2020届高考数学复习备考-三角函数的图象与性质

合集下载

2020新课标高考数学(文)二轮总复习课件:1-1-1 三角函数图象与性质

2020新课标高考数学(文)二轮总复习课件:1-1-1 三角函数图象与性质

卷Ⅲ
三角函数图象、性质与函数零点·T5 正余弦定理与解三角形·T18
考查三角函数图象的变换 为主.
上一页
返回导航
下一页
新课标高考第二轮总复习•文科数学
卷Ⅰ
三角函数的性质、二倍角公式·T8 三角函数与解三角形、正余弦定理·T16
2.在复习过程中要注意:
2018
卷Ⅱ
三角函数的图象与性质·T10 三角函数求值·T15
下一页
新课标高考第二轮总复习•文科数学
(2)求 f(x)在0,π4上的最大值和最小值. 解析:(2)由(1)可知 f(x)=2sin4x-π3+1,令 z=4x-π3, ∵x∈0,π4,∴z∈-π3,23π, ∴g(z)=2sin z+1 在-π3,π2上单调递增, 在π2,23π上单调递减.
上一页
返回导航
下一页
新课标高考第二轮总复习•文科数学
(1)求 cosα+2 β的值; 解析:(1)∵π2<α<π,∴π4<α2<π2. ∵0<β<π2,∴-π2<-β<0,-π4<-β2<0, ∴π4<α-β2<π,-π4<α2-β<π2.
上一页
返回导航

下一页
又 sinα-β2+π2=cosα-β2=-19<0, sinα2-β=23>0, ∴π2<α-β2<π,0<α2-β<π2, ∴sinα-β2= 1-cos2α-β2=495,
几乎是每年高考的必考 题.大致可以分为如下几
三角函数性质与二倍角公式求最值·T15 类问题:与三角函数单调
2019
卷Ⅱ
三角函数图象与性质·T8 三角函数同角基本公式与二倍角公式求 值·T11
性有关的问题,与三角函 数图象有关的问题,应用 同角变换和诱导公式,求

2020年人教版高考数学 复习重点--第3篇 第3讲 三角函数的图象与性质

2020年人教版高考数学 复习重点--第3篇 第3讲 三角函数的图象与性质

第3讲 三角函数的图象与性质[最新考纲]1.能画出y =sin x ,y =cos x ,y =tan x 的图象,了解三角函数的周期性. 2.借助图象理解正弦函数、余弦函数在[0,2π],正切函数在⎝ ⎛⎭⎪⎫-π2,π2上的性质.知 识 梳 理正弦、余弦、正切函数的图象与性质 (下表中k ∈Z ).1.周期性的判断(1)(教材习题改编)由sin(30°+120°)=sin 30°知,120°是正弦函数y =sin x (x ∈R )的一个周期. (×)(2)函数y =tan ⎝ ⎛⎭⎪⎫2x +π3的最小正周期为π2. (√)2.判断奇偶性与对称性(3)函数y =sin ⎝ ⎛⎭⎪⎫2x +3π2是奇函数. (×)(4)函数y =sin x 的对称轴方程为x =2k π+π2(k ∈Z ).(×) 3.求三角函数的单调区间(5)函数f (x )=sin(-2x )与f (x )=sin 2x 的单调增区间都是⎣⎢⎡⎦⎥⎤k π-π4,k π+π4(k ∈Z ).(×)(6)函数y =tan x 在整个定义域上是增函数. 4.求三角函数的最值 (7)存在x ∈R ,使得2sin x =3.(×)(8)(教材习题改编)函数f (x )=sin ⎝ ⎛⎭⎪⎫2x -π4在区间⎣⎢⎡⎦⎥⎤0,π2上的最小值为-22.(√) [感悟·提升]1.一点提醒 求函数y =A sin(ωx +φ)的单调区间时,应注意ω的符号,只有当ω>0时,才能把ωx +φ看作一个整体,代入y =sin t 的相应单调区间求解. 2.三个防范 一是函数y =sin x 与y =cos x 的对称轴分别是经过其图象的最高点或最低点且平行于y 轴的直线,如y =cos x 的对称轴为x =k π,而不是x =2k π(k ∈Z ).二是对于y =tan x 不能认为其在定义域上为增函数,应在每个区间⎝ ⎛⎭⎪⎫k π-π2,k π+π2(k ∈Z )内为增函数,如(6).三是函数y =sin x 与y =cos x 的最大值为1,最小值为-1,不存在一个值使sin x =32,如(7).学生用书第54页考点一 三角函数的定义域、值域问题【例1】 (1)函数y =sin x -cos x 的定义域为________.(2)当x ∈⎣⎢⎡⎦⎥⎤π6,7π6时,函数y =3-sin x -2cos 2x 的最小值是________,最大值是________.解析 (1)法一 要使函数有意义,必须使sin x -cos x ≥0.利用图象,在同一坐标系中画出[0,2π]上y =sin x 和y =cos x 的图象,如图所示.在[0,2π]内,满足sin x =cos x 的x 为π4,5π4,再结合正弦、余弦函数的周期是2π,所以原函数的定义域为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪2k π+π4≤x ≤2k π+5π4,k ∈Z .法二 利用三角函数线,画出满足条件的终边范围(如图阴影部分所示).∴定义域为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪2k π+π4≤x ≤2k π+5π4,k ∈Z. 法三 sin x -cos x =2sin ⎝ ⎛⎭⎪⎫x -π4≥0,将x -π4视为一个整体,由正弦函数y =sin x的图象和性质可知2k π≤x -π4≤π+2k π,k ∈Z , 解得2k π+π4≤x ≤2k π+5π4,k ∈Z .所以定义域为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪2k π+π4≤x ≤2k π+5π4,k ∈Z. (2)y =3-sin x -2cos 2x=3-sin x -2(1-sin 2x )=2sin 2 x -sin x +1, 令sin x =t ∈⎣⎢⎡⎦⎥⎤-12,1,∴y =2t 2-t +1=2⎝ ⎛⎭⎪⎫t -142+78,t ∈⎣⎢⎡⎦⎥⎤-12,1,∴y min =78,y max =2. 答案(1)⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪2k π+π4≤x ≤2k π+5π4,k ∈Z (2)78 2规律方法 (1)求三角函数定义域实际上是构造简单的三角不等式(组),常借助三角函数线或三角函数图象来求解. (2)三角函数值域的不同求法 ①利用sin x 和cos x 的值域直接求.②把形如y =a sin x +b cos x 的三角函数化为y =A sin(ωx +φ)的形式求值域. ③利用sin x ±cos x 和sin x cos x 的关系转换成二次函数求值域.【训练1】 (2014·广州模拟)已知函数f (x )=6cos 4 x +5sin 2x -4cos 2x ,求f (x )的定义域和值域.解 由cos 2x ≠0得2x ≠k π+π2,k ∈Z , 解得x ≠k π2+π4,k ∈Z , 所以f (x )的定义域为⎩⎨⎧⎭⎬⎫x |x ∈R ,且x ≠k π2+π4,k ∈Z . f (x )=6cos 4 x +5sin 2 x -4cos 2x =6cos 4 x +5-5cos 2x -42cos 2x -1=(2cos 2x -1)(3cos 2x -1)2cos 2x -1=3cos 2x -1. 所以f (x )的值域为⎩⎨⎧⎭⎬⎫y |-1≤y <12,或12<y ≤2.考点二 三角函数的奇偶性、周期性和对称性【例2】 (1)已知函数f (x )=sin ⎝ ⎛⎭⎪⎫2x +3π2(x ∈R ),下面结论错误的是( ).A .函数f (x )的最小正周期为πB .函数f (x )是偶函数C .函数f (x )的图象关于直线x =π4对称 D .函数f (x )在区间⎣⎢⎡⎦⎥⎤0,π2上是增函数(2)如果函数y =3cos(2x +φ)的图象关于点⎝ ⎛⎭⎪⎫4π3,0中心对称,那么|φ|的最小值为( ).A.π6B.π4C.π3D.π2解析 (1)f (x )=sin ⎝ ⎛⎭⎪⎫2x +3π2=-cos 2x ,故其最小正周期为π,A 正确;易知函数f (x )是偶函数,B 正确;由函数f (x )=-cos 2x 的图象可知,函数f (x )的图象不关于直线x =π4对称,C 错误;由函数f (x )的图象易知,函数f (x )在⎣⎢⎡⎦⎥⎤0,π2上是增函数,D 正确,故选C.(2)由题意得3cos ⎝ ⎛⎭⎪⎫2×4π3+φ=3cos ⎝ ⎛⎭⎪⎫2π3+φ+2π=3cos ⎝ ⎛⎭⎪⎫2π3+φ=0,∴2π3+φ=k π+π2,k ∈Z ,∴φ=k π-π6,k ∈Z ,取k =0, 得|φ|的最小值为π6. 答案 (1)C (2)A规律方法 (1)求最小正周期时可先把所给三角函数式化为y =A sin(ωx +φ)或y =A cos(ω x +φ)的形式,则最小正周期为T =2π|ω|;奇偶性的判断关键是解析式是否为y =A sin ωx 或y =A cos ωx +b 的形式.(2)求f (x )=A sin(ωx +φ)(ω≠0)的对称轴,只需令ωx +φ=π2+k π(k ∈Z ),求x ;求f (x )的对称中心的横坐标,只需令ωx +φ=k π(k ∈Z )即可. 【训练2】 (1)函数y =2cos2⎝ ⎛⎭⎪⎫x -π4-1是( ).A .最小正周期为π的奇函数B .最小正周期为π的偶函数C .最小正周期为π2的奇函数 D .最小正周期为π2的偶函数(2)函数y =2sin(3x +φ)⎝ ⎛⎭⎪⎫||φ<π2的一条对称轴为x =π12,则φ=________.解析 (1)y =2cos 2⎝ ⎛⎭⎪⎫x -π4-1=cos ⎝⎛⎭⎪⎫2x -π2=sin 2x 为奇函数,T =2π2=π. (2)由y =sin x 的对称轴为x =k π+π2(k ∈Z ), 所以3×π12+φ=k π+π2(k ∈Z ), 得φ=k π+π4(k ∈Z ), 又|φ|<π2,∴k =0,故φ=π4. 答案 (1)A (2)π4考点三 三角函数的单调性【例3】 (2014·临沂月考)设函数f (x )=sin(-2x +φ)(0<φ<π),y =f (x )图象的一条对称轴是直线x =π8.(1)求φ; (2)求函数y =f (x )的单调区间.审题路线 令(-2)×π8+φ=π2+k π,k ∈Z ⇒解得φ=?又0<φ<π⇒得出φ值⇒把f (x )=sin(-2x +φ),化为f (x )=-sin(2x -φ)⇒令g (x )=sin(2x -φ)⇒求出g (x )的单调区间⇒利用f (x )与g (x )的关系求f (x )的单调区间. 解 (1)令(-2)×π8+φ=k π+π2,k ∈Z , ∴φ=k π+3π4,k ∈Z , 又0<φ<π,∴φ=3π4.(2)由(1)得f (x )=sin ⎝ ⎛⎭⎪⎫-2x +3π4=-sin ⎝ ⎛⎭⎪⎫2x -3π4,令g (x )=sin ⎝ ⎛⎭⎪⎫2x -3π4,由-π2+2k π≤2x -3π4≤π2+2k π,k ∈Z , 得π8+k π≤x ≤5π8+k π,k ∈Z ,即g (x )的单调增区间为⎣⎢⎡⎦⎥⎤π8+k π,5π8+k π,k ∈Z ;由π2+2k π≤2x -3π4≤3π2+2k π,k ∈Z , 得5π8+k π≤x ≤9π8+k π,k ∈Z ,即g (x )的单调减区间为⎣⎢⎡⎦⎥⎤5π8+k π,9π8+k π(k ∈Z ),故f (x )的单调增区间为⎣⎢⎡⎦⎥⎤5π8+k π,9π8+k π(k ∈Z );单调减区间为⎣⎢⎡⎦⎥⎤π8+k π,5π8+k π(k ∈Z ). 学生用书第55页规律方法 求较为复杂的三角函数的单调区间时,首先化简成y =A sin(ωx +φ)形式,再求y =A sin(ωx +φ)的单调区间,只需把ωx +φ看作一个整体代入y =sin x 的相应单调区间内即可,注意要先把ω化为正数.【训练3】 (2013·安徽卷)已知函数f (x )=4cos ωx ·sin ⎝ ⎛⎭⎪⎫ωx +π4(ω>0)的最小正周期为π.(1)求ω的值;(2)讨论f (x )在区间[0,π2]上的单调性.解 (1)f (x )=4cos ωx ·sin(ωx +π4)=22sin ωx ·cos ωx +22cos 2ωx =2(sin 2ωx +cos 2ωx )+2=2sin(2ωx +π4)+ 2. 因为f (x )的最小正周期为π,且ω>0, 从而有2π2ω=π,故ω=1.(2)由(1)知,f (x )=2sin(2x +π4)+ 2. 若0≤x ≤π2,则π4≤2x +π4≤5π4.当π4≤2x +π4≤π2,即0≤x ≤π8时,f (x )单调递增; 当π2≤2x +π4≤5π4,即π8≤x ≤π2时,f (x )单调递减.综上可知,f (x )在区间[0,π8]上单调递增,在区间[π8,π2]上单调递减.1.求三角函数的定义域应注意利用三角函数线或者三角函数图象.2.