近红外光谱

近红外光谱
近红外光谱

赣南师范学院学士学位论文

用近红外光谱法测定尿液中葡萄糖的含量

教学学院物理与电子信息学院

届别 09 级

专业物理学

学号 0 9 0 8 0 0 0 4 6

姓名曾庆胜

指导教师廖翌博

完成日期 2013 年3月31日

目录

内容摘要 (1)

关键词 (1)

Abstract (1)

Key words (1)

引言 (2)

1.近红外光谱技术概述 (2)

1.1近红外光谱技术的基本原理 (2)

1.2溶液中近红外光谱的分析方法 (4)

1.3近红外光谱中偏最小二乘法的定量分析 (4)

第二章近红外光谱法定量分析尿液中葡萄糖含量

1.实验部分 (6)

1.1材料 (9)

1.2图谱采集 (9)

1.3模型的建立 (9)

2.结果与讨论 (6)

2.1近红外光谱 (6)

2.2数学模型的建立与评价 (9)

3.结论 (16)

参考文献 (17)

致谢 (18)

用近红外光谱法测定尿液中的葡萄糖

姓名:曾庆胜

指导老师:廖昱博

内容摘要:近红外光谱技术(NID)是一种高效快速的现代分析技术,它综合运用了计算机技术、光谱技术和化学计量学等多个学科的最新研究成果"。而随着计算机技术和化学计量学的迅速发展,近红外光谱在各领域中的应用研究蓬勃展开"并已逐渐得到大众的普遍接受和官方的认可"。近红外光谱分析技术具有其分析速度快、分析效率高,同时可测量多个样品操作方便等特点,目前已在制药工业、食品工业、石油化工等多个领域获得广泛的应用"。本文在廖昱博老师的指导下研究了近红外光谱法定量分析尿液中葡萄糖含量的研究",分综述和研究报告两部分组成:"综述部分简单概述了近红外光谱技术的原理、分析特点以及与之相结合应用的化学计量学在分析中的应用":研究报告部分研究利用近红外技术结合偏最小二乘法同时测定尿液中的葡萄糖。

尿液标本是一种容易获得的材料,其组成的变化不仅能反映泌尿生殖系统的病变,而且很多全身性疾病也可引起尿液成分的变化。通过近红外光谱法测定尿糖有利于在大范围人群中进行健康监测。

关键词:尿液中葡萄糖近红外光谱偏最小二乘法

Abstract: near infrared spectroscopy (NID) is a kind of efficient and rapid modern analysis technique, it integrated use of computer technology, spectroscopy and chemical metrology, the latest research achievements of multiple disciplines such as ". And with the computer technology and the rapid development of chemometrics, nir application research in the field of the vigorous "and have come to get the official acceptance and recognition of the general public". The near infrared spectral analysis technology with its fast analysis speed, high efficiency, can measure multiple samples at the same time convenient operation etc., has been in the pharmaceutical industry, food industry, petrochemical and other fields have wide application ". Liao Yubo is presented in this paper under the guidance of the teacher studied the near infrared spectroscopy quantitative analysis research "amounts of glucose in the urine, zong

Urine specimen is a readily available material, its change can not only reflect the urogenital system composed of pathological changes, and many systemic diseases can also cause urinary composition changes. By near infrared

Keywords: near infrared spectrum of glucose in the urine of partial least squares

第一章绪论

1 近红外光谱技术的概述

1.1近红外光谱技术的基本原理

近红外光是介于可见光和中红外光之间的电磁波,它的波长范围是780—2526nm,近红外光谱是由分子振动的非谐振性使分子振动从基态向高能级跃迁时发生的,记录的是含氢基团(X-H)倍频和合频的吸收,不同基团或同一基团在不同的化学环境中产生的光谱在吸收峰位置和强度上都有所不同。由朗伯—比尔定律A lc

ε

=即吸光度与样品吸光物质浓度呈线性关系,是光谱分析的定量依据,近红外光谱的谱峰很宽,共存组分光谱之间重叠干扰严重,采用多元校正方法进行校正。尿液中葡萄糖的吸收峰处于4300cm-1、4400cm-1(C-H)、4700cm-1(O-H)。

由于物质近红外吸收峰的重叠,所以很难由单一波长对其成分含量进行直接测定。一般地讲,近红外光谱分析技术是一种间接测量技术,即通过对己知品质参数样品的光谱和其品质参数的关联建立校正模型,然后通过校正模型和未知品质参数样品的光谱来预测样品。

1.2溶液中近红外光谱的分析方法

透射光谱法就是把待测样品置于作用光与检测器之间,检测器所检测到的分析光是作用光通过样品体与样品分子相互作用后的光,若样品是透明的真溶液,则分析光在样品中经过的路程一定,透射光的强度与样品组分浓度由比耳定律决定。

1.3近红外光谱中偏最小二乘法的定量分析

偏最小二乘法(PLS)是化学计量学中最为常见的一种定量分析技术。设A (n×m)为n个样品在m个波长上的光谱参数矩阵,C(n×L)为n个样品L种成份含量构成的浓度矩阵。PLS法不直接建立每种成份与光谱参数向量的关系(回归)方程,而是考虑A(n×m)与C(n×L)的外部关系和联系二者的内部关系,将A(n×m)和C(n×L)分解为如下形式:

A(n×m)=T(n×h)P(h×m)+E(n×m)

C(n×L)=U(n×h)Q(h×L)+F(n×L)

式中h称为样品的抽象组分数,T(n×h)称为光谱参数特征因子阵,U(n×h)称为浓度特征因子阵,P(h×m)称为光谱参数载荷阵,Q(h×L)称为浓度载荷阵。E(n×m)和F(n×L)分别为光谱参数矩的残差矩阵和浓度矩阵的残差矩阵。然后建立T(n×h)与U(n×h)的关系矩阵B(浓度与光谱参数间的内部关系): U(n×h)=T(n×h)B(h×k)

此时浓度与光谱参数间的外部关系为:

C(n×L)=T(n×h)B(h×h)Q(h×L)+F(n×L)

其中要求

F(n 达到最小。

L)

PLS在近红外的运用中又其独到的的优点是:

(l)既可以使用全部光谱数据(数据向量多)又可以使用部分光谱数据(数据向量少)。

(2)把数据分解和回归融合在一起,得到的特征向量直接与被测成份或性质相关,而不是与数据矩阵中变化最大的变量相关。

(3)PLS方法比较适用于处理变量多而样本数少的问题。

(4)由于PLs法是一种非线性迭代方法,对于非线性体系和质量参数之间相互干扰的数据回归效果优于MLR方法。

正因为偏最小二乘法的这些优点,在近红外中,它的应用格外广泛,应用于食品、医药、农业等等各个方面,本文也是采用偏最下二乘法来进行定量模型校正的。

第二章近红外光谱法测定尿液中的葡萄糖的含量糖是生物体内普遍存在的一类重要的化学物质,是植物和动物的能量来源,在很多生命过程中起着不可或缺的作用"糖在提供生命过程所需能量!控制和调节细胞的分裂和生长!增强人体的免疫功能等方面具有重要的作用[.]"因此,了解和测定糖的组成和含量是很重要的"测定可溶性糖的方法很多,一般采用液相色谱法来测定"利用分析糖的专用色谱柱,完成对各类糖的分离,有利于各种可溶性糖的测定,但其所需的时间较长,费用也较高〔2司"另外还有容量法!比色法!旋光法!折射法和层析法等"这些方法各有长处,但步骤都比较繁琐"为了满足

