1.2.1.1任意角三角函数

合集下载

高一数学任意角的三角函数

高一数学任意角的三角函数
第一课时
1.2 任意角的三角函数 1.2.1 任意角的三角函数
202X
个人报告总结模板
角是由平面内一条射线绕其端点从一个位置旋转到另一个位置所组成的图形.
按逆时针方向旋转形成的角为正角,按顺时针方向旋转形成的角为负角,没有作任何旋转形成的角为零角.
角的大小是任意的.
01
03
02
问题提出
1.角的概念是由几个要素构成的,具体怎样理解?
x
y
o
P(a,b)
α
r
A
B
思考3:为了使sinα,cosα的表示式更简单,你认为点P的位置选在何处最好?此时,sinα,cosα分别等于什么?
x
y
o
P(a,b)
α
1
思考4:在直角坐标系中,以原点O为圆心,以单位长度为半径的圆称为单位圆.对于角α的终边上一点P,要使|OP|=1,点P的位置如何确定?
2.什么叫做1弧度的角?度与弧度是怎样换算的?
(1)等于半径长的圆弧所对的圆心角叫做1弧度的角.
3. 与角α终边相同的角的一般表达式是什么?
β=α+k·360°(k∈Z)或
(2)180°= rad.
4.如图,在直角三角形ABC中,sinα,cosα,tanα分别叫做角α的正弦、余弦和正切,它们的值分别等于什么? A B C α 5.当角α不是锐角时,我们必须对sinα,cosα,tanα的值进行推广,以适应任意角的需要.
思考3:综上分析,各三角函数在各个象限的取值符号如下表: + +
三角函数
第一象限
第二象限
第三象限
第四象限
+
+
+
+

高中数学三角函数121任意角的三角函数(一)PPT课件

高中数学三角函数121任意角的三角函数(一)PPT课件

6
6 62
3.已知角α的终边与单位圆的交点 P( 5 , 2 5 ),则
55
sinα+cosα= ( )
A . 5 B .5 C .25 D . 25
5
5
5
5
【解析】选B.因为 siny25,cosx5,
5
5
所以 sincos2555.
55 5
4.若角α终边上一点坐标为(-5,12),则cosα=
1.2 任意角的三角函数 1.2.1 任意角的三角函数(一)
整体概述
概况一
点击此处输入相关文本内容 点击此处输入相关文本内容
概况二
点击此处输入相关文本内容 点击此处输入相关文本内容
概况三
点击此处输入相关文本内容 点击此处输入相关文本内容
【自主预习】 主题1:任意角的三角函数的定义 使锐角α的顶点与原点O重合,始边与x轴的非负半轴 重合,在终边上任取一点P,作PM⊥x轴于M,设P(x,y), |OP|=r,据此回答下列问题:
主题2:三角函数值的符号法则及诱导公式一
1.设P(x,y)为α终边上任意一点(异于原点),记r=|OP|,
则 sin y,c o s x,ta n y(x 0 ),由此可知任意角α
r
r
x
的三角函数值的符号与谁有关?
提示:角α的三角函数值的符号与点P的坐标x,y的正负
有关.
2.取角α分别为30°,390°,-330°,它们的三角函数值是 什么关系?为什么? 用文字语言描述:它们的同名三角函数值相等,因为三 个角的终边相同.
2.已知角α,则角α的三角函数值符号确定,反之若角 α的某个三角函数值符号确定,则角α的终边所在象限 确定吗? 提示:不一定,若已知角α的一个三角函数值的符号,则 角α所在的象限可能有两种情况,若已知角α的两个三 角函数值的符号,则角α所在的象限就唯一确定.

第一章 1.2 1.2.1 第一课时 三角函数的定义

第一章  1.2  1.2.1  第一课时  三角函数的定义

任意角的三角函数
三角函数的定义
返回
返回
[提出问题] 使锐角 α 的顶点与原点 O 重合, 始 边与 x 轴的非负半轴重合,在终边上任 取一点 P,PM⊥x 轴于 M,设 P(x,y), |OP|=r. 问题 1:角 α 的正弦、余弦、正切分别等于什么? y x y 提示:sin α=r,cos α= r ,tan α=x.
返回
[活学活用] 若 sin 2α>0,且 cos α<0,试确定 α 终边所在的象限.
解:因为 sin 2α>0,所以 2kπ<2α<2kπ+π(k∈Z), π 所以 kπ<α<kπ+ (k∈Z). 2 当 k 为偶数时,α 是第一象限角;当 k 为奇数时,α 为 第三象限角.所以 α 为第一或第三象限角. 又因为 cos α<0,所以 α 为第三象限角.
返回
返回
[活学活用] 2 已知角 α 的终边上一点 P(- 3,y)(y≠0),且 sin α= y, 4 求 cos α,tan α 的值.
解:由题意,得 r= 3+y2. 由三角函数定义, y y 2 得 sin α=r= = y. 3+y2 4 ∵y≠0,∴y= 5或 y=- 5.
返回
- 3 6 ∴当 y= 5时,cos α= =- , 4 3+5 5 15 tan α= =- ; 3 - 3 6 当 y=- 5时,cos α=- , 4 - 5 15 tan α= = . 3 - 3
2 2
3; 在第四象限取直线上的点(1, 3), r= 12+- 32=2, - 则 3 1 所以 sin α=- ,cos α= ,tan α=- 3. 2 2
返回
[类题通法] 利用三角函数的定义求值的策略 (1)已知角 α 的终边在直线上求 α 的三角函数值时,常用 的解题方法有以下两种: 法一:先利用直线与单位圆相交,求出交点坐标,然后利 用三角函数的定义求出相应的三角函数值. 法二: 注意到角的终边为射线, 所以应分两种情况来处理, 取 射 线 上任 一 点 坐标 (a, b), 则 对 应 角 的正 弦值 sin α= b a b ,余弦值 cos α= 2 ,正切值 tan α=a. a2+b2 a +b2 (2)当角的终边上的点的坐标以参数的形式给出时,要根 据问题的实际情况对参数进行分类讨论.