判断函数奇偶性,应先判定函数定义域的对称性,注意偶函数的和、差、积、商仍为偶函数;复合函数在复合过程中,对每个函数而言,一偶则偶,同奇则奇. 3.三角函数单调区间的确定,一般先将函数式化为基本三角函数标准式,然后通过同解变形或利用数形结合方法求解.对复合函数单调区间的确定,应明确是对复合过程中的每一个函数而言,同增同减则为增,一增一减则为减. 4.求三角函数式的最小正周期时,要尽可能地化为只含一个三角函数的式子,否则很容易出现错误.一般地,经过恒等变形成“y =A sin(ωx +φ),y =A cos(ωx+φ),y =A tan(ωx +φ)”的形式,再利用周期公式即可.答题模板5——三角函数的最值(或值域)问题【典例】 (12分)(2013·陕西卷)已知向量a =⎝ ⎛⎭⎪⎫cos x ,-12,b =(3sin x ,cos 2x ),x ∈R ,设函数f (x )=a ·b . (1)求f (x )的最小正周期;(2)求f (x )在⎣⎢⎡⎦⎥⎤0,π2上的最大值和最小值.[规范解答] f (x )=⎝ ⎛⎭⎪⎫cos x ,-12·(3sin x ,cos 2x )=3cos x sin x -12cos 2x(2分)=32sin 2x -12cos 2x =sin ⎝ ⎛⎭⎪⎫2x -π6.(4分)(1)f (x )的最小正周期为T =2πω=2π2=π, 即函数f (x )的最小正周期为π.(6分)(2)∵0≤x ≤π2, ∴-π6≤2x -π6≤5π6.(8分)由正弦函数的性质,得当2x -π6=π2,即x =π3时,f (x )取得最大值1. 当2x -π6=-π6, 即x =0时,f (0)=-12,当2x -π6=5π6,即x =π2时,f ⎝ ⎛⎭⎪⎫π2=12,∴f (x )的最小值为-12.(11分)因此,f (x )在⎣⎢⎡⎦⎥⎤0,π2上最大值是1,最小值是-12.(12分[反思感悟] 求解三角函数的最值(或值域)时一定要注意自变量的取值范围,由于三角函数的周期性,正弦函数、余弦函数的最大值和最小值可能不在自变量区间的端点处取得,因此要把这两个最值点弄清楚.如本例中有学生直接把x =0和x =π2代入求得最值,这显然是错误的.答题模板 求函数f (x )=A sin(ωx +φ)在区间[a ,b ]上值域的一般步骤: 第一步:三角函数式的化简,一般化成形如y =A sin(ωx +φ)+k 的形式或y =A cos(ωx +φ)+k 的形式.第二步:由x 的取值范围确定ωx +φ的取值范围,再确定sin(ωx +φ)(或cos(ωx +φ))的取值范围.第三步:求出所求函数的值域(或最值). 【自主体验】已知函数f (x )=cos ⎝ ⎛⎭⎪⎫2x -π3+2sin ⎝ ⎛⎭⎪⎫x -π4sin ⎝ ⎛⎭⎪⎫x +π4.(1)求函数f (x )的最小正周期和图象的对称轴; (2)求函数f (x )在区间⎣⎢⎡⎦⎥⎤-π12,π2上的值域.解 (1)f (x )=cos ⎝ ⎛⎭⎪⎫2x -π3+2sin ⎝ ⎛⎭⎪⎫x -π4sin ⎝ ⎛⎭⎪⎫x +π4=12cos 2x +32sin 2x +(sin x -cos x )(sin x +cos x ) =12cos 2x +32sin 2x +sin 2x -cos 2x =12cos 2x +32sin 2x -cos 2x =sin ⎝ ⎛⎭⎪⎫2x -π6.∴最小正周期T =2π2=π,由2x -π6=k π+π2(k ∈Z ),得x =k π2+π3(k ∈Z ). ∴函数图象的对称轴为x =k π2+π3(k ∈Z ). (2)∵x ∈⎣⎢⎡⎦⎥⎤-π12,π2,∴2x -π6∈⎣⎢⎡⎦⎥⎤-π3,5π6,∴-32≤sin ⎝ ⎛⎭⎪⎫2x -π6≤1.即函数f (x )在区间⎣⎢⎡⎦⎥⎤-π12,π2上的值域为⎣⎢⎡⎦⎥⎤-32,1.基础巩固题组(建议用时:40分钟)一、选择题1.(2013·青岛质检)下列函数中周期为π且为偶函数的是( ). A .y =sin ⎝ ⎛⎭⎪⎫2x -π2 B .y =cos ⎝ ⎛⎭⎪⎫2x -π2 C .y =sin ⎝ ⎛⎭⎪⎫x +π2 D .y =cos ⎝ ⎛⎭⎪⎫x +π2解析 y =sin ⎝ ⎛⎭⎪⎫2x -π2=-cos 2x 为偶函数,且周期是π.答案 A2.(2014·南昌联考)已知函数f (x )=sin ⎝ ⎛⎭⎪⎫ωx +π6-1(ω>0)的最小正周期为2π3,则f (x )的图象的一条对称轴方程是( ). A .x =π9 B .x =π6 C .x =π3 D .x =π2解析 依题意得,2π|ω|=2π3,|ω|=3,又ω>0,因此ω=3,所以3x +π6=k π+π2,解得x =k π3+π9,当k =0时,x =π9.因此函数f (x )的图象的一条对称轴方程是x =π9. 答案 A3.(2014·广州测试)若函数y =cos ⎝ ⎛⎭⎪⎫ωx +π6(ω∈N *)的一个对称中心是⎝ ⎛⎭⎪⎫π6,0,则ω的最小值为( ). A .1 B .2 C .4 D .8解析 依题意得cos ⎝ ⎛⎭⎪⎫ω·π6+π6=0,π6(ω+1)=k π+π2,ω=6k +2(其中k ∈Z );又ω是正整数,因此ω的最小值是2. 答案 B4.(2014·济南调研)已知f (x )=sin 2 x +sin x cos x ,则f (x )的最小正周期和一个单调增区间分别为( ).A .π,[0,π]B .2π,⎣⎢⎡⎦⎥⎤-π4,3π4C .π,⎣⎢⎡⎦⎥⎤-π8,3π8D .2π,⎣⎢⎡⎦⎥⎤-π4,π4解析 由f (x )=sin 2x +sin x cos x =1-cos 2x 2+12sin 2x=12+22⎝ ⎛⎭⎪⎫22sin 2x -22cos 2x =12+22sin ⎝ ⎛⎭⎪⎫2x -π4.∴T =2π2=π.又∵2k π-π2≤2x -π4≤2k π+π2,∴k π-π8≤x ≤k π+3π8(k ∈Z )为函数的单调递增区间.故选C. 答案 C5.(2014·三明模拟)已知函数f (x )=2sin(ωx +φ)对任意x 都有f ⎝ ⎛⎭⎪⎫π6+x =f ⎝ ⎛⎭⎪⎫π6-x ,则f ⎝ ⎛⎭⎪⎫π6等于( ).A .2或0B .-2或2C .0D .-2或0 解析 由f ⎝ ⎛⎭⎪⎫π6+x =f ⎝ ⎛⎭⎪⎫π6-x 知,函数图象关于x =π6对称,f ⎝ ⎛⎭⎪⎫π6是函数f (x )的最大值或最小值. 答案 B 二、填空题6.函数y =lg(sin x )+cos x -12的定义域为________.解析要使函数有意义必须有⎩⎨⎧sin x >0,cos x -12≥0,即⎩⎨⎧sin x >0,cos x ≥12,解得⎩⎨⎧2k π<x <π+2k π(k ∈Z ),-π3+2k π≤x ≤π3+2k π(k ∈Z ),∴2k π<x ≤π3+2k π(k ∈Z ),∴函数的定义域为⎩⎨⎧⎭⎬⎫x |2k π<x ≤π3+2k π,k ∈Z .答案 ⎝ ⎛⎦⎥⎤2k π,π3+2k π(k ∈Z )7.函数y =sin x +1sin x (0<x <π)的最小值为________.解析 令sin x =t ∈(0,1],则函数y =1+1t ,t ∈(0,1].又y =1+1t 在t ∈(0,1]上是减函数,所以当t =1时,y 取得最小值2. 答案 28.已知函数f (x )=3sin(ωx -π6)(ω>0)和g (x )=3cos(2x +φ)的图象的对称中心完全相同,若x ∈⎣⎢⎡⎦⎥⎤0,π2,则f (x )的取值范围是______.解析 由两三角函数图象的对称中心完全相同,可知两函数的周期相同,故ω=2,所以f (x )=3sin ⎝ ⎛⎭⎪⎫2x -π6,那么当 x ∈⎣⎢⎡⎦⎥⎤0,π2时,-π6≤2x -π6≤5π6, 所以-12≤sin(2x -π6)≤1,故f (x )∈⎣⎢⎡⎦⎥⎤-32,3.答案 ⎣⎢⎡⎦⎥⎤-32,3三、解答题9.(2013·潮州二模)已知函数f (x )=3(sin 2 x -cos 2x )-2sin x cos x . (1)求f (x )的最小正周期;(2)设x ∈⎣⎢⎡⎦⎥⎤-π3,π3,求f (x )的单调递增区间.解 (1)∵f (x )=-3(cos 2x -sin 2 x )-2sin x cos x =-3cos 2x -sin 2x =-2sin ⎝ ⎛⎭⎪⎫2x +π3, ∴f (x )的最小正周期为π.(2)∵x ∈⎣⎢⎡⎦⎥⎤-π3,π3,∴-π3≤2x +π3≤π,当y =sin ⎝ ⎛⎭⎪⎫2x +π3单调递减时,f (x )单调递增.∴π2≤2x +π3≤π,即π12≤x ≤π3. 故f (x )的单调递增区间为⎣⎢⎡⎦⎥⎤π12,π3.10.(1)求函数y =2sin ⎝ ⎛⎭⎪⎫2x +π3⎝ ⎛⎭⎪⎫-π6<x <π6的值域;(2)求函数y =sin x +cos x +sin x cos x 的值域.解 (1)∵-π6<x <π6,∴0<2x +π3<2π3, ∴0<sin ⎝ ⎛⎭⎪⎫2x +π3≤1,∴y =2sin ⎝ ⎛⎭⎪⎫2x +π3的值域为(0,2].(2)y =sin x cos x +sin x +cos x =(sin x +cos x )2-12+2sin⎝ ⎛⎭⎪⎫x +π4 =sin 2⎝ ⎛⎭⎪⎫x +π4+2sin ⎝ ⎛⎭⎪⎫x +π4-12=⎣⎢⎡⎦⎥⎤sin ⎝ ⎛⎭⎪⎫x +π4+222-1,所以当sin ⎝ ⎛⎭⎪⎫x +π4=1时,y 取最大值1+2-12=12+ 2.当sin ⎝ ⎛⎭⎪⎫x +π4=-22时,y 取最小值-1,∴该函数的值域为⎣⎢⎡⎦⎥⎤-1,12+2.能力提升题组 (建议用时:25分钟)一、选择题1.(2013·安徽师大附中模拟)设ω>0,m >0,若函数f (x )=m sin ωx 2cos ωx2在区间⎣⎢⎡⎦⎥⎤-π3,π3上单调递增,则ω的取值范围是( ). A.⎝ ⎛⎭⎪⎫0,23 B.⎝ ⎛⎦⎥⎤0,32 C.⎣⎢⎡⎭⎪⎫32,+∞ D .[1,+∞)解析 f (x )=m sin ωx 2cos ωx 2=12m sin ωx ,若函数在区间⎣⎢⎡⎦⎥⎤-π3,π3上单调递增,则T 2=πω≥π3+π3=2π3,即ω∈⎝ ⎛⎦⎥⎤0,32.答案 B2.已知函数f (x )=2sin ωx (ω>0)在区间⎣⎢⎡⎦⎥⎤-π3,π4上的最小值是-2,则ω的最小值等于( ). A.23 B.32 C .2 D .3解析 ∵f (x )=2sin ωx (ω>0)的最小值是-2,此时ωx =2k π-π2,k ∈Z ,∴x =2k πω-π2ω,k ∈Z ,∴-π3≤2k πω-π2ω≤0,k ∈Z ,∴ω≥-6k +32且k ≤0,k ∈Z ,∴ωmin =32. 答案 B 二、填空题3.已知定义在R 上的函数f (x )满足:当sin x ≤cos x 时,f (x )=cos x ,当sin x >cos x 时,f (x )=sin x . 给出以下结论: ①f (x )是周期函数; ②f (x )的最小值为-1;③当且仅当x =2k π(k ∈Z )时,f (x )取得最小值; ④当且仅当2k π-π2<x <(2k +1)π(k ∈Z )时,f (x )>0; ⑤f (x )的图象上相邻两个最低点的距离是2π. 其中正确的结论序号是________.解析 易知函数f (x )是周期为2π的周期函数. 函数f (x )在一个周期内的图象如图所示.由图象可得,f (x )的最小值为-22,当且仅当x =2k π+5π4(k ∈Z )时,f (x )取得最小值;当且仅当2k π-π2<x <(2k +1)π(k ∈Z )时,f (x )>0;f (x )的图象上相邻两个最低点的距离是2π.所以正确的结论的序号是①④⑤. 答案 ①④⑤ 三、解答题4.(2013·荆门调研)已知函数f (x )=a ⎝ ⎛⎭⎪⎫2cos 2x 2+sin x +b .(1)若a =-1,求函数f (x )的单调增区间;(2)若x ∈[0,π]时,函数f (x )的值域是[5,8],求a ,b 的值. 解 f (x )=a (1+cos x +sin x )+b =2a sin ⎝ ⎛⎭⎪⎫x +π4+a +b .(1)当a =-1时,f (x )=-2sin ⎝ ⎛⎭⎪⎫x +π4+b -1,由2k π+π2≤x +π4≤2k π+3π2(k ∈Z ), 得2k π+π4≤x ≤2k π+5π4(k ∈Z ),∴f (x )的单调增区间为⎣⎢⎡⎦⎥⎤2k π+π4,2k π+5π4(k ∈Z ).(2)∵0≤x ≤π, ∴π4≤x +π4≤5π4,∴-22≤sin ⎝ ⎛⎭⎪⎫x +π4≤1,依题意知a ≠0.(ⅰ)当a >0时,⎩⎨⎧ 2a +a +b =8,b =5,∴a =32-3,b =5.(ⅱ)当a <0时,⎩⎨⎧b =8,2a +a +b =5,∴a =3-32,b =8.综上所述,a =32-3,b =5或a =3-32,b =8.学生用书第56页。