日常工作中对大量食品!果蔬和农作物样品中糖分的检测,降低工作量,提高工作效率,我们做了近红外光谱法定量分析水溶液中多种糖分的实验,效果令人满意"近红外光谱是指波长在780~2526nm范围内的电磁波,是含x一H(X=C!N!o)键基团的化合物在此区域基频振动的泛频及组频吸收,是人们认识最早的非可见光区域[5,/]"糖是含有c一H!O一H基团的物质,所以能用近红外定量分析糖"现代近红外光谱是20世纪90年代以来发展最快!最引人注目的光谱分析技术,尤其是结合计算机技术和化学计量学的发展,为近红外(ND又)定量分析提供了有利的信息提取技术,在近红外分析测试中,由于分子在近红外区的倍频及合频的吸收弱!谱带复杂!重叠严重,因此一般首先需要依据己知样品化学信息,用多元校正方法建立校正模型,然后使用该校正模型计算处理未知样品的N刀又数据,获取其化学组成信息17一81"用偏最小二乘法(PLS)算法回归所建立的校正模型一般优于多元线形回归(MLR)与主成分回归法(PcR),同时计算速度也很快[0]"因此,本文选用PLS算法建立校正模型"葡萄糖!麦芽糖和刀-环糊精分别作为单糖!双糖和筒状低聚糖,在近红外光谱区域内他们的光谱有严重重叠,并且不同浓度具有不同的吸收,经典的光谱分析法不能进行定量分析,利用一种新的方法定量分析他们是有意义的"本文利用近红外光谱分析技术可以不经预分离,达到快速简便分析多种组分的满意效果"本实验以葡萄糖!麦芽糖和声环糊精三种糖分的混合水溶液为研究对象,以正交设计法配制多个样品,扫描混合水溶液样品的近红外光谱,

本文采用近红外光谱技术测定尿液中葡萄糖的含量。通过采用偏最小二乘法((PLS)建立校正模型过程中数字滤波预处理方法以及利用遗传算法优选波段。通过查阅相关资料,尿液中的葡萄糖含量的最佳测量结果RMSEP(预测均方根差)为10.4mg/dL。而通过近红外光谱法可以精确地测量出尿液中葡萄糖的含量。

尿液标本是一种容易获得的材料,其组成的变化不仅能反映泌尿生殖系统的病变,而且很多全身性疾病也可引起尿液成分的变化。通过近红外光谱法测定尿糖有利于在大范围人群中进行健康监测。

红外光谱测量方法是绿色检测技术的代表。光谱检测条件下样品无需预处理,且不被破坏,消耗量少;无需化学试剂,不造成污染;测试成本低,分析速度快。

测量原理

近红外光谱是分子振动光谱的倍频和合频吸收光谱,主要是X-H键(X为C,O,N,S等)的吸收,不同基团产生的光谱在吸收峰位置和强度上有所不同,根据朗伯一比耳吸收定律(Lambert-Beer Law),随着样品成分含量的变化,其光谱特征也将发生变化}。这是近红外光谱分析方法的理论基础。尿液中葡萄糖的吸收峰处于4300cm-1, 4400 cm-1 (C-H键)及4700cm-1(0-H键)。

由于物质近红外吸收峰的重叠,所以很难由单一波长对其成分含量进行直接测定。一般地讲,近红外光谱分析技术是一种间接测量技术,即通过对己知品质参数样品的光谱和其品质参数的关联建立校正模型,然后通过校正模型和未知品质参数样品的光谱来预测样品。

1.实验设计:

本文研究将近红外光谱用于尿液中葡萄糖含量快速检测,由于已经建立了定性分析模型.可根据定性分析的结果,取一定新鲜尿液样品19个,通过采集样品的近红外光谱和定量建模方法相结合,建立定量分析模型,分析定量模型的实用性.

2实验部分

2.1仪器

本文实验所用到的光谱仪为英国Perkm timer公司的Spectrum GA系列傅立叶变换红外光谱仪FT-IR光谱仪。仪器采用近红外系统(NIR),光源为卤钨灯,采用石英分束器,检测器为锑化锢( InSb )并使用液态氮冷却。样品池为可变光程石英池,光程长调整为lmm。实验中光谱采集范围为4000-10000cm-1

2.2光谱采集

测量时均扫描16次后取平均,以降低随机噪声。由于尿液中水的含量约占96-97%,水的强烈吸收是近红外光谱法测定尿液中其它成分含量的主要干扰。为了排除水对近红外光谱的干扰,在本实验中,将采集到的尿液原始能量谱以生理盐水光谱为背景而得到尿液的吸收光谱。

2.3建模与预测

偏最小二乘回归方法是近红外光谱分析中使用较多、效果较好的一种多变量

校正方法。它主要是进行成分提取,即对变量系统中的信息重新进行综合筛选,从中选取若干个对系统具有最佳解释能力的新综合变量(成分),用它们进行回归建模。由于对变量的综合,将可能克服多重相关性造成的信息重叠,而由于对变量系统中的信息进行筛选,将有效地区分系统的信息和噪声,提高系统建模的准确性。

2.4光谱预处理

由检测器检测到的光谱信号除含样品待测成分信息外,还包括各种仪器噪声,如高频随机噪声、基线漂移、杂散光、样品背景等。光谱预处理的目的是针对特定的光谱测量和样品体系,对测量的光谱进行合理的处理,减弱以至于消除各种非目标因素对光谱信息的影响,为稳定、可靠的校正模型的建立奠定基础。常用的预处理方法包括:平滑处理(Smoothing)、基线校正、微分(Derivative)等预处理方法。本研究中采用数字傅立叶滤波(Digital Fourier Filtering)预处理方法。该方法可以有效地滤除高频光谱仪器与分析噪声以及由仪器背景或漂移等原因引起的低频噪声,增加光谱信噪比。首先将数据进行快速傅里叶变换(FFT),在频率空间与高斯窗函数作用,然后反快速傅里叶变换(IFFT),得到经带通滤波后的光谱数据。高斯函数的均值和标准差分别确定带通滤波器的中心频率和带宽,研究中采用数值优化方法确定这两个参数,以获得滤波的最佳效果。

3.2波长优选及测量结果

由于近红外光谱数据通常存在严重的波峰重叠和共线性,所以对建立校正模型的波长进行位置与数目的优选会提高模型质量和工作效率。研究中采用遗传算法进行光谱波长优选。遗传算法((GeneticAlgorithms)是模拟自然界生物进化机制的一种算法。它的特点是对参数进行编码运算,不需要有关体系的任何先验知识,沿多种路线进行平行搜索,不会落入局部较优的陷阱,能在许多局部较优中找到全局最优点,是一种全局最优化方法。将其应用在近红外光谱波长选择中的主要步骤为:

(1)编码:每个波长为一个基因,对基因(波长)进行0-1二进制编码,若基因编码为了建模时包括此波长:若为0,则反之。一种0-1编码组合称为一条染色体,染色长度为被编码的波长数。