1.2.1任意角的三角函数

1.2.1任意角的三角函数

显明教育学生课后作业1.以下四个命题中,正确的是( )A .在定义域内,只有终边相同的角的三角函数值才相等B .{α|α=k π+6π,k ∈Z }≠{β|β=-k π+6π,k ∈Z } C .若α是第二象限的角,则sin2α<0 D .第四象限的角可表示为{α|2k π+23π<α<2k π,k ∈Z } 2.若角α的终边过点(-3,-2),则( ) A .sin α tan α>0 B .cos α tan α>0 C .sin α cos α>0D .sin α cot α>0 3.角α的终边上有一点P (a ,a ),a ∈R ,且a ≠0,则sin α的值是( )A .22B .-22C .±22D .14.α是第二象限角,其终边上一点P (x ,5),且cos α=42x ,则sin α的值为( )A .410B .46C .42D .-4105.使lg (cos θ·tan θ)有意义的角θ是( )A .第一象限角B .第二象限角C .第一或第二象限角D .第一、二象限角或终边在y 轴上6.设角α是第二象限角,且|cos 2α|=-cos 2α,则角2α是( )A .第一象限角B .第二象限角C .第三象限角D .第四象限角 7.已知角α的终边落在直线y =3x 上,则sin α=________.8.已知P (-3,y )为角α的终边上一点,且sin α=1313,那么y 的值等于________. 9.已知锐角α终边上一点P (1,3),则α的弧度数为________.10.(1)sin 49πtan 37π_________ 11.已知角α的终边过P (-3 ,4),求α的三种三角函数值12.已知角β的终边经过点P (x ,-3)(x >0).且cos β=2x ,求sin β、cos β、tan β的值.显明教育学生预习内容一、复习引入:1.任意角的三角函数定义:设角α是一个任意角,α终边上任意一点(,)P x y ,它与原点的距离为(0)r r ==>,那么:sin y r α=,cos x r α=,tan y xα=, 2.当角α分别在不同的象限时,sin α、cos α、tan α的符号分别是怎样的?3.背景:如果53sin =A ,A 为第一象限的角,如何求角A 的其它三角函数值;4.问题:由于α的三角函数都是由x 、y 、r 表示的,则角α的三个三角函数之间有什么关系?二、讲解新课:(一)同角三角函数的基本关系式:(板书课题:同角的三角函数的基本关系)1. 由三角函数的定义,我们可以得到以下关系:(1)商数关系: (2)平方关系: 说明:①注意“同角”,至于角的形式无关重要,如22sin 4cos 41αα+=等;②注意这些关系式都是对于使它们有意义的角而言的,如αααcos sin tan =),(Z k ∈α ③对这些关系式不仅要牢固掌握,还要能灵活运用(正用、反用、变形用),如:cos α= 22sin 1cos αα=-, sin cos tan ααα=等。

高一数学新课标必修4第一章基本初等函数全套教案第一章 三角函数

高一数学新课标必修4第一章基本初等函数全套教案第一章  三角函数

第一章三角函数第一节任意角、弧度1.1.1 任意角教学目标:1.理解引入大于360°角和负角的意义.2.理解并掌握正、负、零角的定义.3.掌握终边相同角的表示法.4.理解象限角的概念、意义及其表示方法.教学重点:象限角的概念、意义及其表示方法.教学难点:1.理解并掌握正、负、零角的定义.2.掌握终边相同角的表示法.教学过程:第一课时任意角(PPT)教后记:本节课学习了正角、负角和零角的概念,象限角的概念,要注意如果角的终边在坐标轴上,就认为这个角不属于任何象限,本节课的重点是学习终边相同的角的表示法.数形结合思想、运动变化观点都是学习本课内容的重要思想方法.1.1.2 弧度制教学目标:1.使学生理解弧度的意义,能正确地进行弧度与角度的换算,熟记特殊角的弧度数;2.了解角的集合与实数集R之间可以建立起一一对应的关系;3.掌握弧度制下的弧长公式,会利用弧度解决某些简单的实际问题;4.在理解弧度制定义的基础上,领会弧度制定义的合理性;5.通过学习,理解并认识角度制与弧度制都是对角度量的方法,二者是辩证统一的. 教学重点:理解弧度制引入的必要性,掌握定义,能熟练地进行角度制与弧度制的互化.教学难点:弧度制定义的理解教学过程:第二课时弧度制(PPT)第三课时任意角、弧度制(PPT)(习题课)教后记:角的概念推广之后,无论用角度制还是弧度制都能在角的集合与实数的集合之间建立一种一一对应的关系。