2020高考数学专项复习《三角函数图像性质总结》

2020高考数学专项复习《三角函数图像性质总结》

函 数正弦函数 y = sin x , x ∈ R余弦函数 y = cos x , x ∈ R正切函数 y = tan x , x ≠ k+ 2有界 性 有界有界无界定义域⎧x | x ≠ k + k ∈ Z ⎫ ⎨ 2, ⎬ (-∞,+∞)(-∞,+∞)⎩⎭值域[-1,1] [-1,1]当 x =+ 2k (k ∈ Z ) 时, 2当 x = 2k (k ∈ Z ) 时, y max = 1(-∞,+∞)y max = 1当x = + 2k (k ∈ Z ) 时,当 x = -+ 2k (k ∈ Z ) 时, 2y min = -1y min = -1周期 性是周期函数,最小正周期T = 2是周期函数,最小正周期T = 2T =奇偶 性奇函数,图象关于原点对称 偶函数,图象关于 y 轴对称奇函数,图象关于原点对称单调性 在[- + 2k ,+ 2k ], (k ∈ Z )2 2上是单调增函数 在 3[ + 2k , + 2k ], (k ∈ Z )2 2上是单调减函数 在 [+ 2k ,2+ 2k ], (k ∈ Z ) 上是单调增函数在 [2k ,+ 2k ], (k ∈ Z ) 上是单调减函数在(- + k , + k ),(k ∈ Z )2 2上是单调增函数对 称轴x = k + , (k ∈ Z )2x = k, (k ∈ Z )对称中 心(k,0) (k ∈ Z )(k+ ,0) (k ∈ Z )2( k0) (k ∈ Z ), 2正弦函数、余弦函数、正切函数的图像-4π y=sinx-5π 2-7π -3π-2π 2-3π -π2yπ 3π - 21 2o π -1 27π 22π 5π 3π4π2xy-4πy=cosx-3π-7π2-5π2-2π-π-3π2y-π12 oπ-1 23π2 3π2π5π27π4πxx x三角函数的性质1、定义域与值域2、奇偶性(1)基本函数的奇偶性奇函数:y=sinx,y=tanx;偶函数:y=cosx.(一)(2)型三角函数的奇偶性(ⅰ)g(x)=(x∈R)g(x)为偶函数由此得;同理,为奇函数 .(ⅱ)为偶函数;为奇函数.3、周期性(1)基本公式(ⅰ)基本三角函数的周期y=sinx,y=cosx 的周期为;y=tanx,y=cotx 的周期为 .(ⅱ)型三角函数的周期的周期为;yπ 2y=cotx-π π-2o ππ23π2π2y=tanx3π-2-π-π2oπ2π3π2的周期为.(2)认知(ⅰ)型函数的周期的周期为;的周期为 .(ⅱ)的周期的周期为;的周期为 .均同它们不加绝对值时的周期相同,即对y=的解析式施加绝对值后,该函数的周期不变.注意这一点与(ⅰ)的区别.(ⅱ)若函数为型两位函数之和,则探求周期适于“最小公倍数法”.(ⅲ)探求其它“杂”三角函数的周期,基本策略是试验――猜想――证明.(3)特殊情形研究(ⅰ)y=tanx-cotx 的最小正周期为;(ⅱ)的最小正周期为;(ⅲ)y=sin4x+cos4x 的最小正周期为 .由此领悟“最小公倍数法”的适用类型,以防施错对象.4、单调性(1)基本三角函数的单调区间(族)依从三角函数图象识证“三部曲”:①选周期:在原点附近选取那个包含全部锐角,单调区间完整,并且最好关于原点对称的一个周期;②写特解:在所选周期内写出函数的增区间(或减区间);③获通解:在②中所得特解区间两端加上有关函数的最小正周期的整数倍,即得这一函数的增区间族(或减区间族)循着上述三部曲,便可得出课本中规范的三角函数的单调区间族.揭示:上述“三部曲”也适合于寻求简单三角不等式的解集或探求三角函数的定义域.(2)y=型三角函数的单调区间此类三角函数单调区间的寻求“三部曲”为 ①换元、分解:令 u =,将所给函数分解为内、外两层:y =f (u ),u =;②套用公式:根据对复合函数单调性的认知,确定出 f (u )的单调性,而后利用(1)中公式写出关于 u 的不等式;③还原、结论:将 u = 代入②中 u 的不等式,解出 x 的取值范围,并用集合或区间形成结论.y = sin xy = cos xy = tan xy = cot xy = A s in (x +)(A 、>0)定义域 R R⎧x | x ∈ R 且x ≠ k + 1 , k ∈ Z ⎫⎨ 2 ⎬⎩ ⎭{x | x ∈ R 且x ≠ k , k ∈ Z }R 值域 [-1,+1][-1,+1]RR[- A , A ]周期性 2 22奇偶性奇函数偶函数奇函数奇函数当≠ 0, 非奇非偶当= 0, 奇函数单调性[- + 2k ,2 + 2k ] 2上为增函数 ; [ + 2k ,23+ 2k]2上为减函数( k ∈ Z )[(2k -1),; 2k]上 为 增 函数[2k ,(2k +1)] 上 为 减 函数 ( k ∈ Z )⎛- + k , + k ⎫⎪ ⎝ 2 2⎭上为增函数( k ∈ Z ) (k , (k +1)) 上为减函数(k ∈ Z ) ⎡2k - - ⎤⎢ 2 ( A ), ⎥ ⎢⎥⎢⎥ ⎢ 1 ⎥ ⎢ 2k + - ⎥ ⎢ 2 (- A )⎥ ⎣⎦上为增函数;⎡ ⎤⎢ 2k + 2- ⎥ ⎢( A ), ⎥ ⎢ ⎥ ⎢ 2k + 3-⎥ ⎢ 2 (- A )⎥ ⎢ ⎥⎣ ⎦上为减函数( k ∈ Z )注意:① y = - sin x 与 y = sin x 的单调性正好相反; y = - cos x 与 y = cos x 的单调性也同样相反.一般地,若 y = f (x ) 在[a , b ] 上递增(减),则 y = - f (x ) 在[a , b ] 上递减(增).② y = sin x 与 y = cos x 的周期是.③ y = sin(x +) 或 y = cos(x +) (≠ 0 )的周期T =2.y = tanx 的周期为 2(T =⇒ T = 2,如图,翻折无效).2④ y = sin(x +) 的对称轴方程是 x = k +( k ∈ Z ),对称中心( k ,0); y = cos(x +) 的对称轴方 2▲ yxO) 程是 x = k ( k ∈ Z ),对称中心(1); y = tan(x +) 的对称中心(k ).k+ ,0,022y = cos 2x −原−点−对−称→ y = -cos(-2x ) = -cos 2x⑤当tan · tan = 1, + = k + (k ∈ Z ) ; tan · tan = -1, - = k + (k ∈ Z ) .2 2⑥ y = cos x 与 y =⎛ ⎫ 是同一函数,而 y = (x +) 是偶函数,则sin x + ⎝+ 2k ⎪2 ⎭ y = (x +) = sin(x + k + 1) = ± cos(x ) .2⑦函数 y = tan x 在 R 上为增函数.(×) [只能在某个单调区间单调递增. 若在整个定义域,y = tan x 为增函数,同样也是错误的].⑧定义域关于原点对称是 f (x ) 具有奇偶性的必要不充分条件.(奇偶性的两个条件:一是定义域关于原点对称( 奇偶都要), 二是满足奇偶性条件, 偶函数: f (-x ) = f (x ) , 奇函数:f (-x ) = - f (x ) )奇偶性的单调性:奇同偶反. 例如: y = tan x 是奇函数, y = tan(x + 1) 是非奇非偶.(定义域不3关于原点对称)奇函数特有性质:若0 ∈ x 的定义域,则 f (x ) 一定有 f (0) = 0 .( 0 ∉ x 的定义域,则无此性质)⑨ y = sin x 不是周期函数; y = sin x 为周期函数(T = );y = cos x 是周期函数(如图); y = cos x 为周期函数(T = );y = cos 2x +1 的周期为(如图),并非所有周期函数都有最小正周期,例如:2y = f (x ) = 5 = f (x + k ), k ∈ R .y=cos |x|图象⑩ y = a cos + b s in =sin(+) + cos=b有 a≥ y .y=|cos2x +1/2|图象二、形如 y = A sin(x +) 的函数:1、几个物理量:A―振幅; f = 1―频率(周期的倒数);x +―相位;―初相; T2、函数 y = A sin(x +) 表达式的确定:A 由最值确定;由周期确定;由图象上的特殊点确定, 如 f (x ) = A sin(x +)( A > 0,> 0 , ||<的图象如图所示, 则 2 2Y f (x ) = (答: f (x ) = 15 2 s in( x + ) );2 33 29 X-23.函数 y = A sin(x +) + B (其中A > 0,> 0)a 2+b 2a 2+b 2▲yx▲y1/2x−−−−−−−→ 1 到原来的 倍2最大值是 A + B ,最小值是 B - A ,周期是T = 2,最小正周期T = 2|| 频率是 f =,相位是x +,初相是;其图象的对称轴是直线x += k+k ∈ Z ) ,凡 ( 22是该图象与直线 y = B 的交点都是该图象的对称中心。

2020高考数学专项复习《三角函数的图象与性质B》

2020高考数学专项复习《三角函数的图象与性质B》

3), k ), k ) 专题 3 三角函数、解三角形、平面向量 第 1 讲 三角函数的图象与性质(B 卷)一、选择题(每题 5 分,共 60 分)1.(2015·北京市东城区综合练习二·1)1sin(-23π) = 6 ()(A ) - (B ) -221 (C )2(D )22. (2015 · 哈 尔 滨 市 第 六 中 学 高 三 第 三 次 模 拟 考 试 · 3) 函 数y = log 12(sin 2x c os - 4cos 2x sin ) 的单调递减区间是( )4 A. (k + , k + 5∈ ZB. (k + , k + 3∈ ZC. (k - 8, k + 8 83 ), k ∈ Z 8D. (k + 8 3, k + 8 8 5 ), k ∈ Z 83.(2015·黑龙江省哈尔滨市第三中学高三第三次模拟考试数学(理)试题·9)将函数f (x ) = 3sin(4x +图象上所有点的横坐标变为原来的 2 倍,再向右平移个单位长,得6 6到函数 y = g (x ) 的图象,则 y = g (x ) 的图象的一条对称轴是()2A.B .C .D .126334.(2015·开封市高三数学(理)冲刺模拟考试·8)函数 y = sin ⎛ 2x - ⎫的图像与函数6 ⎪ ⎝ ⎭y = cos ⎛ x - ⎫的图像( )3 ⎪ ⎝ ⎭A .有相同的对称轴但无相同的对称中心B .有相同的对称中心但无相同的对称轴C .既有相同的对称轴但也有相同的对称中心D .既无相同的对称中心也无相同的对称轴5. (2015·海淀区高三年级第二学期期末练习·5)已知函数 f (x ) = cos(2x +) (为常数)为奇函数,那么cos= ( )3(A )-22(B ) 0(C )22(D )16.(2015·河北省唐ft 市高三第三次模拟考试·7)7.(2015·海南省高考模拟测试题·7)下列命题,正确的个数是( )5 ①直线 x = 是函数 y = sin 2x - 33 cos 2x 的一条对称轴②将函数 y = cos(x +3 1) 的图像上的每个点的横坐标缩短为原来的2 2(纵坐标不变),再向左平行移动 个单位长度变为函数 y = sin(2x + 4 ) 的图像.4③设随机变量~ N (3,9) ,若 P (< a ) = 0.3 , (a < 3) ,则 P (< 6 - a ) = 0.7④ (2 - 1 )10 的二项展开式中含有 x -1项的二项式系数是 210. xA. 1B. 2C. 3D. 48.(2015·大连市高三第二次模拟考试·6)如图为一个观览车示意图,该观览车圆半径为4.8 m ,圆上最低点与地面距离为0.8m ,图中OA 与地面垂直,以OA 为始边,逆时针转动(> 0) 角到OB ,设 B 点与地面距离为 h ,则 h 与的关系式为()(A ) h = 5.6 + 4.8sin (C ) h = 5.6 + 4.8 c os(+ 2(B ) h = 5.6 + 4.8 cos (D ) h = 5.6 + 4.8sin(-29.(2015 · 大连市高三第二次模拟考试· 12) 对 ∀x ∈(0, ) 2, 下列四个命题: ①sin x + tan x > 2x ;② sin x ⋅ tan x > x 2 ;③ sin x + tan x > 8x ;④ sin x g tan x > 2x 2 ,则3x ) ))正确命题的序号是()(A )①、②(B )① 、 ③(C )③、④(D )②、④10.(2015 济宁市曲阜市第一中学高三校模拟考试·6) f (x ) = A cos(x +)(A ,> 0)的图象如图所示,为得到 g (x ) = - A sin(x +的图象,可以将 f (x ) 的图象 ( )6A .向右平移5个单位长度 B .向右平移65 个单位长度12C .向左平移5个单位长度 D .向左平移65 个单位长度1211.(2015·日照市高三校际联合 5 月检测·7)将函数 f ( x ) = sin ⎛ x + ⎫的图象上各点的6⎪ ⎝⎭纵坐标不变,横坐标扩大到原来的 2 倍,所得图象的一条对称轴方程可以是()A . x = -B . x =12122C . x =D . x =3312. (2015 · 济 南 市 高 三 教 学 质 量 调 研 考 试 · 4) 如 图 所 示 , 点 P 是 函 数y = 2 sin (x +)( x ∈ R ,> 0) 的图象的一个最高点,M,N 是图象与x 轴的交点. 若 PM ⋅ PN = 0 ,则的值为() A.8B.4C.D.84二、非选择题(40 分)13.(2015.芜湖市高三 5 月模拟·15)2y 2- π3O 2π 3x-214.(2015·济宁市 5 月高考模拟考试·13)15 . (2015. 南通市高三第三次调研测试· 16) ( 本小题满分 10 分) 已知函数 f (x ) = A sin(x +) (其中 A ,,为常数,且 A >0,>0, - π<<π)的部分图象2 2 如图所示.(1)求函数 f (x )的解析式;(2)若 f () = 3 ,求sin(2+ π) 的值.2 6(第 16 题)16.(2015·ft东省枣庄市高三下学期模拟考试·16)17. ( 2015 · ft 东省实验中学第二次考试· 16 )( 本小题满分 10 分) 已知函数f ( x ) = sin x cos x +3(cos 2 x - sin 2 x ).⎛⎫ ⎡ ⎤(I )求 f 6 ⎪ 及 f ( x ) 的单调递增区间;(II )求 f ( x ) 在闭区间⎢- , ⎥ 的最值.⎝ ⎭ ⎣ 4 4 ⎦228专题 3 三角函数、解三角形、平面向量 第 1 讲 三角函数的图象与性质(B 卷)答案与解析1. 【答案】C【命题立意】本题重点考查诱导公式,难度较小.【解析】由诱导公式得sin(-23π 6 ) = sin(- 23π + 4) = sin π = 1 .6 6 22. 【答案】B【命题立意】本题旨在考查函数的单调性。