(2)选择初始群体:假如初始群体包含N个个体,每一个体的染色体长度(波段的波长数)为m,则初始群体的选择方法为随机产生N个m位的0-1二进制数作为初始群体。

(3)适应值函数:本文是求问题的最小值,为了使遗传算法对适应值较高的个体有更多的生存机会,通过对目标函数进行变换得到适应值函数为

(4)复制:复制的策略是以“轮盘赌”的方式进行正比选择。

(5)交叉:本文采用的交叉方式为普通单点交叉方式。

(6)变异:变异方式为以一定概率产生发生变异的基因数,用随机方法选出发生变异的基因。如果所选的基因的编码为1,则变为0;反之编码为0,则变为1

近红外光谱分析原理

近红外光(Near Infrared,NIR)是介于可见光(VIS)和中红外光(M IR)之间的电磁波,按ASTM(美国试验和材料检测协会)定义是指波长在780~2526nm范围内的电磁波,习惯上又将近红外区划分为近红外短波(780~1100nm)和近红外长波(1100~2526nm)两个区域。 近红外光谱属于分子振动光谱的倍频和主频吸收光谱,主要是由于分子振动的非谐振性使分子振动从基态向高能级跃迁时产生的,具有较强的穿透能力。近红外光主要是对含氢基团X-H(X=C、N、O)振动的倍频和合频吸收,其中包含了大多数类型有机化合物的组成和分子结构的信息。由于不同的有机物含有不同的基团,不同的基团有不同的能级,不同的基团和同一基团在不同物理化学环境中对近红外光的吸收波长都有明显差别,且吸收系数小,发热少,因此近红外光谱可作为获取信息的一种有效的载体。近红外光照射时,频率相同的光线和基团将发生共振现象,光的能量通过分子偶极矩的变化传递给分子;而近红外光的频率和样品的振动频率不相同,该频率的红外光就不会被吸收。因此,选用连续改变频率的近红外光照射某样品时,由于试样对不同频率近红外光的选择性吸收,通过试样后的近红外光线在某些波长范围内会变弱,透射出来的红外光线就携带有机物组分和结构的信息。通过检测器分析透射或反射光线的光密度,就可以确定该组分的含量。

近红外光谱分析技术包括定性分析和定量分析,定性分析的目的是确定物质的组成与结构,而定量分析则是为了确定物质中某些组分的含量或是物质的品质属性的值。与常用的化学分析方法不同,近红外光谱分析法是一种间接分析技术,是用统计的方法在样品待测属性值与近红外光谱数据之间建立一个关联模型(或称校正模型,Calibration Mode l)。因此在对未知样品进行分析之前需要搜集一批用于建立关联模型的训练样品(或称校正样品,Calibration Samples),获得用近红外光谱仪器测得的样品光谱数据和用化学分析方法(或称参考方法,Reference method)测得的真实数据。 其工作原理是,如果样品的组成相同,则其光谱也相同,反之亦然。如果我们建立了光谱与待测参数之间的对应关系(称为分析模型),那么,只要测得样品的光谱,通过光谱和上述对应关系,就能很快得到所需要的质量参数数据。分析方法包括校正和预测两个过程: (1)在校正过程中,收集一定量有代表性的样品(一般需要80个样品以上),在测量其光谱图的同时,根据需要使用有关标准分析方法进行测量,得到样品的各种质量参数,称之为参考数据。通过化学计量学对光谱进行处理,并将其与参考数据关联,这样在光谱图和其参考数据之间建立起一一对应映射关系,通常称之为模型。虽然建立模型所使

近红外光谱分析及其应用简介

近红外光谱分析及其应用简介 1、近红外光谱分析及其在国际、国内分析领域的定位 近红外光谱分析是将近红外谱区(800-2500nm)的光谱测量技术、化学计量学技术、计算机技术与基础测试技术交叉结合的现代分析技术,主要用于复杂样品的直接快速分析。近红外分析复杂样品时,通常首先需要将样品的近红外光谱与样品的结构、组成或性质等测量参数(用标准或认可的参比方法测得的),采用化学计量学技术加以关联,建立待测量的校正模型;然后通过对未知样品光谱的测定并应用已经建立的校正模型,来快速预测样品待测量。 近红外光谱分析技术自上世纪60年代开始首先在农业领域应用,随着化学计量学与计算机技术的发展,80年代以来逐步受到光谱分析学家的重视,该项技术逐渐成熟,90年代国际匹茨堡会议与我国的BCEIA等重要分析专业会议均先后把近红外光谱分析与紫外、红外光谱分析等技术并列,作为一种独立的分析方法;2000年PITTCON 会议上近红外光谱方法是所有光谱法中最受重视的一类方法,这种分析方法已经成为ICC(International Association for Cereal Science and Technology国际谷物科技协会)、AOAC(American Association of Official Analytical Chemists美国公职化学家协会)、AACC (American Association of Cereal Chemists美国谷物化学家协会)等行业协会的标准;各发达国家药典如USP(United States Pharmacopoeia美国药典)均收入了近红外光谱方法;我国2005年版的药典也将该方法收入。在应用方面近红外光谱分析技术已扩展到石油化工、医药、生物化学、烟草、纺织品等领域。发达国家已经将近红外方法做为质量控制、品质分析和在线分析等快速、无损分析的主要手段。 我国对近红外光谱技术的研究及应用起步较晚,上世纪70年代开始,进行了近红外光谱分析的基础与应用研究,到了90年代,石化、农业、烟草等领域开始大量应用近红外光谱分析技术,但主要是依靠国外大型分析仪器生产商的进口仪器。目前国内能够提供完整近红外光

近红外光谱分析原理

近红外光(Near Infrared,NIR)就是介于可见光(VIS)与中红外光(MIR)之间得电磁波,按ASTM(美国试验与材料检测协会)定义就是指波长在78 0~2526nm范围内得电磁波,习惯上又将近红外区划分为近红外短波(78 0~1100nm)与近红外长波(1100~2526nm)两个区域。 近红外光谱属于分子振动光谱得倍频与主频吸收光谱,主要就是由于分子振动得非谐振性使分子振动从基态向高能级跃迁时产生得,具有较强得穿透能力。近红外光主要就是对含氢基团X-H(X=C、N、O)振动得倍频与合频吸收,其中包含了大多数类型有机化合物得组成与分子结构得信息。由于不同得有机物含有不同得基团,不同得基团有不同得能级,不同得基团与同一基团在不同物理化学环境中对近红外光得吸收波长都有明显差别,且吸收系数小,发热少,因此近红外光谱可作为获取信息得一种有效得载体。近红外光照射时,频率相同得光线与基团将发生共振现象,光得能量通过分子偶极矩得变化传递给分子;而近红外光得频率与样品得振动频率不相同,该频率得红外光就不会被吸收。因此,选用连续改变频率得近红外光照射某样品时, 由于试样对不同频率近红外光得选择性吸收,通过试样后得近红外光线在某些波长范围内会变弱,透射出来得红外光线就携带有机物组分与结构得信息。通过检测器分析透射或反射光线得光密度, 就可以确定该组分得含量。 近红外光谱分析技术包括定性分析与定量分析,定性分析得目得就是确定物质得组成与结构,而定量分析则就是为了确定物质中某些组分