今后在具体运算时,“弧度”二字和单位符号“rad”可以省略如:3表示3rad sinπ表示πrad角的正弦。

第二节任意角的三角函数1.2.1 任意角的三角函数教学目标:1.通过对初中锐角三角函数定义的回忆,掌握任意角三角函数的定义法,并掌握用单位圆中的有向线段表示三角函数值.2.掌握已知角 终边上一点坐标,求四个三角函数值.(即给角求值问题)教学重点:任意角的三角函数的定义.教学难点:任意角的三角函数的定义,正弦、余弦、正切这三种三角函数的几何表示.教学过程:第四课时任意角的三角函数(1)(PPT)第五课时任意角的三角函数(2)(PPT)教后记:为了便于掌握,我们可以利用两种三角函数定义的一致性,将直角三角形置于平面直角坐标系的第一象限,使一锐角顶点与原点重合,一直角边与x轴的非负半轴重合,利用我们熟悉的锐角三角函数类比记忆.1.2.2 同角三角函数关系教学目标:1.掌握同角三角函数之间的三组常用关系,平方关系、商数关系.2.会运用同角三角函数之间的关系求三角函数值或化简三角式;3.应用同角三角函数关系,化简三角式(求值);并能证明简单的三角恒等式;4.通过同角三角函数的基本关系学习,提示事物之间的普通联系规律,培养学生辩证唯物主义要观.教学重点:重点是三个公式的推导和应用.(1)已知的三角函数值中的一个,表示它的其他三角函数值;(2)化简三角函数式;(3)证明简单的三角恒等式.教学难点:(1)利用的某一三角函数值求的其他三角函数值;(2)三角恒等式的证明,证明恒等式可从左向右,也可从右向左,等价变形;(3)接受切化弦的思想,及恒等变形中等价转化的思想;(4)化简是最基本的解题思想,结果要求最简形式.教学过程:第六课时同角三角函数的基本关系(PPT)教后记:已知一个角的某一个三角函数值,便可运用基本关系式求出其它三角函数值。