2020年高考数学专题复习三角函数的图象与性质

2020年高考数学专题复习三角函数的图象与性质

三角函数的图象与性质1.正弦、余弦、正切函数的图象与性质2.周期函数的定义对于函数f (x ),如果存在一个非零常数T ,使得当x 取定义域内的每一个值时,都有f (x +T )=f (x ),那么函数f (x )就叫做周期函数,非零常数T 叫做这个函数的周期;函数y=A sin(ωx +φ)和y =A cos(ωx +φ)的周期均为T =2π|ω|;函数y =A tan(ωx +φ)的周期为T =π|ω|. 3.对称与周期正弦曲线、余弦曲线相邻的两个对称中心、相邻的两条对称轴之间的距离是半个周期,相邻的对称中心与对称轴之间的距离是四分之一个周期;正切曲线相邻的两个对称中心之间的距离是半个周期.判断正误(正确的打“√”,错误的打“×”) (1)y =cos x 在第一、二象限内是减函数.( ) (2)若y =k sin x +1,x ∈R ,则y 的最大值是k +1.( )(3)若非零实数T 是函数f (x )的周期,则kT (k 是非零整数)也是函数f (x )的周期.( ) (4)函数y =sin x 图象的对称轴方程为x =2k π+π2(k ∈Z ).( )(5)函数y =tan x 在整个定义域上是增函数.( ) 答案:(1)× (2)× (3)√ (4)× (5)×函数y =tan 3x 的定义域为( ) A .⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x ≠3π2+3k π,k ∈Z B .⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x ≠π6+k π,k ∈ZC .⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x ≠-π6+k π,k ∈ZD .⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x ≠π6+k π3,k ∈Z解析:选D.由3x ≠π2+k π(k ∈Z ),得x ≠π6+k π3,k ∈Z .故选D.(2019·温州市十校联合体期初)下列函数中,最小正周期为π的是( ) A .y =cos 4x B .y =sin 2x C .y =sin x 2D .y =cos x4解析:选B.A.y =cos 4x 的周期T =2π4=π2,本选项错误;B.y =sin 2x 的周期T =2π2=π,本选项正确;C.y =sin x 2的周期为T =2π12=4π,本选项错误;D.y =cos x4的周期为T=2π14=8π,本选项错误,则最小正周期为π的函数为y =sin 2x. (2019·金华十校联考)函数y =3-2cos ⎝⎛⎭⎪⎫x +π4的最大值为________,此时x =________.解析:函数y =3-2cos ⎝ ⎛⎭⎪⎫x +π4的最大值为3+2=5,此时x +π4=π+2k π(k ∈Z ),即x =3π4+2k π(k ∈Z ).答案:53π4+2k π(k ∈Z) 函数f (x )=2sin ⎝⎛⎭⎪⎫x +π4,x ∈[0,π]的减区间为________.解析:当2k π+π2≤x +π4≤2k π+3π2,k ∈Z ,即2k π+π4≤x ≤2k π+5π4,k ∈Z 时,函数f (x )是减函数.又x ∈[0,π],所以f (x )的单调递减区间为⎣⎢⎡⎦⎥⎤π4,π.答案:⎣⎢⎡⎦⎥⎤π4,π三角函数的定义域和值域(1)(2017·高考全国卷Ⅱ)函数f (x )=sin 2x +3cos x -34⎝ ⎛⎭⎪⎫x ∈⎣⎢⎡⎦⎥⎤0,π2的最大值是________.(2)函数y =lg(2sin x -1)+1-2cos x 的定义域是________.【解析】 (1)依题意,f (x )=sin 2x +3cos x -34=-cos 2x +3cos x +14=-⎝⎛⎭⎪⎫cos x -322+1,因为x ∈⎣⎢⎡⎦⎥⎤0,π2,所以cos x ∈[0,1],因此当cos x =32时,f (x )max =1.(2)要使函数y =lg(2sin x -1)+1-2cos x 有意义,则⎩⎪⎨⎪⎧2sin x -1>0,1-2cos x ≥0, 即⎩⎪⎨⎪⎧sin x >12,cos x ≤12.解得2k π+π3≤x <2k π+5π6,k ∈Z .即函数的定义域为⎣⎢⎡⎭⎪⎫2k π+π3,2k π+5π6,k ∈Z .【答案】 (1)1 (2)⎣⎢⎡⎭⎪⎫2k π+π3,2k π+5π6,k ∈Z(1)三角函数定义域的求法求三角函数定义域实际上是构造简单的三角不等式(组),常借助三角函数线或三角函数图象来求解.(2)三角函数值域的不同求法①利用sin x 和cos x 的值域直接求;②把所给的三角函数式变换成y =A sin(ωx +φ)的形式求值域;③(换元法)把sin x 或cos x 看作一个整体,转换成二次函数求值域;④(换元法)利用sin x ±cos x 和sin x cos x 的关系转换成二次函数求值域.1.函数f (x )=3sin ⎝ ⎛⎭⎪⎫2x -π6在区间⎣⎢⎡⎦⎥⎤0,π2上的值域为( ) A .⎣⎢⎡⎦⎥⎤-32,32B .⎣⎢⎡⎦⎥⎤-32,3C .⎣⎢⎡⎦⎥⎤-332,332D .⎣⎢⎡⎦⎥⎤-332,3 解析:选B.当x ∈⎣⎢⎡⎦⎥⎤0,π2时,2x -π6∈⎣⎢⎡⎦⎥⎤-π6,5π6,sin ⎝ ⎛⎭⎪⎫2x -π6∈⎣⎢⎡⎦⎥⎤-12,1,故3sin ⎝ ⎛⎭⎪⎫2x -π6∈[-32,3],即此时函数f (x )的值域是⎣⎢⎡⎦⎥⎤-32,3.2.(2019·温州市十校联合体期初)已知函数f (x )=2cos x ·(sin x -cos x ),x ∈R ,则f ⎝ ⎛⎭⎪⎫π4=________,f (x )的最大值是________. 解析:f (x )=2cos x (sin x -cos x ) =2cos x sin x -2cos 2x =sin 2x -1-cos 2x=2sin ⎝⎛⎭⎪⎫2x -π4-1. 当x =π4时,f ⎝ ⎛⎭⎪⎫π4=2sin ⎝⎛⎭⎪⎫2×π4-π4-1=0.由正弦函数的图象和性质可得,sin ⎝ ⎛⎭⎪⎫2x -π4的最大值为1.所以f (x )的最大值为2-1. 答案:02-1三角函数的单调性(高频考点)三角函数的单调性是每年高考命题的热点,题型既有选择题也有填空题,或解答题某一问出现,难度为中档题.主要命题角度有:(1)求已知三角函数的单调区间; (2)已知三角函数的单调区间求参数; (3)利用三角函数的单调性比较大小;(4)利用三角函数的单调性求值域(或最值).(见本节例1(1)及跟踪训练T1)角度一 求已知三角函数的单调区间(2017·高考浙江卷)已知函数f (x )=sin 2x -cos 2x -23sin x cos x (x ∈R ). (1)求f ⎝⎛⎭⎪⎫2π3的值;(2)求f (x )的最小正周期及单调递增区间.【解】 (1)由sin 2π3=32,cos 2π3=-12,f ⎝ ⎛⎭⎪⎫2π3=⎝ ⎛⎭⎪⎫322-⎝ ⎛⎭⎪⎫-122-23×32×⎝ ⎛⎭⎪⎫-12,得f ⎝ ⎛⎭⎪⎫2π3=2.(2)由cos 2x =cos 2x -sin 2x 与sin 2x =2sin x cos x 得f (x )=-cos 2x -3sin 2x =-2sin ⎝⎛⎭⎪⎫2x +π6.所以f (x )的最小正周期是π.由正弦函数的性质得π2+2k π≤2x +π6≤3π2+2k π,k ∈Z ,解得π6+k π≤x ≤2π3+k π,k ∈Z , 所以,f (x )的单调递增区间是⎣⎢⎡⎦⎥⎤π6+k π,2π3+k π(k ∈Z ).角度二 已知三角函数的单调区间求参数函数f (x )=sin(x +φ)在区间⎝ ⎛⎭⎪⎫π3,2π3上单调递增,则常数φ的值可能是( )A .0B .π2C .πD .3π2【解析】 法一:结合选项,当φ分别取选项中的值时,A :f (x )=sin x ;B :f (x )=cos x ;C :f (x )=-sin x ;D :f (x )=-cos x .验证得D 选项正确.法二:⎝⎛⎭⎪⎫π3,2π3⊆f (x )的递增区间,⎝ ⎛⎭⎪⎫π3,2π3⊆⎝ ⎛⎭⎪⎫-π2-φ+2k π,π2-φ+2k π,⇒-5π6+2k π≤φ≤-π6+2k π(k ∈Z ),k =0,选项中无值符合;k =1,7π6≤φ≤11π6,φ=3π2符合; k =2,19π6≤φ≤23π6,选项中无值符合.可知φ的可取值逐渐增大,故只有D 选项符合题意.【答案】 D角度三 利用三角函数的单调性比较大小已知函数f (x )=2sin ⎝ ⎛⎭⎪⎫x +π3,设a =f ⎝ ⎛⎭⎪⎫π7,b =f ⎝ ⎛⎭⎪⎫π6,c =f ⎝ ⎛⎭⎪⎫π3,则a ,b ,c的大小关系是( )A .a <c <bB .c <a <bC .b <a <cD .b <c <a【解析】 a =f ⎝ ⎛⎭⎪⎫π7=2sin 1021π,b =f ⎝ ⎛⎭⎪⎫π6=2sin π2=2,c =f ⎝ ⎛⎭⎪⎫π3=2sin 2π3=2sin π3, 因为y =sin x 在⎣⎢⎡⎦⎥⎤0,π2上递增,所以c <a <b .【答案】 B(1)求三角函数单调区间的两种方法①代换法:就是将比较复杂的三角函数含自变量的代数式整体当作一个角u (或t ),利用复合函数的单调性列不等式求解.②图象法:画出三角函数的正、余弦曲线,结合图象求它的单调区间.[提醒] 要注意求函数y =A sin(ωx +φ)的单调区间时ω的符号,若ω<0,那么一定先借助诱导公式将ω化为正数.同时切莫漏掉考虑函数自身的定义域.(2)利用单调性确定ω的范围的方法对于已知函数的单调区间的某一部分确定参数ω的范围的问题,首先,明确已知的单调区间应为函数的单调区间的子集,其次,要确定已知函数的单调区间,从而利用它们之间的关系可求解,另外,若是选择题利用特值验证排除法求解更为简捷.(3)利用单调性比较大小的方法首先利用诱导公式把已知角转化为同一区间内的角且函数名称相同,再利用其单调性比较大小.1.(2019·浙江宁波质检)已知函数f (x )=2sin ωx 在区间⎣⎢⎡⎦⎥⎤-π3,π4上的最小值为-2,则ω的取值范围是( )A .⎝ ⎛⎭⎪⎫-∞,-92∪[6,+∞)B .⎝ ⎛⎦⎥⎤-∞,-92∪⎣⎢⎡⎭⎪⎫32,+∞C .(-∞,-2]∪[6,+∞)D .(-∞,-2]∪⎣⎢⎡⎭⎪⎫32,+∞解析:选D.当ω>0时,由题意知-π3ω≤-π2,即ω≥32;当ω<0时,由题意知π4ω≤-π2,所以ω≤-2.综上可知,ω的取值范围是(]-∞,-2∪⎣⎢⎡⎭⎪⎫32,+∞.2.函数f (x )=sin ⎝ ⎛⎭⎪⎫2x -π4在区间⎣⎢⎡⎦⎥⎤0,π2上的最小值为 ( )A .-1B .-22C .22D .0解析:选B.由已知x ∈⎣⎢⎡⎦⎥⎤0,π2,得2x -π4∈⎣⎢⎡⎦⎥⎤-π4,3π4,所以sin ⎝ ⎛⎭⎪⎫2x -π4∈⎣⎢⎡⎦⎥⎤-22,1,故函数f (x )=sin(2x -π4)在区间⎣⎢⎡⎦⎥⎤0,π2上的最小值为-22.3.函数y =sin ⎝⎛⎭⎪⎫-2x +π3的单调减区间为________. 解析:(同增异减法)y =-sin ⎝ ⎛⎭⎪⎫2x -π3,它的减区间是y =sin ⎝ ⎛⎭⎪⎫2x -π3的增区间.由2k π-π2≤2x -π3≤2k π+π2,k ∈Z ,得k π-π12≤x ≤k π+5π12,k ∈Z .故其单调减区间为⎣⎢⎡⎦⎥⎤k π-π12,k π+5π12,k ∈Z .答案:⎣⎢⎡⎦⎥⎤k π-π12,k π+5π12(k ∈Z )三角函数的奇偶性、周期性及对称性(1)设函数f (x )=sin 2x +b sin x +c ,则f (x )的最小正周期( ) A .与b 有关,且与c 有关 B .与b 有关,但与c 无关 C .与b 无关,且与c 无关 D .与b 无关,但与c 有关(2)已知ω>0,f (x )=1+tan ωx 1-tan ωx ,f ⎝ ⎛⎭⎪⎫x +π3的图象与f (x )的图象关于点⎝ ⎛⎭⎪⎫π3,0对称,则ω的最小值为( )A .12 B .1 C .32D .2(3)已知函数f (x )=sin(ωx +φ)+cos(ωx +φ)(ω>0,0<φ<π)是奇函数,直线y =2与函数f (x )的图象的两个相邻交点的横坐标之差的绝对值为π2,则( )A .f (x )在⎝ ⎛⎭⎪⎫0,π4上单调递减B .f (x )在⎝ ⎛⎭⎪⎫π8,3π8上单调递减C .f (x )在⎝ ⎛⎭⎪⎫0,π4上单调递增D .f (x )在⎝ ⎛⎭⎪⎫π8,3π8上单调递增 【解析】 (1)由于f (x )=sin 2x +b sin x +c =1-cos 2x 2+b sin x +c .当b =0时,f (x )的最小正周期为π;当b ≠0时,f (x )的最小正周期为2π.c 的变化会引起f (x )图象的上下平移,不会影响其最小正周期.故选B.(2)因为f (x )=1+tan ωx 1-tan ωx =tan ⎝⎛⎭⎪⎫ωx +π4, 所以f ⎝ ⎛⎭⎪⎫x +π3=tan ⎝⎛⎭⎪⎫ωx +ωπ3+π4, 因为f ⎝ ⎛⎭⎪⎫x +π3的图象与f (x )的图象关于点⎝ ⎛⎭⎪⎫π3,0对称, 所以tan ⎝ ⎛⎭⎪⎫ωx +π4+tan ⎝ ⎛ω2π3-ωx +ωπ3+⎭⎪⎫π4=0, 即tan ⎝ ⎛⎭⎪⎫ωx +π4=tan ⎝⎛⎭⎪⎫ωx -ωπ-π4,所以π4=-ωπ-π4+k π,(k ∈Z ),ω=-12+k ,(k ∈Z ),因为ω>0,所以当k =1时,ω取最小值为12,故选A.(3)f (x )=sin(ωx +φ)+cos(ωx +φ)=2sin(ωx +φ+π4),因为0<φ<π且f (x )为奇函数,所以φ=3π4,即f (x )=-2sin ωx ,又直线y =2与函数f (x )的图象的两个相邻交点的横坐标之差的绝对值为π2,所以函数f (x )的最小正周期为π2,由2πω=π2,可得ω=4,故f (x )=-2sin 4x ,由2k π+π2≤4x ≤2k π+3π2,k ∈Z ,即k π2+π8≤x ≤k π2+3π8,k ∈Z ,令k =0,得π8≤x ≤3π8,此时f (x )在⎝ ⎛⎭⎪⎫π8,3π8上单调递增. 【答案】 (1)B (2)A (3)D三角函数的奇偶性、对称性和周期问题的解题思路(1)奇偶性的判断方法:三角函数中奇函数一般可化为y =A sin ωx 或y =A tan ωx 的形式,而偶函数一般可化为y =A cos ωx +b 的形式.(2)周期的计算方法:利用函数y =A sin(ωx +φ)(ω>0),y =A cos(ωx +φ)(ω>0)的周期为2πω,函数y =A tan(ωx +φ)(ω>0)的周期为πω求解.(3)解决对称性问题的关键:熟练掌握三角函数的对称轴、对称中心.[提醒] 对于函数y =A sin(ωx +φ),其对称轴一定经过图象的最高点或最低点,对称中心的横坐标一定是函数的零点,因此在判断直线x =x 0或点(x 0,0)是否是函数的对称轴或对称中心时,可通过检验f (x 0)的值进行判断.1.(2019·舟山市普陀三中高三期中)设函数f (x )=sin(2x +φ)+cos(2x +φ)⎝⎛⎭⎪⎫|φ|<π2为偶函数,则φ=( )A .π2B .π3C .π4D .π6解析:选C.f (x )=sin(2x +φ)+cos(2x +φ)=2sin ⎝ ⎛⎭⎪⎫2x +φ+π4, 因为函数f (x )为偶函数,所以f (-x )-f (x )=2sin ⎝ ⎛⎭⎪⎫-2x +φ+π4-2sin ⎝ ⎛⎭⎪⎫2x +φ+π4=0,即sin ⎝ ⎛⎭⎪⎫-2x +φ+π4=sin ⎝⎛⎭⎪⎫2x +φ+π4,所以-2x +φ+π4=2x +φ+π4+2k π,或-2x +φ+π4+2x +φ+π4=π+k π,即x =-k π2,k ∈Z (舍)或φ=π4+k π2,k ∈Z . 因为|φ|<π2,所以φ=π4.2.(2019·浙江省名校协作体高三联考)已知函数f (x )=sin 2x ·(1-2sin 2x )+1,则f (x )的最小正周期T =________,f (T )=________.