得含量或就是物质得品质属性得值。与常用得化学分析方法不同,近红外光谱分析法就是一种间接分析技术,就是用统计得方法在样品待测属性值与近红外光谱数据之间建立一个关联模型(或称校正模型,Calibra tion Model)。因此在对未知样品进行分析之前需要搜集一批用于建立关联模型得训练样品(或称校正样品,Calibration Samples),获得用近红外光谱仪器测得得样品光谱数据与用化学分析方法(或称参考方法,R eference method)测得得真实数据。 其工作原理就是,如果样品得组成相同,则其光谱也相同,反之亦然。如果我们建立了光谱与待测参数之间得对应关系(称为分析模型),那么,只要测得样品得光谱,通过光谱与上述对应关系,就能很快得到所需要得质量参数数据。分析方法包括校正与预测两个过程: (1)在校正过程中,收集一定量有代表性得样品(一般需要80个样品以上),在测量其光谱图得同时,根据需要使用有关标准分析方法进行测量,得到样品得各种质量参数,称之为参考数据。通过化学计量学对光谱进行处理,并将其与参考数据关联,这样在光谱图与其参考数据之间建立起一一对应映射关系,通常称之为模型。虽然建立模型所使用得样本数目很有限,但通过化学计量学处理得到得模型应具有较强得代表性。对于建立模型所使用得校正方法视样品光谱与待分析得性质关系不同而异,常用得有多元线性回归,主成分回归,偏最小二乘,人工神经网络与拓扑方法等。显然,模型所适用得范围越宽越好,但就是模型得范围大

红外吸收光谱特征峰特别整理版

表典型有机化合物的重要基团频率(/cm-1) 化合物基团X-H伸缩振动区叁键区双键伸缩振动区部分单键振动和指纹区 烷烃-CH3 asCH:2962±10(s) asCH:1450±10(m) sCH:2872±10(s)sCH:1375±5(s) -CH2- asCH:2926±10(s)CH:1465±20(m) sCH:2853±10(s) CH:2890±10(s)CH:~1340(w) 烯烃 CH:3040~3010(m)C=C:1695~1540(m)CH:1310~1295(m) CH:770~665(s) CH:3040~3010(m)C=C:1695~1540(w)CH:970~960(s) 炔烃-C≡C-H CH:≈3300(m)C≡C:2270~2100(w) 芳烃 CH:3100~3000(变) 泛频:2000~1667(w) C=C :1650~1430(m) 2~4个峰 CH:1250~1000(w) CH:910~665 单取代:770~730(vs) ≈700(s) 邻双取代:770~735(vs) 间双取代:810~750(vs) 725~680(m) 900~860(m) ~对双取代:860~790(vs)

醇类 R-OH OH :3700~3200(变) OH :1410~1260(w) CO :1250~1000(s) OH :750~650(s) 酚类 Ar-OH OH :3705~3125(s) C=C :1650~1430(m) OH :1390~1315(m) CO :1335~1165(s) 脂肪醚 R-O-R ' CO :1230~1010(s) 酮 C=O :≈1715(vs) 醛 CH :≈2820,≈2720(w) 双峰 C=O :≈1725(vs) 羧酸 OH :3400~2500(m) C=O :1740~1690(m) OH :1450~1410(w) CO :1266~1205(m) 酸酐 C=O :1850~1880(s) C=O :1780~1740(s) CO :1170~1050(s) 酯 泛频C=O :≈3450(w) C=O :1770~1720(s) COC :1300~1000(s) 胺 -NH 2 NH2:3500~3300(m) 双峰 NH :1650~1590(s,m) CN (脂肪):1220~ 1020(m,w) CN ( 芳香):1340~ 1250(s) -NH NH :3500~3300(m) NH :1650~1550(vw) CN ( 脂肪):1220~ 1020(m,w) CN ( 芳香):1350~ 1280(s)

现代近红外光谱分析仪工作原理

现代近红外光谱分析仪工作原理 现代近红外光谱分析仪工作原理 2011年02月08日 20世纪90年代初,外国厂商开始在我国销售近红外光谱分析仪器产品,但在很长时间内,进展不大,其原因主要是:首先,近红外光谱分析要求光谱仪器、光谱数据处理软件(主要是化学计量学软件)和应用样品模型结合为一体,缺一不可。但被分析样品会由于样品产地的不同而不同,国内外的样品通常有差异,因此,进口仪器的应用模型一般不适合分析国内样品。如果自己建立模型,就需要操作人员了解和熟悉化学计量学知识和软件,而外商在中国的代理机构缺乏这方面的专业人才,不能有效地根据用户的需要组织培训,因此,用户对这项技术缺乏全面了解,影响到了它的推广使用。其次,进口仪器价格昂贵,售后技术服务费用也往往超出大多数用户的承受能力。 现代近红外光谱分析技工作原理 近红外光谱主要是由于分子振动的非谐振性使分子振动从基态向高能级跃迁时产生的。近红外光谱记录的是分子中单个化学键的基频振动的倍频和合频信息,它常常受含氢基团X-H(X-C、N、O)的倍频和合频的重叠主导,所以在近红外光谱范围内,测量的主要是含氢基团X-H振动的倍频和合频吸收。 由于倍频和合频跃迁几率低,而有机物质在NIR光谱区为倍频与合频吸收,所以消光系数弱,谱带重叠严重。因此从近红外光谱中提取有用信息属于弱信息和多元信息,需要充分利用现有的光机技术、电子技术和计算机技术进行处理。计算机技术主要包括光谱数据处理和数据关联技术。光谱数据处理是消除仪器因素(灯及测量方式等)环境因素(如温度等)和样品物态(如颜色、形态等)等对光谱的影响。常采用的方法有平滑、微分、基线漂移扣减、多元散射校正(MSC)和有限脉冲响应滤波(FIR)等也可以用小波变换来进行部分处理。数据关联技术主要是化学计量学方法。化学计量学的发展使多组分分析中多元信息处理理论和技术日益成熟,解决了近红外光谱区重叠的问题。通过关联技术可以实现近红外光谱的快速分析。在近红外光谱的应用中我们所关心的是被测样品的组成或各种物化性质,因此,如何提取这些有用信息是近红外光谱分析的技术核心。现在的许多研究与应用表明,

红外与近红外光谱常用数据处理算法

一、数据预处理 (1)中心化变换 (2)归一化处理 (3)正规化处理 (4)标准正态变量校正(标准化处理)(Standard Normal Variate,SNV)(5)数字平滑与滤波(Smooth) (6)导数处理(Derivative) (7)多元散射校正(Multiplicative Scatter Correction,MSC) (8)正交信号校正(OSC) 二、特征的提取与压缩 (1)主成分分析(PCA) (2)马氏距离 三、模式识别(定性分类) (1)基于fisher意义下的线性判别分析(LDA) (2)K-最邻近法(KNN) (3)模型分类方法(SIMCA) (4)支持向量机(SVM) (5)自适应boosting方法(Adaboost) 四、回归分析(定量分析) (1)主成分回归(PCR) (2)偏最小二乘法回归(PLS) (3)支持向量机回归(SVR)

一、数据预处理 (1) 中心化变换 中心化变换的目的是在于改变数据相对于坐标轴的位置。一般都是希望数据集的均值与坐标轴的原点重合。若x ik 表示第i 个样本的第k 个测量数据,很明显这个数据处在数据矩阵中的第i 行第k 列。中心化变换就是从数据矩阵中的每一个元素中减去该元素所在元素所在列的均值的运算: u ik k x x x =- ,其中k x 是n 个样本的均值。 (2) 归一化处理 归一化处理的目的是是数据集中各数据向量具有相同的长度,一般为单位长度。其公式为: 'ik x = 归一化处理能有效去除由于测量值大小不同所导致的数据集的方差,但是也可能会丢失重要的方差。 (3)正规化处理 正规化处理是数据点布满数据空间,常用的正规化处理为区间正规化处理。其处理方法是以原始数据集中的各元素减去所在列的最小值,再除以该列的极差。 min() 'max()min() ik ik k k x xk x x x -= - 该方法可以将量纲不同,范围不同的各种变量表达为值均在0~1范围内的数据。但这种方法对界外值很敏感,若存在界外值,则处理后的所有数据近乎相等。 (4) 标准化处理(SNV )也称标准正态变量校正 该处理能去除由单位不同所引起的不引人注意的权重,但这种方法对界外点不像区间正规化那样的敏感。标准化处理也称方差归一化。它是将原始数据集各个元素减去该元素所在列的元素的均值再除以该列元素的标准差。 ';ik k ik k k x x x S S -==