数学必修4第一章三角函数

数学必修4第一章三角函数

第一章三角函数1.1任意角和弧度制1.1.1任意角1.B.2.C.3.C.4.-1485°=-5³360°+315°.5.{-240°,120°}.6.{α|α=k²360°-490°,k∈Z};230°;-130°;三.7.2α的终边在第一、二象限或y轴的正半轴上,α2的终边在第二、四象限.集合表示略.8.(1)M={α|α=k²360°-1840°,k∈Z}.(2)∵α∈M,且-360°≤α≤360°,∴-360°≤k²360°-1840°≤360°.∴1480°≤k²360°≤2200°,379≤k≤559.∵k∈Z,∴k=5,6,故α=-40°,或α=320°.9.与45°角的终边关于x轴对称的角的集合为{α|α=k²360°-45°,k∈Z},关于y轴对称的角的集合为{α|α=k²360°+135°,k∈Z},关于原点对称的角的集合为{α|α=k²360°+225°,k∈Z},关于y=-x对称的角的集合为{α|α=k²360°+225°,k∈Z}.10.(1){α|30°+k²180°≤α≤90°+k²180°,k∈Z}.(2){α|k²360°-45°≤α≤k²360°+45°,k∈Z}.11.∵当大链轮转过一周时,转过了48个齿,这时小链轮也必须同步转过48个齿,为4820=2.4(周),即小链轮转过2.4周.∴小链轮转过的角度为360°³2 4=864°.1.1.2弧度制1.B.2.D.3.D.4.αα=kπ+π4,k∈Z.5.-5π4.6.111km.7.π9,7π9,13π9.8.2π15,2π5,2π3,4π5.9.设扇形的圆心角是θrad,∵扇形的弧长是r θ,∴扇形的周长是2r+rθ,依题意,得2r+rθ=πr,∴θ=π-2,∴扇形的面积为S=12r2θ=12(π-2)r2.10.设扇形的半径为R,其内切圆的半径为r,由已知得l=π2R,R=2lπ.又∵2r+r=R,∴r=R2+1=(2-1)R=2(2-1)πl,∴内切圆的面积为S=πr2=4(3-22)πl2.11.设圆心为O,则R=5,d=3,OP=R2-d2=4,ω=5rad/s,l=|α|R,α=ωt=25rad,l=4³25=100(cm).1.2任意角的三角函数1.2.1任意角的三角函数(一)1.B.2.B.3.C.4.k.5.π6,56π.6.x|x≠2kπ+32π,k∈Z.7.-25.8.2kπ+π2,2kπ+π,k∈Z.9.α为第二象限角.10.y=-3|x|=-3x(x≥0),3x(x<0),若角α的终边为y=3x(x<0),即α是第三象限角,则sinα=-31010,tanα=3;若角α的终边为y=-3x(x≥0),即α是第四象限角,则sinα=-31010,tanα=-3.11.f(x)=-(x-1)2+4(0≤x≤3).当x=1时,f(x)max=f(1)=4,即m=4;当x=3时,f(x)min=f(3)=0,即n=0.∴角α的终边经过点P(4,-1),r=17,sinα+cosα=-117+417=31717.1.2.1任意角的三角函数(二)1.B.2.C.3.B.4.334.5.2.6.1.7.0.8.x|2kπ+π≤x<2kπ+32π,或x=2kπ,k∈Z.9.(1)sin100°²cos240°<0.(2)tan-11π4-cos-11π4>0.(3)sin5+tan5<0.10.(1)sin25π6=sin4π+π6=sinπ6=12.(2)cos-15π4=cos-4π+π4=cosπ4=22.(3)tan13π3=tan4π+π3=tanπ3=3.11.(1)∵cosα>0,∴α的终边在第一或第四象限,或在x轴的非负半轴上;∵tanα<0,∴α的终边在第四象限.故角α的集合为α2kπ-π2<α<2kπ,k∈Z.(2)∵2kπ-π2<α<2kπ,k∈Z,∴kπ-π4<α2<kπ,k∈Z .当k=2n(n∈Z)时,2nπ-π4<α2<2nπ,n∈Z,sinα2<0,cosα2>0,tanα2<0;当k=2n+1(n∈Z)时,2nπ+3π4<α2<2nπ+π,n∈Z,sinα2>0,cosα2<0,tanα2<0. 1.2.2同角三角函数的基本关系1.B.2.A.3.B.4.-22.5.43.6.232.7.4-22.8.α2kπ+π2<α<2kπ+3π2,或α=kπ,k∈Z.9.0.10.15.11.3+12.1.3三角函数的诱导公式(一)1.C.2.A.3.B.4.-1-a2a.5.12.6.-cos2α.7.-tanα.8.-2sinθ.9.32.10.-22+13.11.3.1.3三角函数的诱导公式(二)1.C.2.A.3.C.4.2+22.5.-33.6.13.7.-73.8.-35.9.1.10.1+a4.11.2+3.1.4三角函数的图象与性质1.4.1正弦函数、余弦函数的图象1.B.2.C.3.B.4.3;-3.5.2.6.关于x轴对称.7.(1)取(0,0),π2,1,(π,2),3π2,1,(2π,0)这五点作图.(2)取-π2,0,0,12,π2,0,π,-12,3π2,0这五点作图.8.五点法作出y=1+sinx的简图,在同一坐标系中画出直线y=32,交点有2个.9.(1)(2kπ,(2k+1)π)(k∈Z).(2)2kπ+π2,2kπ+32π(k∈Z).10.y=|sinx|=sinx(2kπ≤x≤π+2kπ,k∈Z),-sinx(π+2kπ<x<2π+2kπ,k∈Z),图象略.y=sin|x|=sinx(x≥0),-sinx(x<0),图象略.11.当x>0时,x>sinx;当x=0时,x=sinx;当x<0时,x<sinx,∴sinx=x只有一解.1.4.2正弦函数、余弦函数的性质(一)1.C.2.A.3.D.4.4π.5.12,±1.6.0或8.提示:先由sin2θ+cos2θ=1,解得m=0,或m=8.7.(1)4.(2)25π.8.(1)π.(2)π.9.32,2.10.(1)sin215π<sin425π.(2)sin15<cos5.11.342.1.4.2正弦函数、余弦函数的性质(二)1.B.2.B.3.C.4.<.5.2π.6.3,4,5,6.7.函数的最大值为43,最小值为-2.8.-5.9.偶函数.10.f(x)=log21-sin2x=log2|cosx|.(1)定义域:xx≠kπ+π2,k∈Z.(2)值域:(-∞,0]. (3)增区间:kπ-π2,kπ(k∈Z),减区间:kπ,kπ+π2(k∈Z).(4)偶函数.(5)π.11.当x<0时,-x>0,∴f(-x)=(-x)2-sin(-x)=x2+sinx.又∵f(x)是奇函数,∴f(-x)=-f(x).∴f(x)=-f(-x)=-x2-sinx.1.4.3正切函数的性质与图象1.D.2.C.3.A.4.5π.5.tan1>tan3>tan2.6.kπ2-π4,0(k∈Z).7.2kπ+6π5<x<2kπ+3π2,k∈Z .8.定义域为kπ2-π4,kπ2+π4,k∈Z,值域为R,周期是T=π2,图象略.9.(1)x=π4.(2)x=π4或54π.10.y|y≥34.11.T=2π,∴f99π5=f-π5+20π=f-π5,又f(x)-1是奇函数,∴f-π5-1=-fπ5-1 f-π5=2-fπ5=-5,∴原式=-5.1.5函数y=Asin(ωx+φ)的图象(一)1.A.2.A.3.B.4.3.5.-π2.6.向左平移π4个单位.7.y=sinx+2的图象可以看作是将y=sinx图象向上平移2个单位得到,y=sinx-1的图象可以看作是将y=sinx图象向下平移1个单位而得到.8.±5.9.∵y=sin3x-π3=sin3x-π9,∴可将y=sin3x的图象向右平移π9个单位得到.10.y=sin2x+π4的图象向左平移π2个单位,得到y=sin2x+π2+π4,故函数表达式为y=sin2x+5π4.11.y=-2sinx-π3,向左平移m(m>0)个单位,得y=-2sin(x+m)-π3,由于它关于y轴对称,则当x=0时,取得最值±2,此时m-π3=kπ±π2,k∈Z,∴m的最小正值是5π6.1.5函数y=Asin(ωx+φ)的图象(二)1.D.2.A.3.C.4.y=sin4x.5.-2a;-310a+2ka(k∈Z);-2a.6.y=3sin6x+116π.7.方法1y=sinx横坐标缩短到原来的12y=sin2x向左平移π6个单位y=sin2x+π6=y=sin2x+π3.方法2y=sinx向左平移π3个单位y=sinx+π3横坐标缩短到原来的12y=sin2x+π3.8.(1)略.(2)T=4π,A=3,φ=-π4.9.(1)ω=2,φ=π6.(2)x=12kπ+π6(k∈Z),12kπ-112π,0(k∈Z).10.(1)f(x)的单调递增区间是3kπ-5π4,3kπ+π4(k∈Z).(2)使f(x)取最小值的x的集合是x|x=7π4+3kπ,k∈Z.11.(1)M=1,m=-1,T=10|k|π.(2)由T≤2,即10|k|π≤2得|k|≥5π,∴最小正整数k 为16.1.6三角函数模型的简单应用(一)1.C.2.C.3.C.4.2sinα.5.1s.6.k²360°+212 5°(k∈Z).7.扇形圆心角为2rad时,扇形有最大面积m216.8.θ=4π7或5π7.9.(1)设振幅为A,则2A=20cm,A=10cm.设周期为T,则T2=0.5,T=1s,f=1Hz.(2)振子在1T内通过的距离为4A,故在t=5s=5T内距离s=5³4A=20A=20³10=200cm=2(m).5s末物体处在点B,所以它相对平衡位置的位移为10cm.10.(1)T=2πs.(2)12π次.11.(1)d-710=sint-1.8517.5π.(2)约为5.6秒.1.6三角函数模型的简单应用(二)1.D.2.B.3.B.4.1-22.5.1124π.6.y=sin52πx+π4.7.95.8.12sin212,1sin12+2.9.设表示该曲线的三角函数为y=Asin(ωx+φ)+b.由已知平均数量为800,最高数量与最低数量差为200,数量变化周期为12个月,所以振幅A=2002=100,ω=2π12=π6,b=800,又7月1日种群数量达最高,∴π6³6+φ=π2.∴φ=-π2.∴种群数量关于时间t的函数解析式为y=800+100sinπ6(t-3).10.由已知数据,易知y=f(t)的周期T=12,所以ω=2πT=π6.由已知,振幅A=3,b=10,所以y=3sinπ6t+10.11.(1)图略.(2)y-12.47=cos2π(x-172)365,约为19.4h.单元练习1.C.2.B.3.C.4.D.5.C.6.C.7.B.8.C.9.D.10.C.11.5π12+2kπ,13π12+2kπ(k∈Z).12.4412.13.-3,-π2∪0,π2.14.1972π.15.原式=(1+sinα)21-sin2α-(1-sinα)21-sin2α=1+sinα|cosα|-1-sinα|cosα|=2sinα|cosα|. ∵α为第三象限角,|cosα|=-cosα,∴原式=-2tanα.16.1+sinα+cosα+2sinαcosα1+sinα+cosα=sin2α+cos2α+2sinαcosα+sinα+cosα1+sinα+cosα=(sinα+cosα)2+sinα+cosα1+sinα+cosα=(sinα+cosα)·(1+sinα+cosα)1+sinα+cosα=sinα+cosα. 17.f(x)=(sin2x+cos2x)2-sin2xcos2x2-2sinxcosx-12sinxcosx+14cos2x=1-sin2xcos2x2(1-sinxcosx)-12sinxcosx+14cos2x=12+12sinxcosx-12sinxcosx+14cos2x=12+14cos2x.∴T=2π2=π,而-1≤cos2x≤1,∴f(x)max=34,f(x)min=14.18.∵Aπ3,12在递减段上,∴2π3+φ∈2kπ+π2,2kπ+3π2.∴2π3+φ=5π6,φ=π6.19.(1)周期T=π,f(x)的最大值为2+2,此时x∈x|x=kπ+π8,k∈Z;f(x)的最小值为2-2,此时x ∈x|x=kπ-38π,k∈Z;函数的单调递增区间为kπ-3π8,kπ+π8,k∈Z.(2)先将y=sinx(x∈R)的图象向左平移π4个单位,而后将所得图象上各点的横坐标缩小为原来的12,纵坐标扩大成原来的2倍,最后将所得图象向上平移2个单位.20.(1)1π.(2)5π或15.7s.(3)略.。