解析:由题意得,f (x )=sin 2x cos 2x +1=12sin 4x +1,所以最小正周期T =2π4=π2,f (T )=f ⎝ ⎛⎭⎪⎫π2=1.答案:π213.已知函数f (x )=sin x 的图象与直线kx -y -k π=0(k >0)恰有三个公共点,这三个点的横坐标从小到大分别为x 1,x 2,x 3,则tan (x 2-x 3)x 1-x 3=________.解析:如图所示,易知x 2=π,x 1+x 3=2x 2=2π,则k =sin x 3-0x 3-x 2=sin x 312(x 3-x 1),又直线与y =sin x 相切于点A (x 3,sin x 3), 则k =cos x 3, 则sin x 312(x 3-x 1)=cos x 3⇒tan (x 2-x 3)x 1-x 3=tan x 3x 3-x 1=12,故答案为12.答案:12奇偶性对于y =A sin(ωx +φ)(A ≠0),若为奇函数,则φ=k π(k ∈Z );若为偶函数,则φ=π2+k π(k ∈Z ).对于y =A cos(ωx +φ)(A ≠0),若为奇函数,则φ=π2+k π(k ∈Z );若为偶函数,则φ=k π(k ∈Z ).对于y =A tan(ωx +φ)(A ≠0),若为奇函数,则φ=k π2(k∈Z ).函数图象的对称中心、对称轴(1)求形如y =A sin(ωx +φ)或y =A cos(ωx +φ)的函数图象的对称轴或对称中心时,都是先把“ωx +φ”看作一个整体,然后根据y =sin x 和y =cos x 图象的对称轴或对称中心进行求解. (2)在判断对称轴或对称中心时,用以下结论可快速解题:设y =f (x )=A sin(ωx +φ),g (x )=A cos(ωx +φ),x =x 0是对称轴方程⇔f (x 0)=±A ,g (x 0)=±A ;(x 0,0)是对称中心⇔f (x 0)=0,g (x 0)=0.易错防范(1)闭区间上最值或值域问题,首先要在定义域基础上分析单调性;含参数的最值问题,要讨论参数对最值的影响.(2)要注意求函数y =A sin(ωx +φ)的单调区间时A 和ω的符号,尽量化成ω>0时的情况,避免出现增减区间的混淆.[基础达标]1.最小正周期为π且图象关于直线x =π3对称的函数是( )A .y =2sin ⎝⎛⎭⎪⎫2x +π3 B .y =2sin ⎝ ⎛⎭⎪⎫2x -π6C .y =2sin ⎝ ⎛⎭⎪⎫x 2+π3D .y =2sin ⎝⎛⎭⎪⎫2x -π3 解析:选B.由函数的最小正周期为π,可排除C.由函数图象关于直线x =π3对称知,该直线过函数图象的最高点或最低点,对于A ,因为sin ⎝⎛⎭⎪⎫2×π3+π3=sin π=0,所以选项A 不正确.对于D ,sin ⎝ ⎛⎭⎪⎫2×π3-π3=sin π3=32,所以D 不正确,对于B ,sin ⎝ ⎛⎭⎪⎫2×π3-π6=sin π2=1,所以选项B 正确,故选B.2.(2019·合肥市第一次教学质量检测)函数y =sin(ωx +π6)在x =2处取得最大值,则正数ω的最小值为( )A .π2B .π3C .π4D .π6解析:选D.由题意得,2ω+π6=π2+2k π(k ∈Z ),解得ω=π6+k π(k ∈Z ),因为ω>0,所以当k =0时,ωmin =π6,故选D.3.(2019·浙江省名校协作体高三联考)下列四个函数:y =sin|x |,y =cos|x |,y =|tanx |,y =-ln|sin x |,以π为周期,在⎝⎛⎭⎪⎫0,π2上单调递减且为偶函数的是( )A .y =sin|x |B .y =cos|x |C .y =|tan x |D .y =-ln|sin x |解析:选D.A.y =sin|x |在⎝ ⎛⎭⎪⎫0,π2上单调递增,故A 错误;B.y =cos|x |=cos x 周期为T =2π,故B 错误;C.y =|tan x |在⎝ ⎛⎭⎪⎫0,π2上单调递增,故C 错误;D.f (x +π)=-ln|sin(x +π)|=-ln|sin x |,周期为π,当x ∈⎝ ⎛⎭⎪⎫0,π2时,y =-ln(sin x )是在⎝⎛⎭⎪⎫0,π2上单调递减的偶函数,故D 正确,故选D.4.(2017·高考全国卷Ⅲ)设函数f (x )=cos(x +π3),则下列结论错误的是( )A .f (x )的一个周期为-2πB .y =f (x )的图象关于直线x =8π3对称C .f (x +π)的一个零点为x =π6D .f (x )在(π2,π)单调递减解析:选D.根据函数解析式可知函数f (x )的最小正周期为2π,所以函数的一个周期为-2π,A 正确;当x =8π3时,x +π3=3π,所以cos ⎝ ⎛⎭⎪⎫x +π3=-1,所以B 正确;f (x +π)=cos ⎝ ⎛⎭⎪⎫x +π+π3=cos ⎝⎛⎭⎪⎫x +4π3,当x =π6时,x +4π3=3π2,所以f (x +π)=0,所以C 正确;函数f (x )=cos ⎝ ⎛⎭⎪⎫x +π3在⎝ ⎛⎭⎪⎫π2,23π上单调递减,在⎝ ⎛⎭⎪⎫23π,π上单调递增,故D 不正确.所以选D.5.若函数f (x )=sin ⎝ ⎛⎭⎪⎫ωx +π6(ω>0)在区间(π,2π)内没有最值,则ω的取值范围是( )A .⎝ ⎛⎦⎥⎤0,112∪⎣⎢⎡⎦⎥⎤14,23B .⎝ ⎛⎦⎥⎤0,16∪⎣⎢⎡⎦⎥⎤13,23C .⎣⎢⎡⎦⎥⎤14,23 D .⎣⎢⎡⎦⎥⎤13,23 解析:选B.易知函数y =sin x 的单调区间为 [k π+π2,k π+3π2],k ∈Z ,由k π+π2≤ωx +π6≤k π+3π2,k ∈Z ,得k π+π3ω≤x ≤k π+4π3ω,k ∈Z ,因为函数f (x )=sin ⎝ ⎛⎭⎪⎫ωx +π6(ω>0)在区间(π,2π)内没有最值,所以f (x )在区间(π,2π)内单调,所以(π,2π)⊆⎣⎢⎢⎡⎦⎥⎥⎤k π+π3ω,k π+4π3ω,k ∈Z , 所以⎩⎪⎨⎪⎧k π+π3ω≤π,k π+4π3ω≥2π,k ∈Z ,解得k +13≤ω≤k 2+23,k ∈Z ,由k +13≤k 2+23,得k ≤23,当k =0时,得13≤ω≤23;当k =-1时,得-23≤ω≤16.又ω>0,所以0<ω≤16.综上,得ω的取值范围是⎝ ⎛⎦⎥⎤0,16∪⎣⎢⎡⎦⎥⎤13,23.故选B. 6.已知函数f (x )=sin ⎝ ⎛⎭⎪⎫2x +π12,f ′(x )是f (x )的导函数,则函数y =2f (x )+f ′(x )的一个单调递减区间是( )A .⎣⎢⎡⎦⎥⎤π12,7π12B .⎣⎢⎡⎦⎥⎤-5π12,π12C .⎣⎢⎡⎦⎥⎤-π3,2π3D .⎣⎢⎡⎦⎥⎤-π6,5π6解析:选A.由题意,得f ′(x )=2cos ⎝ ⎛⎭⎪⎫2x +π12,所以y =2f (x )+f ′(x )=2sin ⎝ ⎛⎭⎪⎫2x +π12+2cos ⎝ ⎛⎭⎪⎫2x +π12=22sin ⎝ ⎛⎭⎪⎫2x +π12+π4=22sin ⎝ ⎛⎭⎪⎫2x +π3.由2k π+π2≤2x +π3≤2k π+3π2(k ∈Z ),得k π+π12≤x ≤k π+7π12(k ∈Z ),所以y =2f (x )+f ′(x )的一个单调递减区间为⎣⎢⎡⎦⎥⎤π12,7π12,故选A.7.函数y =lg sin x +cos x -12的定义域为________.解析:要使函数有意义,则有⎩⎪⎨⎪⎧sin x >0,cos x -12≥0, 即⎩⎪⎨⎪⎧sin x >0,cos x ≥12,解得⎩⎪⎨⎪⎧2k π<x <π+2k π,-π3+2k π≤x ≤π3+2k π(k ∈Z ), 所以2k π<x ≤π3+2k π,k ∈Z .所以函数的定义域为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪2k π<x ≤π3+2k π,k ∈Z .答案:⎩⎨⎧⎭⎬⎫x ⎪⎪⎪2k π<x ≤π3+2k π,k ∈Z8.函数y =(4-3sin x )(4-3cos x )的最小值为________. 解析:y =16-12(sin x +cos x )+9sin x cos x , 令t =sin x +cos x ,则t ∈[-2,2],且sin x cos x =t 2-12,所以y =16-12t+9×t 2-12=12(9t 2-24t +23). 故当t =43时,y min =72.答案:729.(2019·温州市高中模考)已知函数y =sin x 的定义域为[a ,b ],值域为⎣⎢⎡⎦⎥⎤-1,32,则b -a 的最大值和最小值之差等于________.解析:如图,当x ∈[a 1,b ]时,值域为⎣⎢⎡⎦⎥⎤-1,32且b -a 最大;当x ∈[a 2,b ]时,值域为⎣⎢⎡⎦⎥⎤-1,32,且b -a 最小,所以最大值与最小值之差为(b -a 1)-(b -a 2)=a 2-a 1=-π2-⎝ ⎛⎭⎪⎫-4π3=5π6.答案:5π610.(2019·杭州学军中学质检)已知f (x )=sin 2x -3cos 2x ,若对任意实数x ∈⎝⎛⎦⎥⎤0,π4,都有|f (x )|<m ,则实数m 的取值范围是________. 解析:因为f (x )=sin 2x -3cos 2x =2sin ⎝ ⎛⎭⎪⎫2x -π3,x ∈⎝ ⎛⎦⎥⎤0,π4,所以⎝⎛⎭⎪⎫2x -π3∈⎝ ⎛⎦⎥⎤-π3,π6,所以2sin ⎝⎛⎭⎪⎫2x -π3∈(-3,1],所以|f (x )|=⎪⎪⎪⎪⎪⎪2sin ⎝ ⎛⎭⎪⎫2x -π3<3,所以m ≥ 3.答案:[3,+∞)11.(2019·杭州市名校协作体高三下学期考试)已知0≤φ<π,函数f (x )=32cos(2x +φ)+sin 2x .(1)若φ=π6,求f (x )的单调递增区间;(2)若f (x )的最大值是32,求φ的值.解:(1)由题意f (x )=14cos 2x -34sin 2x +12=12cos ⎝⎛⎭⎪⎫2x +π3+12,由2k π-π≤2x +π3≤2k π,得k π-2π3≤x ≤k π-π6.所以函数f (x )的单调递增区间为⎣⎢⎡⎦⎥⎤k π-2π3,k π-π6,k ∈Z .(2)由题意f (x )=⎝ ⎛⎭⎪⎫32cos φ-12cos 2x -32sin φsin 2x +12,由于函数f (x )的最大值为32,即⎝ ⎛⎭⎪⎫32cos φ-122+⎝ ⎛⎭⎪⎫32sin φ2=1,从而cos φ=0,又0≤φ<π,故φ=π2.12.(2019·台州市高三期末评估)已知函数f (x )=sin(ωx +φ)⎝ ⎛⎭⎪⎫ω>0,|φ|≤π2的最小正周期为π,且x =π12为f (x )图象的一条对称轴.(1)求ω和φ的值;(2)设函数g (x )=f (x )+f ⎝⎛⎭⎪⎫x -π6,求g (x )的单调递减区间.解:(1)因为f (x )=sin(ωx +φ)⎝ ⎛⎭⎪⎫ω>0,|φ|≤π2的最小正周期为π,由T =2πω=π,所以ω=2,由2x +φ=k π+π2,k ∈Z ,所以f (x )的图象的对称轴为x =k π2+π4-φ2,k ∈Z . 由π12=k π2+π4-φ2,得φ=k π+π3. 又|φ|≤π2,则φ=π3.(2)函数g (x )=f (x )+f ⎝ ⎛⎭⎪⎫x -π6=sin ⎝ ⎛⎭⎪⎫2x +π3+sin 2x =12sin 2x +32cos 2x +sin 2x=3sin ⎝⎛⎭⎪⎫2x +π6.所以g (x )的单调递减区间为⎣⎢⎡⎦⎥⎤k π+π6,k π+2π3,k ∈Z .[能力提升]1.(2019·湖州市高三期末考试)若α,β∈⎣⎢⎡⎦⎥⎤-π2,π2,且αsin α-βsin β>0,则必有( )A .α2<β2B .α2>β2C .α<βD .α>β解析:选B.α,β∈⎣⎢⎡⎦⎥⎤-π2,π2,且αsin α-βsin β>0,即αsin α>βsin β,再根据y =x sin x 为偶函数,且在⎣⎢⎡⎦⎥⎤0,π2上单调递增,可得|α|>|β|,即α2>β2,故选B.2.若f (x )=cos 2x +a cos ⎝ ⎛⎭⎪⎫π2+x 在区间⎝ ⎛⎭⎪⎫π6,π2上是增函数,则实数a 的取值范围为( )A .[-2,+∞)B .(-2,+∞)C .(-∞,-4)D .(-∞,-4]解析:选D.f (x )=1-2sin 2x -a sin x ,令sin x =t ,t ∈⎝ ⎛⎭⎪⎫12,1,则g (t )=-2t 2-at+1,t ∈⎝ ⎛⎭⎪⎫12,1,因为f (x )在⎝ ⎛⎭⎪⎫π6,π2上单调递增,所以-a 4≥1,即a ≤-4,故选D. 3.(2019·浙江“七彩阳光”联盟高三联考)已知函数f (x )=sin(ωx +φ)⎝⎛⎭⎪⎫ω>0,|φ|<π2的图象过点⎝ ⎛⎭⎪⎫0,32,若f (x )≤f ⎝ ⎛⎭⎪⎫π6对x ∈R 恒成立,则ω的值为________;当ω最小时,函数g (x )=f ⎝⎛⎭⎪⎫x -π3-22在区间[0,22]的零点个数为________.解析:由题意得φ=π3,且当x =π6时,函数f (x )取到最大值,故π6ω+π3=π2+2kπ,k ∈Z ,解得ω=1+12k ,k ∈N ,又因为ω>0,所以ω的最小值为1,因此,g (x )=f ⎝⎛⎭⎪⎫x -π3-22=sin x -22的零点个数是8个. 答案:1+12k (k ∈N ) 84.(2019·金华市东阳二中高三调研)设函数f (x )=sin ⎝ ⎛⎭⎪⎫ωx -π6-2cos 2ω2x +1(ω>0),直线y =3与函数f (x )图象相邻两交点的距离为π.(1)求ω的值;(2)在△ABC 中,角A 、B 、C 所对的边分别是a 、b 、c ,若点⎝ ⎛⎭⎪⎫B2,0是函数y =f (x )图象的一个对称中心,且b =3,求△ABC 面积的最大值.解:(1)函数f (x )=sin ⎝⎛⎭⎪⎫ωx -π6-2cos 2ω2x +1=sin ωx cos π6-cos ωx sin π6-2·1+cos ωx2+1=32sin ωx -32cos ωx =3sin ⎝⎛⎭⎪⎫ωx -π3.因为f (x )的最大值为3,所以f (x )的最小正周期为π, 所以ω=2.(2)由(1)知f (x )=3sin ⎝ ⎛⎭⎪⎫2x -π3,因为3sin ⎝⎛⎭⎪⎫B -π3=0⇒B =π3,因为cos B =a 2+c 2-b 22ac =a 2+c 2-92ac =12,所以ac =a 2+c 2-9≥2ac -9,ac ≤9, 故S △ABC =12ac sin B =34ac ≤934.故△ABC 面积的最大值为934.5.已知a >0,函数f (x )=-2a sin ⎝ ⎛⎭⎪⎫2x +π6+2a +b ,当x ∈⎣⎢⎡⎦⎥⎤0,π2时,-5≤f (x )≤1. (1)求常数a ,b 的值;(2)设g (x )=f ⎝⎛⎭⎪⎫x +π2且lg g (x )>0,求g (x )的单调区间.解:(1)因为x ∈⎣⎢⎡⎦⎥⎤0,π2,所以2x +π6∈⎣⎢⎡⎦⎥⎤π6,7π6. 所以sin ⎝ ⎛⎭⎪⎫2x +π6∈⎣⎢⎡⎦⎥⎤-12,1,所以-2a sin ⎝⎛⎭⎪⎫2x +π6∈[-2a ,a ].所以f (x )∈[b ,3a +b ],又因为-5≤f (x )≤1, 所以b =-5,3a +b =1,因此a =2,b =-5. (2)由(1)得,f (x )=-4sin ⎝⎛⎭⎪⎫2x +π6-1,g (x )=f ⎝ ⎛⎭⎪⎫x +π2=-4sin ⎝⎛⎭⎪⎫2x +7π6-1=4sin ⎝⎛⎭⎪⎫2x +π6-1, 又由lg g (x )>0,得g (x )>1,所以4sin ⎝ ⎛⎭⎪⎫2x +π6-1>1,所以sin ⎝⎛⎭⎪⎫2x +π6>12,所以2k π+π6<2x +π6<2k π+5π6,k ∈Z ,其中当2k π+π6<2x +π6≤2k π+π2,k ∈Z 时,g (x )单调递增,即k π<x ≤k π+π6,k∈Z ,所以g (x )的单调增区间为⎝ ⎛⎦⎥⎤k π,k π+π6,k ∈Z .又因为当2k π+π2<2x +π6<2k π+5π6,k ∈Z 时,g (x )单调递减,即k π+π6<x <k π+π3,k ∈Z .所以g (x )的单调减区间为⎝ ⎛⎭⎪⎫k π+π6,k π+π3,k ∈Z .。