基于可见–近红外光谱技术的红茶 等级判别研究

Applied Physics 应用物理, 2019, 9(5), 233-242 Published Online May 2019 in Hans. https://www.360docs.net/doc/ef9607672.html,/journal/app https://https://www.360docs.net/doc/ef9607672.html,/10.12677/app.2019.95028 Discrimination Research on Black Tea Grade Based on Visible-Near Infrared Spectroscopy Jiajie Ou, Shicheng Jiang, Cheng Zhang, Li Yuan, Jiancheng Yu, Yanlin Tang* College of Physics, Guizhou University, Guiyang Guizhou Received: Apr. 26th, 2019; accepted: May 8th, 2019; published: May 15th, 2019 Abstract Taking Zunyi black tea as the research object, the Black tea grade discrimination based on visi-ble-near infrared spectroscopy technology was used, and the discrimination effect of the identifi-cation model on black tea was examined. Firstly, the obtained raw spectral data are preprocessed by 8 methods such as SG-Smoothing method, multivariate scattering correction method, detrending method and so on. Comparing these eight spectral preprocessing methods, the results show that the partial least squares discriminant model is the best spectral preprocessing method. Then, the com-petitive adaptive re-weighting algorithm, combined with the competitive adaptive re-weighting al-gorithm and the moving window method of continuous projection algorithm is used to filter the spectral characteristic wavelength variables of the entire spectral region, to establish a partial least squares identification model. After comparing the evaluation indexes of model quality, the results show that the partial least squares method of the SG-smoothing pre-processed spectral data combined with the competitive adaptive re-weighting algorithm is the best way to select the characteristic wavelength and establish the identification model. This method can identify the grade of black tea more accurately and quickly. Keywords Near-Infrared Spectroscopy, Black Tea, Grade Discrimination, Partial Least Squares Regression 基于可见–近红外光谱技术的红茶 等级判别研究 欧家杰,姜仕程,张成,袁荔,于建成,唐延林* 贵州大学物理学院,贵州贵阳 *通讯作者。

红外吸收光谱特征峰

表15.1 典型有机化合物的重要基团频率(/cm-1) asCH asCH sCH sCH asCH CH sCH CH CH CH C=C CH CH CH C=C CH CH C≡C CH CH C=C CH OH OH

CO OH OH C=C OH CO CO C=O CH C=O OH C=O OH CO CO C=O C=O 泛频C=O C=O COC NH2NH CN CN NH NH CN CN asNH C=O CN

sNH NH NH2 NH CN+NH C=O NH+CN C=O C=O C≡N NO2NO2 CN NO2NO2 CN 吡啶类 CH C=C及C=N CH CH 嘧啶类 CH C=C及C=N CH CH *表中vs,s,m,w,vw用于定性地表示吸收强度很强,强,中,弱,很弱。

中红外光谱区一般划分为官能团区和指纹区两个区域,而每个区域又可以分为若干个波段。 官能团区 官能团区(或称基团频率区)波数范围为4000~1300cm -1 , 又可以分为四个波段。 ★ 4000~2500cm -1 为含氢基团x —H (x 为O 、N 、C )的伸缩振动区,因为折合质量小,所以波数高,主要有以下五种基团吸收 ● 醇、酚中O —H :3700~3200cm -1 , 无缔合的O —H 在高 一侧,峰形尖锐, 强度为s 缔合的O —H 在低 一侧, 峰形宽钝, 强度为s ● 羧基中O —H : 3600~2500 cm -1 , 无缔合的O —H 在高 一侧,峰形尖锐, 强度为s 缔合可延伸至2500 cm -1 ,峰非常宽钝, 强度为s ● N —H : 3500~3300 cm -1 , 伯胺有两个H ,有对称和非对称两个峰, 强度为s—m 叔胺无H ,故无吸收峰 ● C —H : <3000 cm -1 为饱和C : ~2960 cm -1 ( ),~2870 cm -1 ( ) 强度为m-s ~2925 cm -1 ( ),~2850 cm -1 ( ) 强度为m-s ~2890 cm -1 强度为w >3000 cm -1 为不饱和 C : (及苯环上C-H)3090~3030 cm -1 强度为m ~3300 cm -1 强度为m ● 醛基中C —H :~2820及~2720两个峰 强度为m-s

近红外光谱

近红外光谱在果蔬品质无损检测中的应用研究进展 摘要 本论文介绍了近红外光谱无损检测机理,近红外光谱在果实品质的定量分析和定性分析的研究概况,并对近红外光谱对果实品质无损检测存在问题及前景做了简单的分析。 关键词 无损检测;近红外光谱;内部品质;果蔬 1 引言 1.1 果蔬无损检测研究概况 果蔬品质主要是指果蔬形态、颜色、密度、硬度以及含糖量、水分、酸度、病变等。果蔬品质检测技术作为保障果蔬质量、提升产品市场竞争力的一种手段,可以分为有损检测和无损检测两种。有损检测一般需要借助传统的化学分析测定方法或是现代仪器分析方法( 如高效液相色谱分析、气相色谱分析、质谱分析等) ,测定过程比较烦琐、人力物力耗费大、检测成本非常高。无损检测又称为非破坏性检测,是利用果蔬的物理性质,如力学性质、热学性质、电学性质、光学性质和声学性质等,在获取样品信息的同时保证了样品的完整性,检测速度较传统的化学方法迅速,且能有效地判断出从外观无法获得的样品内部品质信息。目前,果蔬品质与安全的无损检测技术主要包括: 光谱分析技术、光谱成像技术、机器视觉技术、介电特性检测技术、声学特性及超声波检测技术、力学检测技术、核磁共振检测技术、生物传感器技术、电子鼻与电子舌技术等等。针对不同的检测对象和检测指标,这些无损检测技术各具优势。 1.2 近红外光谱无损检测研究概况 近红外光谱分析( Near Infrared Spectroscopy,NIR) 技术是近十年来发展最为迅速的高新分析技术之一,以其快速、简便、高效等优势已被人们认识和接受,并且其应用范围也由谷物、饲料扩展到食品和果蔬等领域。水果是重要的农产品,消费者在选购水果时对于内部品质如口感、糖度和酸度等极为看重。而近红外光谱分析技术将其用于水果内部品质检测具有快速、非破坏性、无需前处