高中数学人教A版必修4目录

必修4目录第一章:三角函数1.1任意角和弧度制1.1.1任意角(1课时)1.1.2弧度制(1课时)1.2任意角的三角函数1.2.1任意角的三角函数(2课时)1.2.2同角三角函数的基本关系(1课时)1.3三角函数的诱导公式1.3三角函数的诱导公式(2课时)1.4三角函数的图象与性质1.4.1正弦函数、余弦函数的图象(1课时)1.4.2正弦函数、余弦函数的性质(2课时)1.4.3正切函数的性质与图象(1课时)1.5函数y=Asin(ωx+φ) 的图象1.5函数y=Asin(ωx+ϕ)的图象(2课时)1.6三角函数模型的简单应用1.6三角函数模型的简单应用(2课时)第二章:平面向量2.1平面向量的实际背景及基本概念2.1.1向量的物理背景与概念 2.1.2向量的几何表示(1课时)2.1.3相等向量与共线向量(1课时)2.2平面向量的线性运算2.2.1向量加法运算及其几何意义2.2.2向量减法运算及其几何意义(1课时) 2.2.3向量数乘运算及其几何意义(1课时)2.3平面向量的基本定理及坐标表示2.3.1平面向量基本定理 2.3.2平面向量的正交分解及坐标表示(1课时) 2.3.3平面向量的坐标表示 2.3.4平面向量共线是坐标表示(1课时)2.4平面向量的数量积2.4.1平面向量数量积的物理背景及含义(1课时)2.4.2平面向量数量积的坐标表示、模、夹角(1课时)2.5平面向量应用举例2.5.1平面几何中的向量方法(1课时)2.5.2向量在物理中的应用举例(1课时)第三章:三角恒等变换3.1两角和与差的正弦、余弦和正切公式3.1.1两角差的余弦公式(1课时)3.1.2两角和与差的正弦、余弦、正切公式(1课时)3.1.3二倍角的正弦、余弦、正切公式(1课时)3.2简单的三角恒等变换3.2简单的三角恒等变换(3课时)。

§1.2.1-2 任意角的三角函数(二)

即 : M P = s in , O M = co s ,
O P=1
在 O M P中 , O M +M P>O P
y

P M x
o
即 : s in + c o s > 1
2013-1-11
重庆市万州高级中学 曾国荣 wzzxzgr@
12
§1.2.1-2 任意角的三角函数(二)

4
MP是正弦线 OM是余弦线
P
y
o
AT是正切线
重庆市万州高级中学 曾国荣 wzzxzgr@
o M
A x T
8
2013-1-11
§1.2.1-2 任意角的三角函数(二)
练习: 不查表,比较大小
(1) sin 2 3 和 sin 4 5 (2) cos 2 3 和 cos 4 5 (3) ta n 2 3 和 ta n 4 5
2013-1-11
§1.2.1-2 任意角的三角函数(二)
例 1 .作 出 下 列 各 角 的 三 角 正 弦 线 , 余 弦 线 , 正 切 线 , 并 根 据 三 角 函 数 线 求 它 的 正 弦 值 ,余 弦 值 ,正 切 值 . (1)