2020高考文科数学(人教A版)总复习课件:三角函数的图象与性质

2020高考文科数学(人教A版)总复习课件:三角函数的图象与性质

2π 3
D.
π 3

(3)函数 y=34--csoins������������的最大值为
6+√6 4
.
第四章
4.3 三角函数的图象与性质
必备知识·预案自诊
关关键键能能力力··学学案案突突破破
-14-
考点1
考点2
考点3
解 (2)析若:-π3(1≤)x∵≤αc,o则s x-π6-√≤23x≥+0π6,≤得α+cπ6o,s x≥√23,∴2kπ-π6≤x≤2kπ+π6,k∈Z.
A.f(x)的最小正周期为π,最大值为3
B.f(x)的最小正周期为π,最大值为4
C.f(x)的最小正周期为2π,最大值为3
D.f(x)的最小正周期为2π,最大值为4
解析:因为 f(x)=2cos2x-(1-cos2x)+2=3cos2x+1 =3×1+c2os2������+1=32cos 2x+52, 所5.函以数函数f(x)f=(xs)in的2最������小+正π3 周图期象为的22对π=称π,当轴方co程s 2为x=x1=时������2π,+f(x1π)2m(akx=∈. 4Z. )
关关键键能能力力··学学案案突突破破
-12-
思考如何求三角函数的定义域?求三角函数值域的常用方法有哪 些?
解题心得1.求三角函数的定义域通常要解三角不等式(组),解三 角不等式(组)常借助三角函数线或三角函数的图象.
2.求三角函数值域、最值的方法: (1)利用sin x和cos x的值域直接求. (2)形如y=asin x+bcos x的三角函数化为y=Asin(ωx+φ)的形式求 值域;形如y=asin2x+bsin x+c的三角函数,可先设sin x=t,化为关于t 的二次函数求值域(最值).

三角函数的图象与性质-高考数学复习

= ,
3
6
2
2−1

∴ω=4 k -2,又0<ω<6,∴ω=2.
目录
是:
(0,1) ,
π
,0
2

(π,-1) ,

,0
2

(2π,1).
提醒
函数 y = sin x , x ∈[0,2π], y = cos x , x ∈[0,2π]
的五个关键点的横坐标是零点和极值点(最值点).
目录
高中总复习·数学
2. 正弦、余弦、正切函数的图象与性质(表中 k ∈Z)
函数
y = sin x
A. T =π, A =1
B. T =2π, A =1
C. T =π, A =2
D. T =2π, A =2
解析:


T = =π, A =2-1=1,故选A.
2
目录
高中总复习·数学
3. 函数 y =4 sin (2 x +π)的图象关于(
A. x 轴对称

B. 原点对称
C. y 轴对称
解析: 记 f ( x )=4 sin (2 x +π)=-4 sin 2 x ,所以 f (-
2. 已知函数 f ( x )=2 sin
经过点
π
,2
6

π
(ω x +φ)(0<ω<6,|φ|< )的图象
2

, −2
3
,则ω=
2
.

π

π

解析:∵ 和 是函数 f ( x )的极值点,则 x = , x = 是对称
6
3
6
3

2020年高考数学总复习学案:第4章第3讲三角函数的图象与性质


D.
x|x≠
kπ 2
+π6 (
k∈Z

(2)不等式 3+ 2cosx≥0 的解集是 ________.
2
(3)函数 f(x)= 64- x2+log2(2sin x-1)的定义域是 ________.
【训练 1】 (1)函数 y= tan 2x 的定义域是 ( )
π A. x|x≠ kπ + 4 , k∈Z
ω的取值范围是
________.
4
命题角度三 三角函数的对称轴或对称中心
【例 3-3】 (1)(2017 浙·江适应性测试 )若函数 f(x)= 2sin(4x+ φ)(φ<0)的图象关于
直线 x=π24对称,则 φ的最大值为 (
)
5π A. - 3
2π B.- 3
π C.- 6
5π D.- 6
(2)(2016 全·国 Ⅰ卷 )已知函数
A.[ -3,1]
B.[ -2,1]
C.(-3,1]
D.(-2,1]
(2)(2016
全·国 Ⅱ卷 )函数
f(x)=cos
π 2x+ 6cos 2 -x
的最大值为
(
)
A.4
B.5
C.6
D.7
(3)函数 y= sin x-cos x+sin xcos x 的值域为 ________.
【训练
2】 (1)(2017
杭·州调研 )函数
y=2sin
ππ 6 x- 3
(0≤x≤9)的最大值与最小值
之和为 ( )
A.2- 3
B.0
C.-1
D.-1- 3
(2)(2017
金·华检测
)函数
y=- 2cos

2020届高三数学一轮复习: 第3章 第3节 三角函数的图象与性质

第三节 三角函数的图象与性质[考纲传真] 1.能画出y =sin x ,y =cos x ,y =tan x 的图象,了解三角函数的周期性.2.理解正弦函数、余弦函数在[0,2π]上的性质(如单调性、最大值和最小值、图象与x 轴的交点等),理解正切函数在区间⎝ ⎛⎭⎪⎫-π2,π2内的单调性.1.用五点法作正弦函数和余弦函数的简图正弦函数y =sin x ,x ∈[0,2π]图象的五个关键点是:(0,0),⎝ ⎛⎭⎪⎫π2,1,(π,0),⎝ ⎛⎭⎪⎫3π2,-1,(2π,0). 余弦函数y =cos x ,x ∈[0,2π]图象的五个关键点是:(0,1),⎝ ⎛⎭⎪⎫π2,0,(π,-1),⎝ ⎛⎭⎪⎫3π2,0,(2π,1).2.正弦函数、余弦函数、正切函数的图象与性质1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”) (1)常数函数f (x )=a 是周期函数,它没有最小正周期.( ) (2)函数y =sin x 的图象关于点(k π,0)(k ∈Z )中心对称.( ) (3)正切函数y =tan x 在定义域内是增函数.( ) (4)y =sin |x |是偶函数.( ) [答案] (1)√ (2)√ (3)× (4)√2.(2017·云南二次统一检测)函数f (x )=cos ⎝ ⎛⎭⎪⎫2x +5π2的图象关于( )A .原点对称 B.y 轴对称C .直线x =5π2对称D.直线x =-5π2对称A [函数f (x )=cos ⎝ ⎛⎭⎪⎫2x +5π2=-sin 2x 是奇函数,则图象关于原点对称,故选A.]3.函数y =tan 2x 的定义域是( )A.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪ x ≠k π+π4,k ∈ZB.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x ≠k π2+π8,k ∈Z C.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x ≠k π+π8,k ∈ZD.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪ x ≠k π2+π4,k ∈ZD [由2x ≠k π+π2,k ∈Z ,得x ≠k π2+π4,k ∈Z , ∴y =tan 2x的定义域为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x ≠k π2+π4,k ∈Z.] 4.(2017·长沙模拟(一))函数y =sin ⎝ ⎛⎭⎪⎫12x +π3,x ∈[-2π,2π]的单调递增区间是( )A.⎣⎢⎡⎦⎥⎤-2π,-5π3 B.⎣⎢⎡⎦⎥⎤-2π,-5π3和⎣⎢⎡⎦⎥⎤π3,2π C.⎣⎢⎡⎦⎥⎤-5π3,π3 D.⎣⎢⎡⎦⎥⎤π3,2π C [令z =12x +π3,函数y =sin z 的单调递增区间为⎣⎢⎡⎦⎥⎤2k π-π2,2k π+π2(k ∈Z ),由2k π-π2≤12x +π3≤2k π+π2得4k π-5π3≤x ≤4k π+π3,而x ∈[-2π,2π],故其单调递增区间是⎣⎢⎡⎦⎥⎤-5π3,π3,故选C.]5.(教材改编)函数f (x )=4-2cos 13x 的最小值是________,取得最小值时,x 的取值集合为________.2 {x |x =6k π,k ∈Z } [f (x )min =4-2=2,此时,13x =2k π(k ∈Z ),x =6k π(k ∈Z ),所以x 的取值集合为{x |x =6k π,k ∈Z }.](1)(2016·全国卷Ⅱ)函数f (x )=cos 2x +6cos ⎝ ⎛⎭⎪π2-x 的最大值为( )A .4B.5C.6D.7(2)函数y =lg(sin 2x )+9-x 2的定义域为________.(1)B (2)⎣⎢⎡⎭⎪⎫-3,-π2∪⎝ ⎛⎭⎪⎫0,π2 [(1)∵f (x )=cos 2x +6cos ⎝ ⎛⎭⎪⎫π2-x =cos 2x +6sinx=1-2sin 2x +6sin x =-2⎝ ⎛⎭⎪⎫sin x -322+112,又sin x ∈[-1,1],∴当sin x =1时,f (x )取得最大值5.故选B. (2)由⎩⎪⎨⎪⎧sin 2x >0,9-x 2≥0,得⎩⎨⎧k π<x <k π+π2,k ∈Z ,-3≤x ≤3,∴-3≤x <-π2或0<x <π2, ∴函数y =lg(sin 2x )+9-x 2的定义域为⎣⎢⎡⎭⎪⎫-3,-π2∪⎝ ⎛⎭⎪⎫0,π2.][规律方法] 1.三角函数定义域的求法求三角函数定义域实际上是构造简单的三角不等式(组),常借助三角函数线或三角函数图象来求解.2.求三角函数最值或值域的常用方法(1)直接法:直接利用sin x 和cos x 的值域求解.(2)化一法:把所给三角函数化为y =A sin(ωx +φ)+k 的形式,由正弦函数单调性写出函数的值域.(3)换元法:把sin x ,cos x ,sin x cos x 或sin x ±cos x 换成t ,转化为二次函数求解.[变式训练1] (1)已知函数y =2cos x 的定义域为⎣⎢⎡⎦⎥⎤π3,π,值域为[a ,b ],则b -a 的值是( )A .2B.3C.3+2D.2- 3(2)求函数y =cos 2x +sin x ⎝ ⎛⎭⎪⎫|x |≤π4的最大值与最小值.【导学号:01772113】(1)B [∵x ∈⎣⎢⎡⎦⎥⎤π3,π,∴cos x ∈⎣⎢⎡⎦⎥⎤-1,12,故y =2cos x 的值域为[-2,1],∴b -a =3.](2)令t =sin x ,∵|x |≤π4,∴t ∈⎣⎢⎡⎦⎥⎤-22,22,3分∴y =-t 2+t +1=-⎝ ⎛⎭⎪⎫t -122+54,∴当t =12时,y max =54,当t =-22时,y min =1-22,7分 ∴函数y =cos 2x +sin x ⎝ ⎛⎭⎪⎫|x |≤π4的最大值为54,最小值为1-22.12分(1)(2017·洛阳模拟)已知ω>0,函数f (x )=sin ⎝ ⎭⎪⎫ωx +π4在⎝ ⎛⎭⎪⎫π2,π上单调递减,则ω的取值范围是( )A.⎣⎢⎡⎦⎥⎤12,54 B.⎣⎢⎡⎦⎥⎤12,34 C.⎝ ⎛⎦⎥⎤0,12 D.(0,2](2)函数f (x )=sin ⎝ ⎛⎭⎪⎫-2x +π3的单调减区间为________. (1)A (2)⎣⎢⎡⎦⎥⎤k π-π12,k π+5π12(k ∈Z ) [(1)由π2<x <π得π2ω+π4<ωx +π4<πω+π4,由题意知⎝ ⎛⎭⎪⎫π2ω+π4,πω+π4⊆⎣⎢⎡⎦⎥⎤π2,3π2, 所以⎩⎪⎨⎪⎧π2ω+π4≥π2,πω+π4≤3π2,解得12≤ω≤54.(2)由已知函数为y =-sin ⎝ ⎛⎭⎪⎫2x -π3,欲求函数的单调减区间,只需求y =sin ⎝ ⎛⎭⎪⎫2x -π3的单调增区间即可. 由2k π-π2≤2x -π3≤2k π+π2,k ∈Z , 得k π-π12≤x ≤k π+5π12,k ∈Z .故所求函数的单调减区间为⎣⎢⎡⎦⎥⎤k π-π12,k π+5π12(k ∈Z ).][规律方法] 1.求三角函数单调区间的两种方法(1)求函数的单调区间应遵循简化原则,将解析式先化简,并注意复合函数单调性规律“同增异减”.(2)求形如y =A sin(ωx +φ)(ω>0)的单调区间时,要视“ωx +φ”为一个整体,通过解不等式求解.若ω<0,应先用诱导公式化x 的系数为正数,以防止把单调性弄错.2.已知三角函数的单调区间求参数.先求出函数的单调区间,然后利用集合间的关系求解.[变式训练2] (1)函数f (x )=tan ⎝ ⎛⎭⎪⎫2x -π3的单调递增区间是________.(2)若函数f (x )=sin ωx (ω>0)在区间⎣⎢⎡⎦⎥⎤0,π3上单调递增,在区间⎣⎢⎡⎦⎥⎤π3,π2上单调递减,则ω=________.【导学号:01772114】(1)⎝ ⎛⎭⎪⎫k π2-π12,k π2+5π12(k ∈Z ) (2)32 [(1)由-π2+k π<2x -π3<π2+k π(k ∈Z ), 得k π2-π12<x <k π2+5π12(k ∈Z ). (2)∵f (x )=sin ωx (ω>0)过原点,∴当0≤ωx ≤π2,即0≤x ≤π2ω时,y =sin ωx 是增函数; 当π2≤ωx ≤3π2,即π2ω≤x ≤3π2ω时,y =sin ωx 是减函数. 由f (x )=sin ωx (ω>0)在⎣⎢⎡⎦⎥⎤0,π3上单调递增,在⎣⎢⎡⎦⎥⎤π3,π2上单调递减知,π2ω=π3,∴ω=32.](1)(2014·全国卷Ⅰ)在函数:①y =cos|2x |,②y =|cos x |,③y =cos ⎝ ⎛⎭⎪⎫2x +π6,④y =tan ⎝ ⎛⎭⎪⎫2x -π4中,最小正周期为π的所有函数为( ) A .②④ B.①③④ C .①②③D.①③(2)函数y =1-2sin 2⎝ ⎛⎭⎪⎫x -3π4是( )A .最小正周期为π的奇函数B .最小正周期为π的偶函数C .最小正周期为π2的奇函数 D .最小正周期为π2的偶函数(1)C (2)A [(1)①y =cos|2x |=cos 2x ,T =π. ②由图象知,函数的周期T =π. ③T =π. ④T =π2.综上可知,最小正周期为π的所有函数为①②③.(2)y =1-2sin 2⎝ ⎛⎭⎪⎫x -3π4=cos 2⎝ ⎛⎭⎪⎫x -3π4=-sin 2x ,所以f (x )是最小正周期为π的奇函数.]☞角度2 求三角函数的对称轴、对称中心(2016·安徽江南十校3月联考)已知函数f (x )=sin(ωx +φ)⎝ ⎛⎭⎪⎫ω>0,|φ|<π2的最小正周期为4π,且对任意x ∈R ,都有f (x )≤f ⎝ ⎛⎭⎪⎫π3成立,则f (x )图象的一个对称中心的坐标是( )A.⎝ ⎛⎭⎪⎫-2π3,0B.⎝ ⎛⎭⎪⎫-π3,0 C.⎝ ⎛⎭⎪⎫2π3,0 D.⎝ ⎛⎭⎪⎫5π3,0 A [由f (x )=sin (ωx +φ)的最小正周期为4π,得ω=12.因为f (x )≤f ⎝ ⎛⎭⎪⎫π3恒成立,所以f (x )max =f ⎝ ⎛⎭⎪⎫π3,即12×π3+φ=π2+2k π(k ∈Z ), ∴φ=π3+2k π(k ∈Z ),由|φ|<π2, 得φ=π3,故f (x )=sin ⎝ ⎛⎭⎪⎫12x +π3.令12x +π3=k π(k ∈Z ),得x =2k π-2π3(k ∈Z ),故f (x )图象的对称中心为⎝ ⎛⎭⎪⎫2k π-2π3,0(k ∈Z ),当k =0时,f (x )图象的一个对称中心的坐标为⎝ ⎛⎭⎪⎫-2π3,0,故选A.]☞角度3 三角函数对称性的应用(1)如果函数y =3cos(2x +φ)的图象关于点⎝ ⎛⎭⎪⎫4π3,0中心对称,那么|φ|的最小值为( )A.π6 B.π4 C.π3D.π2(2)已知函数f (x )=sin x +a cos x 的图象关于直线x =5π3对称,则实数a 的值为( )A .-3 B.-33 C.2D.22(1)A (2)B [(1)由题意得3cos ⎝ ⎛⎭⎪⎫2×4π3+φ=3cos ⎝ ⎛⎭⎪⎫2π3+φ+2π=3cos ⎝ ⎛⎭⎪⎫2π3+φ=0, ∴2π3+φ=k π+π2,k ∈Z ,∴φ=k π-π6,k ∈Z ,取k =0,得|φ|的最小值为π6. (2)由x =5π3是f (x )图象的对称轴, 可得f (0)=f ⎝ ⎛⎭⎪⎫10π3,即sin 0+a cos 0=sin 10π3+a cos 10π3, 解得a =-33.][规律方法] 1.对于函数y =A sin(ωx +φ),其对称轴一定经过图象的最高点或最低点,对称中心一定是函数的零点,因此在判断直线x =x 0或点(x 0,0)是不是函数的对称轴或对称中心时,可通过检验f (x 0)的值进行判断.2.求三角函数周期的方法: (1)利用周期函数的定义.(2)利用公式:y =A sin(ωx +φ)和y =A cos(ωx +φ)的最小正周期为2π|ω|,y =tan(ωx +φ)的最小正周期为π|ω|.(3)借助函数的图象.[思想与方法]1.讨论三角函数性质,应先把函数式化成y=A sin(ωx+φ)(ω>0)的形式,再用换元法令t=ωx+φ,将其转化为研究y=sin t的性质.2.求三角函数值域(最值)的常用方法:(1)将函数变形化为y=A sin(ωx+φ)+k的形式,逐步分析ωx+φ的范围,根据正弦函数单调性写出函数的值域(最值).(2)换元法:把sin x或cos x看作一个整体,可化为求二次函数在区间上的值域(最值)问题.3.若f(x)=A sin(ωx+φ)(A>0,ω>0),则(1)f(x)为偶函数的充要条件是φ=π2+kπ(k∈Z);(2)f(x)为奇函数的充要条件是φ=kπ(k∈Z).[易错与防范]1.闭区间上最值或值域问题,首先要在定义域基础上分析单调性,含参数的最值问题,要讨论参数对最值的影响.2.求y=A sin(ωx+φ)(A>0)的单调区间,要注意ω的正负,只有当ω>0时,才能将“ωx+φ”整体代入相应单调区间.3.利用换元法求三角函数最值时,注意cos x(或sin x)的有界性.4.正、余弦函数的图象既是轴对称图形,又是中心对称图形且最值点在对称轴上;正切函数的图象只是中心对称图形.。