近红外光谱分析技术的数据处理方法

引言 近红外是指波长在780nm~2526nm范围内的光线,是人们认识最早的非可见光区域。习惯上又将近红外光划分为近红外短波(780nm~1100nm)和长波(1100 nm~2526 nm)两个区域.近红外光谱(Near Infrared Reflectance Spectroscopy,简称NIRS)分析技术是一项新的无损检测技术,能够高效、快速、准确地对固体、液体、粉末状等有机物样品的物理、力学和化学性质等进行无损检测。它综合运用了现代计算机技术、光谱分析技术、数理统计以及化学计量学等多个学科的最新研究果,并使之融为一体,以其独有的特点在很多领域如农业、石油、食品、生物化工、制药及临床医学等得到了广泛应用,在产品质量分析、在线检测、工艺控制等方面也获得了较大成功。近红外光谱分析技术的数据处理主要涉及两个方面的内容:一是光谱预处理方法的研究,目的是针对特定的样品体系,通过对光谱的适当处理,减弱和消除各种非目标因素对光谱的影响,净化谱图信息,为校正模型的建立和未知样品组成或性质的预测奠定基础;二是近红外光谱定性和定量方法的研究,目的在于建立稳定、可靠的定性或定量分析模型,并最终确定未知样品和对其定量。 1工作原理 近红外光谱区主要为含氢基团X-H(X=O,N,S,单健C,双健C,三健C等)的倍频和合频吸收区,物质的近红外光谱是其各基团振动的倍频和合频的综合吸收表现,包含了大多数类型有机化合物的组成和分子结构的信息。因为不同的有机物含有不同的基团,而不同的基团在不同化学环境中对近红外光的吸收波长不同,因此近红外光谱可以作为获取信息的一种有效载体。近红外光谱分析技术是利用被测物质在其近红外光谱区内的光学特性快速估测一项或多项化学成分含量。被测样品的光谱特征是多种组分的反射光谱的综合表现,各组分含量的测定基于各组分最佳波长的选择,按照式(1)回归方程自动测定结果:组分含量=C0+C1(Dp)1+C2(Dp)2+…+Ck(Dp)k(1)式中:C0~k为多元线性回归系数;(Dp)1~k为各组分最佳波长的反射光密度值(D=-lgp,p为反射比)。该方程准确的反映了定标范围内一系列样品的测定结果,与实验室常规测定法之间的标准偏差SE为:SE=[Σ(y-x)2/(n-1)]1/2(2)式中:x表示实验室常规法测定值,y表示近红外光 谱法测值,n为样品数。 2光谱数据的预处理 仪器采集的原始光谱中除包含与样品组成有关的信息外,同时也包含来自各方面因素所产生的噪音信号。这些噪音信号会对谱图信息产生干扰,有些情况下还非常严重,从而影响校正模型的建立和对未知样品组成或性质的预测。因此,光谱数据预处理主要解决光谱噪音的滤除、数据的筛选、光谱范围的优化及消除其他因素对数据信息的影响,为下步校正模型的建立和未知样品的准确预测打下基础。常用的数据预处理方法有光谱数据的平滑、基线校正、求导、归一化处理等。 2.1数据平滑处理 信号平滑是消除噪声最常用的一种方法,其基本假设是光谱含有的噪声为零均随机白噪声,若多次测量取平均值可降低噪声提高信噪比。平滑处理常用方法有邻近点比较法、移动平均法、指数平均法等。 2.1.1邻近点比较法 对于许多干扰性的脉冲信号,将每一个数据点和它旁边邻近的数据点的

近红外光谱分析技术的数据处理方法

近红外光谱分析技术的数据处理方法

引言 近红外是指波长在780nm~2526nm范围内的光线,是人们认识最早的非可见光区域。习惯上又将近红外光划分为近红外短波(780nm~1100nm)和长波(1100 nm~2526 nm)两个区域.近红外光谱(Near Infrared Reflectance Spectroscopy,简称NIRS)分析技术是一项新的无损检测技术,能够高效、快速、准确地对固体、液体、粉末状等有机物样品的物理、力学和化学性质等进行无损检测。它综合运用了现代计算机技术、光谱分析技术、数理统计以及化学计量学等多个学科的最新研究果,并使之融为一体,以其独有的特点在很多领域如农业、石油、食品、生物化工、制药及临床医学等得到了广泛应用,在产品质量分析、在线检测、工艺控制等方面也获得了较大成功。近红外光谱分析技术的数据处理主要涉及两个方面的内容:一是光谱预处理方法的研究,目的是针对特定的样品体系,通过对光谱的适当处理,减弱和消除各种非目标因素对光谱的影响,净化谱图信息,为校正模型的建立和未知样品组成或性质的预测奠定基础;二是近红外光谱定性和定量方法的研究,目的在于建立稳定、可靠的定性或定量分析模型,并最终确定未知样品和对其定量。 1工作原理 近红外光谱区主要为含氢基团X-H(X=O,N,S,单健C,双健C,三健C等)的倍频和合频吸收区,物质的近红外光谱是其各基团振动的倍频和合频的综合吸收表现,包含了大多数类型有机化合物的组成和分子结构的信息。因为不同的有机物含有不同的基团,而不同的基团在不同化学环境中对近红外光的吸收波长不同,因此近红外光谱可以作为获取信息的一种有效载体。近红外光谱分析技术是利用被测物质在其近红外光谱区内的光学特性快速估测一项或多项化学成分含量。被测样品的光谱特征是多种组分的反射光谱的综合表现,各组分含量的测定基于各组分最佳波长的选择,按照式(1)回归方程自动测定结果:组分含量=C0+C1(Dp)1+C2(Dp)2+…+Ck(Dp)k(1)式中:C0~k为多元线性回归系数;(Dp)1~k为各组分最佳波长的反射光密度值(D=-lgp,p为反射比)。该方程准确的反映了定标范围内一系列样品的测定结果,与实验室常规测定法之间的标准偏差SE为:SE=[Σ(y-x)2/(n-1)]1/2(2)式中:x表示实验室常规法测定值,y表示近红外光 谱法测值,n为样品数。 2光谱数据的预处理 仪器采集的原始光谱中除包含与样品组成有关的信息外,同时也包含来自各方面因素所产生的噪音信号。这些噪音信号会对谱图信息产生干扰,有些情况下还非常严重,从而影响校正模型的建立和对未知样品组成或性质的预测。因此,光谱数据预处理主要解决光谱噪音的滤除、数据的筛选、光谱范围的优化及消除其他因素对数据信息的影响,为下步校正模型的建立和未知样品的准确预测打下基础。常用的数据预处理方法有光谱数据的平滑、基线校正、求导、归一化处理等。 2.1数据平滑处理 信号平滑是消除噪声最常用的一种方法,其基本假设是光谱含有的噪声为零均随机白噪声,若多次测量取平均值可降低噪声提高信噪比。平滑处理常用方法有邻近点比较法、移动平均法、指数平均法等。 2.1.1邻近点比较法

近红外光谱分析原理

近红外光谱分析原理公司内部档案编码:[OPPTR-OPPT28-OPPTL98-OPPNN08]

近红外光(Near Infrared,NIR)是介于可见光(VIS)和中红外光(MI R)之间的电磁波,按ASTM(美国试验和材料检测协会)定义是指波长在780~2526nm范围内的电磁波,习惯上又将近红外区划分为近红外短波(780~1100nm)和近红外长波(1100~2526nm)两个区域。 近红外光谱属于分子振动光谱的倍频和主频吸收光谱,主要是由于分子振动的非谐振性使分子振动从基态向高能级跃迁时产生的,具有较强的穿透能力。近红外光主要是对含氢基团X-H(X=C、N、O)振动的倍频和合频吸收,其中包含了大多数类型有机化合物的组成和分子结构的信息。由于不同的有机物含有不同的基团,不同的基团有不同的能级,不同的基团和同一基团在不同物理化学环境中对近红外光的吸收波长都有明显差别,且吸收系数小,发热少,因此近红外光谱可作为获取信息的一种有效的载体。近红外光照射时,频率相同的光线和基团将发生共振现象,光的能量通过分子偶极矩的变化传递给分子;而近红外光的频率和样品的振动频率不相同,该频率的红外光就不会被吸收。因此,选用连续改变频率的近红外光照射某样品时,由于试样对不同频率近红外光的选择性吸收,通过试样后的近红外光线在某些波长范围内会变弱,透射出来的红外光线就携带有机物组分和结构的信息。通过检测器分析透射或反射光线的光密度,就可以确定该组分的含量。