4

(2)
4 3
y
T P A M x

4 3

2

s in 1 cos

1 cos s in

证 明 : 如 图 连 接 AP 在 直 角 CPA中 ,
PCA APM
y

P x MA

2
C
2
o
在 直 角 AM P中 , MA OA OM 1 cos ta n A P M MP MP s in

任意角的三角函数


y
(- ) +) ( o x (+) - ) (
tan cos y x y tan cos sin ; ; ( x 0) x r r
sin
口诀
一全正
二正弦
三正切
四余弦
三、三角函数值在各象限的符号
y
正弦值为正
o
三角函数值全为正
x
正切值为正
余弦值为正
例3:确定下列各三角函数值的符号
对任意角 , P ( x, y ) 是 终边上除原点外 任意一点, x 2 y 2 ( r 0) ,我们规定: r
y (1)比值 叫做 的正弦,记作 sin ,即 r
y sin 正弦函数 r x (2)比值 叫做 的余弦,记作 cos ,即 r x cos 余弦函数 r y (3)比值 ( x 0) 叫做 的正切,记作 tan ,即 x y tan ( x 0) 正切函数 x
(1) cos 260
0
(2) sin( ) 3 0 ' (3) t an(672 20 ) 10 (4) t an 3

小结
同学们,你们今天学到了什么?
(1)任意角的三角函数的定义
设 为任意角, P ( x, y )是 终边上除原点 外任意一点,r
x 2 y 2 ( r 0)
例1. 已知角α的终边经过点P(2,3),求α的六个三角函数值.
因为 x = 2, y =-3, 解: 所以 r
2 2 ( 3) 2 13
y 3 3 13 所以 sin r 13 13 x 2 2 13 cos r 13 13 y 3 tan x 2
1.2.1 任意角的三角函数

