即 Y=+1x+3x31x x系数标自变量系数准误 T P常量用药剂量(g)血压组别用药剂量及血压组别S = R-Sq = % R-Sq(调整) = %方差分析来源自由度 SS MS F P回归 3残差误差 8合计 11来源 自由度 Seq SS用药剂量(g ) 1血压组别 1用药剂量及血压组别 1 因为用药剂量p 值为,所以对病痛减轻时间影响不显着, 不妨引进用药剂量的平方项加以讨论,因此可以利用模型Ⅲ进行分析:回归分析: 病痛减轻时间(m i n ) 与 用药剂量(g ), 血压组别, 用药剂量及血压组别, 用药剂量的平方回归方程为:病痛减轻时间(min ) = - 用药剂量(g ) + 血压组别- 用药剂量及血压组别 + 用药剂量的平方即 Y=1x 3x 31x x 21x 自变量 系数 系数标准误 T P常量用药剂量(g )血压组别用药剂量及血压组别用药剂量的平方S = R-Sq = % R-Sq (调整) = %方差分析来源 自由度 SS MS F P回归 4残差误差 7合计 11用药剂量(g) 1血压组别 1用药剂量及血压组别 1用药剂量的平方 1由此,可以看出,在男性方面血压组别的P=,对病痛减轻时间不显着,不妨取消血压组别这个单变量,将模型进一步改进。
模型Ⅳ回归分析:病痛减轻时间(m i n)与用药剂量(g),性别,用药剂量及血压组别,用药剂量的平方*性别(实质上)是常量*性别已从方程中删除。
回归方程为:病痛减轻时间(min) = - 用药剂量(g) + 用药剂量及血压组别+ 用药剂量的平方Y=1x31x x21x自变量系数系数标准误 T P常量用药剂量(g)用药剂量及血压组别用药剂量的平方S = R-Sq = % R-Sq(调整) = %方差分析来源自由度 SS MS F P回归 3残差误差 8合计 11用药剂量(g) 1用药剂量及血压组别 1用药剂量的平方 1异常观测值用药剂病痛减轻时拟合值标准化观测值量(g)间(min)拟合值标准误残差残差12R表示此观测值含有大的标准化残差*注*列中的所有值相同。
用药剂量及血压组别的P=,但是R-S q=%R-S q(调整)=%,说明这个模型改进更加合理。
六、模型的优缺点与改进方向通过回归模型的建立及不断改进过程当中,得知该公司的新药的疗效对于男性和女性的作用程度不一样。
该模型是针对该公司的新药进行建模,不具有普遍性。
七、参考文献1、姜启源,谢金星,叶俊.数学模型(第三版).高等教育出版社,(2012重印)2、马林,何桢.六西格玛管理(第二版).中国人民大学出版社,(重印)3、吴翊,李永乐,胡庆军.应用数理统计.国防科技大学出版社,(重印)八、附录部分。