近红外光谱分析技术包括定性分析和定量分析,定性分析的目的是确定物质的组成与结构,而定量分析则是为了确定物质中某些组分的含量或是物质的品质属性的值。与常用的化学分析方法不同,近红外光谱分析法是一种间接分析技术,是用统计的方法在样品待测属性值与近红外光谱数据之间建立一个关联模型(或称校正模型,Calibration Mode l)。因此在对未知样品进行分析之前需要搜集一批用于建立关联模型的训练样品(或称校正样品,Calibration Samples),获得用近红外光谱仪器测得的样品光谱数据和用化学分析方法(或称参考方法,Reference me thod)测得的真实数据。 其工作原理是,如果样品的组成相同,则其光谱也相同,反之亦然。如果我们建立了光谱与待测参数之间的对应关系(称为分析模型),那么,只要测得样品的光谱,通过光谱和上述对应关系,就能很快得到所需要的质量参数数据。分析方法包括校正和预测两个过程: (1)在校正过程中,收集一定量有代表性的样品(一般需要80个样品以上),在测量其光谱图的同时,根据需要使用有关标准分析方法进行测量,得到样品的各种质量参数,称之为参考数据。通过化学计量学对光谱进行处理,并将其与参考数据关联,这样在光谱图和其参考数据之间建立起一一对应映射关系,通常称之为模型。虽然建立模型所使

#第三章 红外吸收光谱分析

第三章红外吸收光谱分析 3.1概述 3.1.1红外吸收光谱的基本原理 红外吸收光谱法又称为分子振动转动光谱,属于分子光谱的范畴,是有机物结构分析的重要方法之一。当一定频率的红外光照射分子时,若分子中某个基团的振动频率和红外辐射的频率一致,两者产生共振,光的能量通过分子偶极矩的变化传递给分子,该基团就吸收了这个频率的红外光,产生振动能级跃迁;如果红外辐射的频率和分子中各基团的振动能级不一致,该频率的红外光将不被吸收。如果用频率连续变化的红外光照射某试样,分子将吸收某些频率的辐射,引起对应区域辐射强度的减弱,用仪器以吸收曲线的形式记录下来,就得到该试样的红外吸收光谱,稀溶液谱带的吸光度遵守Lambert-Beer定律。 图3-1为正辛烷的红外吸收光谱。红外谱图中的纵坐标为吸收强度,通常用透过率或吸光度表示,横坐标以波数或波长表示,两者互为倒数。图中的各个吸收谱带表示相应基团的振动频率。各种化合物分子结构不同,分子中各个基团的振动频率不同。其红外吸收光谱也不同,利用这一特性,可进行有机化合物的结构分析、定性鉴定和定量分析。 图3-1 正辛烷的红外光谱图 几乎所有的有机和无机化合物在红外光谱区均有吸收。除光学异构体,某些高分子量的高聚物以及一些同系物外,结构不同的两个化合物,它们的红外光谱一定不会相同。吸收谱带出现的频率位置是由分子振动能级决定,可以用经典力学(牛顿力学)的简正振动理论来说明。吸收谱带的强度则主要取决于振动过程中偶极矩的变化和能级跃迁的概率。也就是说,红外光谱中,吸收谱带的位置、形状和强度反映了分子结构的特点,而吸收谱带的吸收强度和分子组成或官能团的含量有关。 因此,红外吸收光谱在化学领域中的使用,大体上可分为两个方面,即分子结构的基础研究和用于化学组成的分析。 首先,红外光谱可以研究分子的结构和化学键。利用红外光谱法测定分子的

红外光谱峰值分析的方法

傅里叶红外光谱分析 第一节一般原理 电子能级跃迁所产生的吸收光谱,主要在近紫外区和可见区,称为可见-紫外光谱;键振动能级跃迁所产生的吸收光谱,主要在中红外区,称为红外光谱;自旋的原子核在外加磁场中可吸收无线电波而引起能级的跃迁,所产生的吸收光谱称为核磁共振谱。 第二节紫外光谱 一、紫外光谱的基本原理 用波长围200 nm~800 nm的光照射含有共轭体系的的不饱和化合物的稀溶液时,部分波长的光被吸收,被吸收光的波长和强度取决于不饱和化合物的结构。以波长l为横座标,吸收度A为纵座标作图,得紫外光谱,或称电子光谱。 是化合物紫外光谱的特征常数。 紫外光谱中化合物的最大吸收波长λ max 可见-紫外光谱适用于分析分子中具有π键不饱和结构的化合物。 二、紫外光谱在有机结构分析中的应用 随着共轭体系的延长,紫外吸收向长波方向移动,且强度增大(π→π*),因此可判断分子中共轭的程度。 利用紫外光谱可以测定化合物的纯度或含量。 第三节红外光谱 一、红外光谱的基本原理 用不断改变波长的红外光照射样品,当某一波长的频率刚好与分子中某一化学键的振动频率相同时,分子就会吸收红外光,产生吸收峰。用波长(λ)或波长的倒数—波数(cm-1)为横坐标,百分透光率(T%)或吸收度(A)为纵坐标做图,得到红外吸收光谱图(IR)。分子振动所需能量对应波数围在400 cm-1~4000 cm-1。

二、红外吸收峰的位置和强度 分子中的一个化学键可有几种不同的振动形式,而产生不同的红外吸收峰,键的振动分为两大类。 伸缩振动,用n表示,原子间沿键轴方向伸长或缩短。 弯曲振动用δ表示,形成化学键的两个原子之一与键轴垂直方向作上下或左右弯曲。 组成化学键的原子的质量越小,键能越高,键长越短,振动所需能量越大,吸收峰所在的波数就越高。 红外光谱的吸收峰分为两大区域: 4000 cm-1~1330 cm-1区域:特征谱带区,是红外光谱分析的主要依据。 1330 cm-1~650 cm-1区域:指纹区。每一化合物在指纹区都有它自己的特征光谱,对分子结构的鉴定能提供重要信息。 (很强);s(强);m(中强);w(弱);红外吸收峰的强弱用下列符号表示:v s v (很弱);b(宽峰)。 w 凡能使键增强的因素,引起峰位向高波数方向移动,反之,则向低波数方向移动。 三、各类化合物的红外光谱举例 (一)烃类化合物 注:烷烃,即饱和烃,是只有碳碳单键和碳氢键的链烃。烷烃的通式为CnH2n+2。 烯烃是指含有C=C键(碳-碳双键)(烯键)的碳氢化合物,单链烯烃分子通式为CnH2n 炔烃,为分子中含有碳碳三键的碳氢化合物的总称,其官能团为碳-碳三键(C≡C),分子通式为CnH2n-2