必修4 1.1-1.2任意角及其三角函数 考点测试题

第一章 三角函数1.1~1.2 任意角及其三角函数 考点测试题制卷:王小凤 学生姓名考点一:任意角、象限角的概念 1.下列说法正确的是( )A .三角形的内角是第一象限角或第二象限角B .第一象限的角是锐角C .第二象限的角比第一象限的角大D .若角α是第四象限角,则22()2k k k Z ππαπ-<<∈2.角α的顶点在坐标原点,始边在x 轴的非负半轴上,当终边过点),1(m mA -时,角α是( ) A .第一象限角B .第二象限角C .第三象限角D .第四象限角 3.若α是第四象限角,则180α︒-一定是( )Α.第一象限角 B .第二象限角 C .第三象限角 D .第四象限角 4.若α是第二象限的角,则2α不可能在( )Α.第一、二象限 B .第二、三象限 C .第三、四象限 D .第一、四象限 考点二:终边相同的角5.下列角中终边与330︒相同的角是( )Α.30︒ B .30-︒ C .630︒ D .630-︒ 6.终边落在x 轴上的角的集合是( )Α.{}360,k k Z αα︒=⋅∈ B .(){}21180,k k Z αα︒=+⋅∈ C .{}180,k k Z αα︒=⋅∈ D .{}18090,k k Z αα︒︒=⋅+∈ 7.与–457°角终边相同的角的集合是( )A .{α︱α=z k k ∈︒+︒⋅,97360}B .{α︱α=z k k ∈︒+︒⋅,263360}C .{α︱α=z k k ∈︒+︒⋅,457360}D .{α︱α=z k k ∈︒-︒⋅,263360}9.与︒210终边相同的角中,绝对值最小的角的弧度数为__________. 考点三:角度与弧度的互化 10.-3000化为弧度是_________.11.把︒-885化成()Z k k ∈≤≤+,202πααπ的形式( ) A .ππ12136+- B .125ππ+- C .ππ12114+- D .ππ12134+- 考点四:扇形的弧长及面积公式12.若扇形的圆心角为120°,直径为6,则扇形的面积为( ) A .π3 B .π12 C .540 D .2160 13.已知一个扇形的面积为1,周长为4,则该扇形圆心角的弧度数为_________. 14.经过一刻钟,长为10 cm 的分针所覆盖的面积是________. 考点五:任意角的三角函数的定义15.角α终边过点)3(a a p ,(0,≠∈a R a )时,则αsin 的值为__________. 16.已知(3-P ,)y 为角α终边上的一点,且1313sin =α,则=y __________. 17.若角α的终边过点()2sin 30,2cos30︒︒-,则sin α=______ 18.若角α的终边在直线x y 3-=上,则=+ααcos 4sin 3__________.19.已知α终边经过点()39,2a a -+,且sin 0α>,cos 0α≤,则a 的取值范围为__________.20.函数⎪⎭⎫⎝⎛+=4tan πx y 的定义域( )A .⎭⎬⎫⎩⎨⎧∈+≠∈Z k k x R x x ,42ππ且 B .⎭⎬⎫⎩⎨⎧∈+≠∈Z k k x R x x ,4ππ且 C .{}Z k k x R x x ∈≠∈,π且 D .以上都不对考点六:三角函数值在各象限的符号 21.若sin 0,cos 0θθ><,则θ为( )A .第一象限角B .第二象限角C .第三象限角D .第四象限角 22.已知θ是一个三角形的内角,则θsin 、θcos 、θtan 、2tanθ中可能取负值的个数有( ) A .1 B .2 C .3 D .4 23.已知x 为终边不在坐标轴上的角,则函数()sin tan cos sin cos tan xxx f x x x x=++的值域是( ) A .{}3,1,1,3-- B .{}3,1-- C .{}1,3 D .{}1,3- 24.已知0tan >x ,且0cos sin >+x x ,则角x 是第________象限角.25.下列各式的符号(1)︒⋅︒230cos 105sin _____. (2)sin 2cos3_____(3)6tan 6sin ⋅_____ 考点七:三角函数线的应用 26.若24πθπ<<,则θsin 、θcos 、θtan 的大小为( )A .θθθsin cos tan <<B .θθθcos tan sin <<C .θθθsin tan cos <<D .θθθtan sin cos <<27.以下命题正确的是( )A .α,β都是第一象限角,若cos cos αβ>则sin sin αβ>B .α,β都是第二象限角,若sin sin αβ>则tan tan αβ>C .α,β都是第三象限角,若cos cos αβ>则sin sin αβ>D .α,β都是第四象限角,若sin sin αβ>则tan tan αβ> 考点八:诱导公式一的应用 28.化简下列各式(1)()()22sin 1350tan 4052cos 1080a b ab -︒+︒--︒(2)πππ4tan 512cos 611sin ⋅+⎪⎭⎫⎝⎛-考点九:同角三角函数的基本关系29.若4sin 5α=,且α是第二象限角,则tan α的值等于( ) A .43- B .34 C .34± D .43±30( )A .cos160︒B .cos160︒-C .cos160︒±D .cos160︒± 31.若tan 2α=,则2sin cos sin 2cos αααα-+的值为( )A .0B .34 C .1 D .5432.若α是第四象限的角,5tan 12α=-,则sin α等于( )A. 15 B .15- C .513 D .513-33.A 为三角形ABC 的一个内角,若12sin cos 25A A +=,则这个三角形的形状为( )A .锐角三角形B .钝角三角形C .等腰直角三角形D .等腰三角形34.已知314sin =⎪⎭⎫ ⎝⎛+πα,παπ<<2,则=⎪⎭⎫ ⎝⎛+4cos πα___35.已知tan 2θ=,则22sin sin cos 2cos θθθθ+-=________. 36.已知tan 3α=-,则21sin cos 2sin cos cos ααααα-+=________.37.若23cos sin =+αα,则=⋅ααcos sin ___ 38.若81cos sin =⋅αα,且24παπ<<,则=-ααsin cos ___ 39.化简:︒--︒︒︒-10sin 110sin 10cos 10sin 212=________.40.若角α的终边落在直线x +y =0的值为________.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第1课时 任意角的三角函数(一)任意角的三角函数的定义sin α,即sin α=y cos α,即cos α=x ,即tan α=yx(x ≠0) 正弦、余弦、正切都是以角为自变量,以单位圆上的点的坐标或坐标的比值为函数值的函数,将它们统称为三角函数到一个比值的集合的函数.三角函数值实质是一个比值,因此分母不能为零,所以正切函数的定义域就是使分母不为零的角的集合.Z }三角函数值在各象限的符号口诀:一全正,二正弦,三正切,四余弦状元随笔 对三角函数值符号的理解三角函数值的符号是根据三角函数定义和各象限内坐标符号导出的.从原点到角的终边上任意一点的距离总是正值.根据三角函数定义知:正弦值符号取决于纵坐标y 的符号;.sin 750°=________.类型一三角函数的定义及应用1(1)若角α的终边经过点P(5,-12),则sin α=________,cos α=________,tan α=________ 2x”其他条件不变,结果又如何?的值为;(1)将本例中条件“x>0”改为“x<0”,结果如何?(2)将本例中条件“x>0”改为“x≠0”,结果又怎样?