教师课件:2020年高考数学一轮复习专题4.4三角函数图象与性质(讲)

第04节 三角函数图象与性质【考纲解读】考 点考纲内容5年统计分析预测三角函数的图象和性质 理解正弦函数、余弦函数、正切函数的图象与性质,了解三角函数的周期性.2013浙江文3;2015浙江文11,理11; 2016浙江文3,理5; 2017浙江18; 2018浙江5.1.“五点法”作图; 2,.三角函数的性质;3.往往将三角恒等变换与三角函数图象、性质结合考查. 4.备考重点:(1) 掌握正弦、余弦、正切函数的图象; (2) 掌握三角函数的周期性、单调性、对称性以及最值.【知识清单】1.正弦、余弦、正切函数的图象与性质(1)正弦函数sin y x =,余弦函数cos y x =,正切函数tan y x =的图象与性质 性质sin y x =cos y x = tan y x =图象定义域R R,2x x k k Z ππ⎧⎫≠+∈⎨⎬⎩⎭值域[]1,1-[]1,1-R最值当()22x k k Z ππ=+∈时,max 1y =;当()22x k k Z ππ=-∈时,min 1y =-.当()2x k k Z π=∈时,max 1y =;当()2x k k Z ππ=+∈时,min 1y =-.既无最大值,也无最小值周期性2π 2ππ奇偶性 ()sin sin x x -=-,奇函数()cos cos x x -=偶函数 ()tan tan x x -=-奇函数单调性 在()2,222k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦上是增函数;在()32,222k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦上是减函数.在[]()2,2k k k Z πππ-∈上是增函数;在π[]()2,2k k k Z πππ+∈上是减函数.在(),22k k k Z ππππ⎛⎫-+∈ ⎪⎝⎭上是增函数.对称性 对称中心()(),0k k Z π∈对称轴()2x k k Z ππ=+∈,既是中心对称又是轴对称图形.对称中心(),02k k Z ππ⎛⎫+∈ ⎪⎝⎭对称轴()x k k Z π=∈,既是中心对称又是轴对称图形.对称中心(),02k k Z π⎛⎫∈⎪⎝⎭无对称轴,是中心对称但不是轴对称图形.(2)(五点法),先列表,令0,,,,222x ωϕππ+=,求出对应的五个x 的值和五个y 值,再根据求出的对应的五个点的坐标描出五个点,再把五个点利用平滑的曲线连接起来,即得到()sin y A x h ωϕ=++在一个周期的图像,最后把这个周期的图像以周期为单位,向左右两边平移,则得到函数()sin y A x h ωϕ=++的图像.2.三角函数的定义域与值域(1)定义域:sin y x =,cos y x =的定义域为R ,tan y x =的定义域为,2x x k k Z ππ⎧⎫≠+∈⎨⎬⎩⎭. (2)值域:sin y x =,cos y x =的值域为[]1,1-,tan y x =的值域为R . (3)最值:sin y x =:当()22x k k Z ππ=+∈时,max 1y =;当()22x k k Z ππ=-∈时,min 1y =-.cos y x =:当()2x k k Z π=∈时,max 1y =;当()2x k k Z ππ=+∈时,min 1y =-. tan y x =:既无最大值,也无最小值3.三角函数的单调性 (1)三角函数的单调区间:x y sin =的递增区间是⎥⎦⎤⎢⎣⎡+-2222ππππk k ,)(Z k ∈,递减区间是⎥⎦⎤⎢⎣⎡++23222ππππk k ,)(Z k ∈; x y cos =的递增区间是[]πππk k 22,-)(Z k ∈, 递减区间是[]πππ+k k 22,)(Z k ∈, x y tan =的递增区间是⎪⎭⎫ ⎝⎛+-22ππππk k ,)(Z k ∈,(2)复合函数的单调性设()y f u =,()[][],,,,u g x x a b u m n =∈∈都是单调函数,则()y f g x =⎡⎤⎣⎦在[],a b 上也是单调函数,其单调性由“同增异减”来确定,即“里外”函数增减性相同,复合函数为增函数,“里外”函数增减性相反,复合函数为减函数,如下表()y f u =()u g x =()y f g x =⎡⎤⎣⎦增 增 增 增 减 减 减 增 减 减减增4 .三角函数的对称性 (1)对称轴与对称中心:sin y x =的对称轴为2x k ππ=+,对称中心为(,0) k k Z π∈;cos y x =的对称轴为x k π=,对称中心为2(,0)k ππ+k Z ∈;tan y x =对称中心为,02k π⎛⎫⎪⎝⎭k Z ∈. (2)对于sin()y A x ωφ=+和cos()y A x ωφ=+来说,对称中心与零点相联系,对称轴与最值点联系.sin )y A x ωϕ=+(的图象有无穷多条对称轴,可由方程()2x k k Z πωϕπ+=+∈解出;它还有无穷多个对称中心,它们是图象与x 轴的交点,可由()x k k Z ωϕπ+=∈,解得()k x k Z πϕω-=∈,即其对称中心为(),0k k Z πϕω-⎛⎫∈⎪⎝⎭.(3)相邻两对称轴间的距离为T 2,相邻两对称中心间的距离也为T2,函数的对称轴一定经过图象的最高点或最低点.5.三角函数的奇偶性(1)函数的奇偶性的定义; 对定义域内任意x ,如果有()f x -=()f x ,则函数是偶函数,如果有()f x -=-()f x ,则函数是奇函数,否则是非奇非偶函数(2)奇偶函数的性质:(1)定义域关于原点对称;(2)偶函数的图象关于y 轴对称,奇函数的图象关于原点对称; (3)()f x 为偶函数()(||)f x f x ⇔=.(4)若奇函数()f x 的定义域包含0,则(0)0f =.(5)sin y x =为奇函数,cos y x =为偶函数,tan y x =为奇函数. 6.三角函数的周期性 (1)周期函数的定义一般地,对于函数()f x ,如果存在一个非零常数T ,使得定义域内的每一个x 值,都有()()f x T f x += ,那么函数()f x 就叫做周期函数,非零常数T 叫做这个函数的周期.(2)最小正周期:对于一个周期函数()f x ,如果它所有的周期中存在一个最小的正数 ,那么这个最小的正数 就叫做()f x 的最小正周期.(3)sin y x =,cos y x =周期为2π,tan y x =周期为π. 【重点难点突破】考点1 正弦、余弦、正切函数的图象与性质 【1-1】【2018年全国卷Ⅲ理】函数在的零点个数为________.【答案】 【解析】分析:求出的范围,再由函数值为零,得到的取值可得零点个数.详解:,,由题可知,或,解得,或,故有3个零点.【1-2】【2017课标3,理6】设函数f (x )=cos (x +3π),则下列结论错误的是A .f(x)的一个周期为−2πB .y=f(x)的图像关于直线x=83π对称 C .f(x+π)的一个零点为x=6π D .f(x)在(2π,π)单调递减 【答案】D 【解析】【领悟技法】用“五点法”作图应抓住四条:①将原函数化为()sin y A x h ωϕ=++()0,0A ω>>或()cos y A x h ωϕ=++()0,0A ω>>的形式;②求出周期2T πω=;③求出振幅A ;④列出一个周期内的五个特殊点,当画出某指定区间上的图象时,应列出该区间内的特殊点. 【触类旁通】【变式一】【2018届浙江省金丽衢十二校高三第二次联考】函数f (x )=Asin (ωx+φ)(A >0,ω>0,|φ|< )的图象如图,则φ=( )A. B. C. D.【答案】B【解析】分析:先根据图确定半个周期,得ω,再根据最大值求φ. 详解:因为,所以因为,所以因为|φ|<因此,选B.【变式二】【江西省赣州市2018年5月高考适应性考试】若函数在区间上有两个零点,,则( )A. B. C. D.【答案】C考点2三角函数的定义域与值域【 2-1】函数12lg(2sin 1)y cosx x =--的定义域是________. 【答案】522,.36xk x k k Z ππππ⎧⎫+≤<+∈⎨⎬⎩⎭【解析】(1)由题意得120,210,cosx sinx -≥⎧⎨->⎩,即1,21,2cosx sinx ⎧≤⎪⎪⎨⎪>⎪⎩,分别由三角函数线得522,33522,66k x k k x k ππππππππ⎧+≤≤+⎪⎪⎨⎪+<<+⎪⎩,522,.36k x k k Z ππππ∴+≤<+∈ 【2-2】【2018年北京卷文】已知函数.(Ⅰ)求的最小正周期; (Ⅱ)若在区间上的最大值为,求的最小值.【答案】(Ⅰ).(Ⅱ). 【解析】分析:(1)将化简整理成的形式,利用公式可求最小正周期;(2)根据,可求的范围,结合函数图像的性质,可得参数的取值范围.详解: (Ⅰ),所以的最小正周期为.(Ⅱ)由(Ⅰ)知.因为,所以.要使得在上的最大值为,即在上的最大值为1.所以,即.所以的最小值为. 【领悟技法】1.三角函数定义域的求法求三角函数定义域实际上是构造简单的三角不等式(组),常借助三角函数线或三角函数图像来求解. 2.三角函数值域的不同求法(1)利用sin x 和cos x 的值域直接求;(2)把所给的三角函数式变换成y =A sin(ωx +φ)的形式求值域; (3)把sin x 或cos x 看作一个整体,转换成二次函数求值域; (4)利用sin x ±cos x 和sin x cos x 的关系转换成二次函数求值域.【触类旁通】 【变式一】函数2cos 1y x =+的定义域是( )A. ()2,233k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦B. ()22,233k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦C. ()2,266k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦ D. ()222,233k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦【答案】D【解析】由2cos 1x +⩾0得1cos 2x -,∴222233k x k ππππ-+,k ∈Z. 故选D.【变式二】【2017新课标2】函数()的最大值是__________.【答案】1【解析】化简三角函数的解析式,则,由可得,当时,函数取得最大值1.考点3三角函数的单调性【3-1】【2018届福建省漳州市5月测试】已知函数(,),满足,且对任意,都有.当取最小值时,函数的单调递减区间为( )A. ,ZB. ,Z C. ,Z D.,Z【答案】A 【解析】分析:由,可得关于对称,对任意,可得时,取得最小值,即可求解解析式,从而利用正弦函数的单调性列不等式,求解函数的单调递减区间.那么,函数,当时,取得最小值,,,即函数,令,得,所以,函数的单调递减区间为: ,,故选A.点睛:的函数的单调区间的求法:(1) 代换法:①若,把看作是一个整体,由求得函数的减区间,求得增区间;②若,则利用诱导公式先将的符号化为正,再利用①的方法,或根据复合函数的单调性规律进行求解;(2) 图象法:画出三角函数图象,利用图象求函数的单调区间. 【3-2】已知函数sin (0)3y x πωω⎛⎫=+> ⎪⎝⎭的最小正周期为23π,则该函数的单调增区间为( )A. ()272,31836k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦ B. ()252,318318k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦ C. ()252,312312k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦ D. ()22,3336k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦ 【答案】B【解析】由于函数sin (0)3y x πωω⎛⎫=+> ⎪⎝⎭的最小正周期为223ππω=,∴3ω=,令232232k x k πππππ-≤+≤+,求得252318318k k x ππππ-≤≤+,可得函数的增区间为()252,318318k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦,故选B. 【领悟技法】1. 求形如()sin y A x ωϕ=+或()cos y A x ωϕ=+ (其中A ≠0,0ω>)的函数的单调区间,可以通过解不等式的方法去解答,列不等式的原则是:①把“x ωϕ+ (0ω>)”视为一个“整体”;②A>0(A<0)时,所列不等式的方向与sin y x = (x R ∈),cos y x = (x R ∈)的单调区间对应的不等式方向相同(反).2. 如何确定函数sin()(0)y A x A ωϕ=+>当0ω<时函数的单调性对于函数sin()y A x ωϕ=+求其单调区间,要特别注意ω的正负,若为负值,需要利用诱导公式把负号提出来,转化为sin()y A x ωϕ=---的形式,然后求其单调递增区间,应把x ωϕ--放在正弦函数的递减区间之内;若求其递减区间,应把x ωϕ--放在正弦函数的递增区间之内.3.求函数sin()y A x ωϕ=+ (或cos()y A x ωϕ=+,或tan()y A x ωϕ=+)的单调区间的步骤: (1)将ω化为正.(2)将x ωϕ+看成一个整体,由三角函数的单调性求解.4.特别提醒:解答三角函数的问题时,不要漏了“k Z ∈”. 三角函数存在多个单调区间时易错用“∪”联结.求解三角函数的单调区间时若x 的系数为负应先化为正,同时切莫漏掉考虑函数自身的定义域. 【触类旁通】 【变式一】函数的部分图像如图所示,则的单调递减区间为( )A. B.C. D.【答案】D【解析】试题分析:由五点作图知,解得:,所以,令,解得,故单调递减区间为,故选D.【变式二】【2018届河南省南阳市第一中学第十五次考试】已知函数,若,则上具有单调性,那么的取值共有()A. 6个B. 7个C. 8个D. 9个【答案】D考点4 三角函数的对称性 【4-1】【2018年江苏卷】已知函数的图象关于直线对称,则的值是________. 