现代近红外光谱分析技术的原理及应用

现代近红外光谱分析技术的原理及应用 1 简介 近红外光(near infrared,NIR)是介于可见光(VIS)和中红外光(MIR或IR)之间的电磁波美国材料检测协会(ASTM)将近红外光谱区定义为波长 780-2526nm的光谱区(波数为12820-3959cm-1)习惯上又将近红外区划分为近红外短波(780-1100nm)和近红外长波(1100-2526nm)两个区域。从20世纪50年代起,近红外光谱技术就在农副产品分析中得到广泛应用,但是由于技术上的原因,在随后的20多年中进展不大。进入20世纪80 年代后,随着计算机技术的迅速发展,以及化学计量学方法在解决光谱信息提取和消除背景干扰方面取得的良好效果,加之近红外光谱在测试技术上所独有的特点,人们对近红外光谱技术的价值有了进一步的了解从而进行了广泛的研究。数字化光谱仪器与化学计量学方法的结合标志着现代近红外光谱技术的形成。数字化近红外光谱技术在20 世纪90年代初开始商品化。近年来,近红外光谱的应用技术获得了巨大发展,在许多领域得到应用,对推进生产和科研领域的技术进步发挥了巨大作用。近红外光谱技术是90年代以来发展最快、最引人注目的光谱分析技术,测量信号的数字化和分析过程的绿色化使该技术具有典型的时代特征。由于近红外光在常规光纤中有良好的传输特性,使近红外光谱技术在实时在线分析领域中得到很好的应用。在工业发达国家,这种先进的分析技术已被普遍接受,例如1978年美国和加拿大采用近红外法代替凯氏法,作为分析小麦蛋白质的标准方法。 20世纪90年代初,外国厂商开始在我国销售近红外光谱分析仪器产品,但在很长时间内,进展不大,其原因主要是:首先,近红外光谱分析要求光谱仪器、光谱数据处理软件(主要是化学计量学软件)和应用样品模型结合为一体,缺一不可。但被分析样品会由于样品产地的不同而不同,国内外的样品通常有差异,因此,进口仪器的应用模型一般不适合分析国内样品。如果自己建立模型,就需要操作人员了解和熟悉化学计量学知识和软件,而外商在中国的代理机构缺乏这方面的专业人才,不能有效地根据用户的需要组织培训,因此,用户对这项技术缺乏全面了解,影响到了它的推广使用。其次,进口仪器价格昂贵,售后技术服务费用也往往超出大多数用户的承受能力。 1995年以来,国内许多科研院所和大专院校开始积极研究和开发适合国内需要的近红外光谱分析技术,并且做了大量技术知识的普及工作,为我国在这一技术领域的发展奠定了良好的基础,开创了崭新的局面。 2 工作原理 近红外光谱主要是由于分子振动的非谐振性使分子振动从基态向高能级跃迁时产生的。近红外光谱记录的是分子中单个化学键的基频振动的倍频和合频信息,它常常受含氢基团X-H(X-C、N、O)的倍频和合频的重叠主导,所以在近

红外光谱分析方法

红外光谱分析方法通则

前言 本标准的编制参照了国标GB 6040-85《化工产品用红外光谱定量分析方法通则》,四川大学出版的《聚合物红外光谱分析和鉴定》等资料。红外光谱仪现已安装、调试完毕,已开始正式使用,需制订通则以保证我公司的原材料及产品的检验任务。 本标准由冰箱公司标准化委员会提出。 本标准由质保部负责起草并解释。 本标准1998年11月首次发布,主要起草人:。

红外光谱分析方法通则 QJ/KB 1620.021-98 1 范围 本标准规定了红外光谱仪的技术参数、技术要求、试验方法。 本标准适用于广东科龙电器股份有限公司冰箱公司。 2 引用标准 下列标准包含的条文,通过在本标准中引用而构成本标准的条文。在标准出版时,所示版本均为有效。所有标准都会被修订,使用本标准的各方应探讨、使用下列标准最新版本的可能性。 GB 6040-85 化工产品用红外光谱定量分析方法通则 3技术参数 3.1型号:美国尼高力公司生产的560型FT-IR红外光谱仪 3.2额定功率:130W/130VA 3.3额定电压:100V~240V 3.4电流:0.6A~1.3A 3.5频率:50Hz~60Hz 3.6仪器组成:光源—样品室—干涉仪—检测器—放大器—计算机—打印机 4 技术要求 红外光谱仪应符合标准要求。当红外辐射通过气体、液体或固体样品时,由于样品的分子结构不同,在不同波长处产生有选择性的吸收,然后以波数或波长为横坐标,以透过率或吸光度为纵坐标描绘成光谱图,得到样品的特征吸收曲线,即红外吸收光谱。以光谱中吸收峰的位置和形状来判断或鉴别样品的结构,以特征吸收峰的强度来测定样品的含量,这种方法称为红外光谱分析方法。 4.1 环境条件 红外光谱仪属于光、机、电联合动作的精密仪器,对环境条件,应具备以下条件。冰箱公司

近红外光谱

近红外光谱偏最小二乘法快速测定八角茴香中莽草酸含量 [ 09-08-31 10:31:00 ] 编辑:studa20 作者:范铭然,孟庆繁,王迪,王天然,杨光,滕利荣,林凤 【摘要】目的采用偏最小二乘法(PLS)建立测定八角茴香中莽草酸含量的近红外光谱定量分析模型。方法应用多种光谱预处理方法分别对八角茴香固体粉末样品的近红外光谱进行预处理,并采用预处理后的光谱分别建立定量分析模型,模型经过选择最适主因子数进行优化。结果经过比较各个模型的内部交互验证均方根误差(RMSECV)和交互验证预测值与实验测得值间的相关系数(Rv),外部均方根误差(RMSEP),选取最优的模型。结论结果表明定量分析模型稳健性好和预测精度高,在中药有效成分定量分析方面有很大的应用前景。 【关键词】八角茴香近红外光谱偏最小二乘法莽草酸 八角茴香为木兰科植物八角茴香Illicium verum Hook f.的干燥成熟果实,产于中国南方地区和越南,是我国重要“药食同源”经济树种,为我国特产辛香料和中药。八角茴香中普遍含有莽草酸,是莽草酸的丰富来源之一。研究表明莽草酸具有很好的抗炎、镇痛和抑制血小板聚集的作用,是有效对付致命的H5N1型禽流感病毒的药物“达菲”的合成中间体[1,2],具有广阔的开发价值和应用前景。 近红外光谱波长范围在780~2 500 nm,有机化合物在该区有吸收。其特点是吸收较弱,样品不需稀释就可测量,适于组分的常量分析,易于实现简便快速的非破坏分析。但谱带较宽,组分间谱带重叠严重,给直接分析带来困难[3,4]。化学计量学可有效地解决这个问题。偏最小二乘法(Partial Least Square, PLS)是目前化学计量学中最有效的分析方法之一。 莽草酸的常规测量方法为高效液相色谱法(HPLC)[5],该方法通常需要合适的溶剂,经过超声波等方法进行提取,前期预处理非常繁琐、费时,而且因需要大量的有机试剂而污染环境和对操作人员造成伤害。本文采用NIR光谱结合偏最小二乘法(PLS)建立测定八角茴香中莽草酸含量的定量分析模型。本实验所建立的测定八角茴香中莽草酸含量的定量分析模型具有较高的预测精度,为中药中有效成分含量的测定提供一种新方法。 1 材料与仪器 八角茴香购于沈阳家乐福超市;莽草酸对照品购于Sigma公司;甲醇和 H3PO4,分析纯;乙腈,色谱纯。

相关文档
最新文档