(3)将本例中“P(x,3)”改为“P(x,3x)”,且把“cos θ=10x10”去掉,结果又怎样?A.第一象限B.第二象限C.第三象限D.第四象限(2)判断下列各式的符号:①sin 145°cos(-210°);②sin 3·cos 4·tan 5.方法归纳判断三角函数值正负的两个步骤(1)定象限:确定角α所在的象限.(2)定符号:利用三角函数值的符号规律,即“一全正,二正弦,三正切,四余弦”来判断.注意:若sin α>0,则α的终边不一定落在第一象限或第二象限内,有可能终边落在y 轴的非负半轴上. 跟踪训练1 判断下列各式的符号:(1)sin 145°cos(-210°);(2)sin 3·cos 4·tan 5.2.已知角α的终边过点(3a -9,a +2)且cos α≤0,sin α>0,则实数a 的取值范围是 . 3.设角α是第三象限角,且⎪⎪⎪⎪sin α2=-sin α2,则角α2是第 象限角.(2)sin ⎝⎛⎭⎫-11π6+cos 125π·tan 4π.7.当α为第二象限角时,|sin α|sin α-cos α|cos α|的值是________.8.已知角α的终边经过点P (3,4t ),且sin(2k π+α)=-35(k ∈Z ),则t =________.三、解答题(每小题10分,共20分)9.已知角α的终边为射线y =-34x (x ≥0),求角α的正弦、余弦和正切值.10.判断下列各式的符号:(1)sin 105°·cos 230°;(2)cos 3·tan ⎝⎛⎭⎫-2π3.11.若α是第一象限角,则-α2是( )A .第一象限角B .第四象限角C .第二或第三象限角D .第二或第四象限角 12.若角α的终边与直线y =3x 重合且sin α<0,又P (m ,n )是α终边上一点,且|OP |=10,则m -n =________. 13.计算:(1)sin 390°+cos(-660°)+3tan 405°-cos 540°;(2)sin ⎝⎛⎭⎫-7π2+tan π-2cos 0+tan 9π4-sin 7π3.14.已知角α的终边过点(a,2a )(a ≠0),求角α的正弦、余弦和正切值.第2课时 任意角的三角函数(二)1.相关概念(1)单位圆:以原点O 为圆心,以单位长度为半径的圆. (2)有向线段:带有方向(规定了起点和终点)的线段.规定:方向与x 轴或y 轴的正方向一致的为正值,反之为负值. 2.三角函数线状元随笔 (1)三角函数线的方向.正弦线由垂足指向角α的终边与单位圆的交点,余弦线由原点指向垂足,正切线由切点指向切线与角α的终边或其反向延长线的交点.(2)三角函数线的正负:三条有向线段凡与x 轴或y 轴同向的,为正值,与x 轴或y 轴反向的,为负值. (1)角的三角函数线是直线.( )(2)角的三角函数值等于三角函数线的长度.( )(3)第二象限的角没有正切线.( )2.有下列四个说法:①α一定时,单位圆中的正弦线一定;②单位圆中,有相同正弦线的角相等; ③α和α+π有相同的正切线;④具有相同正切线的两个角终边相同. 不正确说法的个数是( ) A .0个 B .1个 C .2个 D .3个 3.如图所示,在单位圆中角α的正弦线、正切线完全正确的是( )A .正弦线PM ,正切线A ′T ′B .正弦线MP ,正切线A ′T ′C .正弦线MP ,正切线ATD .正弦线PM ,正切线AT 4.已知sin α>0,tan α<0,则α的( )A .余弦线方向向右,正切线方向向下B .余弦线方向向右,正切线方向向上C .余弦线方向向左,正切线方向向下D .余弦线方向向上,正切线方向向左类型一 三角函数线的作法【例1】 作出下列各角的正弦线、余弦线、正切线.(1)-π4;(2)17π6;(3)10π3.类型二 利用三角函数线比较大小【例2】 (1)已知A .若α、β是第一象限角,则sin α>sin β B .若α、β是第二象限角,则tan α>tan β C .若α、β是第三象限角,则sin α>sin β D .若α、β是第四象限角,则tan α>tan β (2)利用三角函数线比较sin2π3和sin 4π5,cos 2π3和cos 4π5,tan 2π3和tan 4π5的大小.方法归纳利用三角函数线比较大小的步骤利用三角函数线比较三角函数值的大小时,一般分三步:①角的位置要“对号入座”;②比较三角函数线的长度;③确定有向线段的正负.跟踪训练1.已知a =sin 2π7,b =cos 2π7,c =tan 2π7,则( )A .a <b <cB .a <c <bC .b <c <aD .b <a <c2 设π4<α<π2,试比较角α的正弦线、余弦线和正切线的长度.如果π2<α<3π4,上述长度关系又如何?类型三 利用三角函数线解不等式(1)cos α>-22;(2)tan α≤33;(3)|sin α|≤12.1.将本例(1)的不等式改为“cos α<22”,求α的取值范围 2.将本例(3)的不等式改为“-12≤sin θ<32”,求α的取值范围3.利用本例的方法,求函数y =2sin x -1的定义域.方法归纳利用三角函数线解三角不等式的方法利用三角函数线求解不等式,通常采用数形结合的方法,求解关键是恰当地寻求点.一般来说,对于sin x ≥b ,cos x ≥a (或sin x ≤b ,cos x ≤a ),只需作直线y =b ,x =a 与单位圆相交,连接原点和交点即得角的终边所在的位置,此时再根据方向即可确定相应的x 的范围;对于tan x ≥c (或tan x ≤c ),则取点(1,c ),连接该点和原点即得角的终边所在的位置,并反向延长,结合图象可得.跟踪训练3 在单位圆中画出适合下列条件的角α的终边的范围,并由此写出角α的集合.(1) sin α≥32;(2)cos α≤-12.一、选择题(每小题5分,共25分)1.对三角函数线,下列说法正确的是( ) A .对任意角都能作出正弦线、余弦线和正切线 B .有的角的正弦线、余弦线和正切线都不存在C .任意角的正弦线、正切线总是存在的,但余弦线不一定存在D .任意角的正弦线、余弦线总是存在的,但正切线不一定存在2.如果MP 和OM 分别是角α=7π8的正弦线和余弦线,那么下列结论正确的是( )A .MP <OM <0B .OM >0>MPC .OM <MP <0D .MP >0>OM3.有三个命题:①π6和5π6的正弦线长度相等;②π3和4π3的正切线相同;③π4和5π4的余弦线长度相等.其中正确说法的个数为( ) A .1 B .2 C .3 D .04.使sin x ≤cos x 成立的x 的一个区间是( ) A.⎣⎡⎦⎤-3π4,π4 B.⎣⎡⎦⎤-π2,π2 C.⎣⎡⎦⎤-π4,3π4 D.[]0,π5.如果π4<θ<π2,那么下列各式中正确的是( )A .cos θ<tan θ<sin θB .sin θ<cos θ<tan θC .tan θ<sin θ<cos θD .cos θ<sin θ<tan θ二、填空题(每小题5分,共15分)6.比较大小:sin 1________sin π3(填“>”或“<”).7.不等式tan α+33>0的解集是________________________.8.用三角函数线比较sin 1与cos 1的大小,结果是________.三、解答题(每小题10分,共20分)9.做出下列各角的正弦线、余弦线、正切线.(1)5π6;(2)-2π3.10.利用三角函数线,求满足下列条件的角α的集合:(1)tan α=-1;(2)sin α≤-22.11.已知角α的正弦线和余弦线的方向相反、长度相等,则α的终边在( )A .第一象限的角平分线上B .第四象限的角平分线上C .第二、第四象限的角平分线上D .第一、第三象限的角平分线上12.若cos θ>sin 7π3,利用三角函数线得角θ的取值范围是________.13.若α∈⎝⎛⎭⎫0,π2,试利用三角函数线证明sin α+cos α>1.。

相关文档
最新文档