【答案】【解析】分析:由对称轴得,再根据限制范围求结果.详解:由题意可得,所以,因为,所以【4-2】若函数()的图象关于点对称,则__________.【答案】【解析】根据题意可得 又,故 .【领悟技法】先化成sin )y A x B ωϕ=++(的形式再求解.其图象的对称轴是直线)(2Z k k x ∈+=+ππϕω,凡是该图象与直线B y =的交点都是该图象的对称中心, 关键是记住三角函数的图象,根据图象并结合整体代入的基本思想即可求三角函数的对称轴与对称中心. 【触类旁通】【变式一】下列坐标所表示的点不是函数tan()26x y π=-的图象的对称中心的是 ( ) A .03π⎛⎫⎪⎝⎭, B .503π⎛⎫- ⎪⎝⎭, C .203π⎛⎫ ⎪⎝⎭, D .403π⎛⎫ ⎪⎝⎭, 【答案】C【解析】tan y x =的对称中心为,02k π⎛⎫⎪⎝⎭,所以tan()26x y π=-的对称中心可以表示为2623x k x k ππππ-=⇒=+,经检验C 选项不满足条件,故选C . 【变式二】【2018届新疆乌鲁木齐地区5月训练】函数图像的一条对称轴为( )A. B. C. D.【答案】C【解析】分析:逆用两角和余弦公式公式进行化简,结合三角函数的对称性建立方程进行求解即可.详解:y=cosx﹣sinx=(cosx﹣sinx)=cos(x+),由x+=kπ,得x=﹣+kπ,k∈Z,即函数的对称轴为x=﹣+kπ,k∈Z,当k=0时,对称轴为x=﹣,故选:D.考点5三角函数的奇偶性【5-1】函数是()A. 周期为的奇函数B. 周期为的偶函数C. 周期为的奇函数D. 周期为的偶函数【答案】B【解析】为偶函数本题选择B选项.【5-2】【2018届辽宁省丹东市测试(二)】设,若,则函数A. 是奇函数B. 的图象关于点对称C. 是偶函数D. 的图象关于直线对称【答案】C【解析】分析:由可得,将其代入化简得到,所以函数为偶函数.【领悟技法】1. 一般根据函数的奇偶性的定义解答,首先必须考虑函数的定义域,如果函数的定义域不关于原点对称,则函数一定是非奇非偶函数;如果函数的定义域关于原点对称,则继续求()f x -;最后比较()f x -和()f x 的关系,如果有()f x -=()f x ,则函数是偶函数,如果有()f x -=-()f x ,则函数是奇函数,否则是非奇非偶函数.2. 如何判断函数()f x ωϕ+的奇偶性:根据三角函数的奇偶性,利用诱导公式可推得函数()f x ωϕ+的奇偶性,常见的结论如下:(1)若sin()y A x ωϕ=+为偶函数,则有()2k k Z πϕπ=+∈;若为奇函数则有()k k Z ϕπ=∈;(2)若cos()y A x ωϕ=+为偶函数,则有()k k Z ϕπ=∈;若为奇函数则有()2k k Z πϕπ=+∈;(3)若tan()y A x ωϕ=+为奇函数则有()k k Z ϕπ=∈. 【触类旁通】下列四个函数中,既是0,2π⎛⎫⎪⎝⎭上的增函数,又是以π为周期的偶函数的是( ) A. tan y x = B. sin y x = C. cos y x = D. cos y x =【答案】B【解析】以π为周期的函数有tan y x =、 sin y x = 、 cos y x =,是偶函数的有sin y x = 、 cos y x =,在0,2π⎛⎫⎪⎝⎭上是增函数的只有sin y x =,应选答案B 考点6三角函数的周期性【6-1】【2018年全国卷Ⅲ文】函数的最小正周期为A. B. C. D.【答案】C【6-2】【2017天津,文理】设函数()2sin()f x x ωϕ=+,x ∈R ,其中0ω>,||ϕ<π.若5()28f π=,()08f 11π=,且()f x 的最小正周期大于2π,则 (A )23ω=,12ϕπ= (B )23ω=,12ϕ11π=- (C )13ω=,24ϕ11π=- (D )13ω=,24ϕ7π=【答案】A【领悟技法】1.求三角函数的周期的方法(1)定义法:使得当x 取定义域内的每一个值时,都有()()f x T f x +=.利用定义我们可采用取值进行验证的思路,非常适合选择题;(2)公式法:()sin()f x A x ωϕ=+和()cos()f x A x ωϕ=+的最小正周期都是2||T πω=,()tan()f x A x ωϕ=+的周期为T πω=.要特别注意两个公式不要弄混; (3)图象法:可以画出函数的图象,利用图象的重复的特征进行确定,一般适应于不易直接判断,但是能够容易画出函数草图的函数;(4)绝对值或平方对三角函数周期性的影响:一般说来,某一周期函数解析式加绝对值或平方,其周期性是:弦减半、切不变.既为周期函数又是偶函数的函数自变量加绝对值,其周期性不变,其它不定. 如x y x y sin ,sin 2==的周期都是π, 但sin y x =cos x +的周期为2π,而1|2sin(3)|,|2sin(3)2|626y x y x ππ=-+=-+,|tan |y x =的周期不变.2.使用周期公式,必须先将解析式化为sin()y A x h ωϕ=++或cos()y A x h ωϕ=++的形式;正弦余弦函数的最小正周期是2T πϖ=,正切函数的最小正周期公式是T πϖ=;注意一定要注意加绝对值. 3.对称与周期:正弦曲线、余弦曲线相邻的两个对称中心、相邻的两条对称轴之间的距离是半个周期,相邻的对称中心与对称轴之间的距离是四分之一个周期;正切曲线相邻两个对称中心之间的距离是半个周期. 【触类旁通】【变式一】【2017课标II ,文3】函数π()sin(2)3f x x =+的最小正周期为( ) A.4π B.2π C. π D.π2【答案】C【变式二】设函数()sin()f x A x ωϕ=+(,,A ωϕ是常数,0,0A ω>>).若()f x 在区间[,]62ππ上具有单调性,且2()()()236f f f πππ==-,则()f x 的最小正周期为 . 【答案】π【易错试题常警惕】易错典例:求函数tan 23y x π⎛⎫=-⎪⎝⎭的单调递减区间. 易错分析:解答本题易直接由:2232k x k πππππ-≤-≤+,得出错误结论,原因是忽略复合函数的单调性,再一点易忽略k Z ∈这个条件. 正确解析:把函数tan 23y x π⎛⎫=- ⎪⎝⎭变为tan 23y x π⎛⎫=-- ⎪⎝⎭,由2,232k x k k Z πππππ-<-<+∈,得52,66k x k k Z ππππ-<<+∈, 即5,212212k k x k Z ππππ-<<+∈,故函数tan 23y x π⎛⎫=-⎪⎝⎭的单调减区间为()5,212212k k k Z ππππ⎛⎫-+∈ ⎪⎝⎭. 温馨提醒:(1)三角函数图像与性质是高考考试的重点与难点,掌握三角函数的图像与性质,并能灵活运用,解答此类问题关键是将三角函数变形为sin()y A x ωφ=+处理.(2)在解答本题时,存在两个典型错误.一是忽略复合函数的单调性,直接由:2232k x k πππππ-≤-≤+,得出错误结论;二是易忽略对字母k 的限止,在解答此类问题时,一定要注意对字母k 的限止.【学科素养提升之思想方法篇】数形结合百般好,隔裂分家万事休——数形结合思想我国著名数学家华罗庚曾说过:"数形结合百般好,隔裂分家万事休.""数"与"形"反映了事物两个方面的属性.我们认为,数形结合,主要指的是数与形之间的一一对应关系.数形结合就是把抽象的数学语言、数量关系与直观的几何图形、位置关系结合起来,通过"以形助数"或"以数解形"即通过抽象思维与形象思维的结合,可以使复杂问题简单化,抽象问题具体化,从而起到优化解题途径的目的.向量的几何表示,三角形、平行四边形法则,使向量具备形的特征,而向量的坐标表示和坐标运算又具备数的特征,因此,向量融数与形于一身,具备了几何形式与代数形式的“双重身份”.因此,在应用向量解决问题或解答向量问题时,要注意恰当地运用数形结合思想,将复杂问题简单化、将抽象问题具体化,达到事半功倍的效果.【典例】【2018届浙江省杭州市第二中学6月热身】已知函数的部分图像如图.(Ⅰ)求函数的解析式. (Ⅱ)求函数在区间上的最值,并求出相应的值. 【答案】(1). (2)时,,时,.【解析】分析:(Ⅰ)从图像可以得到,故,再利用得出的大小.(Ⅱ)利用(Ⅰ)中的结论,可先计算当时的取值范围,再利用的性质求在相应范围上的最值.详解:(1)由图像可知,又,故.周期,又,∴.∴..(2),∴.当时,,.当时,,.所以,.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2020届高考数学复习备考-三角函数的图象与性质
高考考点
考点解读
三角函数的定义域、值域、最值
1.求三角函数的值域或最值 2.根据值域或最值求参数
三角函数的单调性、奇偶性、对称性和周期性 1.根据图象或周期公式求三角函数的周期、单调区间或判断奇偶性
2.根据单调性、奇偶性、周期性求参数 三角函数的图象及应用
1.考查三角函数的图象变换 2.根据图象求解析式或参数
1. 设函数f (x )=2sin(ωx +φ),x ∈R ,其中ω>0,|φ|<π.若f (5π8)=2,f (11π
8
)=0,且f (x )的最小正周期大
于2π,则 ( )
A .ω=23,φ=π12
B .ω=2
3,φ=-11π12
C .ω=13,φ=-11π24
D .ω=1
3,φ=7π24
2.设函数f (x )=cos(x +π
3),则下列结论错误的是 ( )
A .f (x )的一个周期为-2π
B .y =f (x )的图象关于直线x =8π
3对称
C .f (x +π)的一个零点为x =π6
D .f (x )在(π
2
,π)单调递减
3. 函数y =sin 2x
1-cos x
的部分图象大致为 ( )
4. 已知曲线C 1:y =cos x ,C 2:y =sin(2x +2π
3),则下面结论正确的是 ( )
A .把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移π
6个单位长度,得到曲线C 2
B .把
C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移π
12
个单位长度,
得到曲线C 2
C .把C 1上各点的横坐标缩短到原来的1
2倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得
到曲线C 2
D .把C 1上各点的横坐标缩短到原来的1
2倍,纵坐标不变,再把得到的曲线向左平移π12
个单位长度,得
到曲线C 2
5.函数f (x )=2cos x +sin x 的最大值为____.
例1:设a ∈R ,f (x )=cos x (a sin x -cos x )+cos 2(π2-x )满足f (-π3)=f (0),则函数f (x )在[π4,11π
24]上的最大值和最小值分别为__________., _______.
例2 已知函数f (x )=sin 2x -cos 2x -23sin x cos x (x ∈R ).:
(1)求f (2π
3
)的值;
(2)求f (x )的最小正周期及单调递增区间.
例3 (1)将函数y =3cos x +sin x (x ∈R )的图象向左平移m (m >0)个单位长度后,所得到的图象关于y 轴对称,则m 的最小值是 ( )
A .π6
B .π12
C .π3
D .5π6
(2)已知A ,B ,C ,D 是函数y =sin(ωx +π)(ω>0,0<φ<π
2
)一个周期内的图象上的四个点,如图所示,A (-
π6
,0),B 为y 轴上的点,C 为图象上的最低点,E 为该图象的一个对称中心,B 与D 关于点E 对称,CD →在x 轴上的投影为π
12,则 ( )
A .ω=2,φ=π
3 B .ω=2,φ=π
6 C .ω=1
2,φ=π3
D .ω=1
2,φ=π6
1.函数f (x )=cos(ωx +φ)的部分图像如图所示,则f (x )的单调递减区间为 ( )
A .⎝⎛⎭
⎫k π-14,k π+3
4,k ∈Z
B .⎝⎛⎭
⎫2k π-14,2k π+3
4,k ∈Z
C .⎝⎛⎭
⎫k -14,k +3
4,k ∈Z
D .⎝⎛⎭
⎫2k -14,2k +3
4,k ∈Z
2. 函数y =cos(x +π2)+sin(π
3-x )具有性质 ( )
A .最大值为1,图象关于点(π
6,0)对称 B .最大值为3,图象关于点(π
6,0)对称 C .最大值为1,图象关于直线x =π
6对称 D .最大值为3,图象关于直线x =π
6对称
3. 设x 0为函数f (x )=sin πx 的零点,且满足|x 0|+f (x 0+1
2
)<33,则这样的零点有 ( )
A .61个
B .63个
C .65个
D .67个
4. 已知函数f (x )=2sin(π+x )sin(x +π
3+φ)的图象关于原点对称,其中φ∈(0,π),则φ=____
5.如果两个函数的图象平移后能够重合,那么称这两个函数为“互为生成”函数.给出下列四个函数:
①f (x )=sin x +cos x; ②f (x )=2(sin x +cos x ); ③f (x )=sin x; ④f (x )=2sin x +2.
其中为“互为生成”函数的是____.(填序号)
6. 已知函数f (x )=1+cos2x -2sin 2(x -π
6),其中x ∈R ,则下列结论中正确的是 ( )
A .f (x )是最小正周期为π的偶函数
B .f (x )的一条对称轴是x =π
3 C .f (x )的最大值为2
D .将函数y =3sin2x 的图象向左平移π
6得到函数f (x )的图象
7.已知函数f (x )=sin ωx +cos ωx (ω>0)在(π
2,π)上单调递减,则ω的取值范围是____.
8.已知函数f (x )=sin(2x +π3)+sin(2x -π
3)+2cos 2x ,x ∈R .
(1)求函数f (x )的最小正周期;
(2)求函数f (x )在区间[-π4,π
4
]上的最大值和最小值.
9.已知函数f (x )=sin x cos x +1
2cos 2x .
(1)若tan θ=2,求f (θ)的值;
(2)若函数y =g (x )的图象是由函数y =f (x )的图象上所有的点向右平移π
4个单位长度而得到,且g (x )在区间(0,m )内是单调函数,求实数m 的最大值.。

相关文档
最新文档